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In our study we rely on a data mining procedure known as support vector machine (SVM) on 
the database of the first Hungarian bankruptcy model. The models constructed are then 
contrasted with the results of earlier bankruptcy models with the use of classification accuracy 
and the area under the ROC curve. In using the SVM technique, in addition to conventional 
kernel functions, we also examine the possibilities of applying the ANOVA kernel function 
and take a detailed look at data preparation tasks recommended in using the SVM method 
(handling of outliers). The results of the models assembled suggest that a significant 
improvement of classification accuracy can be achieved on the database of the first Hungarian 
bankruptcy model when using the SVM method as opposed to neural networks. 
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1. INTRODUCTION 

During the recent economic crisis the importance of the prediction of corporate bankruptcy 
has become obvious due to the increasing number of business failures. The prediction of 
bankruptcy is especially important for creditors, but there are several other stakeholders who 
can profit from an efficient early warning system that is able to predict the financial distress 
of companies. For example, regulators can also use early warning systems to supervise the 
“financial health” of the banking sector or other companies in the economy.  

The cost of corporate bankruptcy is obviously high, but not only for lenders. Business failure 
can cause losses in other sectors as well. When a firm goes bankrupt, the market where the 
bankrupt firm operated on becomes less competitive, which is obviously costly for the whole 
economy. This is the main reason why researchers and practicioners all around the world try 
to enhance the predictive power of the early warning systems. 

This paper would like to contribute to the existing literature with the following: 

- it gives a brief overview of the concept of support vector machines (SVM); 
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- it suggests a possible data preparation procedure which is especially suitable for SVM 
and able to handle the problem of outliers when the number of observations is small; 

- it compares the results of the well-known kernel functions with the ANOVA kernel 
that could be a promising kernel for solving classification problems; 

- it proves empirically the superior results of the SVM-based early warning systems 
against the traditional statistical methods and neural networks; 

- it presents the best performing parameter settings for kernel functions that could be 
useful for further research and practice as well. 

Thanks to the rapid development of data mining methods and the related supportive 
information technology, newer and newer multivariate mathematical statistical methodologies 
are made available for the purpose of solving classification and function approximation tasks. 
All this does not leave bankruptcy prediction unaffected either, which’s main purpose is to 
maximise classification accuracy when sorting solvent and insolvent businesses.  

In a recent paper Kristof and Virag (2012) present how to enhance the classification accuracy 
of bankruptcy models assembled with the use of the most common multivariate methods 
(logistic regression, decision trees and neural networks) when combined with other statistical 
approaches such as principal component analysis and CHAID procedure.   

In recent years, authors have increasingly relied on procedures based on artificial intelligence 
as opposed to conventional multivariate statistical approaches (discriminance analysis, 
logistic regression, etc.). The reason for this is in part methodological, with multivariate 
statistical approaches in practice often posing unachievable criteria in respect of data subject 
to analysis – for instance, a frequent requirement is joint normal distribution and 
independence of variables.  

Although high classification accuracy is achievable even in the absence of these, practice 
tends to be oriented toward approaches which’s results cannot be challenged on grounds that 
the employed statistical method’s assumptions related to data are not fulfilled. This tendency 
is further strengthened by a criterion often posed by practical users, as financial institutions 
are typically interested in the highest possible classification accuracy and the simple use of 
models. 

Data mining methods, which are increasingly applied in other disciplines in addition to 
bankruptcy prediction, seek to meet the criteria of robustness and simplicity concurrently.  

In our work, we would like to draw researchers’ and professionals’ attention to a data mining 
technique relatively new and still infrequently used in the economics literature known as 
“support vector machine” (SVM). Research findings suggest that applying this approach adds 
to the classification accuracy of bankruptcy prediction models. We hope that the research 
results presented below lay the ground for the necessity to rely on the SVM method in regard 
to other research questions as well. 

 

2. THE SVM CLASSIFICATION ALGORITHM 

Like neural networks, this procedure is a data mining tool based on artificial intelligence that 
can be used for classification and function approximation purposes. In this case, our goal is to 
sort into appropriate classes solvent and insolvent businesses in the first Hungarian 
bankruptcy model’s database with higher accuracy than in models presented earlier.  
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The procedure based on statistical learning theory was developed by Vapnik (1995, 1998). In 
our study we present the core idea of two-group classification. 

Let us consider a set of observations as a learning database. Let xi be the input vector of the 
observed units and yi their assignment to groups. Since we only study two groups, let us mark 
one group with 1 and the other with -1.  

Let us assume that the two groups can be separated linearly. As an illustration, let us have a 
look at Figure 1. 

 

 

 

 

 

 

 

In Figure 1, the solid circles belong to Group 1 and the rings belong to Group -1. The dotted 
lines in the figure mark the two straight lines which classify the two groups without errors, 
while the “dotless” region (margin) is as large as possible. The procedure is designed to 
define these two straight lines along with the straight line stretching along the middle line of 
the margin between the two straight lines. This is known as the optimal separating straight 
line as it is this straight line that is also most likely to correctly classify observations outside 
the sample. The optimal separating straight line is indicated as a solid line in the figure.  

This approach differs from conventional statistical models minimising the risk of empirical 
error (measured on the training sample). By contrast, the SVM method minimises the overall 
risk as it is designed also to classify out-of-sample observations with minimum error using the 
optimal separating straight line.  

Hence, only those observations in the two groups are necessary for determining the optimal 
separating straight line which fall closer to the observations of the other group. In Figure 1, it 
is these points that the two dotted straight lines pass. These observations are called support 
vectors. The procedure is aimed to maximise the region between the support vectors (margin). 
The middle line of this region is the optimal separating straight line.   

In the event of more than two dimensions, the straight line introduced in Figure 1 will be 
replaced by an optimal separating hyperplane, whose normal vector shall be marked with w. 
Now the size of the margin is:  

2
‖𝒘‖

 

Our goal is to maximise the above margin with all observations categorised as 1 located above 
the hyperplane and all observations categorised as -1 falling below the hyperplane.    

Mathematically, therefore, we can arrive at the equation of the optimal separating hyperplane 
by solving the following task: 

Figure 1 

Two-group linear separation based on Burges (1998) 

(1) 
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provided that 

𝑦𝑖(𝒙𝒊 ∙ 𝒘 + 𝑏) ≥ 1     ∀𝑖 

where b is a constant parameter. 

Since the above target function is maximal at the same w normal vector at which the target 
function below is minimal, for mathematical reasons the following target function is applied 
in solving the optimisation task: 

min
1
2
‖𝒘‖2 

Typically, however, the observations to be classified cannot be separated linearly. In such 
cases, there is no such thing as a perfectly separating hyperplane. In the classification process 
any hyperplane commits a certain degree of error, which shall be marked with 𝜉𝑖 (𝜉𝑖 > 0). 
Another beneficial characteristic of this procedure lies in enabling its user to determine the 
penalty cost, marked with C in specialised literature, of erroneous classification. In such a 
case, the above target function or the optimisation task will be modified as follows:  

min 1
2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖𝑙

𝑖=1  

provided that 

𝑦𝑖(𝒙𝒊 ∙ 𝒘 + 𝑏) ≥ 1 − 𝜉𝑖     ∀𝑖 

where 1 is the number of items in the training sample. 

The greater the penalty (C) imposed on the error the more specific the hyperplane is to the 
sample and thus the problem of overlearning also emerges with the SVM procedure. 
Hyperplanes fitted along lower C values also tend to show high classification accuracy for 
observations outside the training sample. 

Where the training sample cannot be classified with the use of a hyperplane we have the 
option of non-linear separation. In this case, we look for an optimal hypersurface as opposed 
to the optimal hyperplane that is able to sort the training sample items into the appropriate 
classes. The SVM procedure links the definition of this hypersurface back to linear separation 
presented earlier by projecting the observations’ p-dimension attribute vectors into a space 
with a higher n number of dimensions where the observations can now be separated linearly. 
That is illustrated in Figure 2, where the observed two-dimensional objects can be separated 
linearly in a three-dimensional space.  

 

 

 

 

 

(2) 

(3) 

(4) 

(5) 

(6) 
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We can transform observations into a space with a higher number of dimensions with the help 
of what is known as kernel functions. Typically, the available pieces of software make 
possible the direct use of the following kernel functions:1 

- polynomial:  
𝑘(𝑎, 𝑏) = (𝑎 ∙ 𝑏 + 1)𝑑 

 
- radial basis (Gauss) function: 

𝑘(𝑎, 𝑏) = 𝑒−𝛾‖𝑎−𝑏‖2 

 
- hyperbolic tangent (sigmoid): 

𝑘(𝑎, 𝑏) = tanh (𝜌𝑎 ∙ 𝑏 + 𝜑) 

 
- ANOVA: 

𝑘(𝑎, 𝑏) = ��e−γ(ai−bi)

i

�
d

 

 

The type of the kernel function and the d, γ, ρ and φ parameters are optional. There are no 
theoretical stipulations as to their values; therefore, they – and the kernel function type – 
should be determined to ensure the model’s best possible fit to the observations in the test 
sample in order to avoid overfitting. 

 

3. INTERNATIONAL COMPARATIVE ANALYSES OF BANKRUPTCY MODELS 
PREPERED BY MEANS OF THE SVM PROCEDURE 

Co-authors Fan and Palaniswami (2000) were the first to apply this approach to bankruptcy 
prediction to classify 174 Australian small and medium-sized businesses (SMBs). Using a 
sample including 86 bankruptcy observations and relying on the financial ratios of the models 
of Altman (1968), Lincoln (1982) and Ohlson (1980) they concluded that the SVM procedure 
in combination with twentyfold cross-validation2 resulted in greater classification accuracy 
than discriminance analysis, neural networks and learning vector quantisation.   

1 We performed our calculations using the WinSVM software and the algorithm used by the software includes 
detailed user guidelines for the programme (Rüping 2000). 
2 In cross-validation the sample under review is divided into n parts. Of n sub-samples, n-1 samples are used to 
train the models and the nth sample is used to test the fitted model in a way to ensure each sub-sample fills the 
role of the test sample once. The models’ classification accuracy is determined not based on the results of 
individual samples but as the average of the results of n number of test samples. The benefit of this approach is 
that sample-specific models can be avoided by its use. Models showing good cross-validation results can be 
considered much more robust than bankruptcy functions validated on a simple test sample.  

Figure 2 

Non-linear separation in higher-dimension space based on Hearst (1998) 
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Co-authors Kim and Sohn (2010) used fivefold cross-validation on a sample of Korean SMBs 
to compare the classification accuracy of logistic regression, neural networks and the SVM 
model. The best results were produced by the SVM approach used in combination with the 
RBF kernel function with C=1000 and γ=0.0001 parameters. The authors pointed out that the 
model’s outcomes were highly sensitive to the selection of parameters in the course of the 
SVM procedure; therefore, great caution should be exercised in determining parameters.  

Boyacioglu et al. (2009) compared the most commonly used classification methods on a small 
sample of Turkish banks (21 problematic and 44 functioning banks) struggling with financial 
difficulties in the wake of recession afflicting Turkey in the 1990s. Their findings revealed 
neural networks’ ability to provide error-free classification while learning vector quantisation 
yielded faultless results in the test sample. In this small-sample comparative study the SVM 
procedure proved to be the second best approach.3 

Huang et al (2004) used the SVM technique and neural networks to predict American and 
Taiwanese bond classifications. The authors fitted two models to the samples. As input 
variables, the first model employed relevant financial ratios used in specialised literature and 
the second applied all available financial ratios. The results showed that data mining models 
constructed on financial ratios commonly used in literature had better predictive power than 
more complex models relying on all available information. Of the four models assembled, the 
predictive power of the bankruptcy function prepared by means of the SVM approach 
surpassed the bankruptcy model estimated by applying neural networks.  

Dong et al (2008) compared the performance of the SVM procedure with statistical methods 
(neural networks, logistic regression and discriminance analysis) widely used to predict 
bankruptcies on data of companies floating on the Shanghai and Shenzen stock exchanges. 
The highest classification accuracy was achieved with the use of the RBF kernel function. 
Using tenfold cross-validation, the classification accuracy of their model was 95.2% on the 
training sample while it was 83.2% for the test sample. Surprisingly enough, of the four 
methods examined, neural networks produced the weakest results with classification accuracy 
of 77.6% on the training sample and 76% on the test sample. Readers conversant in 
bankruptcy prediction literature may well deem these classification accuracy values rather too 
low. The authors explained “weaker-than-usual” results in part with the small sample size 
(250 businesses) and in part with the insufficient number of observations for building 
quantitative bankruptcy prediction models due to the “youngness” of the Chinese economy. 
Thus, instead of “bankrupt” businesses it is “specially treated” companies on the Chinese 
stock exchanges that are considered as observations indicating financial problems, a 
significant characteristic of which is that their profits have remained in negative territory for 
the past two years. Indeed, that can be an important early warning signal of potential 
bankruptcy threatening a business but actual bankruptcy does not necessarily follow from it. 
Because of this, specially treated companies may well also include fast-growing businesses 
forgoing short-term profits for long-term growth, which may easily be the case with high-tech 
manufacturing companies studied by the authors. 

Moradi et al (2012) scrutinised the SVM model’s classification accuracy versus multivariate 
discriminance analysis on a paired sample of companies (204) listed on the Tehran stock 
exchange between 1999 and 2009. The former and the latter approach correctly classified 
93.6% and 87.24% of observations on average, respectively.   

3 Classification accuracy was 95% and 91% in the training sample and the test sample, respectively.  
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According to the literature, the SVM technique’s greatest advantage over other methods is 
that, unlike other approaches, it defines a global optimum on the basis of the geometrical 
position of data. The learning procedure of neural networks can unfortunately stop at a local 
optimum, due to which Shin et al (2005) call into question the generalisability of bankruptcy 
models constructed on neural networks, especially with small sample sizes. The authors have 
used the data of 2,320 Korean manufacturing companies to study the effect of the training 
sample size on classification accuracy achieved on the test sample. Their findings suggest that 
as the sample size decreases – particularly for a training sample with fewer than 200 items – 
significant differences emerge in classification accuracy between the SVM approach and 
neural networks on the test sample. 

Not in all cases is the SVM technique unambiguously “superior” to neural networks. As Min 
and Lee (2005) also underlines, the SVM method’s effectiveness largely depends on the 
kernel function applied and on whether the optimal C and γ parameters can be found. For that 
purpose multiple cross-validation or a technique known as grid search procedure is most 
commonly applied. The latter relies on the use of parameters as odd powers of two in 
numerous combinations and parameters with the highest cross-validated classification 
accuracies are then selected in assembling the final model. The authors cited above used the 
RBF kernel function, which is widely employed in the bankruptcy prediction literature, but 
the 83% classification accuracy achieved on the test sample only exceeded the results of 
neural networks by half a percentage point. Based on these results, the authors argue that it 
may also be worth using other kernel functions in bankruptcy prediction in order to maximise 
classification accuracy achievable by means of the SVM method. 

Departing from the practice of bankruptcy prediction based on “conventional” financial ratios, 
Yoon et al. (2008) attempted to forecast the bankruptcy of small businesses for which there 
were no financial statements (B/S or P&L account) available. The authors used the 
businesses’ credit card data to classify good and bad debtors. They performed the modelling 
with the use of neural networks, decision trees, CART (Classification And Regression Trees) 
and also discriminance analysis. Their findings revealed the SVM technique’s higher 
classification accuracy (74.2%) on the test sample over the RBF kernel function; however, 
this result did not exceed significantly the 73.1% classification accuracy achievable with 
neural networks in this case either. 

Nor was a significant difference found by Lee and To (2010) in performance between neural 
networks and the SVM approach. They divided their sample of 45 companies listed on the 
Taiwan stock exchange into a training and a test sample with 20 and 25 items, respectively. 
The SVM method correctly sorted all the observations in the test sample but the neural 
network was also very close with only one error in classification. 

In their study, Moro et al. (2011) give a comprehensive analysis of businesses’ bankruptcy 
risk in 12 Asian countries based on a database containing hundreds of thousands of 
observations. This huge data set allowed them to study in detail individual financial ratios and 
the likelihood of bankruptcy. Their findings provide a basis for the hypothesis whereby there 
is no monotonic relationship between bankruptcy risk and financial ratios. In respect of 
gearing, the authors identified a U-shaped relationship with the relative frequency of 
bankruptices but found no similar regularity in the case of other variables. Therefore, models 
with any hypothesis regarding the theoretical relationship between dependent and independent 
variables cannot be considered adequate in the field of bankruptcy prevention. The authors 
confirmed the said hypothesis by comparing the SVM approach with logistic regression. 
While the former does not assume a monotonic relationship between dependent and 
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independent variables, the latter does. Their results for the period 2000-2007 showed evidence 
that the SVM method’s classification accuracy exceeded that achieved by logistic regression 
in seven out of eight years under review. 

The above-cited authors also looked into the relationship between bankruptcy risk and 
individual financial ratios on a German database containing hundreds of thousands of 
observations. Interestingly, they found that individual ratios showed a different kind of 
relationship in the case of German as opposed to Asian businesses, which confirms the need 
for bankruptcy models also taking into account country-specific factors.    

In applying the SVM technique, authors most often use the stepwise method to identify 
relevant variables. Erdal and Ekinci (2012) studied the applicability of principal component 
analysis to reduce the number of variables on a sample of 37 Turkish banks. From their 
comparative analysis they concluded that the SVM method and neural networks showed the 
highest classification accuracy also when all variables were used as input data in models. In 
21 out of 26 models under study, the SVM method’s classification accuracy exceeded the 
classification performance achieved by neural networks. 

In the Hungarian specialised literature, Szűcs (2010) was the first to study the applicability of 
the SVM approach to the classification of bad and good loan transactions using a database 
made freely available by the University of California for research purposes. The author cited 
applied fivefold cross-validation in combination with the RBF kernel function widely used in 
bankruptcy prediction literature. Although the results are promising (with the area under the 
ROC curve at 0.92) they have limited value in terms of drawing more general conclusions as 
the performance of other methods on the data under study are not known.   

All in all based on the current research results the SVM method seems to be a promising tool 
for building early warning systems. The studies presented above show that the accuracy of 
bankruptcy models can be enhanced by employing this data mining technique. This is the 
reason why we compare this tool with other classification methods in terms of classification 
accuracy using the database of the first Hungarian bankruptcy model. 

 

4. THE HISTORY OF THE FIRST HUNGARIAN BANKRUPTCY MODEL 

In our comparative analysis, we used as a benchmark the database of the first Hungarian 
bankruptcy model in order to make an objective comparison between SVM-assisted 
bankruptcy models and recent years’ bankruptcy functions estimated on the basis of the 
database.  

One can read about the background of the first Hungarian bankruptcy model in Virág and 
Hajdu’s (1996) results from models estimated on the basis of data from annual reports for 
1990. Estimates based on 1991 data can be found in Virág and Kristóf (2005). The latter 
authors presented how aggregate classification accuracy achievable on the database of the 
first Hungarian bankruptcy model could be improved by means of neural networks compared 
to the results of conventional statistical models. Table 1 shows the aggregate classification 
accuracy of models published on the basis of annual report data for the year 1991. 

 

Method Aggregate 
classification accuracy  

8 
 



Discriminance analysis  77.9 % 
Logistic regression  81.8 % 
Neural networks 83.6 % 

 

 

 

 

It should be noted that bankruptcy functions estimated by way of the SVM method were 
prepared on the basis of the annual reports of 156 Hungarian businesses for 1991 (including 
observations about 78 bankrupt and 78 functioning companies). Therefore, we advise against 
using the results on current data.    

We trust, however, that our results achieved by means of the SVM approach encourage 
readers to create bankruptcy models on new observations with similarly high classification 
accuracy.      

 

5. BANKRUPTCY PREDICTION BASED ON DATABASED OF THE FIRST 
HUNGARIAN BANKRUPTCY MODEL WITH THE USE OF SVM 

The first and most important step in modelling with the use of data mining tools is to prepare 
data for modelling, which in many cases is more difficult and demands greater caution than 
modelling itself (Kristóf and Virág 2012). 

Most modelling procedures are more or less sensitive to observations with strikingly high or 
low values (outliers). A frequently applied solution is to leave out such values of the analysis 
altogether. This approach certainly facilitates modelling and can improve models, but 
excluding outliers may cause the loss of important information; furthermore, this approach is 
less advantageous if a bank is wishing to rate its clientele and thus cannot afford to exclude 
existing or prospective customers having outlier values.      

Another problem is posed by the multidimensionality of bankruptcy prediction as a 
classification task and thus it often happens that a particular business has outliers in respect of 
some ratios while not so with others. Omitting all observations with at least one outlier 
variable may significantly limit the available data set. That is particularly true of cases where 
the distribution of businesses by financial ratio is asymmetrical (Sun-Shenoy 2007).  

There is no hard and fast definition as to when a variable’s value can be considered an outlier. 
That is primarily a function of the distribution of the given ratio. Traditional statistical rules of 
thumb take as a point of departure the standardised values of ratios (Zij). In the event of 
normal distribution, over 99% of observations fall within the following interval: 

�𝑍𝑖𝑗� < 3 

As an alternative approach, observations outside this interval can be considered outliers. It is 
this rule of thumb that we also followed to identify outliers in our work.  

Outlier values most often present a problem since they increase the standard deviation of 
variables. If a variable is dispersed on a wider range, minor differences between individual 

Table 1 

Aggregate classification accuracy of models published to date on the basis of the database used in the first 
Hungarian bankruptcy model based on Virág and Kristóf (2005) 

(7) 
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values relatively lose their information content. This may pose a serious problem in 
bankruptcy prediction as there are often no significant differences shown in financial ratios 
between bankrupt and functional companies (Lensberg et al. 2006), and so the relative decline 
in the significance of minor differences may undermine the predictive power of models.  

With data mining methods, problems stemming from standard deviation are in practice dealt 
with by transforming ratios to between 0 and 1 with the use of the formula below: 

𝑋𝑖𝑗 − 𝑋𝑗𝑚𝑖𝑛

𝑅𝑗
 

where 𝑋𝑖𝑗 stands for the jth ratio of the ith company; 

𝑋𝑗𝑚𝑖𝑛is the minimum value of the jth ratio; and 

𝑅𝑗 is the range of the jth ratio’s standard deviation. 

 

It should be noted that this transformation will also reduce the relative importance of 
differences between the values of individual variables when outliers are taken into 
consideration, as in this case it is these values that will define the range of standard deviation 
and hence assume the value of 0 or 1 after transformation. 

In preparing data, we sought to preserve both the information conveyed by outliers and the 
relative importance of differences between the values of individual variables. To this end, we 
temporarily ignored observations outside interval (7) and defined the range of standard 
deviation on the basis of the minimum and maximum values of the remaining sample items 
for each explanatory variable. Then we adjusted the omitted outlier values to the appropriate 
end of the [0, 1] interval in accordance with their magnitude.  

Caution must be exercised in using quotient-type financial ratios as in practice the following 
problems can severely weaken the performance of models:  

- the numerator and denominator of the ratio(s) are negative numbers (double negative 
division); 

- the denominator of the ratio(s) is zero. 

Even though we did not encounter the above problem in using the database of the first 
Hungarian bankruptcy model, the reader is kindly referred to the work of Kristóf and Virág 
(2012), which describes in detail how to deal with the above situations in an appropriate 
manner. 

The literature does not contain a clear statement of position as to whether in applying SVM 
models the maximum number of variables should be used or whether it is necessary to select 
them. Some authors (Sun-Shenoy 2007) attach great importance to the appropriate selection 
of variables in data mining models as superfluous variables will disrupt the learning process 
and erode the discriminatory power of good variables. Others (Erdal and Ekinci 2012), by 
contrast, have come to the conclusion that with SVM models reducing the number of 
variables impairs the models’ performance.  

(8) 
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In absence of consensus in the literature, we have performed modelling using each of the 17 
variables4 available in the database and also two restricted sets of variables. In the restriction 
process we retained those variables in which’s case significant differences were observed at 
5% and 10% significance levels between the average values of bankrupt and functional 
businesses.5 

As we only achieved the best results when keeping those variables in the model which were 
different at the 5% significance level, we will only present the outcomes achieved by means 
of that set of variables. These financial ratios and their underlying statistical indicators are 
contained in Table 2. 

Table 2. Descriptive statistics 

Name of ratio Average Standard deviation  
Solvent Insolvent Solvent Insolvent 

Quick liquidity ratio 0.39 0.18 0.25 0.11 
Liquidity ratio 0.32 0.14 0.26 0.10 

Cash funds ratio 0.61 0.40 0.17 0.18 
Cash flow and total debts 

ratio 
0.48 0.33 0.19 0.11 

Assets turnover ratio 0.23 0.15 0.21 0.17 
Debt ratio 0.15 0.24 0.22 0.30 

Solvency ratio 0.11 0.19 0.18 0.28 
Short-term-loans-covered 

Current Assets 0.24 0.35 0.20 0.28 

Return on sales 0.76 0.52 0.19 0.22 
Return on assets 0.42 0.30 0.12 0.10 

 

 

6. RESULTS OF SVM-BASED BANKRUPTCY MODELS 

In introducing methodological underpinnings we gave an account of how the SVM procedure 
can be used even when the objects to be classified cannot be perfectly separated with the help 
of a linear function. In this case, by means of what is known as a kernel function the values of 
the observed variables can be transformed into a space with a higher number of dimensions 
where linear separation can be performed.  

There are no theoretical guidelines as to the type and parameters of the kernel function. Most 
commonly, bankruptcy prediction literature applies the RBF kernel function. The majority of 
the available pieces of software offer the functions presented earlier for the modeller to 
choose from.  

Importantly, it is not only these kernel functions that can be used in applying the SVM 
procedure. International experience suggests that the achievable degree of classification 
accuracy largely depends on the type of the kernel function applied and paramater settings 
(Yang 2007). For this reason, we also investigated the applicability of the ANOVA kernel 

4 For the names and calculation of the 17 financial ratios available in the database of the first Hungarian 
bankruptcy model see Appendix 1. 
5 The tests were performed by comparing values transformed into the [0, 1] interval. 
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function to bankruptcy prediction besides polynomial, Gauss and hyperbolic tangent 
functions.  

Virág and Kristóf (2005) used neural networks to project the status (solvent or insolvent) of 
156 Hungarian businesses contained in the database of the first Hungarian bankruptcy model. 
They compared the performance of six neural network topologies with six random samples 
selected from available observations, which they divided into a training and a test a sample in 
the ratio of 75% to 25%, respectively, in accordance with the practice used in the literature.  

For the comparability of our results with those of Virág and Kristóf (2005) we also used these 
six samples as a basis. In modelling, we applied the four kernel functions presented above to 
all the samples and defined those parameters against which the error of the test sample 
remained at a minimum.  

It should be emphasised that because of the data mining techniques’ ability to be specific to 
the observations in the test sample and hence to achieve 100% classification accuracy, it was 
not the aggregate classification accuracy that we wanted to minimise as a “target function”.  
Otherwise the models will become “overfitted” and their results “sample-specific”, and will 
thus typically show weaker results on the test sample. In such a case, the perfect classification 
of observations in the test sample would lead us to draw the wrong conclusions about the 
actual discriminatory power of the model. That is why we thought it would make more sense 
to minimise the error of the test sample in selecting the models..6 

Apart from the above, we also took into account the need for practical application when 
choosing to minimise the test sample error as the objective of modeling, as in rating 
customers, financial institutions seek to maximise accuracy when classifying out-of-sample 
observations.   

All that, however, does not mean that we can overlook the results achieved on the training 
sample, as in practice it can happen that after composing the model the user must rate a 
business similar to an observation in the training sample. Hence, judgement of the models 
cannot be based merely on the error of the test sample. Similarly to Virág and Kristóf (2005), 
we will also assess the performance of SVM models on the basis of aggregate classification 
accuracy. 

In Table 3, we compare the results of SVM models producing the best performance with the 
highest classification accuracies achieved with neural networks on the 6 samples under 
review. 

The results can be summed up as follows:  

- The SVM model’s classification accuracy exceeded that achieved by neural networks 
on all training samples. 

- Of the test samples, the SVM model produced higher classification accuracy on two 
samples (2 and 4), the same level of accuracy on three samples (3, 5 and 6) and 
weaker classification accuracy with one forecasting error on the first sample. 

- In respect of aggregate classification accuracy, the SVM model outperformed neural 
networks on all the samples. 

 

6 For a similar reason, co-authors Virág and Kristóf (2005) stopped the learning process of neural networks at the 
minimum value of the test sample error. 
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  Designation Method Sample 1 Sample 2  
Sample 

3 Sample 4 Sample 5 
Sample 

6 

Training 
sample 

 Total errors (units) 

NN 

22 20 20 26 20 18 
Solvent by error (units) 8 3 11 4 9 7 

Insolvent by error (units) 14 17 9 22 11 11 
Classification accuracy 81.20% 82.91% 82.91% 77.78% 82.91% 84.62% 

 Total errors (units) 

SVM 

10 16 15 8 18 16 
Solvent by error (units) 7 8 5 1 8 4 

Insolvent by error (units) 3 8 10 7 10 12 
Classification accuracy 91.45% 86.32% 87,18% 93,16% 84,62% 86,32% 

Test 
sample 

 Total errors (units) 

NN 

4 7 5 6 3 3 
Solvent by error (units) 1 6 1 5 2 2 

Insolvent by error (units) 3 1 4 1 1 1 
Classification accuracy 89.74% 82.05% 87.18% 84.62% 92.31% 92.31% 

 Total errors (units) 

SVM 

5 5 5 4 3 3 
Solvent by error (units) 1 5 1 4 2 3 

Insolvent by error (units) 4 0 4 0 1 0 
Classification accuracy 87.18% 87.18% 87.18% 89.74% 92.31% 92.31% 

Total 

 Total errors (units) 

NN 

26 27 25 32 23 21 
Solvent by error (units) 9 9 12 9 11 9 

Insolvent by error (units) 17 18 13 23 12 12 
Classification accuracy 83.33% 82.69% 83.97% 79.49% 85.26% 86.54% 

 Total errors (units) 

SVM 

15 21 20 12 21 19 
Solvent by error (units) 8 13 6 5 10 7 

Insolvent by error (units) 7 8 14 7 11 12 
Classification accuracy 90.38% 86.54% 87.18% 92.31% 86.54% 87.82% 

Table 3 

Classification accuracy of bankruptcy models constructed with the use of neural networks (NN) and the SVM approach  
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Thus, with the use of the SVM model results achieved by means of neural networks 
substantially improved. It is particularly noteworthy that this new procedure showed better 
results on those training and test samples where neural networks produced the weakest 
performance. The advantage of the SVM approach was most strikingly reflected by the fact 
that aggregate classification accuracy was not weaker than 86.54% on either sample, as 
opposed to neural networks, which’s highest classification accuracy did not exceed this value.   

The results presented here were achieved on the same training and test samples which were 
generated by Virág and Kristóf (2005) by randomly dividing the available database containing 
156 items into training and test samples. This approach is similar to cross-validation, a 
procedure widely used in the literature, the essence of which is that the predictive power of 
methodologies to be compared is characterised by the average of classification accuracies 
achieved on different training and test samples in order to eliminate bias in a model’s 
measured performance caused by the particular training sample and test sample it was 
constructed and used on, respectively.  

The same approach can be applied in respect of the 6 samples under review. The average 
classification accuracies achieved on the six samples are shown in Table 4.  

Name Method 
Average classification 

accuracy  
Training 
sample 

NN 82.05% 
SVM 88.18% 

Test sample NN 88.03% 
SVM 89.32% 

Total NN 83.55% 
SVM 88.46% 

 

 

 

From the results it can be concluded that they exceed those achieved by neural networks in 
terms of average classification accuracy on both training and test samples as well as in terms 
of aggregate classification accuracy. Therefore, the difference is close to 5 percentage points 
in favour of the SVM technique in respect of all observations, which can be considered a 
significant improvement especially in view of the fact that these results were achieved by the 
new data mining method as an average of results generated on six different samples. 

Our work has also aimed to determine which function is suited to achieve the best results in 
bankruptcy prediction. To this end, we applied the four kernel functions presented earlier to 
all six samples and looked for settings ensuring the highest classification accuracies. Of them 
we selected the one that ensured the highest possible classification accuracy on the test 
sample. In the case of individual samples, the (best) results shown in Table 3 were achieved 
with the kernel functions and parameter settings presented in Table 5.7 

 

7 Among the parameters (-) is assigned to those not applicable to particular kernel functions. 

Table 4 

Average classification accuracies of the constructed bankruptcy models achieved by neural networks (NN) 
and the SVM method in respect of the six samples under review  
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Type of kernel 
function ANOVA Gauss 

(RBF) polynomial polynomial Gauss 
(RBF) polynomial 

Parameters 
C 0.0034 1 0.0083 0.0023 2 0.0017 

degree 4 - 4 5 - 4 
γ 7.5 0.26 - - 0.28 - 

 

 

 

In most of the samples, the highest classification accuracy was ensured by means of a fourth- 
or fifth-degree polynomial kernel function combined with a rather low C parameter. With two 
samples, the best results were achieved by way of a Gauss (RBF) kernel function, again in 
combination with rather similar C and gamma parameters. These results can be useful in the 
practical application of the SVM method in respect of the magnitude settings of the 
parameters. 

In the case of Sample 1, we received the most accurate forecasts with the use of the ANOVA 
kernel function, which was an important achievement as we did not find any research in 
literature that relied on this kernel function. Given that the best results were achieved by 
means of this kernel function on Sample 1, a further important and exciting area of research 
could be to compare kernel functions not applied to bankruptcy prediction before with already 
known kernel functions in terms of performance. 

A procedure commonly used in the literature and also applied to Hungarian bankruptcy 
prediction (Virág and Kristóf 2008) is the ROC (Receiver Operating Characteristic) curve, 
specifically the use of the area under curve as a metric. The higher the AUC (area under the 
ROC curve) value indicating the degree of likelihood that the studied bankruptcy model will 
assign greater risk of bankruptcy to a randomly selected bankrupt company than to a 
randomly selected functional company is, the more reliable the bankruptcy model is 
considered. Table 6 shows the AUC values of the SVM models fitted to the six samples. 

 

  AUC p-value 
Sample 1 0.984 0.000 
Sample 2 0.910 0.000 
Sample 3 0.941 0.000 
Sample 4 0.951 0.000 
Sample 5 0.936 0.000 
Sample 6 0.956 0.000 

 

 

 

The AUC values calculated on each sample are rather stable, which indicates the robustness 
of the SVM method. The average AUC value of the six samples is 0.946, which means that 

Table 5 

Kernel functions and parameters settings showing the best results on individual samples  

Table 6 

AUC values of SVM models constructed on individual samples and their p-values  
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with the use of this technique there is nearly 95% probability for the model to assign greater 
risk of bankruptcy to a randomly selected bankrupt company than to a randomly selected 
functional observation. It can be concluded from the p-values in Table 6 that the area under 
the ROC curve in the models constructed on individual samples differ from 0.5 at all 
significance levels in each case. In other words, the results received indicate that the models’ 
discriminatory power is definitely larger than random guessing. However, in the light of the 
results that hypothesis can be rejected at all relevant significance levels. 

 

7. SUMMARY 

In our work, we applied the SVM procedure, a relatively new and still infrequently used 
method in applied economics literature, to the database of the first Hungarian bankruptcy 
model.   

Classification accuracies achieved with use of the SVM method were compared with the 
results received by Virág and Kristóf (2005) on the same database by means of neural 
networks. Aggregate classification accuracy as an average of the six samples achievable with 
the SVM method is close to 5% higher than in the case neural networks. We also evaluated 
the models constructed for prediction reliability based on AUC values and received a 
strikingly high 95% as an average of the six samples.    

In our paper we drew attention to the paramount importance of appropriate data preparation in 
bankruptcy modelling. Although with our database it was justified to eliminate outliers, we 
did not omit observations with strikingly high or low values as opposed to general practice. 
Having transformed each variable into the [0, 1] interval, by adjusting these outliers to the 
appropriate end of the interval we retained them in modelling. We performed our analyses 
without filtering out outliers and by also applying other screening procedures, but the best 
result was achieved by means of the presented screening technique.  

In the process of modelling, in addition to applying kernel functions widely used in the 
literature we also attempted to apply the ANOVA kernel function, of which we had found no 
example in the bankruptcy prediction literature. We achieved the best result using this kernel 
function on one of the six samples under review and therefore came to a relevant finding from 
the aspect of both scientific research and practical application.  
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Appendix 1 – Name and calculation formula of the applied financial ratios 

Name of ratio Calculation of ratio 
Quick Liquidity Ratio (Current Assets – Inventory) / Short-term Liabilities 

Liquidity Ratio Current Assets / Short-term Liabilities 
Cash Funds Ratio (%) (Cash / Total Assets) × 100 

Cash-Flow and Total Debts Ratio Cash-flow / Total Debts 
Current Assets Ratio (%) (Current Assets / Total Assets) × 100 

Capital Coverage Ratio (%) [(Invested Assets + Inventory) / Own Equity] × 100 
Assets Turnover Ratio Net Sales / Total Assets 

Inventory Turnover Ratio Net Sales / Inventory 
Accounts Receivable Turnover (days) (Accounts Receivable × 360) / Net Sales 

Debt Ratio (%) (Liabilities / Total Assets) × 100 
Own Equity Ratio (%) (Own Equity / Total Assets) × 100 

Solvency Ratio Liabilities / Own Equity 
Long-term-loans-covered Investments (%) (Long-term Loans / Invested Assets) × 100 

Short-term-loans-covered Current Assets (%) (Short-term Loans / Current Assets) × 100 
Return on Sales (%) (After-tax profit / Net Sales) × 100 
Return on Assets (%) (After-tax profit / Own Equity) × 100 

Receivable and Payable Accounts Ratio Accounts Receivable / Accounts Payable 
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