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The change of ambient temperature plays a key role in determining the run of the
annual Lyme season. Our aim was to explain the apparent contradiction between the
annual unimodal Lyme borreliosis incidence and the bimodal Ixodes ricinus tick
activity run – both observed in Hungary – by distinguishing the temperature-
dependent seasonal human and tick activity, the temperature-independent factors, and
the multiplicative effect of human outdoor activity in summer holiday, using data
from Hungary in the period of 1998–2012. This separation was verified by modeling
the Lyme incidence based on the separated factors, and comparing the run of the
observed and modeled incidence. We demonstrated the bimodality of tick season by
using the originally unimodal Lyme incidence data. To model the outdoor human
activity, the amount of camping guest nights was used, which showed an irregular
run from mid-June to September. The human outdoor activity showed a similar
exponential correlation with ambient temperature to that what the relative incidence
did. It was proved that summer holiday has great influence on Lyme incidence.

Keywords: Ixodes ricinus; tick activity; Lyme borreliosis disease; bimodality;
temperature dependence

Introduction

Ixodes ricinus ticks are the most important vectors of Borrelia burgdorferi s.l. in the
Carpathian Basin, which is the causative agent of Lyme borreliosis (LB) (Hornok 2009;
Halos et al. 2010). Although some researchers found (Brewer et al. 2003; Brownstein
et al. 2003; Subak 2003; Schauber et al. 2005; Ostfeld et al. 2006; Schulze et al. 2009)
that precipitation or humidity can play role in seasonality of tick-borne diseases, it
seems to be that one of the most important abiotic factor is temperature (Randolph &
Rogers 2000; Perret et al. 2003; Ogden et al. 2005; Daniel et al. 2008; Ogden et al.
2008; Gray et al. 2009; Hancock et al. 2011; Wu et al. 2013) and human activity also
can play important role. The seasonal patterns of LB cases are a known consequence of
two phenomena – the seasonal activity of ticks and the outdoor activity of humans:
according to Randolph (2010), variation in human outdoor activities may influence pos-
itively on both the enzootic cycles and the degree of human exposure to the cycles of
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tick borne disease systems. Human influence may be more important side of the interac-
tion than the changes in the transmission potential in natural enzootic cycles (Randolph
2010) and hot, sunny summer weather and in general holiday times make an additional
risk on human infection by stimulating people to go to the nature (Šumilo et al. 2008).

According to historical data and field collection studies, the seasonal activity of
Ixodes ricinus is bimodal with a spring and fall peak in Hungary (Babos & Faragó
1964; Egyed et al. 2012). Széll et al. (2006) found that the seasonal activity of
I. ricinus was the greatest between April and June with a peak in May and the authors
found a less marked increase in activity in September and October.

In Hungary, the seasonality of LB does not show the bimodality of the seasonal
activity of I. ricinus tick. LB season starts in late February and has a peak season in
mid-June, but in July and August, those are the most dry and warm seasons, there is a
relatively high LB incidence and the LB season does not show a second peak in the fall
months (Hornok 2009).

Our aim was to explain the apparent contradiction between the observed unimodal
LB and the known bimodal tick activity run by separating the temperature-related
seasonal human and tick activity from the nontemperature-related factors combining
with the effect of the multiplicative holiday human outdoor activity. We confirmed the
relevance of this approach by creating a model for the period of 1998–2012 in
Hungary.

Materials and methods

Data sources

The population size of Hungary

The population in 1998 was 10,280,000 and in 2012 was 9958,000 inhabitant (�3.13%
total decline/15 year) (KSH 2013b). We considered the average population of Hungary
for the entire 15 years as 10,000,000 inhabitants. While we used the weekly percentile
of the annual LB incidences, the changing population did not influence the model.

The source and the definition of Lyme cases

The weekly incidence of LB data for the period 1998–2012 was retrieved from one
center, the Hungarian National Epidemiological and Surveillance System (OEK
2013). While the Hungarian mandatory system does not distinguish between the
infection forms, we defined the “case” as any kind of type of early or late infection
form of LB disease. It is important to note that only the complicated cases must be
notified in Hungary. LB is a mandatory reportable disease in Hungary, but the ery-
thema chronicum migrans or erythema migrans (EM) is not required to be reported.
The diagnosis in our database may be based on three main criteria: persons with
typical EM symptoms, persons with late clinical manifestations (arthritis and/or car-
diac, neurological disorders, late phase EM), and persons with laboratory confirmed
LB with or without symptoms by ELISA, western blot or VlsE lipoprotein IR6 anti-
body serological tests.

While the studied period of LB showed an increasing trend with high variance, we
used the weekly “relative” (the percent per year) LB incidences in the model. It is very
important to note that we retained the term “incidence” because we originally calculated
the percentage of the weekly LB values from weekly incidence values. Naturally, the
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precise term of incidence (rate) is the number of new cases per population in a given
time period. Hereinafter, we will refer for the percent per year of the weekly LB inci-
dences as weekly relative LB incidences (RI ).

Weekly mean ambient temperature data

Climatic and the geographical conditions are very homogenous in Hungary. We
could handle the country as a homogenous unit. The daily mean temperature data
were derived from the European Climate Assessment & Dataset (Haylock et al.
2008). Average values were calculated from the 0.25° grid within the domain
including almost the entire Hungary (Figure 1). The latitudinal expansion was
45.77�48.56 °N, while the longitudinal was 16.15�22.85 °E. We calculated the
weekly mean ambient temperature (T ) values from the daily mean temperature data
with simple averaging method. Temperature values were derived from the period of
1.1.1998–10.31.2012.

Camping guest nights

The monthly guest nights data were derived from the KSH (2013a) database for the
period of 01.2008–10.2012. The data of guest nights spent in camping were used. The
summarized annual guest nights were 491; 459; 380; 435; and 436 (without the missing
data of November and December) thousand, respectively.

Figure 1. The domain used for acquiring temperature data.
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Softwares and statistics

Descriptive statistics, and linear, polynomial, exponential, and Gaussian regression by
PAST statistic analyzer (Hammer et al. 2001) and Microsoft Excel Solver add-in were
used for this research.

Modeling methods

Modeling approach

A model was built to analyze the difference between the observed unimodal run of the
annual LB incidence curve and the bimodal activity of Ixodes ticks in Hungary and to
reconstruct the incidence curve in the studied period. The model was trained to calculate
the weekly RI values of a certain week based on the weakly mean temperature (T ) and
the week number. Our first approach was that RI is the function of a temperature-depen-
dent activity factor of both ticks and humans (A) – the human and the tick activity are
both positively correlated with the outdoor temperature – and a temperature-independent
component of activity (IA). IA may be related with the actual questing, hungry active tick
population, and non-temperature climatic factors, and is the abstraction of the seasonality
and population dynamics of ticks. Furthermore, the human activity may have an
additional effect in the summer holiday times (holiday multiplier, HM). The two
approaches can be formed in simple equations (Equations (1) and (2)).

RI ¼ A � IA ð1Þ

RI ¼ A � IA � HM ð2Þ

Relative weekly incidence and the technical LB year

The lowest LB incidence in the studied period was 9.93 per 100,000 in 1999 and the
highest was 23.05 per 100,000 in 2010. Since in the period of 1998–2012 the incidence
of LB nearly doubled, we made a variance analysis to analyze whether the trend was
significant or not. In case of significant trend, relative (%) incidence should be used
instead of absolute incidence. At first, we calculated the LB incidence form the weekly
cases.

The occurrence of LB in Hungary can be highly underestimated since the number
of patients affected at any one time could be as much as 10% of the population,
(Bozsik 2004) and in the neighboring countries the incidence was much higher during
the past decade: the incidence of the disease has been more than 100 per 100,000 in
Austria and more than 200 per 100,000 in Slovenia (Lipsker and Jaulhac 2009).

Higher temperatures are needed for metamorphosis and egg hatching, between mini-
mum 8–11 °C (Daniel 1993) or 5–7 °C (Campbell 1948). Perret et al. (2000) found that
when the five days average of the daily maximal temperature was over 7 °C, tick quest-
ing activity was always observed. The nymphal activity starts when the maximum air
temperature reaches about the 10 °C (Randolph 2009) or 8 °C (Tagliapietra et al. 2011).
We found that in general the 11th week is the first stable spring week, with the T more
than 5 °C, which is not followed by a week with T less than 5 °C (mean: 11.133; the
week numbers are 13, 12, 12, 10, 8, 12, 11, 11, 12, 9, 12, 12, 11, 11, and 11 for the 15
studied years, respectively).

4 A. Trájer et al.
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We used technical years from the average start of the LB season from the 11th to
the next year’s 10th week in the calculation of RI. In conclusion, the period of
03.16.1998–03.11.2012 were used for the modeling.

Human outdoor activity

Human activity may have a great influence on the annual LB incidence (Šumilo et al.
2008; Randolph 2010). We found that many other accommodation types show clear
seasonality, but camping was the best suitable approach, because the inside temperature
of tents depends on directly the outdoor temperature and humans prefer the sunny, mild,
and windless days as ticks as well.

We used the camping guest night data to describe the temperature dependence of
the human willingness and seasonality to staying in nature. While the database contains
monthly data, we used linear interpolation for two weeks periods to gain higher resolu-
tion. The monthly mean temperature showed a strength correlation with the monthly
number of camping guest nights. Our previous observations showed that without the
July and August data, the remaining 10months show a Gaussian-like run. We fit a
Gauss-curve on the guest nights without the period of 13th–18th two weeks (the
omitted period showed an irregular run) by minimizing the sum of squared deviations
by Microsoft Excel’s Solver add-in. Because summer is the time of holiday activity, this
irregular run can be the consequence of the holidays and the school holidays.

After we fitted the Gaussian curve, we could calculate the observed/calculated ratio
(multiplier) of the irregular week pairs to characterize the effect of the summer holidays
on human activity. In the case of the irregular two weeks in the further calculations, we
used this ratios as a multiplier (hereinafter called holiday multiplier [HM]), while in the
case of the nonirregular weeks we thought HM as 1.

Temperature-dependent activity

We analyzed the correlation between the RI and T to determine an exponential
connection (hereinafter called activity (A)). Theoretically, the chance of the human LB
infection is related with both of the outdoor human and tick activity (Equation (3)).

RI � Ahuman � Atick ð3Þ
We made an exponential regression model without July and August on human

camping (outdoor) activity on temperature. This finding showed that both human out-
door activity and RI showed a very similar, exponential correlation with temperature.
Hence, we did not distinguish the temperature-related tick and human outdoor activity,
but summarized the temperature dependence in one variable (A).

However, LB is a mandatory reportable disease in Hungary; only the secondary
manifestation cases are strictly reportable. In addition, our database is a mixture of early
localized and disseminated, furthermore late disseminated cases. The EM gives the base
of our model since this is able to be directly tied to the time of the biting most of all.
Approximately the 80% of the LB cases symptomatically belong to EM, the early, non-
disseminate infection form (Steere 2008).

We made exponential regression model calculating with the weeks when the mean
ambient temperature was more than 5 °C and omitting the weeks with 0 LB cases to
the peak of the LB season, practically to the 26th week. We used RI of only the
increasing phase (1st–26th weeks) of the LB season, because:

International Journal of Environmental Health Research 5
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(1) in spring, the soil moisture and the air vapor content is relatively high due to the
low evaporation of the previous seasons (low relative humidity is important limiting
factor of tick activity);

(2) the relative number of the primer manifestations can be higher than in the later part
of the LB season; and

(3) in spring and early summer, according to the literature, the activity of nymphs is the
dominant.

Very important is to remove the nonrelevant, cold weeks from the data, where there
is not real tick activity. Using this “false” LB, incidence values may imply that there is
no threshold of the tick activity. This removing method is useful to avoid also the false
effect of the late manifestations of LB in winter time when the temperature is calculated
– LB incidence correlation.

The week numbers of the maximum of RI was 27, 27, 24, 26, 27, 25, 28, 25,
26, 24, 24, 27, 24, 29, and 28 for the studied 15 years, respectively (mean: 26.07).
We made linear regression to know whether a significant trend exists in the run of
the annual maximum LB incidences in the studied period. The change in the time
of the peak did not show significant trend (R2: 0.0092). This result implicate that
we can use the 26th week as the peak of the LB season which did not change dur-
ing the 15 years.

Using lag

It is important to note that the different forms of LB have different incubation times.
The main vectors in the aspect of humans are infected adults and nymphs. Nymphs feed
on their hosts 3–7 days long and their shading lasts for 2–6months; the EM appear
within 7–10 days on average, but it can take up to 30 days before the EM become visi-
ble. (Lakos 1991; Lakos 1992; Lakos 1994; Kapiller and Szentgyörgyi 2001; Bacon
et al. 2008).

There is a lag from tick biting to the observation and to the appearance of the case in
the surveillance (report) system. To analyze the effect of the lag, we used 0, �1,
and �2weeks lags. In addition, it was studied whether the exponential regression stronger
in case of the HM is part of the expression (dependent variable is not RI but RI/HM).

Temperature-independent activity

We calculated the temperature-independent component of the activity (IA) by using
polynomial regression of the IA=RI/A correlation. Our aim was to find the correlation
between the number of weeks and IA. We used only the weeks from the 11th weeks
with continuous periods, when the temperature was always more than 5 °C.

Three different approaches were made:

(1) the effect of the summer holidays (HM) was not taken into consideration (IA1);
(2) we added the effect of the summer holidays to the model and the entire year was

regressed (IA2);
(3) and a hybrid model (IA3) were made: only the period in the year was regressed

when the HM had a visible effect on the run of the population curve (25th–35th
weeks), and IA1 curve was used beyond this period. Note that IA3 is a composite
function (not continuous).

6 A. Trájer et al.
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Modeling

We compared the modeled results and the observed RI in the period of 03.16.1998–
03.11.2012, and error evaluation (R2 and summarized absolute error) was made to com-
pare the different models. We made three approaches: (1) A⁄P1; (2) A⁄P2⁄HM; and (3)
A⁄P3⁄HM. We displayed the observed and modeled RI, the error, and absolute error for
the entire analyzed period.

Results

Descriptive statistics of LB

We found significant (p< 0.01) increasing trend (y = 0.5594x + 9.3829; R²= 0.4764) of
LB incidence in the period of 1998–2012, so we had to calculate the relative (%) instead
of absolute LB incidence, since in case of same temperature value bound to significantly
different incidences the calibration of the model would be problematic methodically.

The LB incidences per 100,000 inhabitants in the order of the years were 10.92, 9.92,
11.08, 12.82, 12.58, 12.27, 12.24, 14.33, 12.31, 9.47, 18.11, 17.38, 23.04, 16.31, 15.49/
100,000 in Hungary. The difference between the biggest (2010) and lowest (1999) LB
incidence was 13.12, which means that the difference between 2010 and 1999 was 1,32
times higher than the incidence of 1999. In the studied period in summer from the 24th to
the 36th weeks happened the 53.18% of the annual cases, but these values showed minor
fluctuations: 68.38%, 54.43%, 49.32%, 50.46%, 52.98%, 52.24%, 52.92%, 56.08%,
56.79%, 41.22%, 51.23%, 53.05%, 49.83%, 60.02%, and 56.36%, respectively.

Human outdoor activity

After we fitted the Gaussian curve (Equations (4) and (5)), we calculated the observed/
calculated ratio (multiplier) of the irregular week pairs to characterize the effect of the
summer holidays on human activity (Figure 2). From mid-September to the next years’
mid-June, our model strongly (R2: 0.9958) follows the reported run of the camping
guest nights.

Ahuman � Nð6:89; 1:82Þ ð4Þ

Figure 2. Average gust nights in campings (1000 people; observed), and a normal distribution
approximation (modeled) as function of the number of months with half month interval.
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AhumanðhmÞ ¼ 939:74

1:82 � ffiffiffiffiffiffi
2p

p � e
ðhm�6:89Þ2
�2 � 1:822 ð5Þ

While we were interested in the effect of the summer holidays on the human activ-
ity, HM was not calculated for the winter period. The peak multiplier (2.993) occurred
in August, while the lowest occurred in the first half of September (1.080). In the entire
July and August, HM was above 2.00 (Figure 3, Equation (6)).

HMðdÞ ¼

1:589; if d 2 ½167; 183½
2:239; if d 2 ½183; 197½
2:496; if d 2 ½197; 214½
2:993; if d 2 ½214; 228½
2:245; if d 2 ½228; 245½
1:080; if d 2 ½245; 259½
1; if d R ½167; 259½

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð6Þ

Temperature related human outdoor activity

Monthly camping guest nights and monthly mean temperature showed a strong correla-
tion (R2: 0.9329) in the period of 0.1.2008.–10.2012 (Equation (7), Figure 4).

AhumanðTnÞ ¼ 3:445 � e0:058 � Tn ð7Þ

The results of exponential regression are as follows (Figure 5): without HM with 0,
�1, and �2 lags, the calculated R2 values of the regression were 0.7094, 0.7118, and
0.6859, respectively. With HM with 0, �1, and �2 lags, the calculated R2 values of the
regression were 0.6708, 0.6617, and 0.6196, respectively. We selected the strongest cor-
relation (Equation (8), without HM and with �1week lag).

AðTn�1Þ ¼ 0:1057 � e0:1904 � Tn�1 ð8Þ

Figure 3. The multipliers calculated and used subsequently as function of the number of months
with half month interval.

8 A. Trájer et al.
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Figure 4. Exponential correlation between camping guest nights and weekly mean temperature
(T ) without summer weeks.

Figure 5. Relative weekly incidence (RI ) [A,B,C] and the quotient of relative weekly incidence
(RI ) and holiday multiplier (HM ) [D,E,F] without null-values as function of the weekly mean
temperature (T ) and an exponential trendline (activity (A) function) with 0 [A,D], 1 [B,E], and 2
[C,F] weeks lag. Data were used from the weeks No. 1–26, when the temperature is more than
5 °C.

International Journal of Environmental Health Research 9
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Temperature-independent activity

The results of the polynomial regression are given below in case of the three
approaches. Equation (9) summarizes the result of the 1st approach (Figure 6),
v2: 209.44; R2: 0.11; F: 20.17 (p< 0.001).

IA1ðnÞ ¼ ð�1:39995Þ þ 0:378123 � nþ ð�0:0163487Þ � n2 þ 0:000208199 � n3;

where n is the number of the week ð9Þ

Equation (10) summarizes the result of the 2nd approach (Figure 7), v2: 213.96;
R2: 0.21; F: 42.69 (p < 0.001).

IA2ðnÞ ¼ ð�1:11633Þ þ 0:374321 � nþ ð�0:0179289Þ � n2 þ 0:00024373 � n3;

where n is the number of the week ð10Þ

The IA1 and IA2 curves somewhat overestimate the point cloud in the summer.
Since LB incidence is the mostly inaccurately modeled in the summer period (due to
the high values and the influence of non-temperature factors), a second-order regression
was made separately for this period (Figure 8). Equation (11) summarizes the result of
the 3rd approach, v2: 5.04; R2: 0.45; F: 60.91 (p< 0.001).

IA3ðnÞ ¼
9:11121 þ ð�0:542668Þ � nþ 0:00827928 � n2; if n 2 ½25; 35�

ð�1:11633Þ þ 0:374321 � nþ ð�0:0179289Þ � n2 þ 0:00024373 � n3; if n R ½25; 35�

8<
:

9=
;ð11Þ

where n is the number of the week

Figure 6. Quotient of relative weekly incidence (RI ) and the temperature-dependent factor (A)
as function of the number of weeks (n) and a third-order polynomial trendline (temperature-
independent factor (IA1) function). Data were used from the continuous warm (more than 5 °C)
period of the years. The quotient is bimodal with a major spring and a less important and shorter
fall peak.

10 A. Trájer et al.
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Modeling

Three different models were fitted to the curve of the observed RI and model suitability
was calculated for the studied period. The first approach (Figure 9) resulted in Equation
(12) R2 is 0.6313 and summarized absolute error is 821.06

RI1ðTn�1; nÞ ¼ AðTn�1Þ � IA1ðnÞ ð12Þ

Figure 8. Quotient of relative weekly incidence (RI), the holiday multiplier (HM), and the
temperature-dependent activity (A) as function of the number of weeks (n) and a second-order
polynomial trendline (summer period of the temperature-independent activity (IA3) function).
Data were used from the weeks No. 25–35.

Figure 7. Quotient of relative weekly incidence (RI), the holiday multiplier (HM) and the
temperature-dependent factor (A) as function of the number of weeks (n) and a third-order
polynomial trendline (temperature-independent activity (IA2) function). Data were used from the
continuous warm (more than 5 °C) period of the years.
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The second approach (Figure 10) resulted in Equation (13) R2 is 0.6247 and
summarized absolute error is 685.35

RI2ðTn�1; nÞ ¼ AðTn�1Þ � IA2ðnÞ ð13Þ

The third approach (Figure 11) resulted in Equation (14) R2 is 0.6569 and summa-
rized absolute error is 774.23

RI3ðTn�1; n; dÞ ¼ AðTn�1 � IA3ðnÞÞ ð14Þ

Discussion

Our aim was not to predict the yearly LB incidence but to analyze the changing profile
with special regard to the start and bimodality of the LB season. Temperature plays a
very complex and controversial key role in the influencing of tick–human connection
by increasing the questing activity of ticks and the human outdoor activity as well as
by increasing the evaporation and cause lower relative air humidity. The latter has nega-
tive effect on tick activity, but sunny and dry summer days have positive effect on
human outdoor activity (Šumilo et al. 2008; Randolph 2010).

The development of the IA showed a pronounced summer depression, maybe due to
the effect of the summer drought on tick activity. After the modification of the
polynomial IA curve by HM, the remaining curve is mainly exempts from the human
influence. Since our model used this empirically recognized equation, the model
contains indirectly some kind of correlation between tick activity and the summer
environment.

Although the spirochaetae have an important role on infection chain, the tempera-
ture requirements of the parasite may rather depend on the temperature of the blood
meal than the ambient temperature, since the temperature optimum of B. burgdorferi
parasite is between 33–37 °C (Barbour and Hayes 1986; Heroldova et al. 1998; Hubalek
et al. 1998; Hubalek 2009) and the maximum temperature is 41 °C (Hubalek et al.
1998).

Although family physicians and dermatologists report the EM, the Hungarian
notification system – as declared by the edict 63/1997. (XII. 21) – does not require the
mandatory report of EM, the cases with (cardial, neurological, etc.) complications must
be reported. The Hungarian National Center for Epidemiology (OEK) in the Epinfo
issue weekly communicates the previous week’s raw LB case amount. The Hungarian
LB data does not allow the differentiation between early and complicated symptoms.
The early localized infection is the 70% of the whole recognized LB cases in the USA
(CDC 2012), and according to a sampling (with n= 1784) this is the same in Hungary
(Lakos 1999). Therefore, major part of the reported LB cases may be EM; we handled
the annual LB data with the latency characteristics of the EM. Naturally, this
simplification does not allow the modeling of the nonEM cases of the year and
consequently the exact modeling of the entire year.

The onset of the late disseminated infection and other LB-related complications can
be much longer, months to years, than the onset of EM. According to Bacon et al.
(2008), the seasonal peak of the EM reaches its peak in July and August, while the
maximum of the neurological manifestations appear in August and September in the
USA. Creating the correspondence between the spring–early summer ambient mean
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temperature and relative LB the nonEM cases influenced less the model, because of
their longer latency.

There is lag between the biting and the report of a case, while there is 3 –30 days
(the average is between 1–2weeks) from the biting to the observing of EM and the
serology can confirm the suspect of the disease within 1week. Note that the IgM anti-
bodies have only in the first threemonths of the infection diagnostic value and the
nonEM symptoms usually have a longer latency than EM. From the above-mentioned
facts, it is difficult to fit the cases of a reporting week to the real time of the tick biting,
when the individual is infected by the parasite. Searching for the spring–early summer
correlation between mean temperature and RI, the one-week lag gave the best results in
the model, which is in accordance with the character of the latency of the disease and
the report system. It is interesting that similarly one-week lag was found in case of
tick-borne encephalitis (TBE) (Daniel et al. 2008).

We used one mean ambient temperature value for entire country, because the topog-
raphy of Hungary is largely homogeneous: only the 2% of the country is situated higher
than 300m above sea level, the range of the elevation is between 77.6–1014m. The
country is not bisected by mountains and entire studied area belongs to the Pannonian
biogeographical region.

The domain of the grid, the climatic data were derived from, is somewhat greater
than Hungary. Since the part of the Carpathian Basin situated within this domain is
topographically homogenous, the difference between the domain of climatic and LB
data is not significant.

As in other countries of the European Union, summer is the main time of the
holidays. In Hungary, in the last decades (e.g. the studied period) the school holiday
starts in mid-June and ends in the end of August. It is very conspicuous that without
July and August, the camping activity (derived from the camping guest nights) is highly
temperature dependent. From this fact, the human and tick activity shows a similar cor-
relation from March to the end of May and from September to late October, and the
holiday period from July to August form an additional risk to human infection.
Although the studied period is greater than the period of the camping data, this
difference is not notable since our aim was only to determine the nature of the correla-
tion of camping/human outdoor activity and temperature and to calculate the multiplica-
tive effect of summer holidays.

Since we found that human activity is exponential function of temperature as well
as the LB – which is determined by both the human and tick activity – distinguished
use of human and tick activity could not improve the model.

Our previous assumption was that human outdoor activity has strong correlation
with temperature in spring and fall. The results (Figure 2) verified our assumption. We
confirmed that the irregular additional summer human activity can explain the high LB
incidence in July and August, in accordance with Šumilo et al. (2008), Randolph et al.
(2008), and Estrada-Peña (2008). Since we observed that LB season is occurred
between the 10th and 48th weeks of the year, applying any multiplicative effect of
human activity (HM) out of this period is useless. Also, note that in case of low values
of guest nights in winter calculating multiplicative HM is inaccurate.

At first inspect, it seems that the most serious insufficiency of our model is that we
handle the temperature as it were the only meteorological factor influencing the inci-
dence of human LB. It is well known that temperature and humidity theoretically are
equally important in influencing the tick activity. In case of TBE, which has the same
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vector as B. burgdorferi s.l. has, in the Czech Republic, a very strong correlation was
found between mean ambient temperature and incidence (Daniel et al. 2008).

Using of the precipitation or humidity data of the regular meteorological stations
seems to be inappropriate for characterizing the natural environment of ticks, where the
evaporation, the transpiration of plants, and the penumbra create a balanced, relatively
wet, windless environment with decreased solar radiation which can provide the exis-
tence of dew even in a dry period. Another problem that many classic meteorological
stations are positioned in subsequently urbanized areas.

We analyzed the first phase of the LB season in case of determining the tempera-
ture–activity relation, because in this time, from late February to mid-June, soil mois-
ture and the air humidity is high or moderate, thanks to the low evaporation and freeze
of the cold season and the probable effect of the decreasing size of the still hungry,
questing tick population is not too high, as the second tick activity peak in fall also
shows. The other reason is that in spring, the most of the cases belong to the EM.

While, according to historical data and field collection studies, the seasonal activity
of Ixodes ricinus is bimodal with a major spring (March to June) and minor fall
(September to November) peak in Hungary (Babos and Faragó 1964; Széll et al. 2006;
Egyed et al. 2012), the sesonality of LB does not show bimodality in Hungary (Hornok
2009). After eliminating the human influence and the temperature-related activity from
the model, we got a bimodal point cloud, which was regressed to a third-order polyno-
mial curve (Figure 7). This curve shows many similarities to the observed in annual
Ixodes tick activity in Hungary:

(1) the curve is similar to the bimodal summarized activity of adults and nymphs;
(2) the spring–early summer peak is longer – and more important – than the fall peak;
(3) the first peak follows the known run of the activity period of nymphs, which may

reflect also the spring activity of adults;
(4) the second peak is very similar to the run of the activity period of adults. Note that

the newly moulted ticks of all stages are thought to emerge in the autumn of each
year (Randolph 2002);

(5) the curve clearly shows the late summer depression of tick activity.

Since the input of our model was not the number of field-collected Ixodes ticks but
the observed LB incidence, we could not distinguish the infection caused by adults or
nymphs. The IA curve includes the climatic and nonclimatic factors which may influ-
ence the LB except temperature-related human and tick activity and the multiplicative
effect of holidays in summer. Since the modeled RI curves show similar run to the
observed RI curve, and the calculated R2 values were relatively high, our analysis
by distinguishing the temperature-dependent activity, effect of summer holiday, and
temperature independent activity was proved.

Conclusion

In accordance with the literature, we found that the summer holiday has great influence
on human infection with LB. Despite the fact that raw weekly LB data in Hungary
seem to be unimodal, we demonstrated the bimodality of tick season known from the
literature by using the originally unimodal LB data.
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