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Abstract: Ecological models have often been used in order to answer questions that are in the limelight of recent researches
such as the possible effects of climate change. The methodology of tactical models is a very useful tool comparison to those
complex models requiring relatively large set of input parameters. In this study, a theoretical strategic model (TEGM )
was adapted to the field data on the basis of a 24-year long monitoring database of phytoplankton in the Danube River
at the station of Göd, Hungary (at 1669 river kilometer – hereafter referred to as “rkm”). The Danubian Phytoplankton
Growth Model (DPGM) is able to describe the seasonal dynamics of phytoplankton biomass (mg L−1) based on daily
temperature, but takes the availability of light into consideration as well. In order to improve fitting, the 24-year long
database was split in two parts in accordance with environmental sustainability. The period of 1979–1990 has a higher
level of nutrient excess compared with that of the 1991–2002. The authors assume that, in the above-mentioned periods,
phytoplankton responded to temperature in two different ways, thus two submodels were developed, DPGM-sA and DPGM-
sB. Observed and simulated data correlated quite well. Findings suggest that linear temperature rise brings drastic change
to phytoplankton only in case of high nutrient load and it is mostly realized through the increase of yearly total biomass.
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Introduction

Beyond doubt, in order to recognize the effects of global
changes expected in the future the methodology of eco-
logical modeling seems to be a very useful tool. Ques-
tions related to the hazards of global warming are in the
focus of attention in recent science literature (Ladányi
& Horváth 2010). Ecological modeling with different
temperature data series (e. g. data series of climate
change scenarios) provide an excellent opportunity to
forecast possible future states attributable to the global
warming in aquatic environments as well. On the one
hand, it can be used for hypothesis testing concern-
ing the effects of physical changes (e.g. change in water
temperatures or inflow) in different aquatic habitats on
the biota. On the other hand, one can make quantita-
tive predictions about the effects of climate change by
the application of climate models.
A number of modeling approaches have been pro-

posed in order to sketch the main trends in variation of
physical, chemical and biological components of fresh-
water systems under the pressure of climate change.

Some models aim to describe the variation of environ-
mental parameters of certain lakes or rivers, so one can
extrapolate those findings to the biota or community
only on the basis of recent knowledge (e.g. Hostetler &
Small 1999; Blenckner et al. 2002; Gooseff et al. 2005;
Andersen et al. 2006). Other models are devoted to
answer related questions of certain water bodies (e.g.
Matulla et al. 2007; Hartman et al. 2006; Peeters et al.
2007), which can be of great use, but also their method-
ology can be adapted to other questions or habitats.
Complex ecosystem models (e.g. Elliott et al. 2005;
Mooij et al. 2007; Komatsu et al. 2006; Malmaeus &
H̊akanson 2004; Krivtsov et al. 2001), incorporating
most fundamental processes of freshwater systems, are
the keys to understand the effects of climate change
from a broader aspect. Modeling methodology, which
brings relevant pieces of information to the field of cli-
mate change research, is however rather fuzzy now (Sip-
kay et al. 2009b). This shortcoming is due to their com-
plicated applicability and the lack of complex models.
These models require quite a lot of information as in-
put parameter, which are often not available. Often one
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manages to set up a complex model, but its parameters
cannot be determined due to lack of field data. Thus,
instead of complex ecosystemmodels often are used tac-
tical ones, which focus on the essence and may neglect
some important pieces of information at the same time.
(In general, the “tactical model” is a model prepared in
order to make predictions, to provide solution for prac-
tical problems.) Still they can be a useful tool in under-
standing the general functioning of the system. This is
achieved through stressing the importance of the fac-
tor regarded as the most crucial one and neglecting the
other processes (Hufnagel & Gaál 2005; Sipkay et al.
2008a, 2008b; Sipkay et al. 2009a; Vadadi-Fülöp et al.
2008, 2009).
The aim of the present study was to simulate the

seasonal dynamics of phytoplankton by means of a dis-
crete, deterministic model based on the data collected
in the Danube River at the station of Göd (1669 rkm),
Hungary. A “strategic model”, which is considered as
a theoretical simulation model, the so-called TEGM
(Theoretical Ecosystem Growth Model, Drégelyi-Kiss
et al. 2008, Drégelyi-Kiss & Hufnagel 2009a, Sipkay et
al. 2010, Hufnagel et al 2010) was used as a starting
point. Within this tactical approach, predictability was
considered as primary purpose by stressing few factors
expected as crucial driving forces instead of creating
a rather complex ecosystem model considering all en-
vironmental and biotic factors accounting for phyto-
plankton production (Sipkay et al. 2009b; Hufnagel &
Gaál 2005). Treating temperature as the most signif-
icant factor in seasonal dynamics modeling seems to
be obvious. The model assumes that temperature is
the only factor accounting for biomass variation, thus,
the pattern is determined by the daily temperatures,
other environmental factors – e.g. trophic links, inter-
population interactions – appear within this term or
are hidden. In addition, reaction curve describing tem-
perature dependence is expected to be the sum of opti-
mum curves because the individual optimum curves of
species and groups add up to the optimum curves of the
community. The availability of light needs to be taken
into consideration as well according to recent knowl-
edge on phytoplankton of the Danube River (Kiss 1994,
1996).
Moreover, the authors consider that decreased an-

gle of incidence limits winter phytoplankton grow.
We also needed to consider the length of the avail-

able field data. We can take full advantage of long-term
(i.e. >6 years) surveys in virtually every field of inter-
est (Kaur 2007), but they become increasingly valuable
from the point of view of climate change. The inten-
sive sampling frequency makes the data of the Hungar-
ian Danube Research Station able to being employed in
simulation models dependent upon weather conditions.
The aim of this study was to develop a tactical

model, which can answer questions of potamoplankton
seasonal dynamics by means of temperature data as
input parameters. Within this framework, the authors
propose a model of extensive applicability for global
warming related issues. Within a simplified model situ-

ation, the possible effects of warming on phytoplankton
biomass of the Danube River were analyzed.

Material and methods

Phytoplankton was sampled weekly from the Danube River
at the station of Göd (1,669 rkm) throughout the period
of 1979–2002, within the continuous plankton recorder pro-
gram of the Hungarian Danube Research Station of the Hun-
garian Academy of Sciences (Kiss 1994). Samples were taken
from the surface water layer and preserved with Lugol solu-
tion. Phytoplankton was measured quantitatively according
to the Utermöhl method (Utermöhl 1958).

Phytoplankton data were presented as biomass in
mg L−1. Biomass was calculated by considering density and
biovolume of specimens. When calculating biomass, correc-
tions factors were added describing the dependence on sea-
son and hydrologic regime. The investigation was long-term
(longer than 6 years), which makes the data good for mod-
eling.

First, the so-called “TEGM” – Theoretical Ecosystem
Growth Model (Drégelyi-Kiss & Hufnagel 2009a, 2009b) –
was used, which is the model of a purely theoretical algal
community covering the potential temperature spectrum by
the help of temperature optimum curves of 33 theoretical
species. These theoretical species include 2 supergeneralists,
5 generalists, 9 transients and 17 specialists according to
their degree of tolerance.

The strategic model of the theoretical algal commu-
nity was adapted to the measured data resulted in the tac-
tical model of DPGM (“Danubian Phytoplankton Growth
Model”). Model fitting was performed using the Solver op-
timizer program of MS Excel.

During model fitting it was also taken into account
that throughout the 24-year long sampling period (1979–
2002) “nutrient excess” followed a trend (Behrendt et al.
2005; Horváth & Tevanné-Bartalis 1999; Varga et al. 1989).
Nutrients, however, do not limit phytoplankton growth in
the Danube as it is a nutrient rich environment for algae
(Kiss 1994, Kiss 1996). The nutrient supply of the river be-
ing high, the potential trophic level is hypertrophic or eu-
trophic (Déri, 1991; Varga et al. 1989). During the study
period, large amounts of nutrients were available for algae,
hereafter referred to as “nutrient excess”. The degree of nu-
trient excess, however, varied markedly. All this is congruent
with the results of preliminary analysis of the long term phy-
toplankton monitoring database of the Danube (Verasztó
et al. 2010), according to which Coenological analysis of
phytoplankton data suggests that the community under-
went changes in addition to the decreasing trend of biomass
within the study period of 24 years. The results of NMDS
(non-metric multidimensional scaling) analysis (based on
Euclidean distance) indicated that the periods of 1979–1990
and 1991–2002 are distinct on the basis of log-transformed
phytoplankton biomass data. In addition, each year is fol-
lowed by the next one in the ordination plot till the end of
the 1980s, where we suspect a great change in the phyto-
plankton composition. The results of Cluster analysis also
support the patterns observed on the ordination plot, more-
over the authors got similar results during the multivariate
analyzes based on the binarization of the data matrix (Ve-
rasztó et al. 2010).

Decrease in peak phytoplankton biomass values and
separation of early and late years of the study period and
the successive trend of sampling years all suggest a gradually
varying driving force. The degree of nutrient excess, which
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Fig. 1. Annual average of PO4-P load (µg L−1) in the Danube River at Nagytétény between 1979–2002 based on samples collected on
a weekly basis.

Table 1. Summary of indicators used in the study. Along with average and total phytoplankton biomass (mg L−1) the table includes
indicators for certain periods of a year presented as the order of sample within a year, i.e., sampling occasion within a year (on the
average 49 samples per year were collected).

Symbol Indicator review Unit

b Annual total biomass: sum of phytoplankton biomass recorded throughout the year mg L−1
p Biomass peak: biomass peak observed within the year mg L−1
10% Occurrence of 10 %: the number of the sample within the year at which 10 % of annual

total biomass is reached
number of sample
within a year

25% Occurrence of 25 %: the number of the sample within the year at which 25 % of annual
total biomass is reached

number of sample
within a year

50% Occurrence of 50 %: the number of the sample within the year at which 50 % of annual
total biomass is reached

number of sample
within a year

Feb February: average phytoplankton biomass recorded in February mg L−1
Mar March: average phytoplankton biomass recorded in March mg L−1
Jul July: average phytoplankton biomass recorded in July mg L−1
Win Winter: average phytoplankton biomass recorded in winter (December, January, February) mg L−1
Spr Spring: average phytoplankton biomass recorded in spring (March, April, May) mg L−1
Sum Summer: average phytoplankton biomass recorded in summer (June, July, August) mg L−1

is best highlighted in PO4-P concentrations at the station
of Nagytétény, seems to be the best evidence for that. Ac-
cording to the data of the National Monitoring Network of
the Environmental Authorities PO4-P load was consider-
ably high till 1990, followed by considerably lower values
from 1991 (Fig. 1).

Based on these observations, the value of nutrient ex-
cess was taken into account upgrading the model fit.

The two submodels fitted to the data of 1979–1990 and
1991–2002, respectively, were run with the 24-year tempera-
ture data (1979–2002) so as to being compared to each other
statistically. The two submodels were validated by leaving
out 1 year from each of them during the fitting. Degree of
fitting was tested with correlation analysis by means of dif-
ferent indices and indicators and accepted when correlation
coefficient reached significant levels. In order to check fit-
ting we took indices characterizing the 24-year long data
as a whole, but they do not say anything about individual
years. Such indices include correlations of monthly and sea-
sonal averages of the 24 years. We defined indicators each
of which assigns a number to individual years or certain
periods of a year (Table 1), then, we analyzed the linear
correlation of measured and simulated values.

These indicators needed improvement, and so we have
developed 3 groups of indicators.

The first group includes indicators of yearly total
biomass based on sum of phytoplankton biomass recorded
throughout the year. The second group includes those of
phenological ones, such as the number of the sample within
the year at which 10% of yearly total biomass is reached re-
ferred to as the “10%”indicator. Both “10%” and “25%”
indicators describe rapid phytoplankton development in
spring, whereas “50%” indicator marks the period when 50%
of yearly total phytoplankton biomass is reached. “50%” in-
dicator, at the same time, shows population development
with two or more peaks within a year much better than
does the occurrence of maximum biomass value within the
year. The third group includes indicators of certain seasons
and months.

Each period is characterized by the average of the
phytoplankton biomass belonging to it. The average phy-
toplankton biomass belonging to the winter (Win), spring
(Spr) and summer (Sum) furthermore to the February
(Feb), March (Mar) and July (Jul) periods were considered
indicators. Regarding the autumn period the model did not
show significant correlation.

Now, run the model with the different temperature
data set (e. g. data of climate change scenarios and mea-
sured – historical – data of temperatures) and those indica-
tors can be of good applicability to contrast phytoplankton
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biomass and phenology under various temperature regimes.
In this case study, the effect of linear temperature rise

was analyzed: each value of the measured temperatures be-
tween 1979 and 2002 was increased by 0.5, 1, 1.5 and 2◦C,
respectively, then, the model was run with these data.

One-way ANOVA was applied to demonstrate possi-
ble differences between model outcomes. In order to point
out what groups do differ from the others, the post-hoc
Tukey test was used, homogeneity of variance was tested
with Levene’s test, when this assumption failed, Welch F-
test was used. When evaluating the pairwise comparisons
the Bonferroni- corrected Mann- Whitney test was also ap-
plied besides the Turkey test, to consider any accidental
correlations.

All statistical analyzes was performed with the Past
software version 1.36 (Hammer et al. 2001).

Results

The DPGM
Linear combination of 21 theoretical populations re-
sulted in the best fitting to measured phytoplankton
biomass data as a whole. More than 500 species of
planktonic algae have been recorded in the investi-
gated reach of the Danube River (Kiss 2007; Kiss et
al. 2007), so thus “theoretical populations” can be de-
fined on the basis of the real species and their demand
on temperature, respectively. Biomass (mg L−1) of a
certain theoretical population at time “t” is the func-
tion of its biomass measured a day before and the
value of the temperature or light coefficient. A mini-
mum function was used to determine whether temper-
ature or light is the driving force behind population
growth:

Ni,t = min(RT;RL)v · Ni,t−1 + 0.005

where Ni,t represents biomass of theoretical population
i at the time t, Ni,t−1 represents biomass of the theoret-
ical population i one day before time t, v is a factor of
growth rate (species may differ in their growth rate), fi-
nally, the constant of 0.005 means spore number (which
was built into the model so as to prohibit extinction).
RT is function of temperature (growth rate depending
on temperature, which can be described with the den-
sity function of normal distribution), RL is growth rate
depending on light. The latter can be described as fol-
lows:

RL = a(1−
∑

Ni/K)c

where a is maximal growth rate, K represents environ-
mental sustainability implying for the effect of light. K
forms a sine curve (Fig. 1).

K = 2.76×10−6·[4950000 sin(0.02t−1.4)+5049999]Kw

where t is day of the year. We took into consideration
the order of magnitude of difference between minimum
and maximum biomass (Felföldy 1981) and the finding
that differences between summer and winter peaks can

Fig. 2. “K” – sine curve implying the effect of light presented in
log scale (“Kw” works before day 50 and after day 295).

be as large as two orders of magnitude (Vörös & Kiss
1985). The multiplier 2.76 × 10−6 was added to the
formula so as to convert density into biomass. The value
of 2.76 × 10−6 is the result of optimization procedure.
The multiplier of Kw works only in the winter term
(before the 50th and after the 295th day of the year),
when algae utilize much less light due to the decreased
angle of incidence (Felföldy 1981). The modifier sine
curve (Fig. 2) can be defined as follows:

Kw = 1.82 sin(0.02t− 1.4) + 1.85

Finally, total phytoplankton biomass comes from
the linear combination of individual theoretical species:

Nsum =
∑
(ci · Ni)

where c represents a species-specific constant multiplier,
implying for function of ability of individual theoretical
populations to utilize light and for the function of their
size, respectively.
To launch the model some basic data is required,

that is 0.01 mg L−1 algal biomass in 1979 January
1, then the model is run with data of temperatures
considering light availability as well. In this way, us-
ing 21 theoretical populations, the simulated patterns
are in good accordance with measured biomass data
within a year (Fig. 3). Simulation, however, does not
indicate decreasing tendency of biomass within the
monitoring period as was documented in the plank-
ton record program. This becomes apparent when we
look at the extreme values which the model cannot re-
produce well, but the model underestimates biomass in
the first half of the 24-year period as well. In the last
4 years, however, the model rather overestimates the
biomass.
Temperature optimum curves of those 21 theoret-

ical populations are presented in Fig. 4 and include 3
generalists with wide amplitude of temperature toler-
ance, 3 specialists with narrow amplitude of tempera-
ture tolerance and 15 transient ones.
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Fig. 3. DPGM model fit: the observed and simulated values of phytoplankton biomass throughout the period of 1979–2002. Horizontal
axis – number of sampling occasions conducted within the 24-year period; vertical axis – phytoplankton biomass (mg L−1).

Fig. 4. Temperature optimum curves of the 21 theoretical populations of DPGM.

The subdivision of DPGM into two submodels on
the basis of two periods of different nutrient load:
DPGM-submodel A (DPGM-sA) and DPGM-submodel
B (DPGM-sB)
In order to eliminate shortcomings of DPGM, further
environmental variables were taken into account. As-
suming that high nutrient load means a specific envi-
ronment for phytoplankton, two model versions were
developed. One for the period of high nutrient excess
in 1979–1990 (submodel “A”, DPGM-sA), and a second
one for the period of lower nutrient excess in 1991–2002
(submodel “B”, DPGM-sB), both of which came about
by combination of 20 theoretical populations.

The submodels were each fit on two different 11-
year of temperature data, leaving out 1 year from both
12-year data series (1990 and 2002) to test and validate
the model.
These two submodels differed slightly in the pa-

rameters (mean, standard deviation) of temperature
optimum curves (Figs 6, 7), remarkable differences were
only in case of populations with narrow amplitude of
temperature tolerance. Combination of DPGM-sA and
DPGM-sB added up to the 24-year tactical model (Fig.
5).
DPGM-sA eliminated underestimation of biomass,

and DPGM-sB ended biomass overestimation in the
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Fig. 5. DPGB-sAB as a result of the combination of DPGM-sA and DPGM-sB. The last years of the two periods (1990 and 2002) are
used for validation.

Fig. 6. Temperature optimum curves of the 20 theoretical species of DPGM-sA.

last four years (1999–2002). Combining the above-
mentioned submodels into DPGB-sAB, we get a more
realistic picture of phytoplankton biomass variation
within the period of 1979–2002, and at the same time,
the decreasing tendency of abundance becomes distinct.

Fit control
The decreasing trend of phytoplankton biomass within
the period of 1979–2002 does not appear in the basic
model version of DPGM (Fig. 8/A), however, it be-
comes apparent in DPGM-sAB (Fig. 8/B).
Basic model version (DPGM) was not a good pre-

dictor of algal blooms (Fig. 8/A), DPGM-sAB, how-
ever, showed much better figures (Fig. 8/B). The nor-
mality of residuum is also better in case of DPGM-sAB,
especially in case of low values (Figs 9/A and 9/B).
We propose DPGM-sAB as the final version of the

DPGM model, which takes into consideration different
levels of nutrient load within the study period.
In case of DPGM the correlation between field data

and the data generated by the model is not strong
enough (r = 0.57; p < 0.01). In case of DPGM-sAB an
improvement can be observed regarding the strength of
the correlation (r = 0.62; p < 0.01).
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Fig. 7. Temperature optimum curves of the 20 theoretical species of DPGM-sB.

Fig. 8. Observed and simulated patterns of phytoplankton biomass on the basis of 15–day moving averages (trendlines are added):
DPGM (A) and DPGM-sAB (B).
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Fig. 9. Normal probability plot for basic version of DPGM (A) and for DPGM-sAB (B).

Fig. 10. Linear correlation of simulated (DPGM-sAB) and measured data based on monthly (A) and seasonal averages (B).

Table 2. Observed and simulated means and standard deviations of indicators (listed in Table 1) on the basis of samples collected
throughout 24 years, and correlation statistics (correlation coefficient, significance level), *sn = sequential number.

Observed DPGM-sAB Correlation
Indicators unit

mean st. dev. mean st. dev. r p

Annual total biomass mg L−1 606.3 214.2 592 128.9 0.6 <0.05
Biomass peak mg L−1 42.6 12.1 33 9.7 0.73 <0.05
Occurrence of 10 % sample sn* 10.7 2.4 10.3 2.7 0.59 <0.05
Occurrence of 25 % sample sn 15.2 3.1 15.6 3 0.6 <0.05
Occurrence of 50 % sample sn 22.7 3.7 23.9 2.7 0.58 <0.05
February mg L−1 5.2 5.4 6 4.8 0.7 <0.05
March mg L−1 15 10.6 12.2 7.7 0.81 <0.05
July mg L−1 17.8 11.5 21.6 9 0.66 <0.05
Winter mg L−1 31.5 35.9 37.1 21.7 0.78 <0.05
Spring mg L−1 239.5 93.8 198.5 64.4 0.67 <0.05
Summer mg L−1 219.9 111.2 251 88.8 0.61 <0.05

Because the indicators were created based on sea-
sonal and monthly averages for the characterization of
different intervals of the year, one can observe how
the model correlates with the measured data from this
point of view (Fig. 10/A). Based on these averages ten-
dencies are more visible, because they are not disturbed
to such an extent by the noise deriving from daily me-
teorological factors and circumstances of sample collec-
tion.
Observed and simulated biomass correlated signif-

icantly (r = 0.75; p < 0.01) and this relationship was
even more robust when seasonal averages were consid-
ered (r = 0.79; p < 0.01) (Fig. 10/B).

Indicators and their correlation analyzes
Summary of indicators, based on their means and stan-
dard deviations within 24 years, is presented in Table 2.
Observed and simulated (with DPGM-sAB) patterns
can be contrasted by use of indicators. Indicators of
certain periods within a year, i.e. when phytoplankton
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Table 3. Results of Tukey’s pairwise comparisons among and within submodels at different levels of temperature rise. “sA” and “sB”
represent DPGM-sA and DPGM-sB, respectively, level of linear temperature rise (◦C ) is indicated in parentheses.

b p 10% 25% 50% Feb Mar Jul Win Spr Sum

sA(0) – sA(0.5) 1 1 1 1 1 1 1
sA(0) – sA(1) 1 1 1 1 1
sA(0) – sA(1.5) 1 1 1 1
sA(0) – sA(2) *** *** *** 1 1 1 1 ***
sA(0) – sB(0) 1 *** *** *** 1 *
sA(0) – sB(0.5) 1 *** *** *** 1 1 * 1
sA(0) – sB(1) 1 *** *** *** * 1 ** 1
sA(0) – sB(1.5) 1 *** *** *** ** 1 *** 1
sA(0) – sB(2) 1 *** *** *** ** 1 ***
sA(0.5) – sA(1) 1 1 1 1 1 1 1 1 1 1
sA(0.5) – sA(1.5) 1 1 1 1 1 1 1 1 1
sA(0.5) – sA(2) ** *** *** 1 1 1 1 **
sA(0.5) – sB(0) *** *** *** * 1
sA(0.5) – sB(0.5) *** *** *** * 1
sA(0.5) – sB(1) *** *** *** * ** 1
sA(0.5) – sB(1.5) *** *** *** ** ***
sA(0.5) – sB(2) 1 *** *** *** ** 1 *** 1
sA(1) – sA(1.5) 1 1 1 1 1 1 1 1 1 1 1
sA(1) – sA(2) * * * 1 1 1 1 1 *
sA(1) – sB(0) *** *** *** * 1
sA(1) – sB(0.5) *** *** *** * 1
sA(1) – sB(1) *** *** *** * ** 1
sA(1) – sB(1.5) *** *** *** *** *** 1
sA(1) – sB(2) *** *** *** ** 1 *** 1
sA(1.5) – sA(2) * * * 1 1 1 1 1 *
sA(1.5) – sB(0) *** *** ** * 1
sA(1.5) – sB(0.5) *** *** *** * 1
sA(1.5) – sB(1) *** *** *** * ** 1
sA(1.5) – sB(1.5) *** *** *** ** *** 1
sA(1.5) – sB(2) *** *** *** * 1 ** 1
sA(2) – sB(0) *** *** *** *** *** * 1 ***
sA(2) – sB(0.5) *** *** *** *** *** * 1 ***
sA(2) – sB(1) *** *** *** *** *** * * 1 ***
sA(2) – sB(1.5) *** *** *** *** *** * * ** 1 ***
sA(2) – sB(2) *** *** *** *** *** * 1 * ** ***
sB(0) – sB(0.5) 1 1 1 1 1 1 1 1 1 1 1
sB(0) – sB(1) 1 1 1 1 1 1 1 1 1 1 1
sB(0) – sB(1.5) 1 1 1 1 1 1 1 1
sB(0) – sB(2) 1 1 1 1 1 1 1 1 1 1
sB(0.5) – sB(1) 1 1 1 1 1 1 1 1 1 1 1
sB(0.5) – sB(1.5) 1 1 1 1 1 1 1 1 1
sB(0.5) – sB(2) 1 1 1 1 1 1 1 1 1 1
sB(1) – sB(1.5) 1 1 1 1 1 1 1 1 1 1 1
sB(1) – sB(2) 1 1 1 1 1 1 1 1 1 1 1
sB(1.5) – sB(2) 1 1 1 1 1 1 1 1 1 1

Significant differences are marked with asterisk, high similarities (0.99< p <1) are marked with 1. *p < 0.05; **p < 0.01; ***p < 0.001

production reaches 10%, 25%, and 50% of its yearly
maximum, were defined with the sequential number
of sample within the 24-year record. On the average,
49 samples were collected within a year. Yearly total
biomass was calculated by the sum of biomass measured
in individual samples throughout the year. Results in-
dicated that 10% of yearly total biomass is reached in
the second half of March, whereas 25% limit is reached
between middle of April-beginning of May, and 50% in
June, respectively. Table 2 presents correlation coeffi-
cients and results of statistical analysis per indicator.

Effect of linear temperature rise
One-way ANOVA detected strong significant varia-
tion among and within submodels at most indicators
(p < 0.001), except for two of them. Indicator “Mar”
(March) and “Spr” (Spring) did not show any signif-

icant variation (p > 0.05). Homogeneity of variance
is obtained only in case of “50%”, “Feb”, “Mar” and
“Spr” indicators (Levene’s test, p > 0.05). Based on
the findings of Welch F-test, standard deviations dis-
played major differences at most indicators (p < 0.001),
in case of “Mar” 0.001< p < 0.01. Only indicator “Spr”
(Spring) did not show any variation (p > 0.05).
Tukey’s pairwise comparisons (Table 3) suggest

that most indicators show larger variation among sub-
models compared with those of linear temperature rise
within a submodel. DPGM-sB shows high homogeneity,
so, we can conclude that warming has no considerable
effect here. This is also supported by the results of the
Bonferroni-corrected Mann-Whitney test (Table 4).
A number of indicators implied larger variation

among submodels rather than within a submodel with
different input data of temperatures. Such indicators



332 Cs. Sipkay et al.

Table 4. Results of Mann-Whitney pairwise comparison (Bonferroni, corrected) among and within submodels at different levels of
temperature rise. “sA” and “sB” represent DPGM-sA and DPGM-sB, respectively, level of linear temperature rise (◦C) is indicated
in parentheses.

b p 10% 25% 50% Feb Mar Jul Win Spr Sum

sA(0) – sA(0.5)
sA(0) – sA(1) 1
sA(0) – sA(1.5)
sA(0) – sA(2) *** *** ** * ***
sA(0) – sB(0) *** *** *** *** *** *** *** ***
sA(0) – sB(0.5) *** *** *** *** *** *** *** ***
sA(0) – sB(1) *** *** *** *** *** *** *** ***
sA(0) – sB(1.5) *** *** *** *** *** *** *** ***
sA(0) – sB(2) *** *** *** *** *** *** *** ***
sA(0.5) – sA(1)
sA(0.5) – sA(1.5)
sA(0.5) – sA(2) *** ** * ***
sA(0.5) – sB(0) *** *** *** *** *** * *** *** 1 ***
sA(0.5) – sB(0.5) *** *** *** *** *** * ** *** ***
sA(0.5) – sB(1) *** *** *** *** *** * ** *** ***
sA(0.5) – sB(1.5) *** *** *** *** *** * ** *** ***
sA(0.5) – sB(2) *** *** *** *** *** *** *** ***
sA(1) – sA(1.5)
sA(1) – sA(2) ** * 1 *
sA(1) – sB(0) *** *** *** *** *** *** *** *** ***
sA(1) – sB(0.5) *** *** *** *** *** *** *** *** ***
sA(1) – sB(1) *** *** *** *** *** ** *** *** ***
sA(1) – sB(1.5) *** *** *** *** *** ** *** *** ***
sA(1) – sB(2) *** *** *** *** *** * *** *** ***
sA(1.5) – sA(2) ** * *
sA(1.5) – sB(0) *** * *** *** *** *** ** *** *** ***
sA(1.5) – sB(0.5) *** *** *** *** *** * *** *** ***
sA(1.5) – sB(1) *** *** *** *** *** * *** *** ***
sA(1.5) – sB(1.5) *** *** *** *** *** * *** *** ***
sA(1.5) – sB(2) *** *** *** *** *** *** *** ***
sA(2) – sB(0) *** *** *** *** *** ** *** *** ***
sA(2) – sB(0.5) *** *** *** *** *** *** ** *** *** ***
sA(2) – sB(1) *** *** *** *** *** *** ** *** *** ***
sA(2) – sB(1.5) *** *** *** *** *** *** ** *** *** ***
sA(2) – sB(2) *** *** *** *** *** *** *** *** ***
sB(0) – sB(0.5) 1 1
sB(0) – sB(1)
sB(0) – sB(1.5)
sB(0) – sB(2)
sB(0.5) – sB(1)
sB(0.5) – sB(1.5) 1
sB(0.5) – sB(2)
sB(1) – sB(1.5)
sB(1) – sB(2) 1
sB(1.5) – sB(2)

Significant differences are marked with asterisk, high similarities (0.99 < p <1) are marked with 1. *p < 0.05; **p < 0.01; ***p < 0.001

include 10%, 25%, 50%, and Win, in most levels of tem-
perature rise. This phenomenon can be observed more
efficiently in the results of the Bonferroni-corrected
Mann-Whitney test, in which there are major differ-
ences between the two submodels in case of indicators
b and p.
The effect of linear temperature rise becomes ap-

parent at DPGM-sA in case of high temperature rise.
This is realized through variation in biomass within
submodel-A including indicators of biomass measure (b,
p), and summer biomass (Sum). Here, in response to a
temperature rise of 2◦C, output of DPGM-sA differs
significantly from those of other data in most cases. In
the springtime (Mar, Spr) there cannot be expected any
changes as a consequence of climate change, in case of
either of the submodels and either of the indicators.

Table 5/A-B suggests that biomass increases with
rising temperatures explicitly (b; in case of DPGM-sA).
The most significant growth was experienced when the
temperature was increased by 2◦C. Maximum values of
monthly biomass (p) increase as well, however, standard
deviations are also quite apparent. One expects similar
outcomes in summer (Sum), particularly in July (Jul):
an increasing biomass with the rising of temperature,
especially in case of a 2◦C temperature rise. Considering
the total annual biomass (b) and the biomass quanti-
ties measured during the period of maximum produc-
tion (Jul, Sum), one can also notice that in the case of
lower (0.5◦C) temperature rise, the biomass increases
only to a smaller extent as well, however, the standard
deviations increase in a larger measure: this means that
there can be expected a major variation between years.
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Table 5. Means (A) and standard deviations (B) of indicators (presented in Table 1) under linear temperature rise (DPGM-sA and
DPGM-sB). 0; 0.5; 1; 1.5; 2 represent levels of linear temperature rise (◦C).

A DPGM-sA DPGM-sB

0 0.5 1 1.5 2 0 0.5 1 1.5 2

b 5688.0 6472.3 6958.1 6968.6 11229.2 3777.1 3836.6 3830.1 3959.0 3764.0
p 742.0 1095.8 1869.7 2224.1 4936.7 119.1 172.7 163.3 230.0 226.8
10% 94 100 108 108 127 69 70 69 72 71
25% 140 141 144 144 157 107 104 104 104 108
50% 193 191 190 188 189 168 164 163 161 166
Feb 4.4 4.3 4.3 4.6 5.2 8.2 8.3 9.0 10.0 9.5
Mar 17.1 9.8 8.6 9.6 9.2 13.8 15.0 13.4 13.1 10.8
Jul 31.3 76.6 70.5 74.1 144.9 16.5 17.7 18.1 17.7 17.1
Win 2.4 2.4 2.4 2.5 2.7 4.0 4.0 4.2 4.6 4.4
Spr 16.8 14.4 15.2 14.7 16.3 14.7 15.5 15.6 16.3 14.3
Sum 31.9 42.6 47.8 48.8 93.6 15.6 15.6 15.6 15.8 15.7

B DPGM-sA DPGM-sB

0 0.5 1 1.5 2 0 0.5 1 1.5 2

b 3137.5 7246.2 5710.4 4214.4 8054.9 463.0 487.2 625.5 736.6 613.8
p 2117.4 3484.6 4392.1 3956.6 5839.0 134.5 230.6 245.4 312.3 349.3
10% 13.1 21.8 23.4 27.6 41.0 7.4 9.7 11.8 13.3 11.2
25% 22.2 18.1 17.8 26.3 32.2 13.0 15.1 16.3 19.8 15.5
50% 18.6 16.7 14.1 12.9 17.2 13.5 16.8 18.5 21.8 16.5
Feb 2.1 2.2 2.3 2.2 2.9 2.9 3.4 4.6 9.1 8.2
Mar 25.8 5.1 4.0 4.2 3.4 5.6 9.6 7.7 8.0 4.2
Jul 12.2 241.8 167.9 126.1 261.7 3.5 4.4 4.3 5.0 4.3
Win 0.9 0.9 0.9 0.9 1.0 1.0 1.2 1.5 3.1 2.8
Spr 9.4 4.0 3.8 3.8 7.4 3.4 4.5 6.7 7.3 5.4
Sum 30.0 78.9 60.9 46.2 90.9 1.9 2.2 2.8 3.7 3.6

A dramatic (2◦C) temperature rise already results in a
definite, large-scale biomass growth.
Rising temperatures cause a positive shift, i.e. shift

towards posterior peaks, in development of algal popu-
lations at which 10% of yearly total biomass is reached.
This trend emerges at “25%” again albeit less definitely,
however, in case of “50%” there is no remarkable shift.

Discussion

The case study of DPGM model pointed out that vari-
ation of phytoplankton biomass within and over years
can be simulated through consideration of daily temper-
ature as well as light availability. Generally, the model
estimates biomass variation within years quite well,
however, underestimation of phytoplankton biomass in
early years and overestimation in the last four years –
the extent of which lags behind those of the underes-
timations in the early years – suggest drastic change
in environmental variables beyond temperature over
the study period. Although mean water temperature
in the Danube River experienced some variation over
the study period, no remarkable increase was demon-
strated (Tóth 2007), whereas discharge peaks reported
over 4–6-year cycles increased to a certain degree (Ve-
rasztó et al. 2010). The trend in phytoplankton biomass
variation over the study period, however, cannot be at-
tributed to those observations.
Generally, nutrients have been considered when

seasonal dynamics of phytoplankton is discussed even
if global warming-related effects are in the primary fo-

cus of research (e. g. Mooij et al 2007; Malmaeus &
H̊akanson 2004; Hassen et al. 1998; Komatsu et al.
2006). We did not consider nutrients within the DPGM
model because inorganic nutrients have not been found
as limiting factors in the Danube River – similarly to
large rivers – as they do in lakes. In reality, availability
of light has been found to limit algal growth rather than
nutrients, the oversupply of which has been reported in
the Danube River (Kiss 1994, 1996). The marked in-
crease of algal biomass in the 70’s can be attributed
to the altering light conditions of the river because nu-
trient supply of the 50’s and 60’s had the capacity to
create a trophic status similar to those of recent years
(Kiss 1994). Only light conditions and their major al-
tering force, the amount of suspended matter, have ex-
perienced remarkable variation since the middle of 60’s
due to the increasing constructions of dams. Reservoirs
have decreased velocities and, therefore, some portion
of suspended sediments became settled. As a result of
those, the amount of suspended matter decreased by
the end of the 70’s and light conditions improved im-
plicitly, which contributed to a significant increase in
algal individual numbers (Kiss 1994; Kiss & Genkal
1996). From the 90’s, light conditions have not exhib-
ited profound variation, in addition, nutrient oversup-
ply decreased (Horváth & Tevanné-Bartalis 1999; Varga
et al. 1989), which might account for decreased algal
biomass. However, the degree of nutrient excess may de-
termine the potential maximum biomass of algae, thus
after all, we expect long-term change in nutrient load
to affect phytoplankton biomass in the Danube River.
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Consequently, we propose that, among unidentified en-
vironmental variables, degree of nutrient load is the ma-
jor cause behind extreme peaks and decreasing trend
of phytoplankton biomass. Theoretically, increasing re-
lease of inhibitors of algal growth, or other human pol-
lutants may account for decreased algal biomass as was
documented in some case studies (Barinova et al. 2008)
however, long-term record of water chemical variables
in the Danube River does not indicate such profound
variation (Tóth 2007). Another rational assumption in-
cludes variation in discharge, which can have profound
effect on phytoplankton biomass development (Kiss &
Schmidt 1998), although discharge variation during the
study period does not imply such trend as was ob-
served in algal biomass (Verasztó et al. 2010), thus,
discharge variation cannot serve as a true predictor of
algal biomass.
On the basis of long-term water chemical data,

variation in nutrient load (expressed in PO4-P con-
centration) can answer the question discussed above.
Results of temporal coenological patterns constructed
from phytoplankton database supported this scenario
(Verasztó et al. 2010), where change in phosphorus load
goes hand in hand with phytoplankton clusters in or-
dination plot. Assuming that high level of nutrient ex-
cess serves a different kind of environment for algae
than does low level of nutrient oversupply, purely tem-
perature variation improves simulation of algal biomass
without building a nutrient variable into the model. Re-
sults suggest that different levels of nutrient oversupply
(characterized with PO4-P concentration) create differ-
ent environments to phytoplankton, and – according to
those levels of oversupply – algae display different dy-
namics in answer to global warming.
The apparent “breakpoint” of the study period in

1990 coincides with the economic and environmental
consequences of regime shift in Hungary, one of the
most important historical episode of the country. At
that time, the collapse of socialist industry brought
into a significant decrease of local pollutants released
into the river. At a guess, in the Danube catchment,
nutrient load decreased by 40–50% due to the over-
all economic recession and rapid development of sew-
erage/wastewater treatment following the regime shift
(Schreiber et al. 2005; ICPDR 2005; Csathó et al. 2007).
Not surprising, extreme phytoplankton peaks of short
development were observed within that period suppos-
ing rapid nutrient load. DPGMmodel forecasts biomass
peaks after the regime shift through considering purely
temperatures. Only in case of two extreme peaks were
the multiplier added so as to taking nutrient load into
account as well. Those events both occurred in 1992
and were not the highest biomass values recorded after
1990.
Simulated biomass (DPGM-sAB) showed signifi-

cant correlation with measured biomass regarding three
indicator groups of different types. In the field of cli-
mate change research, defining indicators is of absolute
necessity (Diós et al 2009). The indicators presented
above are of good applicability even when we run the

model with the data of climate change scenarios.
By distinguishing two different periods of nutri-

ent load, the validated DPGM-sAB is able to simulate
phytoplankton biomass variation on the basis of daily
temperatures as input, negligible failure occurs though.
With this in mind, the model can be capable of fore-
casting possible future states of algal assemblages in
the Danube River by use of temperature data of cli-
mate change scenarios. Input parameters include only
daily air temperatures, there is no need for further data
of daily frequency. Modeling studies face the problems
of lack of data and access to them, respectively (Porter
et al. 2005), which are really true for climate change-
related modeling (Sipkay et al. 2009b). On the one
hand, data that have been gathered elsewhere are often
difficult to obtain, on the other hand, long-term data
of different water bodies have often been collected with
different methodologies. What is more, complex models
require a number of data that have not been measured
yet. In most cases, this is the reason behind lack of ap-
plication of model systems, describing the general func-
tioning of the system, in a number of aquatic habitats
in the limelight. Thus, the presented tactical model, de-
scribing the seasonal dynamics of phytoplankton of the
Danube River on the basis of daily temperatures, is rel-
atively simply and fruitful to be adapted for climate
change research.
Linear temperature rise has remarkable effects on

phytoplankton biomass only in case of high level of nu-
trient load, particularly in the summer term of high
algal production. When nutrient overload reaches low
levels, temperature rise does not create significant vari-
ation in phytoplankton dynamics as was demonstrated
through the examples of indicators. With this end in
view, it can be concluded that degree of nutrient load
is of major importance when global warming is consid-
ered. In addition, global warming brings more drastic
change to ecosystems of high nutrient load. All these
draw attention to the increasing hazard of nutrient load
in rivers.
Indicators implied major variation between DPGM-

sA and DPGM-sB. In case of DPGM-sA (assuming
higher level of nutrient load) higher biomass are de-
tected, and the timing of the initial phytoplankton
growth are later than in case of DPGM-sB.
DPGM-sA responds more strongly to climate

change, as a consequence of which the algae commu-
nity of this model starts developing later, however, it
reaches an immensely high biomass by summertime. In
relation to the alteration of timing it would be reason-
able to expect that the development of phytoplankton
begins earlier as a consequence of climate change, never-
theless we experience the opposite. Based on indicators
characterizing the spring period, one shall not expect
any alteration in this season. Although the growth of
biomass during summertime can be dramatic. Should
this scenario be met, after an intensive rise similar to
the recent one, in the springtime, a much more inten-
sive increase can be expected to begin in the summer
period characterized by very high temperatures, ap-
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proaching values not experienced among circumstances
of our times. On the other hand, in other works within
the ecological literature the dramatic effect of climate
change does not only manifest during the summer pe-
riod, which is characterized by a great abundance, but
already shows at the beginning of the season. For exam-
ple, in the model of an English reservoir of Elliott et al.
(2005), the future algal increase in the spring is more in-
tensive, even though in the summer the phytoplankton
assemblies having considerable abundance decrease ear-
lier because of the limited nutrient availability caused
by a more ample water bloom in the spring. Several
studies (Flanagan et al. 2003) predict biomass maxi-
mums to occur earlier within the year, particularly in
the winter half-year (Thackeray et al. 2008).
Global warming may have fundamental effects on

the trophic status and primary production of inland
waters (Lofgren 2002). Bacterial metabolism, rate of
nutrient cycling and biomass increase of phytoplankton
abundance all increase with rising temperatures (Klap-
per 1991), albeit some studies have found algal biomass
to decrease with rising temperatures (Lewandowska
& Sommer 2010; Sommer & Lengfellner 2008). As a
general rule, climate change connected with human-
derived pollution enhances eutrophication (Klapper
1991; Adrian et al. 1995). While changes in species com-
position may be complex and unpredictable, an overall
increase in system productivity is likely to be a common
response to climate warming. Climate change will inter-
act with other threats to lotic ecosystems, enhancing
some regional water shortages, favoring species inva-
sions, and acting as an additional stressor on the biota
(Allan & Castillo 2007). In the assessment of ecologi-
cal changes attributed to global warming, we have to
consider trophic state and morphology of inland waters
(Anneville et al. 2010). A number of authors adopt-
ing modeling methodologies have forecasted increase
of phytoplankton abundance under increasing tempera-
tures mostly through rising trophity (Mooij et al. 2007;
Elliot et al. 2005; Komatsu et al. 2006). These findings
correspond with our results of linear temperature rise,
but only in those particular cases of high nutrient load.
Present study suggests that, in case of low level nutrient
load, rise in temperature does not have such a remark-
able effect on phytoplankton biomass as does tempera-
ture rise along with high nutrient availability. Assuming
higher level of nutrient load the phytoplankton biomass
rising is drastic due to the warming, without changes
in phosphorus load. Consequently if the nutrient load
is also rising, the changes in Danubian phytoplankton
biomass will be dramatic.
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1: 143–148. MTA ÖBKI Magyar Dunakutató Állomás,
Vácrátót/Göd. ISBN 963 8391 20 0.

Kiss K.T. & Schmidt A. 1998. Changes of the Chlorophyta species
in the phytoplankton of the Hungarian Section of the Danube
river during the last decades (1961–1997). Biologia 53: 509–
518.

Kiss K.T., Ács É. & Szabó K.É. 2007. Algák és anyagforgalmi
kapcsolataik, pp. 33–49. In: Nosek J. & Oertel N. (eds), “A
Dunának, mely múlt, jelen s jövendő. . .” 50 éves az MTA
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Állomása. MTA ÖBKI Magyar Dunakutató Állomás, Göd.

Thackeray S.J., Jones I.D. & Maberly S.C. 2008. Long-term
change in the phenology of spring phytoplankton: species-
specific responses to nutrient enrichment and climatic change.
J. Ecol. 96: 523–535.
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