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The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between 
the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as 
the case of deterministic and stochastic trends itself. The study considers the special case when the 
stochastic trend and seasonality do not evolve independently and the usual differencing filters do not 
apply. The results are applied to the day-ahead (spot) trading data of some main European energy 
exchanges (power and natural gas). 
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1. INTRODUCTION 
 

In this paper we focus on testing whether time series are integrated in the special case when stochastic 
trend and seasonality are related through the use of periodic autoregressive (PAR) models. 

The novelty of the method introduced is shown not only in the definition of seasonally varying 
autoregressive model structure, but also in allowing correlation of trend and seasonality. On the other 
hand, results cannot be directly compared with other techniques as the initial assumptions are different. 
Trend and seasonality are latent, so they can be estimated but not observed. Allowing correlation of trend 
and seasonality (that is the value of the seasonal component depends on the value of the trend or vice 
versa) means applying a multiplicative model, where the connection of the components is multiplicative 
but not additive.1 Consequently, the method examined can be seen as testing for unit root in the 
multiplicative framework. 

We also introduce the periodic differencing filter and compare the results with other differencing 
filters. We emphasise that the periodic differencing filter is similar to the seasonal differencing filter, but 
allows correlation of the components and does not suppose the existence of all non-seasonal and seasonal 
unit roots. Allowing correlation can be explained by the evolution of the time series (e.g. growing trend 
and seasonal variation with growing amplitude). There are tests to check for the presence and type of unit 
roots but the power of the tests does not perform well and the problem of overdifferencing easily occurs. 
 

2. MODELLING TREND AND SEASONALYITY IN TIME SERIES 
 

2.1. DETERMINISTIC AND STOCHASTIC APPROACH 
 

It is well-known that the absence of stationarity can be twofold or threefold: time series can display 
deterministic trends or stochastic trends (i.e. there are unit roots) or sometimes both. The first one could be 
filtered through estimating the trends e.g. as linear or exponential functions of time, the second one 
through the use of the so-called first-order differencing filter (1 − 𝐿). 1F

2 
Seasonality can also be modelled in the deterministic or stochastic framework. The usual techniques 

for modelling seasonality in the deterministic way are enlarging the model with seasonal dummies or 
contrast variables. Including scaled (amplitude and phase) sine and cosine functions is also a promising 
way for modelling, where the modelled frequencies can be based on ex ante knowledge or prior studies 
(e.g. spectral analysis). The significance of the corresponding parameters can be analyzed in the usual 
way. 

Stochastic seasonality can be viewed through the seasonal differencing filter. The seasonal 
differencing filters (in general (1 − 𝐿𝑠), i.e. (1 − 𝐿4) for quarterly and (1 − 𝐿12) for monthly time series) 

1 There are a lot of methods for testing additive or multiplicative connection of components. Discussing these results 
is out of the scope of this paper, see Sugár (1999a; 1999b) for details. 
2 The lag-operator Lp creates the lag of order p of the time series. When 𝑝 = 1, 𝐿𝑦𝑡 = 𝑦𝑡−1, (1 − 𝐿)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 
that is the first-order difference of the time series. The well-known commutative, associative and distributive 
properties of mathematics hold for lag-operators too. 
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impose the assumption of the existence of one non-seasonal and (s-1) seasonal unit roots (i.e. 3 for 
quarterly and 11 for monthly time series) and the independence of the corresponding non-seasonal and 
seasonal components. The independence of the components cannot be verified easily, however, most of 
the statistical and econometric methods based on decomposition (eithet cross-sectioanl or time series) 
suppose the independence of the model components. This assumption of independence can be easily seen 
from e.g. the seasonal differending operator, as it can be written in a multiplicative form, i.e. (1 − 𝐿4) =
(1 − 𝐿)(1 + 𝐿)(1 − 𝑖𝐿)(1 + 𝑖𝐿) in the case of quarterly series. When some of the corresponding unit 
roots do not exist, the problem of overdifferencing occurs, as the seasonal differencing operator filters all 
the referred roots. 

In this paper we discuss a method for testing stochastic trend and seasonality when the assumption 
of independency does not hold. The consequences (applying the periodic differencing filter) and the 
empirical results are also included. 
 

2.2. APPLYING NON-SEASONAL AND SEASONAL DIFFERENCING FILTERS 
 

In this section we make a short review of the non-seasonal and seasonal differencing filters applied in the 
Box-Jenkins framework. It is well-known that the fundamental steps of the Box-Jenkins methodology are 
the transformations to achieve stationarity. As the role of the differencing filters cannot be discussed 
separately from non-seasonal and seasonal unit root tests, we review both in the following. 

In the case, when time series displaying seasonality the seasonal differencing filters (1 − 𝐿𝑠) are 
widely used and seem to perform quite well (e.g. in forecasting). The so-called HEGY test (Hylleberg et 
al. 1990) based on the decomposition of the seasonal differencing polynomial, is widely used in testing for 
the existence of either roots. There is a test for time series with monthly decomposition (see Franses 1998, 
and Lieli 1999 for an application) too.3 From the theoretical and empirical point of view we have to 
mention that the power of the well-known seasonal unit root tests is very poor, so the correct decisions 
always require human judgements, including correct model assumptions, e.g. additive or multiplicative 
model structure. 

We recall the well-known Airline model (Box – Jenkins 1970), which was originally used for 
modelling the number of passengers travelling by air and was applied many times in practice. The Airline 
model applies the first-order (non-seasonal) differencing filter together with the seasonal differencing 
filter. Empirical results show that the Airline model performs well in practice (see e.g. Clements – Hendry 
1997).  

Finally we introduce our simulation results generating a so-called periodically integrated time series 
(see the figure below).4 The figure suggests estimating a multiplicative model as the seasonal swings grow 
in line with the trend. The characteristic of the prototype series of the Airline model is very similar. 

 
Figure 1. Simulation results 

 
Source: calculations of the author using GRETL 
 

 
4 The simulated time series is the following: 𝑦𝑡 = 𝑐 + 𝛼𝑠𝑦𝑡−1 + 𝜀𝑡, where the parameters are: 𝑐 = 5, 𝛼1 = 1.25, 
𝛼2 = 0.80, 𝛼3 = 0.83, 𝛼4 = 1.20 (the product of the αs parameters is 1) and 𝜀𝑡~𝑁(0.10) that is normally distributed 
random variable with mean of 0 and standard deviation of 10, and t = 1, 2 … 500. See the interpretation of the 
parameters in the following sections. 
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We introduce the results applying the differencing filter (1 − 𝐿)(1 − 𝐿4) on a correlogram (see 
Figure 2). The problem of overdifferencing can be seen: some of the (partial) autocorrelation coefficients 
(PAC) significantly differ from zero.  

 
Figure 2. Correlogram (PAC function) of the filtered time series: the results of applying differencing filter 

(1 − L)(1 − L4) 

 
Source: calculations of the author using GRETL 
 

It is worth analyzing the effects of applying the seasonal differencing filter (𝟏 − 𝐋𝟒). The (partial) 
autocorrelation coefficients display a non-elapsing sinusoid structure, so the polynominal does not filter 
the seasonal behaviour perfectly. 

Figure 3. Correlogram (PAC function) of the filtered time series: the result of applying differencing filter 
(1 − L4)  

 

Source: calculations of the author using GRETL 
 

Naturally there are a lot of other transformations for filtering of trend and seasonality (e.g. incorporating 
different order of seasonal lags or seasonal dummy variables in the model). We cannot introduce all 
misspecifications in this paper, so we focus on the most frequent cases that were shown before.  
 

Applying the periodic differencing filter (𝟏 − 𝛂𝐬𝐋) as the suitable one, the filtered series is white 
noise (Figure 4). See the details in the following sections. 

Figure 4. Correlogram (PAC function) of the time series: the results of applying periodic differencing 
filter (1 − αsL)  

 
Source: calculations of the author using GRETL 
 
 

3. THE STYLIZED FACTS OF ENERGY MARKETS 
 
Stylized facts are (qualitative) characteristics of a homogeneous group of time series, which are 
independent of regional or temporal features. In the special case of energy markets the stylized facts are 
briefly the followings: 

- time-dependent mean and variance, 
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- multiple seasonality, 
- spikes and mean reversion in the case of price series. 

 
The main source of time-dependent mean and variance are trend and seasonality. Time series often 
display a time-varying variance, see the higher volatility of power prices in summer and the higher 
volatility of consumption in spring and autumn. Seasonality on the other hand is multiple: depending on 
the granuality and the time series characteristics, we have to deal with yearly, weekly and daily 
seasonality. That means this feature displays in the long, medium and short run. 

It is worth discussing price spikes and the short-term behaviour of the almost immediate mean 
reversion characteristic (see e.g. Burger et al. 2004). First we must mention that there is no correct and 
widely accepted definition of spikes in the literature, although there are a lot of references to cite. Some 
say that spikes are extrem values but they are inherently part of the series (see e.g. Burger et al. 2004 or 
Marossy 2010), while others say that spikes are outliers which must be replaced by normal values before 
taking any modelling steps. Spikes undoubtly make analysis more complicated (e.g. time series 
decomposition) and on the other hand they can lead to misspecifications as they can mislead standard test 
statistics (see for example testing for unit root in the presence of structural breaks in Mák 2011). It is clear 
that modelling spikes is a core component when dealing with time series with higher granuality (e.g. daily, 
hourly, quarterhourly). The reason we neglect spikes is that we place the emphasis on the long-term 
behaviour of time series such as the trend and annual seasonality and their interrelated evolution. 
 

4. TRADING VOLUME AND LIQUIDITY IN THE EUROPEAN ENERGY 
MARKETS 

 
In this section we briefly summarize the tendencies relevant from our paper’s point of view. The liquidity 
of energy markets – especially in the continental Europe – is far away from the liquidity experienced in 
the financial markets.5 The reasoning is partly historical (most of the markets are in their early years 
especially in the continental Europe), partly industry specific (spot trading means “bundled” physical and 
financial trading, while futures trading means only financial trading). The goals of future trading are 
mainly hedging, managing long-term risks, while the goals of spot trading is mainly portfolio 
(re)alignment and balancing. 

Focusing on Europe, power and natural gas market development are highly different. Power 
markets came to focus as a result of the market coupling efforts, while natural gas markets are given more 
attention as a result of non-traditional sources (LNG, shale gas) and moving away from oil-indexed 
pricing of long-term contracts. The last one is one of the biggest questions of the future, but gas hubs 
seem to have a good opportunity to become the basis of pricing long-term contarcts. The Dutch hub TTF 
(Title Transfer Facility) has the largest chance of becoming the benchmark hub, although its trading 
volume is far behind the British NBP (National Balancing Point), but it is a good market place to handle 
volume and foreign exchange risk in comparison with NBP (energy unit of MWh vs. term and foreign 
exchange of EUR vs. GBP). The “trading profile” of other European hubs will likely be guided by 
portfolio alignment instead of determining wholesale price levels (see e.g. Heather 2012). 
 

5. TIME SERIES ANALYZED IN THE PAPER 
 
In this paper we analyze the time series specified in the following table: 
 

Table 1. Time series analyzed in the paper 
 

Time series Granuality Description Displayed 
features 

Results from the 
paper 

TTF nomination 
volume 

monthly traded volume of  the 
TTF registered6 by 

upward trend, 
seasonality 

filtering trend and 
seasonality 

5 The liquidity of energy markets can be measured by the bid-ask spread stemming from financial standards or by the 
so-called churn-rate which is the ratio between total volume of trade and the physical volume of trade, or the physical 
volume of gas consumed in the area served by the hub (see e.g. Heather 2012). 
6 The traded volume registered by the „shippers” (for the sake of simplicity the traders) at the Dutch system operator 
on the network points. Nomination means ex ante demand announcement of natural gas for the following days or 
hours. The regulation of the nomination process (granuality, deadlines before physical delivery) can be different 
between countries. 
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the Dutch system 
operator GTS7 

influenced by 
heating effect 

EEX8 Phelix Day-
Ahead volume 

monthly volume of spot (day-
ahead) trading in the 
EEX German and 
Austrian regions 

slightly upward 
trend, “noisy” 
seasonality 

filtering trend and 
seasonality, 
capturing level 
shift 

EEX Phelix Day-Ahead 
price (average) 

monthly average price of spot 
(day-ahead) trading 
in the EEX German 
and Austrian regions 

changing trend, 
“noisy” 
seasonality 

filtering trend and 
seasonality, 
capturing level 
shift 

Source: See data sources in Annex 1 
 

See also the figures in Section 6 and Annex 1.Both the physical and financial volume of gas hubs have 
grown, while the trend in the case of power markets is not so clear. Seasonality is most remarkable in the 
case of natural gas (TTF) as a result of the so called winter or heating effect. Seasonality in the case of 
power is much more complex, see for example the effect of renewables on the within-a-day and day-ahead 
markets, the effects of natural gas and coal market movements on power markets and so on. 

 
6. EMPIRICAL RESULTS 

 
The detailed analysis of the periodic autoregressive (PAR) model and the periodic differencing filter are 
introduced on the example of the monthly nomination volume of TTF series. The main consequencies of 
modelling in the case of the other series are briefly summarized in the next section. The results were 
computed with the freely available R software packages. For detailed methodological issues see Annex 2. 
 

6.1. ANALYZING THE MONTHLY NOMINATION VOLUME OF THE TTF 
 
Figure 5 shows the monthly nomination volume of the TTF from January 2007. Data are available for 
earlier dates also but show the very unsystematic behaviour of the early trading activity on the TTF. The 
trading volume was much lower and seasonality less regular that time. It is worth mentioning that 
Hungarian consumption was around 12 and 14 million m3 in the last years, and we can see that in the 
years 2011, 2012 and 2013 the monthly trading volume on the TTF was far above this level almost every 
month. 

 
Figure 5.  Monthly nomination volume of the TTF [million m3] 

 

 
Source: GTS, http://www.gasunietransportservices.nl 
 

Besides the growing trend we can see that seasonal fluctuation grows in line with the trend, which 
suggests estimating a multiplicative model.9 

7 Gasunie Transport Services 
8 European Energy Exchange 
9 Since the financial crisis of 2008, analyzing liquidity and its effect on price movements are very crucial issues. 
Trading volume is of course insufficient to measure liquidity. Results analyzing trading volume, on the other hand, 
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6.1.1. MODEL SELECTION AND TESTING FOR UNIT ROOT 

 
First we estimate a periodic autoregressive model of order p with intercept, i.e. the following: 

 
  𝑦𝑡,𝑠 = 𝑐 +𝛷1,𝑠𝑦𝑡−1 + 𝛷2,𝑠𝑦𝑡−2 + ⋯+ 𝛷𝑝,𝑠𝑦𝑡−𝑝 + 𝜀𝑡     (1) 

 
where 𝜀𝑡 is white noise and s=1, 2 … 12. We can see that the autoregressive parameters are seasonally (or 
periodically) varying. 

We estimate a model of order 1. The selection criteria are controversial but estimating with 2 lags 
means 12 additional parameters, which decreases the degree of freedom of the model so it is not proposed. 
The F tests used are a Wald type tests that compares the models of order p and order 𝑝 + 1. When the 
restriction in the null hypotheses regarding the autoregressive parameters of order 𝑝 + 1 (i.e. all equal 
zero) does not significantly decreases the goodness of fit, it is not proposed to include the autoregressive 
variables of order 𝑝 + 1 in the model (that is 12 variables in our case). As the p-value to test the choice 
between the model of order 1 and 2 is 0.166, the null hypothesis cannot be rejected, therefore the model of 
order 1 is preferred. 

After defining the PAR model of the specified order, we can check for periodicity in the 
autoregressive parameters of the model. The corresponding F test is again a Wald type F test. The 
restriction of the null hypothesis, that the parameters of order 𝑝 are equal, corresponds with an AR(p) 
model, and the alternative hypothesis corresponds with a PAR(p) model with periodically varing 
autoregressive parameters. The results show that the periodicity of the parameters cannot be rejected (as 
the corresponding p-value of the F test computed is 0.000), so the PAR(1) model fits better than an AR(1) 
model. 

Testing for the unit root in the above definied PAR(1) model is the next highlighted issue and is 
discussed in the following. The tests are similar to the usual unit root tests. The null hypothesis 
corresponds with the presence of unit root, while the alternative hypothesis corresponds with stationarity. 
One of the tests (the second one in our output, see below) is similar to the well-known left-tailed Dickey-
Fuller test, the other test (the first one in our output, see below) is a right-tailed LR test. The logic behind 
applying the LR test is based on the restriction of the product of the periodically varying autoregressive 
parameters, that is the null hypothesis corresponds with the product constrained to unity and the 
alternative hypothesis corresponds with the unconstrained product. When the restriction significantly 
decreases the goodness of fit, the null hypothesis has to be rejected. 

 
LR-test: 0.10    
5 and 10%  critical values: 
    when seasonal intercepts are included: 9.24, 7.52.  
    when seasonal intercepts and trends are included: 12.96, 10.50.  
 
𝑠𝑖𝑔𝑛(∏ 𝛼𝑠 − 112

𝑠=1 ) · 𝐿𝑅1 2�  test: -0.31    
5 and 10% critical values: 
    when seasonal intercepts are included: -2.86, -2.57.  
    when seasonal intercepts and trends are included: -3.41, -3.12. 

Source: Estimates computed with R Software 
 

According to the results above, the null hypothesis of unit root cannot be rejected, in other words the 
nomination volume of the TTF is not stationary. 

The next step is checking for the type of unit root whether the constrained autoregressive 
parameters are equal to +1 or –1 (i.e. the unit root is a long run unit root or a seasonal unit root). The tests 
are Wald type F tests again with the null hypotheses of the above mentioned constaints (autoregressive 
parameters are equal to +1 or –1). In both cases the calculated p-values are 0.000, which means that the 
time series contains neither long run nor seasonal unit root. According to this it is periodically integrated 
and a periodically integrated autoregressive model (PIAR) can be fitted.10 

Checking for the robustness of our results, it is worth repeating the calculations when both intercept 
and trend are included in the model which is the following: 

 

are controversial, some suggest the long memory property of trading volume (e.g. Lobato – Velasco 2000), others 
suggest a deterministic trend (e.g. Darbar – Deb 1995). 
10 In Annex 2 we generalize the unit root tests for models of higher order. In this section we only mention briefly that 
the general test restricts on αs parameters which are the Φ1,s autoregressive parameters in our special case of the 
model of order 1. 
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𝑦𝑡,𝑠 = 𝑐 + 𝑏 · 𝑡 +𝛷1,𝑠𝑦𝑡−1 + 𝛷2,𝑠𝑦𝑡−2 + ⋯𝛷1,𝑠𝑦𝑡−1 + 𝜀𝑡    (2) 
 
where 𝜀𝑡 is white noise and 𝑠 = 1, 2, …  12. 

Selecting the order of lags the results are similar, so fitting a PAR(1) model is suggested. Notice 
that the trend parameter is slightly significant. The results cannot reject the nullhypothesis of the unit root 
again: 

 
LR-test: 5.93    
𝑠𝑖𝑔𝑛(∏ 𝛼𝑠 − 112

𝑠=1 ) · 𝐿𝑅1 2�  test: -2.44    
Source: Estimates computed with R Software, the critical values are equal to the ones in the previous case 
 

The following F tests suggest fitting a periodically integrated autoregressive (PIAR) model likewise. To 
decide whether a trend with constant or periodically varying parameters, and an intercept with constant or 
periodically varying parameters is needed, we can use Wald type F tests as usual. Without describing 
details we can say that the results stand for constant trend and intercept parameters. See Annex 2 for more 
details. 

 
 
6.1.2. ANALYZING THE FINAL PIAR MODEL FOR THE NOMINATION VOLUME OF THE TTF 

 
As the results of the former section a PIAR(1) model with intercept is suggested. The model is the 
following (the 𝛼𝑠 parameters are the autoregressive parameters, see Annex 2 for details):  
 

𝑦𝑡 − 𝛼𝑠𝑦𝑡−1 = 𝑐 + 𝜀𝑡 ,        (3) 
or 

𝑦𝑡 = 𝑐 + 𝛼𝑠𝑦𝑡−1 + 𝜀𝑡,        (4) 
 
where 𝜀𝑡 is white noise, 𝑠 =  1, 2 … 12, and the product of the seasonally varying 𝛼𝑠 parameters is 
constrained to unity. We can see the parameter estimates and the corresponding p-values of the t type tests 
in the following table. 
 

Table 2. Parameters and their significance levels in the PIAR(1) model 
 

  𝑠 = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 s = 11 s = 12 

𝛼𝑠 1.085 0.971 1.010 0.785 0.954 0.948 1.036 0.997 0.999 1.158 0.986 1.124 

p-value (𝐻0: 𝛼𝑠 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 

p-value (𝐻0: 𝛼𝑠 = 1) 0.000 0.093 0.558 0.000 0.025 0.016 0.171 0.905 0.968 0.000 0.507 - 
Source: Estimates computed with R Software 
 

As we can see, all parameters are significant (𝐻0: 𝛼𝑠 = 0). It is even more interesting that most of them 
(January, April, May, June and October) significantly differ from unity. This is an empirical justification 
of seasonally varying parameters.  

The matrix representation of the model helps us find how the stochastic trend and the seasonal 
fluctuations are related, in other words the following: which season has the highest long-term impact? 
Which season undergoes the most severe impacts from the accumulation of shocks? See Annex 2 for more 
details about the computed matrices. The row and column with grey background contains sums of column 
and row elements. 

 
Table 3: Time varying accumulation of shocks 

 
1.000 1.030 1.020 1.298 1.361 1.436 1.386 1.390 1.391 1.201 1.218 1.085 14.816 
0.971 1.000 0.990 1.260 1.322 1.394 1.346 1.350 1.350 1.166 1.183 1.053 14.385 
0.981 1.010 1.000 1.273 1.335 1.408 1.360 1.363 1.364 1.178 1.195 1.064 14.531 
0.770 0.793 0.785 1.000 1.049 1.106 1.068 1.071 1.071 0.925 0.939 0.836 11.413 
0.735 0.757 0.749 0.954 1.000 1.055 1.018 1.021 1.022 0.882 0.895 0.797 10.885 
0.696 0.717 0.710 0.904 0.948 1.000 0.965 0.968 0.969 0.836 0.848 0.755 10.316 
0.721 0.743 0.736 0.936 0.982 1.036 1.000 1.003 1.003 0.866 0.879 0.783 10.688 
0.719 0.741 0.734 0.934 0.979 1.033 0.997 1.000 1.001 0.864 0.877 0.781 10.660 
0.719 0.740 0.733 0.933 0.979 1.033 0.997 0.999 1.000 0.864 0.876 0.780 10.653 
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0.833 0.857 0.849 1.081 1.133 1.196 1.154 1.157 1.158 1.000 1.014 0.903 12.335 
0.821 0.845 0.837 1.065 1.117 1.179 1.138 1.141 1.141 0.986 1.000 0.890 12.160 
0.922 0.949 0.940 1.197 1.255 1.324 1.278 1.281 1.282 1.107 1.123 1.000 13.658 
9.888 10.182 10.083 12.835 13.460 14.200 13.707 13.744 13.752 11.875 12.047 10.727  - 

Source: Estimates computed with R Software 
 
Details of the impact matrix are the following (just examples, numbers in bold): 

- 1,085 = the effect of a shock in December to January: 1,085 (𝛼12) 
- 1,053 = the effect of a shock in December to February: 1,085 · 0,971 (𝛼12 · 𝛼1) 
- 0,164 = the effect of a shock in December to March: 1,085 · 0,971 · 1,010 (𝛼12 · 𝛼1 · 𝛼2) 
- 1,195 = the effect of a shock in November to March: 1,124 · 1,085 · 0,971 · 1,010 (𝛼11 · 𝛼12 ·

𝛼1 · 𝛼2)  
 
We can see that the effects can be calculated from the corresponding autoregressive parameters. The 
values of the sums of the column elements are higher from April to August, so these months have a higher 
long run impact. The values of the sums of the row elements are higher from October to March, so these 
months undergo a more severe impact from the accumulation of shocks. In other words the shocks in 
summer time swing the level of trading volume harder, while the shocks are more likely to accumulate in 
winter when the so-called heating effect holds. 

 
6.1.3. APPLYING THE PERIODICALLY VARYING DIFFERENCING POLYNOMIAL 

 
We complete the modelling of the TTF with applying more differencing filters on the time series. The 
usual first-order (non-seasonal) and seasonal differencing filters and the so-called periodic differencing 
filter resulting from the PIAR model estimates are computed. This latter filter is the following: (1 − 𝛼𝑠𝐿), 
where the αs parameters are the corresponding parameters in the PIAR model. 

See Figure 6 for analyzing how the different filters performe. 
 

Figure 6: Differencing filters applied on the nomination volume of the TTF [million m3] 
 

 
Source: prepared by the author using estimates computed with R software 

 
As we can see the seasonal differencing filter (i.e.(1 − L12), thin line) filtered the seasonal variation and 
partly the growing trend. Checking for stationarity the correlogram shows that this series is stationary. So 
we misspecify when applying the first-oder differencing filter (i.e.(1 − 𝐿)(1 − L12), dotted line).Applying 
the so-called periodically varying differencing filter (i.e.(1 − 𝛼𝑠𝐿), bold line), the filtered series is 
smoother than the other two and contains fewer extreme values. 

Checking for overdifferencing is hard as the series is quite short, and the filtered series – that is after 
applying (1 − 𝐿)(1 − L12) and (1 − 𝛼𝑠𝐿)  – seems to be quite similar. The conclusion supports the 
assumptions instead. Allowing the correlation of stochastic trend and seasonality can be ex ante justified 
(see the figure of the nomination volume of the TTF). 

 
7. ADDITIONAL MODELLING RESULTS AND CONCLUSIONS 
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The above detailed analysis was repeated also on the other time series analyzed in the paper. The 

table below summarizes the main conclusions regarding the most suitable model variation. 
 

Table 4. Results on the other time series analyzed in the paper 
 

Time series Start End Length Order 
of lag 

PAR(p) 
vs. AR(p) 
p-value 

LR11 DF12 
+1 unit 

root test, 
p-value 

-1 unit 
root test, 
p-value 

TTF nomination volume13 
2007. 
01. 

2013. 
08. 80 1 0.000 +0.1 -0.31 0.000 0.000 

EEX Phelix Day-Ahead 
volume 

2007. 
01. 

2013. 
08. 80 1 0.000 +0.7 -0.84 0.000 0.000 

EEX Phelix Day-Ahead 
price (average) 

2007. 
01. 

2013. 
08. 80 1 0.000 +6.88 -2.62 0.007 0.000 

Source: Estimates computed with R Software 
 
It is worth underlining that the deterministic trend was not significant in neither of the models. Testing for 
the type of unit root, all tests suggest that the series can be modelled as periodically integrated 
autoregressive (PIAR) models. 

 
Finally we introduce the filtered series after applying the three differencing filters as we did in the 

case of TTF. Applying the seasonal differencing filter on the trading volume of EEX, we can see that the 
trend has been filtered but the differencing filter did not handle the level shift in the year 2010. The 
sudden level shift also exists when we apply the periodic differencing filter. It seems to be useful to handle 
this event with an outlier dummy variable. On the other hand, we can see that applying the first-order 
differencing filter after the seasonal one, the filtered series contains more extreme values than in the case 
of the periodically differenced series. Results are similar in the case of the average price of spot trading in 
the EEX. 

 
Figure 7. Differencing filters applied on the volume of spot (day-ahead) trading in the EEX [MWh] 

 

 
Source: prepared by the author using estimates computed with R software 
 

Figure 8. Differencing filters applied on the average price of spot (day-ahead) trading in the EEX 
[EUR/MWh] 

11 LR test, 5 and 10% critical values: 
     when seasonal intercepts are included: 9.24, 7.52.  

when seasonal intercepts and trends are included: 12.96, 10.50.  
12  𝑠𝑖𝑔𝑛(∏ 𝛼𝑠 − 112

𝑠=1 ) · 𝐿𝑅1 2�  test, 5 and 10% critical values: 
     when seasonal intercepts are included: -2.86, -2.57.  
     when seasonal intercepts and trend are included: -3.41, -3.12. 
13 See details in Section 6. 
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Source: prepared by the author using estimates computed with R software 
 
Our results show that applying the periodic differencing filter results generally in smoother (with 

less outliers) and simpler time series in comparinson with other differencing filters, when the 
multiplicative assumption holds. The expression “simpler” means that the filtered series can be modelled 
with fewer lags in comparison with applying the other differencing polynomials. Note that the main 
conclusion is not the “simpler” differenced time series, but estimating the model with suitable 
assumptions. 

We have to remark that applying the periodic differencing filter is not as general as other filters, as 
it uses the estimed parameters of the periodic autoregressive model directly. The filtered series also differs 
from the filtered results of the usual methods as trend and seasonalyity are filtered in one step. 
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ANNEX 1: FIGURES OF OTHER TIME SERIES EXAMINED IN THE 
PAPER 

 
Figure A1. Monthly volume of spot (day-ahead) trading in the EEX [MWh] 

 

 
Source: www.eex.com (Regional Centre for Energy Policy Research) 
 

 

Figure A2. Monthly average price of spot (day-ahead) trading in the EEX [EUR/MWh] 
 

 
Source: www.eex.com (Regional Centre for Energy Policy Research) 
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ANNEX 2: METHODOLOGICAL REVIEW 
 

The goal of this section is to introduce the periodic autoregressive (PAR) model applied in the paper. This 
methodological overview is organised as follows. Section A2.1. discribes the periodic autoregressive 
(PAR) model, notations and interpretation. Section A2.2. discribes the main possible model selection steps 
(lag order, periodicity, including exogenous variables), while Section A2.3. introduces how to test for unit 
root. Finally (Section A2.4.) we show some theoretical background for interpreting the estimation results. 

All the formulas in Annex 2 are presented for quarterly observed time series. 
 

A2.1. THE PERIODIC AUTOREGRESSIVE (PAR) MODEL 
 

The well-known representation of an AR(p) model is as follows:  
 

𝑦𝑡 = 𝛷1𝑦𝑡−1 + 𝛷2𝑦𝑡−2 + ⋯𝛷𝑝𝑦𝑡−𝑝 + 𝜀𝑡,       (A1) 
 
where εt is a white noise process. 

The so-called univariate representation of a PAR(p) model is as follows: 
 
𝑦𝑡,𝑠 = 𝛷1,𝑠𝑦𝑡−1 + 𝛷2,𝑠𝑦𝑡−2 + ⋯𝛷𝑝,𝑠𝑦𝑡−𝑝 + 𝜀𝑡,      (A2) 

 
where εt is a white noise process, 𝑠 =  1, 2, 3, 4, hence the autoregressive parameters vary with the season 
for each order of lag. 

The process can be written by using the interaction of the corresponding seasonal dummy variable 
and lagged variable as follows (see e.g. Franses – Paap 1996): 

 
𝑦𝑡 = ∑ �𝛷1,𝑠(𝐷𝑠 ∗ 𝑦𝑡−1) + 𝛷2,𝑠(𝐷𝑠 ∗ 𝑦𝑡−2)+. . +𝛷𝑝,𝑠�𝐷𝑠 ∗ 𝑦𝑡−𝑝��+ 𝜀𝑡4

𝑠=1 ,  (A3) 
 
where Ds variables are seasonally varying dummy variables and εt is a white noise process. That means the 
equation can be estimated by ordinary least squares. The empirical evidence behind applying seasonally 
varying parameters are that periodic autoregression allows for the presence of the interrelated stochastic 
trend and seasonality. In addition, in a lot of cases observations on a variable in some seasons have more 
impact on the dynamic pattern of the variable than observations in others seasons. Rougly speaking we 
can state that the effect of e.g. the first quarter of one year to the second is different from the effect of e.g. 
the second quarter of one year to the third. 
 

It is valuable to rewrite the univariate representation to a multivariate representation (vector of 
quarters representation or matrix representation), where the quarterly observed yt observations are stacked 
in the annually observed vector 𝑌𝑇,𝑠 = �𝑦𝑇,1   𝑦𝑇,2   𝑦𝑇,3   𝑦𝑇,4� that is the number of elements of the vector 
equals to the number of seasons. Note that the quarterly observed 𝑦𝑡 and 𝑦𝑇,𝑠 are the same, only the 
notation is changed: 𝑦𝑡corresponds an observation in t (which is a quarter), 𝑦𝑇,𝑠 corresponds an 
observation in year T and in quarter s. The advantage of the last notation is that we can explicitly indicate 
which quarters affects the values of other quarters. Going on with the above mentioned notation, the 
vector of quarters representation is as follows, 

 
𝛷0𝑌𝑇,𝑠 = 𝛷1𝑌𝑇−1,𝑠 +𝛷2𝑌𝑇−2,𝑠 +⋯+ 𝛷𝑝𝑌𝑇−𝑝,𝑠 + 𝛦𝑇,      (A4) 

 
where TΕ  is a stacked white noise that is 𝛦𝑇,𝑠 = �𝜀𝑇,1   𝜀𝑇,2   𝜀𝑇,3   𝜀𝑇,4�  and  𝑠 =  1, 2, 3, 4. 

For the sake of simplicity suppose that the order of lag needed for the quarterly observed series is 
1, so the model is the following: 

 
𝛷0𝑌𝑇,𝑠 = 𝛷1𝑌𝑇−1,𝑠 + 𝛦𝑇.         (A5) 
 
The annually observed stacked variables are 
 

𝑌𝑇,𝑠 = �𝑦𝑇,1   𝑦𝑇,2   𝑦𝑇,3   𝑦𝑇,4� 
and 

𝑌𝑇−1,𝑠 = �𝑦𝑇−1,1   𝑦𝑇−1,2   𝑦𝑇−1,3   𝑦𝑇−1,4�.       (A6) 
 
The corresponding matrices are: 
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1,2
0

1,3

1,4

1 0 0 0
1 0 0

0 1 0
0 0 1

 
 −φ Φ =
 −φ
 −φ 

, 

1,1

1

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

φ 
 
 Φ =
 
 
 

,  (A7) 

 
and the reconstructed equations are as follows: 
 

𝑦𝑇,1 = 𝛷1,1𝑦𝑇−1,4 + 𝜀𝑇,1 𝑦𝑇,2 = 𝛷1,2𝑦𝑇,1 + 𝜀𝑇,2 𝑦𝑇,3 = 𝛷1,3𝑦𝑇,2 + 𝜀𝑇,3 𝑦𝑇,4 = 𝛷1,4𝑦𝑇,3 + 𝜀𝑇,4            (A8) 
 
As we have seen, there can be three representations of the same periodic autoregressive model. A2 

is useful for an easy interpretation, A3 is useful for the introduction of the estimation method. The A4 
vector of quarters represenation might be strange and misleading as we have only one variable, so we 
conduct an univariate modeling and we also use a univariate estimation method. The vector of quarters 
representation is plausible as the result of periodically varying parameters and some tests (e.g. testing for 
unit root) and other results can only be accomplished through the use of this representation. 

 
A2.2. MODELSELECTION 

 
The first step we have to make is the selection of the order of the periodic autoregressive (PAR) model. 
The formal selection can be based on the traditional Wald type F test. Under the nullhypothesis we make 
the restriction on the parameters of order 𝑝 + 1 are equal to zero against the alternative hypothesis that at 
least one of the parameters of order 𝑝 + 1 is significantly different from zero. The well-known selection 
criteria (e.g. Bayes Information Criteria, Akaike Information Criteria , adjusted R2

 ) can be also applied. 
The next step is to check whether seasonally varying autoregressive parameters are needed. The test 

is again a traditional Wald type F test. Under the nullhypothesis we make the restriction on the equality of 
the parameters from the same order, so an autoregressive (AR) model of order p is appropriate. Under the 
alternative hypothesis we allow the parameters from the same order to differ from season to season, so a 
periodic autoregressive (PAR) model fits better.  

Behind the autoregressive variables, other variables can also be included in the model e. g. intercept 
and trend or seasonal dummy variables. Intercept and trend parameters can be constant or periodically 
varying. Finally, any periodic autoregressive model can be enlarged by exogenous variables. In the case of 
energy volume or price series these variables can be e.g. temperature, outlier dummies or dummies 
indicating holidays. Testing for significance can be performed in the tradional way (t tests and F tests). 

 
A2.3. TESTING FOR UNIT ROOT 

 
As we mentioned in the previous sections, it is often the case that stochastic trend and seasonality do not 
evolve independently and neither of the unit roots (non-seasonal or seasonal) exits on its own. In this case 
applying the seasonal differencing operator is not an appropriate solution. Periodic integration means that 
the autoregressive parameters can differ from unity either downward or upward, but their effect on the 
time series is equal to unity on the yearly average. The appropriate differencing operator also varies from 
season to season that is called the periodically varing filter or periodic differencing filter. That is why the 
periodic autoregressive model is appropriate. Testing for unit root means a two-step method in this case. 

 
A2.3.1. TESTING FOR THE PRESENCE OF UNIT ROOT 

 
Following the relevant references (e.g. Boswijk – Franses 1996) we first introduce testing for unit root in a 
model of order 1. The periodic autoregressive model of order 1 is as follows: 
 

𝑦𝑡 = 𝛷1,𝑠𝑦𝑡−1 + 𝜀𝑡,         (A9) 
 

where εt white noise and s = 1, 2, 3, 4. The corresponding vector of quarters representation is as follows: 
 

𝛷0𝑌𝑇,𝑠 = 𝛷1𝑌𝑇−1,𝑠 + 𝛦𝑇,        (A10)  
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where the matrices are known from (A7). 
The vector process 𝑌𝑇,𝑠 is stationary, if the roots of the characteristic equation (see (A11)) are 

outside the unit circle, see as follows: 
 
|𝛷0 − 𝛷1𝑧| = 0.         (A11) 
 
Computing the determinant above, the result is as follows: 
 

 �1 −𝛷1,1𝛷1,2𝛷1,3𝛷1,4𝑧� = 0.        (A12) 
 
We can see that the equation can have maximum 1 unit root, so checking whether the unit root 

exists means testing the following null hypothesis: 
 

H0:     𝛷1,1𝛷1,2𝛷1,3𝛷1,4 = ∏ 𝛷1,𝑠
4
𝑠=1 = 1, 

 
against the alternative hypothesis: 

H1:     𝛷1,1𝛷1,2𝛷1,3𝛷1,4 = ∏ 𝛷1,𝑠
4
𝑠=1 < 1.     (A13) 

 
To put it in other words, not rejecting the null hypothesis (when the root is on the unit circle) 

means that the time series is periodically integrated, rejecting the null hypothesis (when the root is outside 
the unit circle) means that the time series is periodically stationary. We often use the expression 
‘stationary’ in brief, but note that the correct expression is ‘periodically stationary’, so stationary does not 
strictly hold as the autocovariances are time (season) dependent. 

The equation to estimate is as follows: 
 
𝑦𝑡 = ∑ 𝛷1,𝑠𝐷𝑠𝑦𝑡−1 + 𝜀𝑡4

𝑠=1 ,        (A14) 
 

and imposing the restriction under the nullhypothesis (A13), the restricted model is as follows: 
 
𝑦𝑡 = 𝛷1,1𝐷1𝑦𝑡−1 +𝛷1,2𝐷2𝑦𝑡−1 + 𝛷1,3𝐷3𝑦𝑡−1 + (𝛷1,1𝛷1,2𝛷1,3)−1𝐷4𝑦𝑡−1 + 𝜀𝑡,   (A15) 
 
which we estimate using non-linear least squares. 

As we make a nonlinear restriction on the Φ1,s parameters of the model, the (A13) hypotheses can 
be checked with the use of an LR (Likelihood Ratio) test. In the case, when the residual sum of squares 
does not reduce significantly as a result of the restriction, the null hypothesis can not be rejected (see 
Boswijk – Franses 1996; Franses 1996). 

Another test which can be applied to test for unit root is introduced by Boswijk and Franses (1996) 
(the so-called 𝑠𝑖𝑔𝑛(∏ 𝛼𝑠 − 112

𝑠=1 ) · 𝐿𝑅1 2�  test calculated from the LR test), who proved that the 
distribution of the test under the nullhypothesis of (A13) follows standard Dickey-Fuller. Enlarging the 
regression with intercept and trend, the corresponding Dickey-Fuller distribution can be applied (see 
Fuller 1976; Boswijk – Franses 1996).14  

In the case of a periodic autoregressive model of order 2, the model is as follows: 
 

𝑦𝑡 = 𝛷1,𝑠𝑦𝑡−1+𝛷2,𝑠𝑦𝑡−2 + 𝜀𝑡        (A16) 
 
where εt is white noise, 𝑠 =  1, 2, 3, 4 as before. 

We can rewrite the (A16) model, that is: 
 

 𝑦𝑡 − 𝛼𝑠𝑦𝑡−1 = 𝛽𝑠(𝑦𝑡−1 − 𝛼𝑠𝑦𝑡−2) + 𝜀𝑡       (A17) 
 
and the characteristic equation can be written as follows (see Boswijk – Franses 1996): 
 

|𝛷0 − 𝛷1𝑧| = (1 − 𝛼1𝛼2𝛼3𝛼4𝑧)(1− 𝛽1𝛽2𝛽3𝛽4𝑧)    (A18) 
 

The corresponding hypotheses are: 
 

H0:     𝛼1𝛼2𝛼3𝛼4 = ∏ 𝛼𝑠4
𝑠=1 = 1 

14 We sould make a short notate that the distribution of the above mentioned LR test is not standard 2χ  distribution 
(see e.g. Boswijk–Franses (1996) and Osterwald-Lenum (1992) for details).  
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and 
H1:     𝛼1𝛼2𝛼3𝛼4 = ∏ 𝛼𝑠4

𝑠=1 < 1      (A19) 
 

This means that under the null hypothesis we check whether the unit root exists, which corresponds 
with checking whether 𝛼1𝛼2𝛼3𝛼4 = ∏ 𝛼𝑠4

𝑠=1 = 1. 
The model can be estimated with nonlinear least squares. Just a short note about βs parameters. 

When we have a periodic autoregressive model of order 1, the βs parameters are all equal to zero. The 
above introduced (A17) model can be generalized for higher orders, but emprical results show that models 
with higher order than 2 are only sometimes needed.15 

 
A2.3.2. TESTING FOR THE TYPE OF UNIT ROOT 

 
When the null hypothesis of unit root cannot be rejected, we have to check for the type of the unit root. 
The restriction of 𝛼1𝛼2𝛼3𝛼4 = ∏ 𝛼𝑠4

𝑠=1 = 1 can be fulfilled in two special cases, when the parameters are 
equal to +1 or –1. According to this, the following linear restrictions have to be checked with Wald type F 
tests: 
 

H0:     𝛼𝑠 = +1          (A20) 
 

where 𝑠 = 1, 2, 3 (it entails either αs= +1), and 
 

H0:     𝛼𝑠 = −1          (A21) 
 

where 𝑠 = 1, 2, 3 (it entails either αs= – 1).      
 The logic of applying Wald type F test is the same as before, as we impose a linear restriction on 
the (A17) models that the parameters are equal to +1 or –1. The first restriction corresponds to a process 
containing long-term unit root, the second one corresponds to a process containing seasonal unit root. 

If the time series can be modelled as a periodically integrated autoregressive model, the αs 
parameters are the seasonally varing parameters that differ from season to season. However on yearly 
average their cumulative effect does not significantly differ from unity. These αs parameters are slightly 
similar to seasonal indeces which are commonly used in modelling seasonality when trend and seasonality 
do not evolve independently, therefore a multiplicative model is required. Note that this similarity is 
misleading and not valid, because the αs parameters multiply the previous quarter’s value instead of the 
trend value in the same quarter, in contradiction with the traditional definition of the seasonal indeces. 

 
A2.4. INTERPRETATION OF THE RESULTS 

 
A2.4.1. TIME VARING ACCUMULATION OF SHOCKS 

 
We introduce how the time varing accumulation of shocks can be analyzed by applying the vector of 
quarters representation. The results can be enlarged up to higher orders, but we introduce the results 
assuming a maximum order of lag 4. In this case our vector of quarters representation is the following: 
 
 𝑌𝑇,𝑠 = 𝛷1𝑌𝑇−1,𝑠 + 𝛦𝑇         (A22) 

 
The left multiplication of both sides with matrix 𝛷0−1 results in:  
 

𝑌𝑇,𝑠 = 𝛷0−1𝛷1𝑌𝑇−1,𝑠 + 𝛷0−1𝛦𝑇        (A23) 
 
where it is worth to define the following matrix: 
 
 𝛤 = 𝛷0−1𝛷1          (A24) 
 
The Γ matrix represents the effects of accumulated shocks of the seasons from the prevoius year to the 
seasons of the actual year. Indirectly we have shown that the 𝛷0−1 matrix represents the effects of 
accumulated shocks of the seasons to the seasons of the same year. When an eigenvalue of the Γ matrix 
exists, we can say, that the time series contains unit root. Going forward, we can define the following 
matrix which describes the time varing accumulation of shocks: 
 

15 The R package we used for computing the results only allows for estimating models up to order 2. 
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𝛤𝛷0−1 = 𝛷0−1𝛷1𝛷0−1.         (A25) 
 
In the following step we introduce the impact matrix 𝛷0−1𝛷1𝛷0−1 representing the time varing 
accumulation of shocks in the case when only one lag is needed (as in the case of A7). From the point of 
view of this paper the presence of unit root is a highlighted issue, that is why we introduce the impact 
matrix with imposing the restriction 𝛷1,1𝛷2,1𝛷3,1𝛷4,1 = 1. After some computation the impact matrix is 
as follows: 
 

1,1 3,1 4,1 1,1 4,1 1,1

2,1 1,1 2,1 4,1 1,1 2,11 1
0 1 0

2,1 3,1 3,1 1,1 2,1 3,1

2,1 3,1 4,1 3,1 4,1 4,1

1
1

1
1

− −

φ φ φ φ φ φ 
 φ φ φ φ φ φ Φ Φ Φ =
 φ φ φ φ φ φ
 φ φ φ φ φ φ  .   (A26) 

 
As the diagonal elements are all equal to unity, we can conclude that the effect of any quarter of the 
previous year is unity to the same quarter of the current year. 

Let us take the last column of the impact matrix. The coefficients show how a shock from the fourth 
quarter of the previous year accumulates to the first, second, third and fourth quarters of the current year: 
the coefficients are the multplications of the corresponding autoregressive parameters, and – of course – 
the last element is equal to unity. The other columns can be analyzed likewise. Take for example the third 
column of the impact matrix. The coefficients show how a shock from the third quarter of the previous 
year accumulates to the the first and second quarters of the actual year and the fourth quarter of the 
previous year (the order in time is of course different). 

We can similarly analyze how the shocks coming from different quarters of the previous and actual 
years accumulate to the same quarter. The fourth row of the impact matrix represents how the shocks from 
the first, second and third quarters of the current year and the fourth quarter of the previous year 
accumulates to the fourth quarter of the current year. The other rows of the impact matrix can be analyzed 
likewise.  

So the A26 matrix is clearly representing the time varing accumulation of shocks. Consequently we 
can discover how the stochastic trend and seasonality are related. 

 
A2.4.2. APPLYING THE PERIODIC DIFFERENCING FILTER 

 
Turning back to the beginning, we can state that in the case when the periodically integrated 
autoregressive model cannot be rejected, the periodically varing difference filter has to be applyed. The 

formal notation is (1 − 𝛼𝑠𝐿)  where the αs parameters are the estimation results introduced before. 
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