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Abstract 

This article studies the determinants of pharmaceutical innovation diffusion among 

specialists. To this end, it investigates the influences of six categories of factors—social 

embeddedness, socio-demography, scientific orientation, prescribing patterns, practice 

characteristics, and patient panel composition—on the use of new drugs for the treatment of 

type 2 diabetes mellitus in Hungary. Here, in line with international trends, 11 brands were 

introduced between April 2008 and April 2010, outperforming all other therapeutic classes. 

The Cox proportional hazards model identifies three determinants—social contagion (in the 

social embeddedness category) and prescribing portfolio and insulin prescribing ratio (in the 

prescribing pattern category). First, social contagion has a positive effect among 

geographically close colleagues—the higher the adoption ratio, the higher the likelihood of 

early adoption—but no influence among former classmates and scientific collaborators. 

Second, the wider the prescribing portfolio, the earlier the new drug uptake. Third, the lower 

the insulin prescribing ratio, the earlier the new drug uptake—physicians’ therapeutic 

convictions and patients’ socioeconomic statuses act as underlying influencers. However, this 

finding does not extend to opinion-leading physicians such as scientific leaders and hospital 

department and outpatient center managers. This article concludes by arguing that healthcare 

policy strategists and pharmaceutical companies may rely exclusively on practice location and 

prescription data to perfect interventions and optimize budgets. 

JEL code: C14, I19, O33 

Keywords: Cox proportional hazards model, diffusion, pharmaceutical innovations, 

prescribing characteristics, social contagion 
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1. Introduction 

 

Innovation and the successful diffusion of new drugs are critical for the financial performance 

of pharmaceutical companies—as well as the health of patients. At macro level, governments 

are also major influencers, both through regulatory and approval agencies and through 

budgetary allocations. The diffusion of innovation is thus determined by the strategies of 

pharmaceutical companies, government policies, as well as the behavior of medical 

professionals. This article concentrates on the last, through investigating the determinants of 

prescribing new drugs by specialists (SPs). 

 

Understanding the mechanisms leading to prescribers’ early adoption of new drugs is 

important for several reasons (Lublóy 2014). First, it accelerates diffusion. Although 

companies are increasingly innovative and efficient in producing new drugs, the 

implementation of pharmaceutical innovations is often delayed (Berwick 2003). Where new 

drugs expand therapeutics in areas of yet unmet clinical need, accelerated adoption benefits 

both medicine and society, through fast and homogeneous availability. Second, it promotes 

cost-efficiency. Healthcare systems worldwide operate with limited financial resources. When 

the same pharmacological therapy is available as different brands at different prices, 

prescribers need to select the new, more expensive brand on medical grounds rather than 

socioeconomic considerations—such as wealthy or demanding patients, for example (Ohlsson 

et al. 2009). Third, it forecasts utilization. Accurate prediction is important not only for 

pharmaceutical companies, but also for healthcare professionals and policy makers in charge 

of healthcare budget planning. Fourth, it develops targeted detailing and continuing medical 

education. Distinguishing between doctors who prescribe new drugs early and those who 

prescribe them late or never enables targeted pharmaceutical company intervention, through 

relevant, tailored information; economies of both time and money; and appropriate use of new 

drugs, through prescription of the most efficient/least expensive alternatives. 

 

Doctors have to strike a balance between using new drugs, potentially exposing patients to 

side effects, and delaying their use, depriving patients of possible benefits. The ensuing 

diffusion process is complex—although doctors consider new drugs on individual merits, 

some may be more predisposed to adopt than others. Several factors are significantly 

positively associated with early adoption of new drugs (Lublóy 2014): (1) physicians’ interest 

in particular therapeutic areas, participation in clinical trials, and prescribing volume, either in 

total or within the therapeutic class of the new drug (for example, Coleman et al. 1966; Glass 

& Rosenthal 2004; Lin et al. 2011; Liu & Gupta 2012); (2) pharmaceutical companies’ 

marketing efforts (for example, Kremer et al. 2008; Manchanda et al. 2008, Iyengar et al. 

2011; Liu & Gupta 2012); (3) social interactions among colleagues, with pharmaceutical sales 

representatives, and with patients (for example, Coleman et al. 1966; Manchanda et al. 2008; 

Iyengar et al. 2011; Lin et al. 2011; Liu & Gupta 2012)—colleagues are indispensable to 

gaining knowledge and reduce uncertainty about the consequences of new drug adoption 

(Peay & Peay 1994; McGettigan et al. 2001; Prosser & Walley 2006); and (4) physicians with 

younger patients, patients with higher socioeconomic statuses, and/or patients with poorer 

health statuses (for example, Mark et al. 2002; Greving et al. 2006; Ohlsson et al. 2009; Liu et 

al. 2011). Some (5) socio-demographic factors and (6) practice-related factors also play 

important—albeit lesser—roles in the diffusion process. 

 

This article acknowledges the variety of variables likely to influence new drug uptake—and 

the likely prominent role of social interactions—and sets to answer two research questions. 
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First, do social interactions with former classmates, scientific collaborators, and 

geographically close colleagues influence the likelihood of adoption equally? Second, which 

prescribing characteristics predict new drug uptake consistently across various drugs from the 

same therapeutic class? Predicting physicians’ prescribing behaviour is a complex, 

multifactoral exercise. However, patients, physicians, policymakers, and pharmaceutical 

companies would all benefit from understanding the influencing factors and their interactions. 

The large-scale model suggested here would particularly benefit healthcare policy 

strategists—with perfecting their interventions—and pharmaceutical companies—with 

optimizing their marketing budgets. 

 

This article contributes to the literature in two ways. First, by investigating the presence of 

social contagion (also known as interpersonal network effect, word-of-mouth effect, or peer 

influence), where individual adoption behaviors regarding a new drug are affected by 

exposure to others’ knowledge, attitudes, or behaviors in relation to that drug. In particular, 

this article assesses the impacts of three types of social interaction—with former classmates, 

with scientific collaborators, and with geographically close colleagues. To the authors’ 

knowledge, the influences of the first two social networks on new drug diffusion have never 

been analyzed in the pharmaceutical literature before, whereas a contagion measure 

aggregating the adoption behaviors of geographically close colleagues for each physician was 

used in only two recent studies (Manchanda et al. 2008; Liu & Gupta 2012). However, 

anecdotal evidence shows that physicians regularly exchange ideas with former classmates 

(Bajaj 2012; Wong 2014), whereas the influential role of scientific collaborators was proved 

in many other domains (Glänzel & Schubert 2005; Liu et al. 2005; Acedo et al. 2006; Huesch 

2011). This article is therefore a pioneering attempt at documenting influences from such 

social interactions on new drug diffusion. 

 

Second, by investigating a wide range of potential additional determinants. To the authors’ 

knowledge, potential additional determinants of new drug uptake have not survived prior 

rigorous analysis: no other study has ever analyzed such a variety of variables, or indeed 

included so many new drugs from the same therapeutic class (for example, Coleman et al. 

1966; Greving et al. 2006; Iyengar et al. 2011; Lin et al. 2011; Bourke & Roper 2012). This 

article considers the influences of five ‘classical’ categories of factors—physicians’ socio-

demographies, scientific orientations, and prescribing patterns, as well as practice 

characteristics and patient-related factors. The total of 22 factors serves to identify 

determinants—variables consistently predicting new drug diffusion—for the 11 drugs recently 

introduced in one therapeutic class. Pharmaceutical companies and healthcare policy 

strategists alike could accelerate new drug diffusion by focusing on the most influential 

categories of factors—identified here through the rigorous evidence of prescription data rather 

than the survey and mail questionnaire approach of most prior research (Chauhan & Mason 

2008; Mason 2008). Exempt from recall and social desirability biases, prescription data 

reflect prescribing realities—including the personal and behavioral traits of prescribing 

physicians as well as the influences associated with marketing activities, evidence bases, peer 

pressures, and regulatory environments. 

 

Following this introduction, section 2 presents the key characteristics of the study drugs and 

the data sources used, discusses the statistical model, and specifies the independent variables. 

Section 3 presents the results, which are then discussed in section 4, alongside policy 

implications. Section 5 analyzes several possible research limitations. Finally, section 6 

summarizes the research findings. 
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2. Methods 

 

2.1. Study drugs 

 

This article focuses on new anti-diabetic drugs (A10Bs
2
) for the treatment of type 2 diabetes 

mellitus (T2DM) in Hungary for four reasons. First, pharmaceutical companies are keen to 

develop such drugs, due to increasingly high potential market—347 million people worldwide 

suffer from diabetes (Danaei et al. 2011), projected to become the seventh cause of death in 

2030 (WHO 2011). In Hungary alone, 11 brands were introduced in a subsidized form 

between April 2008 and April 2010, outperforming all other therapeutic classes—the 

Hungarian National Health Insurance Fund (NHIF) recognized both the urgent therapeutic 

need and the new drugs’ therapeutic efficacy (for main data, see Table 1; for supplementary 

data, see online Appendix). When added to metformin, the default treatment for T2DM, all 11 

A10Bs reduce the HbAc1 level—with close to equal efficiencies, and despite distinct modes 

of action. 

 

Table 1: New anti-diabetic drugs introduced in Hungary between April 2008 and April 2010: 

main data 

 

Brand 

name 

ATC
a
 

code  

Active 

ingredient 

FDA
b
 

therapeutic 

novelty 

Distribution 

rights 

Subsidized 

introduction 

date 

Cumulative 

DOT
c
 (as of 

December 

2011) 

Market share
d
 (as 

of December 

2011, in 

percentages) 

Actos A10BG03 pioglitazon 

new 

molecular 

entity 

Takeda 

Global 

Research 

April 2008 43,848 3.00 

Byetta A10BX04 exenatide 

new 

molecular 

entity 

Eli Lilly 

Nederland 
April 2010 23,360 1.60 

Competact
e
 A10BD05 

metformin; 

pioglitazon 

new 

combination 

Takeda 

Global 

Research 

June 2009 171,500 11.75 

Eucreas A10BD08 
metformin; 

vildagliptin 

without FDA 

approval 

Novartis 

Europharm 

November 

2008 
396,540 27.16 

Galvus A10BH02 vildagliptin 
without FDA 

approval 

Novartis 

Europharm 

November 

2008 
54,278 3.72 

Janumet A10BD07 
metformin; 

sitagliptin 

new 

combination 

Merck Sharp 

& Dohme 

February 

2009 
288,764 19.78 

Januvia A10BH01 sitagliptin 

new 

molecular 

entity 

Merck Sharp 

& Dohme 
August 2008 104,020 7.12 

Onglyza A10BH03 saxagliptin 

new 

molecular 

entity 

Bristol-

Myers 

Squibb 

April 2010 74,850 5.13 

Velmetia A10BD07 
metformin; 

sitagliptin 

new 

combination 

Merck Sharp 

& Dohme 
April 2009 200,004 13.70 

Victoza A10BX07 liraglutide 

new 

molecular 

entity 

Novo 

Nordisk 
April 2010 52,080 3.57 

                                                 

2
 The World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC) classification for blood 

glucose (HbAc1) lowering drugs other than insulin, based on the organs/systems on which drugs act and/or the 

therapeutic and chemical characteristics of the drugs. 
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Xelevia A10BH01 sitagliptin 

new 

molecular 

entity 

Merck Sharp 

& Dohme 
April 2009 50,834 3.48 

a
 Anatomical Therapeutic Chemical. 

b
 Food and Drug Administration. 

c
 Days of therapy. 

d
 Relative to the other new A10Bs. 

e
 Actoplus Met, in the US. 

 

Second, all 11 study drugs are first-in-class, with new ATC codes and—with two 

exceptions—Food and Drug Administration approval, either as new molecular entities (the 

highest of ten levels of drug novelty) or as new combinations. 

 

Third, prescribing A10Bs in a subsidized form involves considerable medical complexity and 

a well-defined group of SPs, mostly internists subspecialized in endocrinology—a fairly 

‘closed’ community, suitable for the purpose of this article. 

 

Fourth, the care of T2DM patients is shared between general practitioners (GPs) and SPs, 

allowing for the examination of routine—as opposed to just first-time—adoption of new 

A10Bs. Adoption becomes routine when SPs first ask referring GPs to prescribe new A10Bs, 

on grounds of efficacy and efficiency. Intuitively, any such drugs are already part of the SPs’ 

prescribing portfolios, following first-time adoption and follow-up tests. 
 

2.2. Data sources 

 

For covariates, this article uses two main and five additional databases (see the third columns 

in Tables 2 and 3). 

 

One of the two main databases is managed by DoktorInfo Ltd and covers prescription 

information between April 2008 and December 2011. All GPs in Hungary are required by law 

to collect data for NHIF. Of these, 899 (22 per cent) also feed real-time prescription data into 

the DoktorInfo database voluntarily—they are representative of the entire Hungarian GP 

population in both age and location (defined by region and population size). This involves no 

additional work for GPs, who are compensated for providing information such as GP 

identification number; prescription date; prescribed drug characteristics (brand name, ATC 

code, and dosage); prescribed drug subsidy; patient characteristics (age and gender); and, 

since January 2009, for patients whose care is shared, identification number of the therapy-

initiating SP. The latter enables monitoring the adoption behaviors and prescribing patterns of 

SPs who share care of T2DM patients. 

 

The other is managed by the Office of Health Authorization and Administrative Procedures 

(OHAAP) and covers socio-demographic and practice-related variables as well as physician 

characteristics (see Table 3), which contribute to generating social embeddedness and 

scientific orientation metrics. 

 

The five additional databases are GeoX, an integrated statistical database providing 

consolidated and structured spatial datasets for every NUTS
3
 level in Hungary; ComFit, a 

bibliographic database similar to PubMed and containing Hungarian medical articles; the 

                                                 

3
 Nomenclature of Units for Territorial Statistics. 
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Hungarian Diabetes Association (HDA), with information on the scientific activities of 

qualified diabetologists (HDA board memberships, HDA award receiverships, editorships, 

and presentations at the HDA biennial congresses); the Hungarian Central Statistical Office 

(HCSO), with information on settlement sizes; and Google Maps, with information which 

allows the calculation of distances among SPs. 

 

2.3. Statistical model 

 

Similarly to many recent diffusion studies (for example, Korda et al. 2011, Lin et al. 2011), 

this article uses the Cox proportional hazards model (Cox 1972) to examine factors 

influencing the likelihoods of routine adoptions of A10Bs by SPs. The Cox model is the most 

appropriate choice for the purpose because of the way it handles right-censored data. That is, 

cases where SPs had not routinely adopted the A10Bs by the end of 2011 (time t), and where 

the hazard ratio/likelihood of routine adoption at time t for each SP is 

h(t)=λ0exp(β1X1+β2X2+…+βkXk), 

with λ0 the baseline hazard function, exp(βi) the i
th

 hazard ratio, and Xi the i
th

 independent 

variable (which can be time invariant or time varying during observation). For multiple highly 

correlated covariates (with coefficients higher than 0.65), only one variable from the set of 

intercorrelated variables is used. 

 

The dependent variable is a dummy indicating each month whether the SP had routinely 

adopted the A10B. 

 

2.4. Independent variables 

 

This article considers social contagion and five categories of quantitatively measurable factors 

relevant to prescribing behavior. Tables 2 and 3 summarize the descriptive statistics for time-

dependent covariates and respectively time-independent covariates—the 318 SPs in the 

sample share at least 20 patients with any of the 899 GPs in the DoktorInfo database. Lublóy 

(2014) documented the characteristics of early adopters and differentiated between variables 

consistently predicting new drug uptake and variables producing inconsistent results, 

providing guidance for the variables considered here and their expected signs. 

 

Table 2: Contagion measures: definitions and descriptive statistics for 318 SPs 

 

Social network Link Data source 
Number of 

links 

Network density 

(in percentages) 

former classmates 
graduating from the same medical 

establishment in the same year 
OHAAP 330 0.65 

scientific 

collaborators 

coauthoring at least one article in 2009–13/co-

preparing at least one HDA congress 

presentation in 2006/2008 

ComFit; 

HDA 
151 0.30 

geographically close 

colleagues 

practicing within 35 kilometers/22 miles of at 

least two other SPs 

Google 

Maps; 

OHAAP 

4,856 9.63 

 

Contagion measures assess whether the adoption decisions of colleagues significantly 

influence SPs’ likelihoods of routine adoption—they are time-dependent covariates, the 

percentage of adopting colleagues changing over time. To ensure causal relationships between 

explanatory and time-dependent covariates, the latter were lagged by one month. 

Interactions—professional and social—appear to be a very important influencing factor, 

information relayed through direct, personal contacts proving particularly powerful. 
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Physicians’ adopting behaviors are affected by other physicians’ knowledge, attitudes, and 

behaviors, thus reducing safety and efficacy uncertainties. Interactions with opinion-leading 

physicians seem critical to fast, wide acceptance of medical innovations (Williamson 1975; 

Peay & Peay 1994; McGettigan et al. 2001; Prosser & Walley 2006; Huesch 2011). While 

other sources of information provide the nurturing groundwork of necessary knowledge, 

behavioral change requires the legitimizing power of personal advice from informed and 

respected colleagues through reliable, easy-to-digest assessments of new drugs. Van den Bulte 

& Lilien (2001) aside, studies found strong, convincing empirical evidence of social 

contagion in new drug adoption even after controlling for a wide variety of factors (Coleman 

et al. 1966; Manchanda et al. 2008; Iyengar et al. 2011; Lin et al. 2011; Liu & Gupta 2012)—

adding contagion measures to the model is inevitable and identifying proper social networks 

is crucial to constructing them. Four of the six studies asked SPs to list their collegial 

interactions (Coleman et al. 1966; Van den Bulte & Lilien 2001; Iyengar et al. 2011; Lin et al. 

2011)—survey-based contagion measures capture interpersonal effects directly, but are time 

consuming and costly and suffer from bias, low response rate, and endogenous group 

formation (Liu & Gupta 2012). Well-established in the broader literature, geographic 

proximity is an alternative approach to defining social networks in pharmaceutical contexts 

(Manchanda et al. 2008; Liu & Gupta 2012), capturing interpersonal effects indirectly, but 

objectively and easily. 

 

This article uses complementary data sources to construct three contagion measures which 

reflect distinct channels of interpersonal communication—with former classmates, with 

scientific collaborators, and with geographically close colleagues. Former classmates 

graduated from the same medical establishment in the same year (OHAAP), scientific 

collaborators either published an article (ComFit) or prepared a presentation (HDA) together, 

and geographically close colleagues had offices within a pre-specified radius (Google Maps). 

Manchanda et al. (2008) argued that a radius of 20 miles is long enough to capture most of the 

interpersonal effects and short enough to allow social network differentiations. This article 

defines SPs’ spatial social networks through geographic circles with radiuses of 35 

kilometers/22 miles centered on SPs’ practice locations, radius sensitivity double-checked by 

additional radiuses at ±20 per cent. 

 

Table 3: Time-independent covariates: definitions and descriptive statistics for 318 SPs, with 

proportional and per patient values calculated over the two-year period 2010–11 

 

Variable Description Data source Mean Min. Max. 
St. 

dev. 

SOCIO-DEMOGRAPHIC CHARACTERISTICS 

gender 

gender of the SP (in percentages) 

male 

OHAAP 

47.80 
n/a 

female 52.20 

age age of the SP (as of December 2013) 51.92 32.00 78.00 9.94 

training 

location 

location of university where the first medical degree was earned (in percentages) 

capital 

OHAAP 

34.28 

n/a 

southwest 19.81 

northeast 22.96 

southeast 16.04 

overseas 6.92 

SCIENTIFIC ORIENTATION 

number of 

specialties 
number of specialties earned by the SP OHAAP 1.78 1 4 0.78 

publication 

record 

number of publications by the SP (between January 2009 

and June 2013) 
ComFit 2.07 0 136 9.26 
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position 

position of the SP (in percentages) 

high ((deputy) head of hospital department or 

outpatient centre) 
OHAAP 

22.30 

n/a 
medium (chief physician) 33.30 

low (associate professor or physician) 44.30 

scientific 

commitment 

dummy variable for HDA board membership, HDA award 

receivership, or chief editorship 
HDA 0.04 0 1 n/a 

PRESCRIBING CHARACTERISTICS 

prescribing 

intensity 
mean number of prescription initiations per patient 

DoktorInfo 

12.71 4.63 30.93 3.72 

portfolio width number of brands prescribed for patients in shared care 16.66 4 25 4.13 

insulin ratio 
prescriptions initiating treatment with insulin (in 

percentages) 
79.10 0.00 100.00 20.84 

old A10B ratio 
prescriptions initiating treatment with previously 

introduced A10Bs (in percentages) 
2.99 0.00 33.33 4.66 

PATIENT CHARACTERISTICS 

age age of patients on the SP’s patient panel 
DoktorInfo 

64.20 44.00 72.87 2.84 

gender male patients on the SP’s patient panel (in percentages) 47.07 7.02 70.37 7.39 

income 

mean annual income of patients on the SP’s patient panel, 

proxied by either the mean street-level income (for large 

settlements, over 20 thousand inhabitants) or the zip code-

level income (for small settlements, under 20 thousand 

inhabitants) (in EUR) 

GeoX 3,103 1,267 5,040 597 

health status 
patients with comorbidities on the SP’s patient panel (in 

percentages) 
DoktorInfo 45.25 0.00 100.00 21.94 

PRACTICE CHARACTERISTICS 

number of 

patients 

number of the SP’s T2DM patients whose care is shared 

with GPs 

DoktorInfo 

123.48 14 784 114.71 

number of 

referring GPs 
number of GPs with whom the SP share cares patients 21.56 1 84 15.95 

number of 

consultations 

mean number of consultations per patient resulting in 

confirmation or change of prescription by the SP 
1.68 1.00 2.85 0.37 

proportion of 

loyal patients 
patients consulting the same SP (in percentages) 70.77 17.54 100.00 19.76 

location 

size of city where the SP works, proxied by number of inhabitants (in percentages) 

capital (over 1 million) 

HCSO, 

OHAAP 

21.7 

n/a 
large city (100 thousands–1 million) 28.6 

medium-sized city (40–100 thousands) 14.8 

small city (under 40 thousands) 34.9 

type 

institution where the SP’s practice is embedded (in percentages) 

clinic 

OHAAP 

10.7 

n/a 
university/teaching hospital 11.6 

hospital 60.7 

outpatient centre and others 17.0 

number of 

workplaces 
number of the SP’s current affiliations 1.46 0 5 0.69 

 

Previous empirical research suggested that SPs’ socio-demographic characteristics—gender, 

age, and training location—are either significantly associated with new drug uptake or play a 

controversial role in the adoption process, both cases being worth analyzing (Lublóy 2014). 

Gender played an influential role in the early adoption of new drugs in seven of 15 studies, 

male prescribers being more likely to adopt new drugs than female prescribers. Age was 

associated with new drug uptake in nine of 14 studies—in seven, early prescribers were 

younger than the majority. Four of five studies found training location influential. 

 

SPs’ scientific orientation—measured by number of specialties, publication record, position, 

and scientific commitment—is a fairly under-researched area. Previously, only position was 



 9 

included in only one of 35 studies deemed eligible for review (Lublóy 2014)—hospital 

doctors in managerial or honorary positions were found to adopt new drugs later than others, 

due to limited involvement in actual medical practice (Van den Bulte & Lilien 2001). 

 

Empirical evidence showed that prescribing characteristics are crucial in new drug uptake 

(Lublóy 2014)—this article includes prescribing intensity, portfolio width, and the ratios of 

prescriptions for insulin and old A10Bs. Due to high correlation between number of patients 

and prescribing volume (0.95), prescribing intensity is captured by the ratio of prescriptions 

per patient. Increases in portfolio widths—that is, in the number of brands prescribed—may 

decrease times to adoption, its very high explanatory power demonstrated by Bourke & Roper 

(2012). Ten of 11 studies found that the higher the prescribing volume in the therapeutic class 

of a new drug, the higher the likelihood of early adoption of that new drug, due to enhanced 

adoption risk and likelihood of patients matching the recommended patient profile (Lublóy 

2014). Differences in ratios of prescriptions for insulin and old A10Bs may be due to SPs’ 

individual attitudes towards available therapies, a matter of continuous debate in the medical 

literature (Krentz & Bailey 2005; Scheen 2005; Fonseca & Kulkarni 2008). 

 

Prior research suggested that four patient characteristics may exert significant influence on 

new drug uptake—age, gender, socioeconomic status, and health status (Lublóy 2014). Five 

of nine studies reported that physicians are less likely to prescribe new drugs to elderly 

patients, more likely to experience side effects. While gender exerts little influence, the 

socioeconomic and health statuses are critical in new drug uptake. Three of four studies found 

that high-income patients receive new drugs earlier than others, not least because of their 

ability to pay for out-of-pocket treatments. Similarly, patients’ health statuses—self-reported 

health, poor response to existing therapies, previous use of certain medications, and presence 

of comorbidities—played an influential role in new drug uptake in three of four studies. Here, 

socioeconomic status is measured through income and health status through the presence of 

comorbidities. 

 

Of the seven practice characteristics, size deserves obvious investigation—intuitively, the 

larger the size, the higher the probability of patients with T2DM. Here, size is measured by 

number of patients and number of referring GPs, as a proxy for the size of the catch area. The 

therapeutic activities—proxied by number of consultations per patient—were associated 

positively with early adoption of new drugs in all the eligible studies (Lublóy 2014). High 

volumes of diagnostic and therapeutic activities may be indicative of patient health severity, 

and of the need for early adoption of new drugs. Proportion of loyal patients has never been 

assessed in the literature before, although SPs may be more inclined to prescribe new drugs to 

patients whose medical histories they already know. Prior research suggested that location 

and type may also play a role in new drug diffusion (Lublóy 2014). With fewer opportunities 

for professional interactions and less frequent visits by pharmaceutical sales representatives, 

physicians in small cities might adopt new drugs later than colleagues in large cities—a view 

supported by three of the seven eligible studies, at least partly (Lublóy 2014). Two previous 

studies assessed type with contradictory results, worth clarifying (Lublóy 2014)—one study 

found no significant association between institutional accreditation and new drug uptake 

(Iyengar et al. 2011), whereas the other found evidence of association (Liu et al. 2011). Two 

studies looked into number of workplaces with ambiguous conclusions, also worth 

investigating—Garcia Lirola et al. (2000) found that doctors with more than one workplace 

adopted new drugs earlier than others, whereas Lin et al. (2011) found the number of 

workplaces irrelevant. 
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3. Results 

 

The 318 physicians analyzed here accounted for roughly 80 per cent of the SPs who treated 

T2DM on a daily basis (see Tables 2 and 3 for basic statistics). They were 51.92 years old, on 

average, and 152 (47.8 per cent) were male—109 (34.28 per cent) had graduated from 

Semmelweis University in Budapest, the oldest medical school in Hungary. On average, they 

had furthered their medical education in 1.78 specialties and had published 2.07 articles. 

Nearly half (157, 49.37 per cent) had published at least one article—43 (13.52 per cent) had 

published more than four. Approximately one fourth (71, 22.3 per cent) held a high-status 

position. Fourteen SPs displayed intense scientific commitment to diabetes, and could be 

considered opinion leaders in the area. 

 

The combined 33,448 patients received 499,131 specialist medication prescriptions from their 

GPs. A typical SP suggested therapies for 123.48 patients and asked GPs to write 1,570 

prescriptions—12.71 prescriptions per patient. (S)he prescribed almost 17 brands within the 

therapeutic class—the mean ratio of prescriptions was 79.1 per cent for insulin and 2.99 per 

cent for old A10Bs. 

 

The mean age of patients was 64.2 years, and their average annual income was EUR 3,103. 

On average, 45.25 per cent of the patients on the SPs’ panels had at least one comorbidity. 

 

A typical SP received referrals from 21.56 GPs and saw patients 1.68 times. Over two thirds 

of patients (23,671, 70.77 per cent) were loyal to their SPs and did not consult other SPs in the 

sample. Approximately one fourth of SPs (69, 21.7 per cent) practiced in Budapest, whereas 

one third (111, 34.9 per cent) in small cities. The majority (193, 60.7 per cent) worked in a 

non-university/teaching hospital. On average, SPs were affiliated to 1.46 institutions. 

 

The regression results for the 11 study drugs (see Table 4) represent exp(β)s—hazard ratios 

between two SPs when the values of the respective variables differ by one unit, all other 

covariates being held constant. Variables with exp(β)s larger than one are associated with 

increased hazard—the higher the variable, the higher the hazard of the event. 

 

The social influence from colleagues within a 35-kilometer radius is an important predictor of 

new drug uptake—the adoption ratio is positively associated with the likelihood of initial 

adoption for seven brands (Actos, Byetta, Competact, Eucreas, Galvus, Janumet, and 

Januvia). Counterintuitively, former classmates significantly delay the diffusion process for 

one brand (Byetta) and scientific collaborators for four brands (Galvus, Januvia, Onglyza, and 

Xelevia). In rest, exchanges within social networks do not influence significantly the 

likelihood of initial adoption. 

 

The number of brands individual SPs prescribe is a very influential predictor of new drug 

uptake—the wider the prescribing portfolios, the earlier SPs initiate new therapies, for all 11 

brands, whereas the ratio of prescriptions for insulin is significantly negatively associated for 

nine brands (Byetta, Competact, Eucreas, Galvus, Janumet, Januvia, Onglyza, Velmetia, and 

Xelevia). 

 

At 95 per cent-confidence level, the majority of variables are significantly associated with the 

likelihood of initial adoption for only one or two brands—their number ranges from two 

(Victoza) to seven (Velmetia and Xelevia). In nine cases, the signs are as hypothesized based 

on previous empirical evidence (Lublóy 2014)—new drugs are adopted earlier by young SPs 
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(Victoza) and SPs with outstanding publication records (Velmetia), strong scientific 

commitments (Xelevia), large patient panels (Eucreas), high prescribing intensities (Janumet), 

high consultation intensities (Actos and Eucreas), younger patients (Byetta), more female 

patients (Velmetia), and high-income patients (Velemtia). In six other cases, the signs are 

counterintuitive, with higher likelihoods of initial adoption for female (Xelevia) and older SPs 

(Competact) and SPs with weak scientific commitments (Velmetia), less experience of old 

A10Bs (Galvus and Xelevia), older patients (Velmetia), and proportionally fewer loyal 

patients (Competact and Janumet). Seven variables have no explanatory power—training 

location, number of specialties, position, number of workplaces, number of referring GPs, 

practice location, and practice type. 
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Table 4: The Cox model regression results 

 
Category Variable Actos Byetta Competact Eucreas Galvus Janumet Januvia Onglyza Velmetia Victoza Xelevia 

contagion measures 

former classmate 1.008 0.841
*
 0.981 0.996 1.016

†
 0.984

†
 0.986

†
 0.980 1.012 0.988 1.006 

scientific collaborator 0.972
†
 0.001 0.984 1.006 0.954

*
 1.003 0.966

*
 0.804

**
 1.031 1.089

†
 0,880

**
 

geographic proximity (35 km) 1.082
***

 1.204
*
 1.048

*
 1.032

*
 1.052

**
 1.032

*
 1.044

**
 0.924 1.010 0.984 1.005 

geographic proximity (28 km) 1,070
***

 1,170
†
 1.028 1.036

**
 1.044

**
 1.036

*
 1,040

**
 0.960 1.015 0.999 0.987 

geographic proximity (42 km) 1.074
***

 1.202
†
 1.048

†
 1.033

*
 1.057

**
 1.039

*
 1.043

**
 0.898

†
 1.015 0.975 1.008 

SPs’ socio-demographic characteristics 
gender 1.139 0.889 1.034 0.911 0.879 0.769

†
 1.131 0.997 1.099 0.884 1.542

*
 

age 0.991 0.992 1.021
*
 1.001 0.997 1.000 1.006 0.979

†
 0.993 0.963

**
 0.978

†
 

training location 0.934 1.151 1.014 1.085 0.996 0.998 0.983 0.957 1.077 0.973 1.004 

SPs’ scientific orientation 

number of specialties 0.909 0.992 0.884 1.151
†
 0.961 1.168 1.034 1.046 0.979 0.977 1.164 

publication record 1.011 0.972 0.994 0.999 0.988 1.005 0.998 1.011 1.042
***

 1.009 0.994 

position 0.887 0.903 1.117 1.062 0.996 0.992 1.018 0.858 0,810
†
 0.994 0.749

†
 

scientific commitment 1.202 2.632 1.122 0.828 0.745 0.713 1.239 0.216
†
 0.342

*
 1.842 3,050

*
 

SPs’ prescribing characteristics 

prescribing intensity 0.951 1.114
†
 1.037 0.974 0.994 1,080

*
 1.015 1.010 0.992 1.033 1.014 

portfolio width 1.244
***

 1.392
***

 1.263
***

 1,120
***

 1.187
***

 1.207
***

 1.173
***

 1.228
***

 1.211
***

 1.342
***

 1.253
***

 

insulin ratio 1.005 0.956
***

 0.987
**

 0,980
***

 0.974
***

 0.973
***

 0.984
***

 0.971
***

 0.982
**

 1.013 0.962
***

 

old OAB ratio 1.035 0.933 0.999 0.996 0.945
*
 1.017 0.965 0.961 0.976 0.997 0.917

*
 

patient characteristics 

age 1.029 0.862
*
 0.978 0.991 1.016 0.988 0.984 0.993 1.072

*
 0.971 1.052 

gender 1.005 1.028 0.990 1.003 0.995 0.982
†
 0.984 1.026

†
 1.025

*
 1.001 1.008 

income 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1,000
*
 1.000 1.000 

health status 1.009
*
 0.990 1.003 1.002 1.005 1.000 1.007

*
 0.994 1.005 0.991 1.009 

practice characteristics 

number of patients 1.002
†
 1.001 0.999 1.003

***
 1.000 1.001 1.001 1.002

†
 1.000 1.000 0.999 

number of referring GPs 0.996 1.003 1.011 0.990 1.000 1.004 1.003 0.999 1.009 0.991 1.009 

consultations per patient 2.712
**

 0.739 1.722
†
 2.277

***
 1.235 0.786 1.530 1.251 1.059 1.231 1.499 

proportion of loyal patients 0.994 0.986 0.983
***

 1.001 1.000 0.988
**

 1.001 1.003 0.998 1.004 1.006 

practice location 0.843 0.722 1.119 0.943 1.004 0.996 0.945 1.037 1.037 0.949 1.070 

practice type 1.261
†
 0.958 0.985 0.898 0.858 1.138 0.975 1.008 1.157 0.862 0.985 

number of workplaces 1.116 0.713 1.025 0.988 1.094 1.020 1.104 0.898 1.146 0.907 1.126 

Omnibus test 157.894
***

 60.781
***

 152.306
***

 156.76
***

 87.699
***

 151.435
***

 118.584
***

 119.609
***

 148.677
***

 101.9
***

 106.528
***

 
†
 p<0.1 

* p<0.05 

** p<0.001 

*** p<0.0001 
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4. Discussion and policy implications 

 

This article studied the influences of a wide range of variables on the SPs’ adoption of new drugs 

and identified three key determinants—contagion from geographically close colleagues, portfolio 

width, and insulin ratio. 

 

The higher the adoption ratio of geographically close colleagues, the higher the likelihood of early 

adoption for seven of the 11 brands. Two earlier pharmaceutical studies reached identical 

conclusions—Manchanda et al. (2008) and Liu & Gupta (2012) both reported that the estimated 

effect of social contagion among physicians in geographic proximity is positive and significant even 

after controlling for time trends and marketing efforts. However, due to data constraints, this article 

could not control for detailing—some sales representatives may be more persuasive than others and 

may operate in geographies where physicians are more inclined to adopt new drugs, a propensity 

further enhanced by peer pressures from nearby adopters. At least initially, pharmaceutical 

companies and healthcare policy strategists wishing to influence new drug diffusion need to focus 

on geographies where practices are close—larger cities, with higher population densities and family 

incomes—and on monetary aspects and the sales representatives’ persuading powers. 

 

However, this article found no empirical evidence for the hypothesized influential roles of former 

classmates and scientific collaborators—in a few cases, these had even delayed diffusion. 

Geographically close colleagues form the densest social network, whereas scientific collaborators 

the sparsest (see Figure 1). More likely than not, former classmates discuss professional matters 

irregularly, whereas scientific collaborators exchange ideas regularly, at least in writing. However, 

their networks are small, sparse, and temporal—only roughly one third of the SPs in the sample had 

ever published an article with a colleague. To disentangle the eventual exception from the rule more 

research is required—it is easier to construct former classmate and scientific collaborator networks 

than it is to construct survey-based networks. 

 

A recent study showed that collegial interactions within a medical establishment influence the 

likelihoods of initial prescriptions—both compeers and senior colleagues play crucial roles (Lin et 

al. 2011). However, to the authors’ knowledge, there are no rigorous analyses as to how collegial 

interactions outside the workplace—through continuing medical educations, national and 

international conferences, and professional memberships—affect new drug uptake. 
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Figure 1: Social networks of specialists: (a) geographically close colleagues; (b) former classmates 

at Semmelweis University; and (c) scientific collaborators 

 

(a) 

 

318 SPs

4 856 links

12 clusters

 
 

(c) 

 

90 SPs

 151 links

14 clusters

 
 

(b) 

 

93 SPs

 137 links

 28 clusters

 
 

 

Portfolio width is the only consistent predictor across the 11 study drugs, in line with Bourke & 

Roper (2012), who—out of over ten variables—found significant and consistently signed effects 

across six new drugs used in general practice. The wider the portfolios, the shorter the physicians’ 

adoption times. 

 

Of note, portfolio width correlates highly with number of patients (0.65), which in turn correlates 

highly with prescribing volume in the therapeutic class of the new drug (0.95). When portfolio 

width is excluded from the Cox model, number of patients becomes the only consistent predictor of 

new drug uptake. When number of patients is excluded, prescribing volume in the therapeutic class 
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of the new drug becomes the only consistent predictor of early adoption, in line with Lublóy (2014), 

where physicians with high patient flows seemed particularly alert to new drugs—in six of nine 

studies, the higher the total number of patients (or total prescribing volume), the higher the 

likelihood of early adoption. Moreover, almost all eligible studies—ten out of 11—found that the 

higher the prescribing volume in the therapeutic class of a new drug, the higher the likelihood of 

early adoption of that new drug. However, the regression results here show that portfolio width is a 

better predictor of new drug uptake than either total number of patients (or total prescribing 

volume) or prescribing volume in the therapeutic class of the new drug. Previous studies might have 

drawn identical conclusions, had portfolio width been considered. 

 

Another important determinant, ratio of prescriptions for insulin is significantly negatively 

associated with the rate of adoption for nine of the 11 study drugs, with four possible explanations 

for delays in the adoption of new A10Bs. First, the individual SPs’ convictions as to the most 

appropriate therapy (Krentz & Bailey 2005; Scheen 2005; Davis & Abraham 2011), which may be 

related to therapeutic conservatism or to knowledge of and clinical experience with the new A10Bs. 

Second, patients with long disease histories, predating A10Bs, had already received insulin, thus 

excluding A10Bs as an alternative therapy (Korytkowski 2002; Krentz & Bailey 2005). Third, for 

patients at severe stages of the disease, A10Bs are insufficient for keeping blood glucose levels low. 

Fourth, low-income patients cannot cover 30 per cent of the A10B price, whereas insulin is free of 

charge. However, the latter three explanations can be ruled out, at least partly. The mean patient 

age—presumably, a good proxy for the length of the disease history—was factored in and found 

significantly associated with the uptake of Velmetia, but not with the other ten A10Bs. Furthermore, 

prescribing Velmetia was associated with older rather than younger patients. Disease severity was 

measured through the presence of comorbidities, and no significant associations were found with 

new drug adoption. Finally, the mean annual patient income was also factored in and found 

significantly positively associated with the uptake of Velmetia, but not of the other ten A10Bs. 

However, two estimation biases may affect validity. First, patient income was proxied by either the 

mean street-level income (for large settlements, over 20 thousand inhabitants) or the zip code-level 

income (for small settlements, under 20 thousand inhabitants). Second, the shadow economy is 

sizeable in Hungary and reported and actual incomes may differ significantly. However, further 

investigation of these biases is beyond the scope of this article. Furthermore, discussions with 

physicians support the idea that SPs favor insulin either due to therapeutic convictions or to having 

low-income patients—the impact of both factors was supported by evidence in the diffusion 

literature (Lublóy 2014). 

 

The three determinants of new drug diffusion identified here belong to two categories of factors—

contagion measures and prescribing characteristics. This may be considered good news for 

pharmaceutical companies and healthcare policy strategists, who need to rely only on these two 

categories to influence new drug diffusion—all other categories seem irrelevant to prescribing 

behavior. To rollout new drugs successfully, practice location and prescription data may be 

sufficient to identify target SPs, distribute marketing efforts, and allocate healthcare budgets. Hard-

to-obtain data such as SPs’ socio-demographic characteristics and scientific orientations and 

practice and patient characteristics are not necessary. 

 

A number of variables do not influence the likelihood of routine adoption significantly. There is no 

evidence that physicians in high positions adopt later, as suggested by Van den Bulte & Lilien 

(2001)—as knowledge brokers with ambassadorial roles and high legitimacies (Waring et al. 2013), 

hospital department and outpatient center managers did not adopt significantly later any of the 

brands. Measured through HDA board membership, HDA award receivership, and senior 

editorship, opinion leaderships do not lead to significantly different likelihoods of routine adoption. 

Presumably, other SPs prescribe new A10Bs earlier than opinion-leading SPs due to higher 
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involvement in medical practice. Reflected in number of specialties earned and number of scientific 

publications, physicians’ scientific orientations do not increase the likelihoods of routine adoption. 

Furthermore, institutions with higher accreditation levels—such as clinics and university/teaching 

hospitals—do not play an opinion-leading role, new drugs diffusing equally fast to all institutions. 

Also, in synchronicity with Lin et al. (2011), physicians with more than one affiliation do not adopt 

new drugs earlier—theoretically, more affiliations allow for more interactions with colleagues, but 

the physicians sampled here were engaged in private solo practices, with no direct stimulus from 

colleagues. 

 

SPs’ age and gender played influential roles in the routine adoption of new drugs in approximately 

half of the earlier studies (Lublóy 2014). However, this article found no associations. Also, although 

almost all studies assessing the role of training location found it influential, this article found its 

impact marginal, which may be explained by the geographic proximity of training sites. 

 

This article surpasses previous studies in number and variety of variables—with so many different 

variables likely to influence new drug uptake, it is not surprising that the majority of variables have 

only a moderate impact. Another possible explanation for the insignificance of variables in this 

article compared to earlier studies may lie in investigating routine rather than first-time adoption of 

new drugs. 

 

5. Limitations 

 

This article has several possible limitations. First and foremost, prescription data is incomplete. 

SPs’ prescribing behaviors are monitored through the reported prescription data by GPs with whom 

SPs share patient care. All the sampled GPs included the name/identification number of the therapy-

initiating SPs, but only around one fifth of practicing GPs were sampled—SPs’ routine adoptions of 

new drugs may therefore occur earlier. However, the sampled GPs are geographically representative 

and the size of this bias is expected to be constant across SPs and not undermine the validity of the 

results. Second, the marketing efforts of pharmaceutical companies targeted at physicians are not 

accounted for. Detailing, sampling, advertisements in medical journals, and pharmaceutical 

meetings and events all aim to boost profits by providing knowledge, increasing product awareness, 

and directing further information acquisition. In the pharmaceutical marketing literature, the size 

and efficiency of marketing efforts targeted at physicians are very powerful predictors of new drug 

uptake (Kremer et al. 2008; Manchanda et al. 2008; Iyengar et al. 2011; Liu & Gupta 2012). Studies 

almost unambiguously reported that pharmaceutical marketing—particularly, detailing—has a 

significant positive influence on prescribing (for example, Kremer et al. 2008). Third, the contagion 

measure based on geographic proximity captures interpersonal effects indirectly—one cannot 

validate whether geographically close physicians exchange ideas regularly, if at all (for a detailed 

discussion of the benefits and costs of using geographic proximity, see Conley & Udry 2005). 

Fourth, conclusions based on only one therapeutic class cannot be generalized. By incorporating 

multiple therapeutic classes, future research may examine the determinants of new drug diffusion 

identified here for consistency and moderation by therapeutic class characteristics. 

 

6. Conclusions 

 

This article has explored the determinants that affect SPs’ routine prescribing of new A10Bs by 

focusing on the effects of six categories of factors—SPs’ social embeddedness, socio-demography, 

scientific orientation, and prescribing pattern, as well as practice and patient characteristics. A 

large-scale archival dataset of SPs’ actual prescribing behaviors has avoided several statistical 

biases usually related to retrospective surveys—for example, confounding bias, sample selection 

bias, and recall bias. This article has suggested practical ways in which pharmaceutical companies 
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and healthcare policy strategists may enhance new drug diffusion. Most importantly, echoing prior 

research, this article has found that knowledge regarding a new drug is—at least partly—socially 

constructed, and that previous prescribing patterns are decisive in new drug uptake. The former 

suggests that vicarious learning is as important as experimental learning, whereas the latter 

emphasizes the significance of SPs’ therapeutic convictions and clinical experiences. 
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