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Abstract

We build a multiple hierarchical model of a representative democracy in which, for

instance, voters elect county representatives, county representatives elect district repre-

sentatives, district representatives elect state representatives, and state representatives

elect a prime minister. We use our model to show that the policy determined by the final

representative can become more extreme as the number of hierarchical levels increases be-

cause of increased opportunities for gerrymandering. Thus, a sufficiently large number of

voters gives a district maker an advantage, enabling her to implement her favorite policy.

We also show that the range of implementable policies increases with the depth of the

hierarchical system. Consequently, districting by a candidate in a hierarchical legislative

system can be viewed as a type of policy implementation device.
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†MTA-BCE “Lendület” Strategic Interactions Research Group, Department of Mathematics, Faculty of Eco-
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1 Introduction

In many parliamentary democracies, each representative is elected within a single-member

district. However, although having many citizens elect one representative may mean a govern-

ment is elected efficiently, the relationship between a representative and his/her voters could

be weak. This can result in a misrepresentation of citizens’ diverse interests, many wasted

votes, and lower participation rates. Shugart and Carey (1992) point out that there are trade-

offs between the efficiency of citizens’ choosing one government and the representativeness of

their diverse interests. To reduce this misrepresentation, an electoral system in which a small

number of citizens elect one representative can be better than a system in which many citizens

elect one representative. While the former system is effective in avoiding misrepresentation,

if there are many citizens, they need to be grouped into districts. Then, the system needs to

form legislatures, councils, or assemblies comprising the elected representatives as efficiently as

possible. However, a legislature may still have too many representatives, making it difficult to

organize a single government (e.g., by electing a prime minister). In this case, both efficiency

and representativeness may be improved by forming an upper legislature comprising a few rep-

resentatives from those in the legislature. Depending on the number of citizens, it may then be

necessary to add further levels, thus creating a multiple hierarchical legislature. Here, citizens

in the same single-member district elect an intermediate representative. Clearly, we can extend

this system further by increasing the number of intermediate levels, thus obtaining a multiple

hierarchical representative democracy. The purpose of this study is to determine the possible

policy outcomes in such a system.

According to their constitution, China is an example of a representative democracy with a

multiple hierarchical legislative system, as described above. The legislative system has four-

levels, namely the nation, provinces, counties/cities/municipal districts, and townships/towns,

with a government at each level. Representatives of legislatures at the national and provincial

levels are elected by the legislatures at the next lower level (Article 97 in the Constitution of the

People’s Republic of China).1 However, since the central and local governments, including each

1Initially, representatives at the county level were also elected by the legislatures at the next lower level. In

2



legislature, are “under the leadership of the Communist Party” (Preamble of the Constitution)

in China, the party controls all elections (Institute of Chinese Affairs 2011).

The proposed model can also be found in related literature and attempts have been made

to implement it during the past one and a half centuries, although not in its pure form. In

expressing his views on democracy, Jefferson (1816) outlined the so-called “ward republics,”

in which he distinguished between the national, the state, the county, and the ward level. He

characterized this system as follows:

“It is by dividing and subdividing these republics from the great national one down

through all its subordination, until it ends in the administration of every man’s farm

by himself; by placing under every one what his own eye may superintend, that all

will be done for the best.”

The so-called council system is based on a similar idea (for its history, we refer to Olson (1997)).

However, even if the problems of misrepresentation or wasted votes are solved by districting

citizens prior to an election, there is another potential problem: who groups citizens into

districts? Should it be the incumbent representatives, citizens, or perhaps an outsider? If the

district maker has a particular political position, she may construct the districts in such a way

as to give an advantage to those candidates who have a similar political position to hers. This

is referred to as “gerrymandering,” and can cause misrepresentations. Gilligan and Matsusaka

(2006) measure how misrepresentative a policy determined in the single level legislature is

in the case of most extreme gerrymandering. On the other hand, Coate and Knight (2007)

show the conditions necessary for socially optimal districting when the independents’ policy

positions are determined stochastically. From the standpoint of democracy, gerrymandering

can be viewed normatively as one of the worst results. However, it can also be viewed as

a type of implementation that provides district makers or social planners with a method of

implementing their favorite policy.

the reform of the electoral law in 1979 (this change was also reflected in the Constitution in 1982), citizens’

direct election was expanded (Institute of Chinese Affairs 1980 and 1983). Since then, representatives at the

county level have been elected by citizens directly, in addition to the township/town levels.
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In this paper, we extend the districting model of Gilligan and Matsusaka and show that, by

extreme gerrymandering, a multiple hierarchical model of a representative democracy can serve

the interests of a minority. In particular, we show that as the number of voters increases, the

district maker can construct more intermediate levels. Accordingly, the district maker’s policy

implementability becomes stronger and, even in the case of an extreme political position, gains

dictatorial power.2 In addition, we explicitly show the policy range that can be implemented by

the hierarchical gerrymandering of every level. From these results, when each voter has the right

to become the district maker with an equal probability, the most probable policy is the same

as the case of gerrymandering by the extremists. We conclude that gerrymandering districts

can be regarded as a method available to a district maker to implement her favorite policy.

In addition, her policy implementability is stronger when the legislative system is hierarchical,

and is far stronger when there are many citizens in the society. Furthermore, our results may

indicate why, despite the advantages pointed out by Jefferson, we find so few historical examples

of a multiple hierarchical legislative system such as the ward republic, other than that of China,

since the system gives stronger policy implementability to the district maker.

It is worthwhile mentioning that we abstract away from inherent geographical constraints,

which pose a problem in the political districting problem. For works on measuring district

compactness, we refer the reader to Chambers and Miller (2010, 2013) and Fryer and Holden

(2011). In a normative framework, geographical constraints are considered by Puppe and

Tasnádi (2014), as well as the references therein. Details on redistricting in practice can be

found, for instance, in Altman and McDonald (2010).

The remainder of the paper is organized as follows. Section 2 presents our extended model of

a multiple hierarchical representation and a motivating example for the case of an extreme dis-

trict maker. Section 3 considers the extremists’ policy implementability in the case of optimal

gerrymandering. Then, Section 4 investigates the policy implementability by politically mod-

erate district makers’ gerrymandering. Finally, Section 5 concludes the paper and applications

of our model are provided in the Appendix.

2On this point, Galam and Wonczak (2000) use a numerical simulation to show that a dictatorship can

appear under a hierarchical election. In contrast, we derive more general analytical results along a real line.
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2 The model

We use a multiple application of the median voter theorem by nesting Gilligan and Matsusaka’s

model into itself a finite number of times. According to the well-known median voter model

introduced by Black (1958), the policy preferred by the median voter prevails over any other

policies in the case of a uni-dimensional policy space and voters’ single-peaked preferences.

Gilligan and Matsusaka define and calculate the bias between the median policy and the

policy decided in the legislature, which is composed of representatives elected in single-member

districts, where each voter is allocated to exactly one district. They find that there is a possibil-

ity for gerrymandering in an indirect democracy that divides voters into districts and gives one

group an advantage in the election. As a result, the final policy chosen by the representatives

in the legislature may not be the policy the median voter prefers.

As we pointed out in the introduction, some societies can adopt a political system in which

policies are decided hierarchically. In this paper, by extending the model of Gilligan and

Matsusaka, we show how the final policy chosen and implemented by the representative elected

from the “multiple-level legislatures” is decided in gerrymandered districts. In addition, we

show how the final policy can deviate from that of the median voter theorem and how much

power the district maker has to implement her favorite policy through gerrymandering.

The settings and notation we use in our model are essentially the same as those of Gilligan

and Matsusaka. The population of citizens3 consists of N people (hereafter, referred to as

voters), all of whom vote. We assume that N is an odd number. The set of voters is defined

as N = {1, 2, 3, . . . , N}. We assume that each voter j ∈ N has an ideal policy at own position

xj ∈ R, and that each voter’s utility strictly decreases monotonically as an implemented policy

moves further from her own ideal position. For convenience, we also assume that voters with

smaller numbers (the left wing from the median) are more liberal and that those with larger

numbers (the right wing from the median) are more conservative. Thus, we label the voters

3In our model, each citizen is a voter who can cast a ballot for her favorite candidate and is a candidate for

the final representative who implements her own preferred policy, as in the citizen-candidate models of Besley

and Coate (1997).
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such that x1 < x2 < . . . < xN . Then, the index of the median of all voters is equal to N+1
2

.

Let F (x) be the cumulative distribution function of voter ideal points, such that F (x1) = 1/N ,

F (x2) = 2/N , . . ., F (xN) = 1, which shows the relative position of each voter’s ideal policy. We

assume that there is a unique median voter in the population with ideal point x∗POP such that

F (x∗POP ) = N+1
2N

.4 The distance of a policy x from the median’s ideal policy x∗POP , measured

by F , is called a bias, which we define as follows.

Definition 1. The measure of a policy bias is equal to B(x) = |F (x)− F (x∗POP )|.

Observe that policy choice x is unbiased or has minimal bias when B = 0, and x has

maximal bias when B = 1− N+1
2N

= N+1
2N
− 1

N
= N−1

2N
.

We consider t+1 decision levels, starting from t = 0. At decision level i ∈ {1, 2, . . . , t−1, t},

voters grouped into equally sized districts send a representative to a legislature at the i+ 1-th

decision level. Let Ki be the number of districts at the i-th decision level. In order to finally

elect a single representative who decides on a policy, only one district is formed at the t+ 1-th

decision level. Thus, we let Kt+1 = 1. For convenience, let K0 = N .

Assumption 1. N is odd and the district size Ki−1/Ki at level i is an odd integer for any

i ∈ {1, . . . , t+ 1}.

If not stated otherwise, we assume that Assumption 1 holds.5

When t = 0, there are no legislatures between voters and the final representative. Only one

representative, who implements a policy, is elected directly from among the voters. We view

this as a direct democracy. When t ≥ 1, our model becomes an indirect democratic system

and, especially when t ≥ 2, has hierarchical legislatures with multiple levels. We assume

that every voter and representative at each i-th decision level casts a ballot sincerely and that

only one among them is elected as a single-member district representative by a majority rule.

4In Gilligan and Matsusaka, the cumulative distribution function F (x∗POP ) = 1/2 at the median’s ideal

policy is defined. However, this definition is not appropriate because the authors assume discrete voters and N

is odd. For example, N = 27, F (x∗pop) = 14/27 6= 1/2.
5Nevertheless, in the statements of our lemmas, propositions, and corollaries, we explicitly require Assump-

tion 1 whenever needed.
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Accordingly, the median voter of each district is elected as the representative, and every district

at the i+ 1-th decision level is composed of the median voters from each district at next lower

level. Thus, Ki is also the number of representatives at the i + 1-th decision level. From the

assumption of equally sized districts at the same level, the population of each district at the

i+ 1-th decision level is Ki/Ki+1. Naturally, we must have Ki+1 < Ki, since we elect fewer and

fewer representatives as we move upwards in the hierarchy.

In summary, the basic structure of our model is as follows. First, N voters are divided into

K1 equal-sized districts. Then, N/K1 = K0/K1 voters per district at the first decision level elect

the representatives of legislative level 1 at the second decision level. Consequently, legislative

level 1 comprises K1 representatives. Second, the representatives of legislative level 1 are

divided into K2 equal-sized districts and K1/K2 members per district elect the representatives

of legislative level 2 at the third decision level. Consequently, legislative level 2 comprises K2

representatives. Third, the representatives of legislative level 2 are divided into K3 equal-sized

districts and K2/K3 members per district elect the representatives of legislative level 3 at the

fourth decision level. Consequently, legislative level 3 comprises K3 representatives, and so on.

Finally, since the t + 1-th decision level is the final level and Kt+1 = 1, the Kt representatives

of legislative level t at the t+ 1-th decision level elect only one representative, who is the final

representative. Thus, t denotes the number of hierarchical legislative levels inserted between the

voters and the final representative. These levels are, for example, ward representatives, county

representatives, state representatives, and national representatives. The final representative

decides and implements only one policy, which is a number on the real line, that applies to

all voters. Table 1 depicts the above structure. Here, we assume that neither voters nor

representatives can commit to policies. Thus, the final representative implements his/her own

ideal policy. Note that Gilligan and Matsusaka’s model is a special case of our model, where

t = 1. Additionally, there is no vote-value disparity because of the equal-size districts at each

level.

From the above structure, we can immediately obtain the following lemma:

Lemma 1. Under Assumption 1, the number of hierarchical levels is at most the number of
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Table 1: The basic structure of the model

Decision Voter or Number of Total Population

level legislative level district population per district

first voters K1 K0 = N N/K1

↘

second legislative level 1 K2 K1 K1/K2

↘

third legislative level 2 K3 K2 K2/K3

· · · ↘ · ·

· · · · ·

· · · ↘ · ·

t− 1-th legislative level t− 2 Kt−1 Kt−2 Kt−2/Kt−1

↘

t-th legislative level t− 1 Kt Kt−1 Kt−1/Kt

↘

t + 1-th legislative level t Kt+1 = 1 Kt Kt/Kt+1 = Kt

=

t legislative levels ↘

final representative 1

prime factors of N .

Proof. We prove this by contradiction. Let N = a1 · a2 · a3 · · · at · at+1, where each ai, i ∈

{1, 2, 3, . . . , t, t + 1}, is a prime factor of N . We assume that for given N we can make j + 1

decision levels, noting Ki > Ki+1 and Kj+1 = 1, where j > t. Then, the populations of each

district at each level 1, 2, 3, . . . , j, j + 1 are N
K1
, K1

K2
, K2

K3
, . . . , Kt−1

Kt
, . . . ,

Kj

Kj+1
, respectively. Thus,

N =
N

K1

· K1

K2

· K2

K3

. . .
Kt−1

Kt

. . .
Kj

Kj+1

,

and the number of the factors of N is j + 1. However, N cannot be the product of more than

t integers larger than 1 from its prime factorization, which is a contradiction.

Hereafter, for convenience, t∗ + 1 is regarded as the maximum number of decision levels

(under Assumption 1) and the number of the prime factors of N . Note that we can set up
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hierarchical decision levels between 0 and t∗ + 1 by multiplying together any prime factors of

N . For instance, suppose N = N
K1
· K1

K2
· K2

K3
. . . Kt∗

Kt∗+1
. We can also set up t∗− 1 decision levels in

addition to t∗+1 levels if we multiply the first three prime factors, N
K1
· K1

K2
· K2

K3
, with populations

per district of N
K3
, K3

K4
, . . . , Kt∗

Kt∗+1
at each decision level, respectively. See also Example 1.6

Let x∗i,k be the ideal point and j∗i,k be the index (i.e., xj∗i,k = x∗i,k) of the median representative

or voter in district k at the i-th decision level (i.e., legislative level i− 1). When there are t+ 1

decision levels, at the final decision level, where Kt+1 = 1, the policy outcome decided in the

final legislative level becomes x∗t+1,1.

How do liberal voters gerrymander to maximize their own political payoff? We shall assume

that a liberal extremist, called voter 1, can arrange all districts.7 Then, this person will attempt

to put a representative who is as left as possible on the median position in each district at each

decision level. We can say that the more to the left the final representative falls, the stronger

is her policy implementability. In this paper, we use the well-known “cracking and packing”

algorithm at each decision level, as formulated by Gilligan and Matsusaka. They describe the

algorithm as follows.

“First, citizens with high-value ideal points are “cracked” into districts where they

are the minority, maximizing the influence of citizens with low-value ideal points,

and second, the remaining high-value citizens are “packed” into districts contain-

ing a preponderance of like-minded citizens in order to waste their votes through

overkill.”

In the next example, we specifically show how far away the final policy in the multiple

hierarchical electoral system under the extremist’s gerrymandering can be from the policy

6 It might look as though Lemma 1 imposes a severe restriction on the number of possible decision levels.

For instance, if N is a prime number, we can construct only one district at the first decision level because of the

assumption of equal-sized districts. We can overcome this problem by changing “equal-sized districts” slightly

to “almost equal-sized districts” by rounding Ki/Ki+1 either up or down. Then, we consistently pick one of the

two electors from “the middle” in the case of even district sizes. However, this extension would just complicate

our analysis and would produce the same results. See also Example 2.
7Of course, in the same way, we can also consider a conservative extremist instead of a liberal extremist.
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decided in a direct democracy (i.e., the median voter’s ideal policy). We compare the final

policy in our model with the policy in the model of Gilligan and Matsusaka in the next example.

Example 1. We consider an example of three decision levels, where t+ 1 = 3, N = 27, voters

set N = {1, 2, 3, . . . , 25, 26, 27}, and voters have ideal points at xj = j. We compare the

indirect democracies of two decision levels (t = 1) and three decision levels (t = 2) with the

direct democracy (t = 0).8 In this case, the median voter is N+1
2

= 14, as shown in Table 2,

so that the final policy is decided at x∗1,1 = x14 in the direct democracy. However, as shown

Table 2: The case of N = 27, K1 = 1

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14©, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

↓

14

by Gilligan and Matsusaka, the final policy is not always decided at the median of all voters

in an indirect democracy with gerrymandered districts. Here, we show that the selected policy

becomes further from the median as the levels increase. Table 3 and Table 4 illustrate the

most extreme gerrymandering to give an advantage to liberal (left) voters in the case of two

decision levels (t = 1). These can be regarded as regular indirect democracies, where the

final representative is elected from the legislature composed of the representatives elected in

single-member districts.

For t = 1 and N = 27, we can consider two cases where (K1, K2) = (3, 1) and (9, 1). Then,

we can easily find the final representative who is as close as possible to voter 1, who is a liberal

extremist, as in the example with nine voters in Gilligan and Matsusaka. In both Tables 3

and 4, the policies are decided by voter 10, whose ideal position is 4 positions away from the

8Here, 27 is equal to 3·3·3 by the prime factor decomposition. From this fact, in the case of two decision levels,

each district at the first decision level and at the second level are composed of 9 voters and 3 representatives,

respectively, or of 3 and 9, respectively. In the case of three decision levels, each district is composed of

three voters or representatives at every decision level. As a result, we can obtain combinations of K1 = 1,

(K1,K2) = (3, 1), (9, 1), and (K1,K2,K3) = (9, 3, 1) for the cases of one decision level, two decision levels, and

three decision levels, respectively.

10



Table 3: The case of N = 27, K1 = 3, K2 = 1

{1, 2, 3, 4, 5©, 24, 25, 26, 27} {6, 7, 8, 9, 10©, 20, 21, 22, 23} {11, 12, 13, 14, 15©, 16, 17, 18, 19}

↓ ↓ ↓

{5 10© 15}

↓

10

Table 4: The case of N = 27, K1 = 9, K2 = 1

{1, 2©, 27} {3, 4©, 26} {5, 6©, 25} {7, 8©, 24} {9, 10©, 23} {11, 12©, 22} {13, 14©, 21} {15, 16©, 20} {17, 18©, 19}

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

{2 4 6 8 10© 12 14 16 18}

↓

10

median voter. Even if there are several district patterns in a combination of N and t, it can

be shown that the maximum distances between the final representative and the median are

identical in the case of optimal gerrymandering for either the liberal or conservative extremists

who are “partisan.”

Finally, what is the policy decided by the upper representatives if an additional level of

representation is incorporated in the above decision process in the case of gerrymandering? In

the same way as in our previous examples with two decision levels, the districts at the second

decision level are arranged by one liberal extremist in order to implement a final policy as close

as possible to her own ideal point. In the case of three decision levels, the districts pattern

is only (K1, K2, K3) = (9, 3, 1). Table 5 illustrates this case. The policy is decided by voter

8, who is 6 positions away from the median. This is even further from the median than in

the case of two decision levels. This example suggests that the final policy decided in the

gerrymandered districts becomes further from the median as we add more hierarchical decision

levels to the democratic representative system. We revisit this fact in Proposition 1 in the next

section. Additionally, from the result of Lemma 1, many voters are required to construct a

higher hierarchical representative system. �
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Table 5: The case of N = 27, K1 = 9, K2 = 3, K3 = 1

{1, 2©, 27} {3, 4©, 26} {5, 6©, 25} {7, 8©, 24} {9, 10©, 23} {11, 12©, 22} {13, 14©, 21} {15, 16©, 20} {17, 18©, 19}

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

2 4 6 8 10 12 14 16 18

↓

{2 4© 18} {6 8© 16} {10 12© 14}

↓ ↓ ↓

{4 8© 12}

↓

8

Actually, in Example 1, where N = 27, the liberal extremist can only construct at most

three decision levels if we require strictly equal-sized districts and odd district sizes. We already

mentioned in footnote 6 that Lemma 1 is not as restrictive as it might first appear. To see this

we provide another example with N = 27 voters.

Example 2. Let N = 27 and the target district size be 2, which means that districts contain

either 1 or 2 voters. Clearly, if we put just one voter in a district, she will be the winner of her

district. If we put two voters in a district, the median voter is not uniquely defined. In this

example, we assume that the left of the two voters in the middle will be elected. 9 Table 6

illustrates this case. �

We make two observations based on Example 2. First, for a given N , we can have more

biased outcomes in the case of indivisibilities and even-numbered district sizes. This statement

will become clearer after the discussion of Lemma 2. Second, once almost-equal-sized districts

and even-numbered district sizes are allowed, while neither is allowed in Lemma 1, the maximum

number of levels monotonically increases as the number of voters increases. In particular, if at

the i-th decision level, Ki−1 is not divisible by Ki, then there exists a unique positive integer

si and integer 0 ≤ ri < Ki such that Ki−1 = siKi − ri. Then, we have si = dKi−1/Kie, and

we can form Ki − ri districts of size si and ri districts of size si − 1. Clearly, we can obtain a

maximum number of decision levels by taking sequence Ki = N − i as the number of districts

9Clearly, one could choose the right-hand voter or determine the winner randomly. In the latter case, the

most extreme outcome would be if, at each level and each district, the left or right voter was always chosen.
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Table 6: The case of N = 27, K1 = 14, K2 = 7, K3 = 4, K4 = 2, K5 = 1

{ 1©, 27} { 2©, 26} { 3©, 25} { 4©, 24} { 5©, 23} { 6©, 22} { 7©, 21} { 8©, 20} { 9©, 19} {10©, 18} {11©, 17} {12©, 16} {13©, 15} {14©}

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14

↓

{ 1© 14} { 2© 13} { 3© 12} { 4© 11} { 5© 10} { 6© 9} { 7© 8}

↓ ↓ ↓ ↓ ↓ ↓ ↓

1 2 3 4 5 6 7

{ 1© 7} { 2© 6} { 3© 5} { 4©}

↓ ↓ ↓ ↓

1 2 3 4

{ 1© 4} { 2© 3}

↓ ↓

1 2

{ 1© 2}

↓

1

at level i. In this case, the number of decision levels is equal to the number of voters.

A more natural way to generate a sequence K0, K1, . . . , Kt, Kt+1 would be to fix a sequence

s1, s2, . . . , st of target district sizes. This means we have either si or si − 1 representatives in

each district at decision level i, the number of districts Ki at decision level i is determined by

Ki−1 = siKi − ri, where 0 ≤ ri < Ki and si = dKi−1/Kie, and we have Ki − ri districts of

size si and ri districts of size si − 1. Of course, not every sequence s1, s2, . . . , st of positive

integers is admissible. It would make sense to look for sequences that remain constant as long

as possible (i.e., s = s1 = s2 = . . . = sq for a q ≤ t as large as possible), since then the number

of representatives decreases at the same rate as we move upwards in the hierarchy. If choosing

s as the target size for each decision level is possible, then the number of hierarchical decision

levels is given by dlogsNe in the function of N . Hence, as the number of voters tends to infinity,

the number of decision levels also tends to infinity.

Finally, we investigate whether si is a valid target value for the number of representatives
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at decision level i. Since ri has to satisfy 0 ≤ ri < Ki, we obtain 0 ≤ siKi −Ki−1 < Ki, which

in turn implies

Ki−1

si
≤ Ki <

Ki−1

si − 1
. (1)

A sufficient condition for the existence of an integer Ki satisfying (1) is

Ki−1

si − 1
− Ki−1

si
≥ 1 ⇐⇒ si(si − 1) ≤ Ki−1. (2)

Since si(si − 1) < s2
i , a sufficient condition for the existence of an integer Ki satisfying (1) is

given by

si ≤
√
Ki−1. (3)

Assuming that we are striving for a constant sequence s = s1 = s2 = . . . = st, then the

violation of condition (3) means that adding two more levels with target district sizes s would

be impossible. Therefore, for the top two levels, the target district size s has to be reduced

appropriately and, at the same time, we can still achieve at least dlogsNe decision levels.

3 Extremists’ policy implementability

From Example 1, we can conjecture that the final elected voter is getting further from the

median of all voters as we add more hierarchical levels of legislatures, when all districts at each

level are arranged by a liberal extremist’s gerrymandering. The following lemma determines

the final elected voter’s position in the t + 1 decision levels, composed of both voters and t

hierarchical legislative levels in the indirect democracy. Note that, by Lemma 1, there are at

most t∗ + 1 decision levels in the case of N voters and that the number of decision levels lies

between 0 and t∗ + 1. Then, the final elected voter’s position is shown in the next lemma.

Lemma 2. (Generalization of Gilligan and Matsusaka (2006)) If Assumption 1 is sat-

isfied, then in the case of liberal gerrymandering, the policy outcome is decided by voter

j∗t+1,1 =
1

2

(
1

2

)t
1

KtKt−1 · · ·K2K1

(Kt +1)(Kt +Kt−1)(Kt−1 +Kt−2) · · · (K2 +K1)(K1 +N) (4)

in the political decision system composed of t + 1 (t ∈ {0, 1, 2, . . . , t∗}) hierarchical decision

levels.
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Proof. We prove formula (4) by backward induction. First, the final representative (she) is

elected at the t+ 1-th decision level. Given that Kt+1 = 1, for her final win, she needs at least

a minimum majority: that is, 1
2

(
Kt

Kt+1
+ 1
)

= 1
2
(Kt + 1) representatives with smaller numbers

than hers and herself at the t+ 1-th decision level.

Second, since each representative at the t+ 1-th decision level is elected in each district at

the t-th decision level, to win a majority at t+ 1-th decision level, she needs at least 1
2
(Kt + 1)

districts, including 1
2

(
Kt−1

Kt
+ 1
)

representatives with smaller numbers than hers per district and

herself at the t-th decision level. Consequently, she needs 1
2

(
Kt−1

Kt
+ 1
)

1
2
(Kt+1) representatives

with smaller numbers than hers and herself at the t-th decision level.

Third, given that each representative at the t-th decision level is elected in each district at

the t−1-th level, for the final representative to win with 1
2

(
Kt−1

Kt
+ 1
)

1
2
(Kt +1) representatives

supporting her at the t-th decision level, she needs at least 1
2

(
Kt−1

Kt
+ 1
)

1
2
(Kt + 1) districts,

including 1
2
(Kt−2

Kt−1
+ 1) representatives with smaller numbers than hers and herself per district at

the t−1-th level. Consequently, she needs 1
2
(Kt−2

Kt−1
+1)1

2
(Kt−1

Kt
+1)1

2
(Kt +1) representatives with

smaller numbers than hers and herself at the t− 1-th decision level. The same logic continues

until we reach the voters level.

Finally, at voters level (i.e, the first level), she needs at least

1

2

(
K0

K1

+ 1

)
1

2

(
K1

K2

+ 1

)
. . .

1

2

(
Kt−2

Kt−1

+ 1

)
1

2

(
Kt−1

Kt

+ 1

)
1

2
(Kt + 1) (5)

representatives with smaller numbers than hers and herself. This formula is equal to (4). Hence

the position of the final representative with the smallest number is (4).

Lemma 2 includes the case of the most extremely liberal gerrymandering with t+1 decision

levels. By symmetry of voters, we can easily obtain the position N − j∗t+1,1 + 1 by the most

extremely conservative gerrymandering. Additionally, (4) also indicates the representative po-

sition in the direct democracy at t = 0. Thus, the direct democracy can be viewed as a special

case of this hierarchical legislature.

Focusing on (5), in the most extremely liberal gerrymandering with t + 1 decision levels,

the final elected voter’s position is determined by constructing districts as nested boxes, with

minimum majorities composed of her and the voters with lower values than hers so that only
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they have the decision power. In other words, voters with higher values than hers have no

influence in this gerrymandering. Thus, the result does not depend on the order of packing

voters into districts.

Example 2 already explained how we can get rid of our assumptions of equal- and odd-sized

districts (i.e., Assumption 1). Now, we explain how to obtain an upper bound on the most

leftward voter deciding the policy outcome, based on Lemma 2, if we also allow for almost equal

and even-sized districts, as described in Example 2.

Lemma 3. In the case of liberal gerrymandering, we have the following upper bound on the

voter deciding the policy outcome:

j∗t+1,1 ≤
1

2

(
1

2

)t
1

KtKt−1 · · ·K2K1

(Kt +1)(Kt +Kt−1)(Kt−1 +Kt−2) · · · (K2 +K1)(K1 +N) (6)

in the political decision system composed of t+ 1 hierarchical decision levels.10

Proof. In order to obtain an upper bound for j∗t+1,1 for the more general case, we just have to

follow the steps of the proof of Lemma 2. First, if Kt is even, the final representative needs

at least a minimum majority: that is, 1
2
Kt representatives with smaller numbers than hers

and herself at the t + 1-th decision level, which is less than the 1
2
(Kt + 1) obtained for the

odd-size case. Second, since each representative at the t+ 1-th decision level is elected in each

district at the t-th decision level, to win a majority at the t+ 1-th decision level, she needs at

least either 1
2
Kt or 1

2
(Kt + 1) districts, including either 1

2
Kt−1

Kt
representatives from each of the

even-sized districts, or 1
2

(
Kt−1

Kt
+ 1
)

representatives from each of the odd-sized districts with

smaller numbers than hers per district and herself at the t-th decision level. Consequently, she

does not need more than 1
2

(
Kt−1

Kt
+ 1
)

1
2
(Kt + 1) representatives with smaller numbers than

hers and herself at the t-th decision level. By analogous modifications in the remaining steps

10Note that the indexes j∗i,k can be extended in an obvious way to the case in which Assumption 1 does

not hold. More precisely, if an even district size emerges at level i in district k in our electoral system, then

the actual value of j∗i,k depends on how we choose between the two voters in the “middle.” Here, and in what

follows, we assume in the extension of j∗i,k that the left of the two representatives in the middle will be elected to

the next higher level, since this results in the most biased outcome. For more on this, we refer to the discussion

after Example 2.
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of the proof of Lemma 2, we find that the right-hand side of (4) provides an upper bound on

j∗t+1,1 for the general case.

Formula (4) is obtained as the representative with the policy that is implementable and

nearest to the liberal extremist’s ideal policy for given t+ 1 decision levels and N . As a conse-

quence of the formula, the next proposition states the monotonic decrease of the representative’s

position as t increases for given N .

Proposition 1. Under Assumption 1, for given N , the final representative position is moving

further from the median of voters monotonically as the number of hierarchical stages increases.

Proof. Let N = a1 · a2 · a3 . . . · at∗ · at∗+1, where all of ai, (i = 1, . . . , t∗ + 1) are prime factors

of N . From Lemma 1, N = N
K1
· K1

K2
· K2

K3
· . . . · Kt∗−1

Kt∗
· Kt∗

Kt∗+1
, noting that Kt∗+1 = 1 in the

case of the maximum number of hierarchical levels, t∗ + 1. Without loss of generality, we let

N
K1
, K1

K2
, K2

K3
, . . . ,

Kt∗−1

Kt∗
, Kt∗
Kt∗+1

equal a1, a2, a3, . . . , at∗ , at∗+1, respectively. Then, we obtain K1 =

N
a1

, K2 = N
a1a2

, K3 = N
a1a2a3

, . . ., Kt∗ = N
a1a2a3...at∗

, Kt∗+1 = N
a1a2a3...at∗at∗+1

= 1.

In the case in which there are t + 1 (t = 1, . . . , t∗) decision levels, N = b1b2 . . . bt+1, where

each bi (i = 1, . . . , t) is a product of some prime factors of N . Using the same method, we

obtain K1 = N
b1

, K2 = N
b1b2

, K3 = N
b1b2b3

, . . ., Kt = N
b1b2b3...bt

, Kt+1 = N
b1b2b3...btbt+1

= 1. Here,

when the number of total levels is t, we choose any two factors in {b1, b2, . . . , bt+1} and find the

product. For simplicity, we choose the last two factors, btbt+1. Then, we get K1 = N
b1

, K2 = N
b1b2

,

K3 = N
b1b2b3

, . . ., Kt−1 = N
b1b2b3...bt−1

, K ′t = N
b1b2b3...btbt+1

= 1. Comparing the case of t levels with

the case of t+ 1 levels, each of K1 through Kt−1 is identical.

We calculate the ratio of j∗t,1 and j∗t+1,1:

j∗t,1
j∗t+1,1

=

1
2

(
1
2

)t−1 1
Kt−1Kt−2···K2K1

(Kt−1 + 1)(Kt−1 +Kt−2)(Kt−2 +Kt−3) · · · (K2 +K1)(K1 +N)

1
2

(
1
2

)t 1
KtKt−1···K2K1

(Kt + 1)(Kt +Kt−1)(Kt−1 +Kt−2) · · · (K2 +K1)(K1 +N)

=
Kt−1 + 1

1
2

1
Kt

(Kt + 1)(Kt +Kt−1)

=
2Kt(Kt−1 + 1)

(Kt + 1)(Kt +Kt−1)
.

Here, since ∀t ∈ {1, 2, 3, . . . , t∗}, Kt−1 > Kt > 1, and 2Kt(Kt−1 + 1) − (Kt + 1)(Kt + Kt−1) =

(Kt − 1)(Kt−1 − Kt) > 0, the numerator is larger than the denominator. Thus, j∗t,1 > j∗t+1,1,

and therefore, x∗t,1 > x∗t+1,1.
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By this proposition, we can say that a voter with a policy position nearer to the extremist’s

ideal policy becomes electable as the decision levels get higher for given N . In other words,

the hierarchical legislative system with more levels increases the policy implementability of the

extremist.

For given numbers of voters N and levels t, we can determine the number of districts

K1, . . . , Kt that results in the most biased outcome that is the furthest representative position

from the median. Noting that K0 = N , the next proposition can be obtained.

Proposition 2. If Assumption 1 is satisfied, then in the case of N voters and t + 1 decision

levels for which t+1
√
N is an integer, the multi-level districting given by

∀i = 1, . . . , t, t+ 1 : Ki = N
t−(i−1)

t+1 (7)

admits the largest possible bias.

Proof. Determining the maximum bias is equivalent to minimizing j∗t+1,1/N with respect to

K1, . . . , Kt. Noting that N = K0,

j∗t+1,1

N
=

(
1

2

)t+1
1

KtKt−1 · · ·K2K1K0

(Kt + 1)(Kt +Kt−1)(Kt−1 +Kt−2) · · · (K2 +K1)(K1 +K0),

we multiply 1/K0, 1/K1, . . . , 1/Kt by the terms in the previous formula in reverse order. Hence,

we have to minimize the expression(
1

2

)t+1(
1 +

1

Kt

)(
1 +

Kt

Kt−1

)
· · ·
(

1 +
K2

K1

)(
1 +

K1

K0

)
, (8)

yielding first-order conditions equivalent to

0 = −Ki+1

K2
i

(
1 +

Ki

Ki−1

)
+

(
1 +

Ki+1

Ki

)
1

Ki−1

,

for all i = 1, . . . , t. Thus, by simple rearrangements, we obtain

Ki+1Ki−1 = K2
i , (9)

for all i = 1, . . . , t, where Kt+1 = 1. It can be verified that the first-order conditions determine

the minimum value for expression (8).
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We claim that

Kt−(i−1) = (Kt−i)
i

i+1 , (10)

for all i = 1, . . . , t, which we prove by induction. Clearly, our claim holds true for i = 1, by

equation (9). Assume that (10) is valid for i. Therefore, we show that it also holds true for

i+ 1. From (9), we have

Kt−i+1Kt−i−1 = (Kt−i)
2 ,

and by employing our induction hypothesis, we get

(Kt−i)
i

i+1 Kt−i−1 = (Kt−i)
2 ⇔ Kt−i = (Kt−i−1)

i+1
i+2 ,

which is what we wanted to show.

Finally, by employing (10) recursively, we obtain the statement of our proposition.

Assuming in Proposition 2 that t+1
√
N is an integer may appear to be too restrictive.11

Clearly, for arbitrary combinations of N and t, the sequence (Ki)
t+1
i=1 given by equation (7) is

typically a non-integer sequence and does not determine legitimate numbers of districts for all

levels. However, we only use the result of Proposition 2 to get an idea of how to find a lower

bound for the largest possible bias while keeping t fixed.

Proposition 3. If the number of levels t is fixed, then as the number of voters N tends to

infinity, we have the following lower bound on the bias of the most biased case:

lim
N→∞

max
∣∣F (x∗t+1,1)− F (x∗POP )

∣∣ ≥ 1

2
−
(

1

2

)t+1

.

Proof. Noting that lim
N→+∞

F (x∗POP ) = 1/2, from Lemma 3, we get

lim
N→∞

maxB(x) =
1

2
−
j∗t+1,1

N
≥ 1

2
−

1
2

(
K0

K1
+ 1
)

1
2

(
K1

K2
+ 1
)
· · · 1

2

(
Kt−1

Kt
+ 1
)

1
2

(Kt + 1)

K0

K1

K1

K2
· · · Kt−1

Kt

Kt

Kt+1

=
1

2
− 1

2

(
1 +

K1

K0

)
1

2

(
1 +

K2

K1

)
· · · 1

2

(
1 +

Kt

Kt−1

)
1

2
(1 +Kt) . (11)

Now, in the hierarchical construction described in Example 2, we substitute b t+1
√
Nc for the

target district size s. Since we are only interested in the case of many voters, we can assume,

11Not to mention, if all prime factors of N are identical, for example, N = at+1, where a is a prime, t+1
√
N is

always an integer.
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without loss of generality, that blogsNc − 1 ≥ t. It can be verified that for fixed t, for the

determined value of s, and for sufficiently large N , a sequence K1, . . . , Kt of numbers of districts

can be chosen in the way described at the end of Example 2. Hence, substituting the target

district sizes into (11), we obtain

lim
N→∞

maxB(x) ≥ lim
N→∞

1

2
−
(

1

2

)t+1(
1 +

1

s

)(
1 +

1

s

)
· · ·
(

1 +
1

s

)
=

1

2
−
(

1

2

)t+1

,

since s tends to infinity as N tends to infinity for a given t.

Noting that (8) is not j∗t+1,1, but rather j∗t+1,1/N , which is the relative position of the

final elected voter, this proposition says that the relative position of the voter moves left as

N increases. Now, from Proposition 3, it follows that as the maximum number of levels t

increases, the maximum bias approaches its highest possible level, which we state in the next

corollary.

Corollary 1. As t tends to infinity, the maximum bias in the case of liberal gerrymandering

tends to 1/2.

Proposition 3 and Corollary 1 mean that the more voters there are, the more extreme the

relative position of the policy that political extremists can realize becomes. As a result, many

voters provides the extreme district maker with an expedient way to implement her favorite

policy. In particular, if party A is at the left end and party B is at the right end of the unit

interval, then, party A’s most preferred outcome will be the national outcome, independent of

voters’ preferences.

Our model is applicable to other democratic issues. In the Appendix, we apply our model

to solve and explain the issues of random districting and the partisan bias.

4 Moderates’ policy implementability

So far, we have only considered the cracking and packing method in the case in which a political

extremist is a district maker who wants to implement a policy as low or as high as possible.

However, someone with a moderate political position around the median can also be a district
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maker, and she would consider how to organize districts so as to implement her favorite policy.

If there is at least one districting method that makes it possible to implement the district

maker’s ideal policy, this districting method is one of her implementations. We have already

had the electable and most extreme representative j∗t+1,1. Thus, we can say that the districting

method is a powerful implementation method in elections for a district maker with any political

position if all voters from j∗t+1,1 to N+1
2

(i.e., from j∗t+1,1 to N − j∗t+1,1 + 1, by symmetry), are

also electable as the final representative. In addition, from Proposition 3 and Corollary 1, we

can say that almost all voters’ favorite policies relative to all voters’ become implementable as

N increases.

Is any moderate’s favorite policy actually implementable? The answer is yes, and she can

implement the policy by generalizing the cracking and packing method described in the previous

sections, hereafter referred to as the generalized cracking and packing method. Note that the

interval we have to consider is only {1, 2, . . . , N+1
2
}, by symmetry. We define the district number

to which j∗t+1,1 belongs at each decision level in the cracking and packing method as

m1 ≡
j∗t+1,1

1
2
( N
K1

+ 1)
=

1

2
(Kt + 1)

1

2

(
Kt−1

Kt

+ 1

)
1

2

(
Kt−2

Kt−1

+ 1

)
. . .

1

2

(
K1

K2

+ 1

)
,

m2 ≡ m1
1
2

(
K1
K2

+1)
, m3 ≡ m2

1
2

(
K2
K3

+1)
, . . ., mt ≡ mt−1

1
2

(
Kt−1
Kt

+1)
, and mt+1 ≡ mt

1
2

(Kt+1)
= 1, since there are

minimal majority voters or representatives with ideal points left of j∗t+1,1. In particular, there

are 1
2
(Ki−1

Ki
+ 1) voters of such type for any i ∈ {1, 2, 3, . . . , t, t + 1}, including j∗t+1,1 at each

decision level. For convenience, we also define m0 = j∗t+1,1. Then, in the cracking and packing

method, noting that j∗t+1,1 is included in the m1-th district at the first decision level, from the

definition of mi, the cardinality of the maximum minority voters with a higher index is equal

to 1
2
(Ki−1

Ki
− 1), which we insert from the first district through the Ki-th district. This is shown

in Table 7.
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Table 7: Each district by the cracking and packing method at the i-th decision level

The position of each voter

District

number

1 2 . . . 1
2 (Ki−1

Ki
+ 1) =

median

1
2 (Ki−1

Ki
+ 1) + 1 1

2 (Ki−1

Ki
+ 1) + 2 . . . 1

2 (Ki−1

Ki
+1)+ 1

2 (Ki−1

Ki
−

1) = Ki−1

Ki

1 1 2 . . . Ai Ki−1 Ki−1 − 1 . . . Ki−1 −Bi + 1

2 Ai + 1 Ai + 2 . . . 2Ai Ki−1 −Bi Ki−1 −Bi − 1 . . . Ki−1 − 2Bi + 1

...
...

...

mi − 1 (mi − 2)Ai + 1 (mi − 2)Ai + 2 . . . (mi − 1)Ai Ki−1 − (mi − 2)Bi Ki−1−(mi−2)Bi−1 . . . Ki−1 − (mi − 1)Bi + 1

mi (mi − 1)Ai + 1 (mi − 1)Ai + 2 . . . miAi Ki−1 − (mi − 1)Bi Ki−1−(mi−1)Bi−1 . . . Ki−1 −miBi + 1

mi + 1 miAi + 1 miAi + 2 . . . (mi + 1)Ai Ki−1 −miBi Ki−1 −miBi − 1 . . . Ki−1 − (mi + 1)Bi + 1

...
...

...

Ki − 1 (Ki − 2)Ai + 1 (Ki − 2)Ai + 2 . . . (Ki − 1)Ai Ki−1 − (Ki − 2)Bi Ki−1−(Ki−2)Bi−1 . . . Ki−1 − (Ki − 1)Bi + 1

Ki (Ki − 1)Ai + 1 (Ki − 1)Ai + 2 . . . KiAi Ki−1 − (Ki − 1)Bi Ki−1−(Ki−1)Bi−1 . . . Ki−1 −KiBi + 1

Left wing Right wing

Ai ≡ 1
2
(Ki−1

Ki
+ 1), Bi ≡ 1

2
(Ki−1

Ki
− 1)

The numbers in the left wing are shown in ascending order and those in the right wing are shown in descending order. Thus, the number

KiAi that appears in the Ki-th row and the 1
2
(Ki−1

Ki
+ 1)-th column is equal to Ki−1 −KiBi, which is one less than Ki−1 −KiBi + 1 at the Ki-th

row and the Ki−1

Ki
-th column. That is, KiAi = 1

2
(Ki−1 +Ki) = Ki−1 − 1

2
(Ki−1 −Ki) = Ki−1 −KiBi. Thus, both numbers are consecutive.
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In the cracking and packing method, the numbers of district medians appear at every

1
2
(Ki−1

Ki
+ 1) positions because of the cracking of all voters into minimum majorities with lower

values and maximum minorities with higher values, and then packing each into one district.

Here, we refer to the minimum majority voters with lower values in each district as “Left wing”

and the maximum minority voters with higher values as “Right wing.” Now, we focus on the

median of each district, especially the mi-th through the Ki+1
2

-th district, after the following

manipulations. First, in Table 7, we remove the last-position voter in the Right wing of the

Ki-th district and slide all voters forward one position in the Right wings of all districts. Then,

since voter Ki−1 also moves forward one position, we can create a vacant position at the first

position in the Right wing of the first district. Second, we insert the first-position voter Ai + 1

in the Left wing of the second district into the vacant position instead of using voter Ki−1.

Third, we slide back all voters in the Left wings from the second through the Ki-th districts

by one position, and insert the removed voter from the last position in the Right wing of the

Ki-th district into the last position in the Left wing of the Ki district, which is now vacant.

We refer to this series of manipulations as a cycle. By repeating the cycle, the positions of the

voters in the first district become those shown in Table 8.

Table 8: The positions of voters in the first district at the i-th decision level

Voters’ positions

Sliding by . . . median median +1 median +2 median+3 . . . median+Bi =
Ki−1

Ki

0 Ai Ki−1 Ki−1 − 1 Ki−1 − 2 Ki−1 −Bi + 1

1 Ai Ai + 1 Ki−1 Ki−1 − 1 Ki−1 −Bi + 2

2 . . . Ai Ai + 1 Ai + 2 Ki−1 . . . Ki−1 −Bi + 3

...
...

...

1
2

(
Ki−1

Ki
− 1) Ai Ai + 1 Ai + 2 Ai + 3 Ai + Bi =

Ki−1

Ki
.

Left wing Right wing

By virtue of the cycle, the medians in the second district through the Ki-th district slide

and are replaced by each voter with one higher value. Noting that there are Bi = 1
2
(Ki−1

Ki
− 1)

voters in the Right wing in each district, and that there are (Ki+1
2
− 1)Bi voters in the Right

wings of the first through the Ki+1
2
− 1-th districts, we can also apply the cycle in the second
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through Ki+1
2
− 1-th districts, repeatedly. Then, we can slide (Ki+1

2
− 1)Bi voters, and voters in

the first through the Ki+1
2
− 1-th district in the Right wing are lined up in ascending order. As

a result, voters 1 through the median of all voters are lined up in ascending order in the first

through Ki+1
2

-th districts.

Now, we check that any voter between j∗t+1,1 and the median of all voters is electable as the

final representative. Focusing on the medians of the mi-th district through the Ki+1
2

-th district

(i.e., the median district), we extract the medians of those districts. Then, we obtain Table

9. Note that, by sliding (mi − 1)Bi positions, since all voters in the Right wing of the first

Table 9: Each district median of the mi-th through the Ki+1
2

-th at the first decision level

Sliding Median voter of the

by mi-th dist. mi + 1-th dist. mi + 2-th dist. . . . Ki+1
2 -th dist. . . .

0 miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1
2 Ai . . .

1 miAi + 1 (mi + 1)Ai + 1 (mi + 2)Ai + 1 Ki+1
2 Ai + 1

2 miAi + 2 (mi + 1)Ai + 2 (mi + 2)Ai + 2 Ki+1
2 Ai + 2 . . .

...
...

...

(mi − 1)Bi miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1
2 Ai . . .

+(mi − 1)Bi +(mi − 1)Bi +(mi − 1)Bi +(mi − 1)Bi

(mi − 1)Bi + 1 miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1
2 Ai . . .

+(mi − 1)Bi +(mi − 1)Bi + 1 +(mi − 1)Bi + 1 +(mi − 1)Bi + 1

(mi − 1)Bi + 2 miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1
2 Ai . . .

+(mi − 1)Bi +(mi − 1)Bi + 2 +(mi − 1)Bi + 2 +(mi − 1)Bi + 2

...
...

...
...

miBi miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1
2 Ai . . .

+(mi − 1)Bi +miBi +miBi +miBi

...
...

...

(Ki+1
2 − 1)Bi miAi (mi + 1)Ai (mi + 2)Ai . . . Ki+1

2 Ai . . .

+(mi − 1)Bi +miBi + 1 +(mi + 1)Bi +(Ki+1
2 − 1)Bi

Group

number mi mi + 1 mi + 2 . . . Ki+1
2 . . .

district through the mi−1-th district have already been replaced by voter Ai +1 through voter
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Ai + (mi − 1)Bi, there is no voter to be replaced before voter miAi + (mi − 1)Bi in the mi-th

district. Thus, the median of the mi-th district cannot slide further, so voter miAi +(mi−1)Bi

is unchanged after sliding by (mi − 1)Bi in Table 9. Similarly, the medians of the mi + 1-th

through the Ki+1
2

-th districts are also unchanged after replacing the voters in the Right wing

and lining up the consecutive numbers in each district. This is true each time we slide by Bi

positions after sliding by (mi − 1)Bi positions.

Focusing on the last column in the last row, sliding by (Ki+1
2
− 1)Bi positions, in Table 9,

voter Ki+1
2
Ai +

(
Ki+1

2
− 1
)
Bi is equal to Ki−1+1

2
. When sliding by (Ki+1

2
− 1)Bi positions, all

representatives in the first through Ki+1
2

-th districts are lined up in ascending order at the i-th

decision level. In other words, we can refer to the case shown in the (Ki+1
2
− 1)Bi-th row of the

table as the “full sliding.” When i = 1 (i.e., the first decision level), voter miAi in the first row

and the first column in Table 9 is equal to j∗t+1,1 = m0, and is the most extreme voter electable

as the final representative, by the definition of mi. In addition, voter Ki+1
2
Ai + (Ki+1

2
− 1)Bi in

the last row and the last column is equal to N+1
2

, and is the median of all voters.

Note that the same numbers may appear in Table 9, 12 as shown in Example 3 in the

Appendix. Thus, we have all numbers between j∗t+1,1 and N+1
2

, which means those voters are

electable as representatives of the i+ 1-th decision level.

In Table 9, we refer to the medians of the mi-th district as Group mi, those of the mi + 1-th

as Group mi + 1, and so on. Lastly, those of Ki+1
2

-th district are Group Ki+1
2

. To elect a voter

as a district representative to the i + 1-th decision level, we need to choose a row l including

the voter, l ∈ {0, 1, . . . , (Ki+1
2
− 1)Bi}, from Table 9. Then, if the voter is in Group mi, we

district all representatives by the cracking and packing method at each decision level from the

i + 1-th to the t-th levels without sliding any positions. This is because the voter is already

at the same position as j∗t+1,1’s in the case of the cracking and packing method. If the voter is

12In Table 9, the condition of repeated or consecutive numbers lined up between the mi-th district and the

Ki+1
2 -th district is miAi + (mi − 1)Bi + 1 ≥ (mi + 1)Ai (i.e., Ki−1

Ki
≥ mi−1

mi−2 ), since the mi-th column has the

least number of sliding positions. Here, the minimum Ki−1

Ki
is 3, because it is the population per district. Thus,

Ki−1

Ki
≥ 3 ≥ mi−1

mi−2 . From this inequality, mi ≥ 5
2 is obtained. Consequently, noting that mi is an integer, mi ≥ 3

is needed.
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in Group mi + 1, she is out by one position from the j∗t+1,1’s position. If the voter is in Group

mi + 2, she is out by two positions, if in Group mi + 3, she is out by three positions, and so

on. Thus, we have to slide the voter by the number of positions that her group is away from

Group mi at the i + 1-th decision level to elect her as a district representative to the i + 2-th

decision level.

For simplicity, we renumber representatives at the i+ 2-th level as

{1, 2, 3, . . . ,mi, . . . ,
Ki+1

2
, . . . , Ki} at the i + 1-th level. When we slide by 0 positions at the

i+ 1-th decision level, each representative of Group mi can become the district median of the

mi+1-th district. When we slide by one position at the i+1-th decision level, each representative

of Group mi + 1 can become the district median of the mi+1-th district, and so on. Sliding

each district representative individually, and noting that mi+1 =
mi

1
2
( Ki

Ki+1
+ 1)

, we have the same

table at the i+ 1-th decision level as shown in Table 9, where i is replaced by i+ 1.

Noting that each decision level has the same structure without populations, all elected

representatives are renumbered from one to Ki, i = {1, 2, 3, . . . , t} at each level. Then, at

each decision level above the first, if representatives elected at the decision level below (i.e., the

i−1-th level) are between Group mi−1 and Group Ki−1+1
2

, we can apply the above manipulation

to the i-th level. Thus, we have the following lemma.

Lemma 4. Under Assumption 1, if a renumbered representative elected at the i− 1-th decision

level is a representative between mi−1 and Ki−1+1
2

at the i-th decision level, where there are Ki−1

representatives, i ∈ {1, 2, 3, . . . , t}, then she is electable as a district representative between the

mi-th district and the Ki+1
2

-th to the i+ 1-th decision levels.

Proof. Note that mi−1 = miAi by the definition of mi, since, at the i-th decision level, there

are Ki−1 representatives elected at the i−1-th decision level. Thus, all representatives between

mi−1 and Ki−1+1
2

are lined up as district medians of the mi-th through the Ki+1
2

-th districts in

Table 9. Therefore, at the i-th decision level, all representatives between mi−1 and Ki−1+1
2

are

electable as a district representative to the i+ 1-th decision level.

Applying Lemma 4 repeatedly, we have the following proposition.
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Proposition 4. Under Assumption 1, any voter between j∗t+1,1 and the median of all voters

N+1
2

is electable as the final representative.

Proof. Since K1 > K2 > K3 > . . . > Kt > Kt+1 = 1 and 1
2
( Ki

Ki+1
+ 1) ≥ 1, we have

j∗t+1,1 = m0 > m1 > m2 > m3 > . . . > mt > mt+1 = 1,

from the definition of mi, and we have

N + 1

2
>
K1 + 1

2
>
K2 + 1

2
> . . . >

Kt + 1

2
>
Kt+1 + 1

2
= 1.

Thus, by applying the proof of Lemma 4, both mi and Ki+1
2

in Table 9 shrink to 1 as i → t.

Lastly, we can say that the voter we want to elect as the final representative between j∗t+1,1 and

the voters median N+1
2

is elected at the final decision level by the sandwich theorem.

By symmetry, any voters between j∗t+1,1 and N − j∗t+1,1 + 1 are electable as the final repre-

sentative. Example 3 in the Appendix illustrates the generalized cracking and packing method

described here. According to our results, a district maker can implement any policies between

x∗t+1,1 and xN−j∗t+1,1+1 by gerrymandering districts. In addition, from Proposition 3 and Corol-

lary 1, which state that voter j∗t+1,1’s relative position to all voters becomes more extreme as

the number of voters increases, the more voters there are, the wider is the implementable policy

range by gerrymandering.

With regard to the democracy, if we want to avoid the policy bias of a district maker with

an extreme political position, we may think that the district maker should be randomly elected

from among all voters. However, this may not be effective. We obtain the next corollary from

Proposition 4.

Corollary 2. Under Assumption 1, when each voter becomes the district maker with an equal

probability, the voters’ positions with the highest probability are those elected by the left and

right extremists’ gerrymandering districts, j∗t+1,1 and N − j∗t+1,1 + 1, respectively.

Proof. Since there are N voters, the probability of each voter becoming the district maker is

1
N

. From Proposition 4, any district maker in {j∗t+1,1, . . . ,
N+1

2
} can elect herself as the final

27



representative, or can elect anyone in {N+1
2

+ 1, . . . , N − j∗t+1,1 + 1}, by symmetry. Thus, the

policies of each {j∗t+1,1, . . . ,
N+1

2
, . . . , N − j∗t+1,1 + 1} are implemented with probability 1

N
.

On the other hand, voters in {1, . . . , j∗t+1,1 − 1} and {N − j∗t+1,1 + 2, . . . , N} cannot elect

themselves as the final representative by gerrymandering districts. Thus, their favorite and

implementable policies by gerrymandering districts are the same as those implemented by

j∗t+1,1 and N − j∗t+1,1 + 1, respectively. Therefore, j∗t+1,1 and N − j∗t+1,1 + 1 are elected as the

final representative with probability
j∗t+1,1

N
.

This corollary means that even when the district maker is randomly elected from among all

voters, the most likely policies are the same as those implemented by extremists by gerryman-

dering. As a result, randomly electing a district maker will not reduce the policy bias from in

a democracy. In other words, this corollary states that extremists’ policy implementability is

stronger than that of moderates’, even when district makers are chosen randomly.

5 Concluding remarks

In this paper, we introduced a multiple hierarchical legislative system in a representative democ-

racy. Here, a district maker groups voters and intermediate representatives into smaller single-

member districts at each legislative level. Then the district maker can gerrymander districts

to enable a candidate with a policy position close to hers to win and implement the policy. We

showed the range of implementable policies available to the final representative elected in the

gerrymandered districts. As the number of legislative levels increases, the range expands. In

particular, when the district maker has an extreme policy position, a large number of voters

makes it easier for her to implement a policy relatively close to hers because she can construct

a legislative system with more levels. In other words, the more voters there are, the stronger

is the district maker’s policy implementability in the hierarchical representative system. Thus,

a hierarchically legislative democracy can be regarded as a method a district maker can use to

implement her favorite policy by constructing a multiple hierarchical legislature and gerryman-

dering districts. In addition, even when the district maker is elected from all voters randomly,
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extremists have stronger policy implementability than moderate voters. Viewed from the stand-

point of a democracy, our results may explain why it is not easy to find examples of multiple

hierarchical legislative systems like Jefferson’s ward republic.

In our model, we assume that the district maker has all information, and in particular, knows

voters’ policy preferences. However, in the real world, the district maker has only partial in-

formation, although more precise information on the distribution of voters policy preferences

is available today than in the past. In particular, the electoral process could be described by

the following game to reflect the asymmetric information: 1) each voter sends (intentionally

or unintentionally) a message of his/her ideal point; 2) the district maker groups voters into

districts hierarchically; 3) each voter casts a ballot sincerely; and 4) the final representative

is elected and implements her ideal policy. One important issue in the game is whether vot-

ers send messages truthfully. If the district maker announces and commits to districting with

t levels and the voters have to commit to their messages (for instance, because they can be

monitored by the other members of the same legislature), voters have no incentive to hide or

to pretend to have another ideal point in the first stage since a moderate district maker in our

hierarchical model selects a voting rule electing the voter with the k-th ranked ideal point from

the left. This, according to Moulin (1980) is the strategy proof and the group strategy proof

voting rule. As a result, the same outcomes as those in our model are obtained. However, in

the literature on asymmetric information, there are several other political situations in which

voters cannot commit to anything, do not vote sincerely, or there is no previous announcement.

In those cases, various outcomes could appear. These issues need to be addressed by future

research. In addition, random districting is another possible application and we could introduce

informational structures into our model, such as the verifiability of representatives behavior and

the privacy of individual votes.
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Appendix

Here, we apply the results of our model to solve or explain two political issues: random dis-

tricting and the partisan bias.

Application 1. Random districting

In indirect democratic systems, one may hope to prevent bias, and especially the results shown

in Corollary 3 or 1, in which some political groups win by intentional gerrymandering. To

solve the problem, random districting (i.e., voters are randomly grouped into districts) could

be useful. We show that the results on random districting obtained by Gilligan and Matsusaka

remain valid for our multiple hierarchical model of a representative democracy.

To compare our model to that of Gilligan and Matsusaka, we first assume that N is odd, all

voters support either policy 1 or 2, xj ∈ {1, 2}, and dN/2e voters have their ideal points at 1

and bN/2c voters have their ideal points at 2.13 For simplicity, we assume that the number of

voters N takes a value such that, for given K1, . . . , Kt, t-level districting can be carried out in

integers.14 The median voter’s ideal point is equal to 1. However, one can group the voters into

equal-sized first-level districts such that the ideal point of the first-level median representative is

equal to 2, which means that we have more first-level districts with a median representative at

2 than at 1. Now, at the second-level, we can also construct districts with more representatives

with ideal points at 2 than at 1. We proceed in the same way until we arrive at the top level,

which then has a median representative with an ideal point at 2. Since these types of districts

emerge with a positive probability, the expected ideal point will be greater than the voters’

median point.

In this example, voters’ ideal points are a bit skewed. The next proposition, which is

analogous to Proposition 2 of Gilligan and Matsusaka, investigates the cases of symmetric and

upwards skewed distributions of voters’ ideal points.

Proposition 5. Let Assumption 1 hold. Assuming that each districting is equally probable, the

13This example is an extension of an example by Gilligan and Matsusaka (2006, p. 387).
14Hence, each district has a uniquely determined median voter.
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expected bias of random districting

1. is zero if the voters’ ideal points are symmetrically distributed around their median, and

2. is biased upwards if the voters’ ideal points are skewed upwards.

Proof. Assume that the voters’ ideal points are in ascending order (i.e., x∗1 < x∗2 < . . . < x∗N).

Let M = (N + 1)/2. Denote by p(xi) the probability that voter i becomes the top-level

representative, that is, the policymaker or legislator.

We start by proving point 1. As a result of the symmetric setting, we must have p(xM−i) =

p(xM+i) and xM − xM−i = xM+i − xM , for all i = 0, . . . ,M − 1. Hence,

E (x∗LEG) =
N∑
i=1

p(xi) =
M−1∑
i=1

p(xM−i)xM−i + p(xM)xM +
M−1∑
i=1

p(xM+i)xM+i = xM . (12)

To establish point 2, we just have to replace xM − xM−i = xM+i − xM with xM − xM−i ≤

xM+i− xM for all i = 0, . . . ,M − 1, which holds since the distribution of ideal points is skewed

upwards in equation (12).

Application 2. The partisan bias

We can apply the result of Lemma 2 to measure the “partisan bias,” which is the deviation

between the proportion of seats held by a party in the final legislature at the t+ 1-th decision

level and that of the votes its members received at the polls. For the measurement, we rearrange

voters with each favorite policy to those who are supporting parties of xj ∈ {0, 1}, as in the

application in Gilligan and Matsusaka. Here, the population of voters is still N and the number

of hierarchical levels is t+ 1.

Let voters who prefer party 0 to party 1 be called partisan. The fraction of voters favoring

party 1 is V = 1
N

∑N
i=1 xi and the fraction favoring party 0 is 1 − V . The party affiliation of

representative k at the t + 1-th decision level is xkt+1,1 ∈ {0, 1}, corresponding to the median

representative in the k-th district at the t-th decision level. The fraction of seats held by party

1 and party 0 in the final legislature is Lt = 1
Kt

∑Kt

k=1 x
k
t+1,1 and 1 − Lt, respectively. Then,

the partisan bias can be defined as βt = |Lt − V |. If there is no bias, then the fraction of
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seats held by party 1 is the same as the fraction of supporters in voters, and Lt = V . Since a

representative at the t+ 1-th decision level needs at least

s ≡ 1

2

(
Kt−1

Kt

+ 1

)
1

2

(
Kt−2

Kt−1

+ 1

)
. . .

1

2

(
K1

K2

+ 1

)
1

2

(
K0

K1

+ 1

)
supporters at the voters level, as shown in the proof of Lemma 2, we obtain the next proposition

of the partisan bias.

Proposition 6. Let Assumption 1 hold. Let V be the fraction of voters who support party 1,

and suppose there are enough party 1 voters to elect at least one representative of party 1 to

the t+ 1-th decision level, but not to elect all representatives: 1
2
(Kt−1

Kt
+ 1)1

2
(Kt−2

Kt−1
+ 1) . . . 1

2
(K1

K2
+

1)1
2
( N
K1

+ 1) < VN < Kt
1
2
(Kt−1

Kt
+ 1)1

2
(Kt−2

Kt−1
+ 1) . . . 1

2
(K1

K2
+ 1)1

2
( N
K1

+ 1). Then

max βt =

(
1

2Kt
(Kt + 1)
j∗t+1,1

N

− 1

)
V.

Proof. Since one representative at the t+ 1-th decision level needs at least s voters, when there

are
∑Kt

i=1 x
i
t+1,1 representatives at the t+1-th decision level, the minimum number of supporters

at the voters level is s
∑Kt

i=1 x
i
t+1,1, which is equal to or less than the actual number of voters

supporting party 1: s
∑Kt

i=1 x
i
t+1,1 ≤

∑N
i=1 xi. Dividing this by N and multiplying by 1

2
(Kt + 1),

we obtain the following inequality:

LtKt

N

1

2
(Kt + 1)

1

2

(
Kt−1

Kt

+ 1

)
1

2

(
Kt−2

Kt−1

+ 1

)
. . .

1

2

(
K1

K2

+ 1

)
1

2

(
K0

K1

+ 1

)
≤ 1

2
(Kt + 1)V.

Using formula (4) and subtracting V from both sides, we get

βt = Lt − V ≤

(
1

2Kt
(Kt + 1)
j∗t+1,1

N

− 1

)
V.

The maximum partisan bias βt is the ratio between the relative position of the median, who

is the final representative at the t+1-th decision level, and that at the voters level. In fact, this

proposition is a generalization of the partisan bias β calculated in Proposition 4 of Gilligan and

Matsusaka, and corresponds to the case of t = 1 in our model. Gilligan and Matsusaka point

out that increasing the number of seats K1 in the legislature decreases the partisan bias, holding

the number of voters constant at N . However, one fact needs to be added to their finding. For
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instance, applying the case of t = 1 in our example 1, while both {K1 = 3, K2 = 1} and

{K1 = 9, K2 = 1} reach the same result (i.e., the 10-th voter becomes the final representative),

the maximum partisan biases are ( 2/3
10/27

− 1)V = 0.8V and ( 5/9
10/27

− 1)V = 0.5V , respectively.

Thus, the legislature with fewer seats has a larger bias than that with more seats, even when

the same representative is elected as the final representative in both, with gerrymandering.

Example

Example 3. Let us again consider the example of N = 27, t = 2, and the voters set N =

{1, 2, 3, . . . , 25, 26, 27}. In this case, the median of all voters is 14 and the most extremely liberal

voter who is electable as the final representative is j∗3,1 = 1
2
(3 + 1) · 1

2
(9

3
+ 1) · 1

2
(27

9
+ 1) = 8.

Lemma 4 and Proposition 4 state that voters between 8 and 14, who belong to either the fourth

or the fifth district at the first decision level, from the definition of mi, are electable as the final

representative in this example.

Sliding voters: We have to slide voters by zero, one, two, three, and four positions to place

voters 8, 9, 10, 11, 12, 13, 14 at the fourth and fifth district median positions, since m1−1
2

( N
K1
−1) =

4−1
2

(27
9
− 1) = 3, following Table 8. Then, we have Table 10.

Table 10: Placing voters between 8 and 14 on district median at the first decision level

Sliding District number

by 1 2 3 4 5 6 7 8 9

0 {1, 2, 27} {3, 4, 26} {5, 6, 25} {7, 8 , 24} {9, 10, 23} {11, 12, 22} {13, 14, 21} {15, 16, 20} {17, 18, 19}

↓ ↓

1 {1, 2, 3} {4, 5, 27} {6, 7, 26} {8, 9, 25} {10, 11, 24} {12, 13, 23} {14, 15, 22} {16, 17, 21} {18, 19, 20}

↓ ↓

2 {1, 2, 3} {4, 5, 6} {7, 8, 27} {9, 10, 26} {11, 12, 25} {13, 14, 24} {15, 16, 23} {17, 18, 22} {19, 20, 21}

↓ ↓

3 {1, 2, 3} {4, 5, 6} {7, 8, 9} {10, 11, 27} {12, 13, 26} {14, 15, 25} {16, 17, 24} {18, 19, 23} {20, 21, 22}

↓ ↓

4 {1, 2, 3} {4, 5, 6} {7, 8, 9} {10, 11, 12} {13, 14 , 27} {15, 16, 26} {17, 18, 25} {19, 20, 24} {21, 22, 23}

For instance, if we want voter 12 to be elected as a district representative in the second through
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the final decision levels, we need to slide two positions. Then, we have the representatives

{2, 5, 8, 10, 12, 14, 16, 18, 20}. At the second decision level, we need to slide representatives by

one position:

Sliding by 1 2 3

1 {2, 5, 8} {10, 12, 20} {14, 16, 18}

Now we have representatives {5, 12, 16} in the final decision level. Lastly, 12 is elected as the

final representative.

Next, if we want voter 14 to be elected as a district representative in the second through

the final decision levels, we need to slide four positions, which is full sliding at the first decision

level. Then, we have the representatives {2, 5, 8, 11, 14, 16, 18, 20, 22}. At the second level, we

need to slide representatives by one position, which is also full sliding, for representative 14 to

belong to the median district:

Sliding by 1 2 3

1 {2, 5, 8} {11, 14, 22} {16, 18, 20}

At the final level, we have {5, 14, 18}, and voter 14 is elected as the final representative. In

this case, voters slide fully at each decision level so that all voters before voter 14 are lined up

consecutively in ascending order.

Lastly, if we want voter 11 to be elected as a district representative in the second through

the final decision levels, we need to slide voters either one, three, or four positions. If we

choose to slide by one position, we have the representatives {2, 5, 7, 9, 11, 13, 15, 17, 19}, and

if we choose three positions, we have {2, 5, 8, 11, 13, 15, 17, 19, 21}. Sliding by four positions is

similar to three positions because 11 is in the fourth district. When sliding by one position, at

the second decision level, representatives need to slide by one position. When sliding by three

positions, they need to slide by zero positions:

Sliding by

first level second level 1 2 3

1 1 {2, 5, 7} {9, 11, 19} {13, 15, 17}

3 0 {2, 5, 21} {8, 11, 19} {13, 15, 17}.
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Since 11 appears as the district median of the fourth and fifth districts when sliding by one,

three, and four positions, they achieve the same result at the first decision level. Thus, we can

obtain the same result at the final decision level. �
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[15] Puppe, C. and A. Tasnádi (2014), “Axiomatic Districting,” Social Choice and Welfare,

forthcoming.

36



[16] Shugart, M.S. and J.M. Carey (1992), Presidents and Assemblies: Constitutional Design

and Electoral Dynamics, Cambridge: Cambridge University Press.

37


