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Absztrakt

A cikkben a kooperativ jatékelmélet fogalmait atkakzuk egy Holt-Mogigliani-Muth-
Simon-tipusu ellatasi lanc esetében. Az ostorcshatis elemeit egy beszallito-tertel
ellatasi lancban ragadjuk meg egy kvadratikus leészési és termelési koltség mellett.
Feltételezzik, hogy mindkét vallalat minimalizélga relevans koltségeit. Két tikdodési
rendszert hasonlitunk 6ssze: egy hierarchikus dbn#atali rendszert, amikoréskor a
termeb, majd a beszallitd optimalizalja helyzetét, magy eentralizalt (kooperativ) modellt,
amikor a vallalatok az egyittes koltseéguket minigddjak. A kérdés ugy merdl fel, hogy a
csokkentett ostorcsapas-hatas esetén hogyan asstak részveédk ebben a transzferalhato
hasznossagu kooperativ jatékban a koltség megiastarexogén modon adott targyalasi
pozicié mellett.

Kulcsszavak: Optimalis iranyités, Ellatasi 1anc, Ostorcsapasshaooperativ jatékelmélet

Abstract

We apply cooperative game theory concepts to aeabyzHolt-Modigliani-Muth-Simon
(HMMS) supply chain. The bullwhip effect in a two-stage supply chain pisiier-
manufacturer) in the framework of the HMMS-modelthwiquadratic cost functions is
considered. It is assumed that both firms minintlzeir relevant costs, and two cases are
examined: the supplier and the manufacturer mirentieir relevant costs in a decentralized
and in a centralized (cooperative) way. The quastb how to share the savings of the
decreased bullwhip effect in the centralized (coaipee) model is answered by the weighted
Shapley value, by a transferable utility coopemtpame theory tool, where the weights are
for the exogenously given “bargaining powers” &é ffarticipants of the supply chain.

Keywords: Optimal control, Supply chain, Bullwhip effect, Querative game theory,
Weighted Shapley value



1 Introduction

In the supply chain literature so far mostlyon-cooperative game theory concepts were
applied, see e.g. Kogan and Tapiero (2007) andi &ethl. (2005), for an exception see.
Dobos and Pintér (2010). In this paper we analypply chains bycooperative game theory
tools. Our main question is that how the manufactand the supplier should share the
savings they achieve by harmonizing their productjgans. We apply the following
cooperative game theory concepts: thee (Gillies (1959)) and theveighted Shapley value
(Shapley (1953)) to answer the above question. Gt concept expresses that the
considered allocation of the savings is stable|enthie weights in the weighted Shapley value
are for the exogenously given “bargaining poweisthe participants of the supply chain, that
is, those describe how the participants share avengs as a function of their “bargaining
powers”.

In order to demonstrate the efficiency of coopeain a supply chain we consider the so
called bullwhip effect. The bullwhip effect explains the fluctuations sdles (demand),
manufacturing and supply. The bullwhip effect wastfobserved by Forrester (1961), later
Lee et al. (1997) rediscovered this phenomenony Thentioned four basic causes of the
bullwhip effect: lead-times and demand signal pssogy, order batching, rationing and
gaming; and promotion effect, or price fluctuatiombese effects were investigated e.g. by
Disney et al. (2003).

There are three basic models to investigate thésidacprocesses of a firm: the
Wagner-Whitin, Arrow-Karlin and the Holt-Modigliamuth-Simon (HMMS) model. These
models have a stock-flow identity and a cost fuorctiThe difference between them lies in the
cost functions. The well-known lot sizing model Wagner and Whitin (1958) assumes a
concave cost function. The basic model of Arrow &adlin (1958) applies a linear holding
and a convex production cost function. The modeHoft, Modigliani, Muth and Simon
(1960) assumes a quadratic function for both tkientory holding and the production cost.

The main goal of this paper is to demonstrate that weighted Shapley value
(Shapley (1953)), a cooperative game theory t@ol, lee applied to supply chain analysis. We
consider an HMMS-type two-stage supply chain aralyse the bullwhip effect appearing in
this model. To show that because of the bullwhfpatfthe cooperation of the manufacturer
and the supplier induces savings, we develop twdeatso a decentralized and a centralized
HMMS-type supply chain model.

The decentralized model assumes that first the faatwrer solves her production
planning problem (the market demand is given exogsly) and her ordering process is
based on the optimal production plan. Then the Isapminimizes her costs on the basis of
the ordering of the manufacturer. In the centralimgodel it is assumed that the participants
of the supply chain cooperate, that is, they minérithe sum of their costs.

In the next step we compare the production-invegnstrategies and the costs of the
manufacturer and supplier in the two models to stimt the bullwhip effect can be reduced
by cooperation (centralized model). This cooperatian be defined as a kind of information
sharing between the parties of the supply chain.

Finally, we discuss the question of how the martufac and the supplier should share
the savings their cooperation induces. We assurat ttie “bargaining powers” of the
participants are given by weights summing up to, ane share the savings according to these
weighs. We demonstrate that, in this model thiscephcoincides with the weighted Shapley
value (Shapley (1953)) and it is stable, thattis in the core (Gillies (1959)).

The main differences between this paper and DobdsPantér (2010) are as follows:
(1) Dobos and Pintér (2010) consider the Arrow-Karhodel (Arrow and Karlin (1958)),
while in this paper we analyze the Holt-Modiglidvizth-Simon model, so the two papers



consider different management science situationstebler, (2) Dobos and Pintér (2010)
assume that the manufacturer and the supplier thevesame “bargaining powers”, that is,
none of them can be considered as stronger thatliee. In business, however, typically one
of the participants is stronger than the other{ thkathey do not have same “bargaining
powers”. In other words, it is desirable to takeecabout the participants’ “bargaining
powers” when we discuss the allocation of the sgviachieved by the cooperation. In this
paper, we apply the weighted Shapley value, in whiee weights reflect the participants’
different “bargaining powers”.

The paper is organized as follows. The decenti@dlimedel is discussed in Section 2.
Section 3 analyzes the centralized (cooperativgplguchain model. In Section 4 we
introduce some concepts of cooperative game thaodydefine supply chain (cooperative)
games given by the models discussed in Sectionsd23a Moreover, we apply the above
mentioned solution concepts of transferable utdibypperative games to answer the question
of how the manufacturer and the supplier shouldresiihe savings, the result of their
cooperation. An exact number example is given ictiBe 5. The last section briefly
concludes.

2 The decentralized system

We consider a simple supply chain consisting of fiwos: a supplier and a manufacturer. We
assume that the firms are independent, that i$) eekes her decision to minimize her own

costs. The firms have two stores: a store for raatenmls and a store for end products.
Moreover, we assume that the input stores are enipdy is, the firms can order suitable

guantity and that they can get the ordered quanfitg production processes have a known,
constant lead time. The material flow of the madelepicted in Figure 1.

Figure 1. Material flow in the models
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The following parameters are used in the models:

T length of the planning horizon,
St) the rate of demand, continuous differentiatb[O,T],
I

() inventory goal size of manufactured prodtI(ffL[O,T],

(t) inventory goal size of supplied produtt) [O,T],

P.(t) manufacturing goal Ievet,D[O,T],

P.(t) supply goal levelt O[0,T],

hm inventory holding cost coefficient in manufactug@dduct store,

hs inventory holding cost coefficient in supplied gust store,
Cm production cost coefficient for manufacturing,
Cs production cost coefficient for supply.



In the HMMS-model it is assumed that the manageménte (manufacturer and supplier)
firms have fixed a production-inventory patterrattfs, the production plang, (t) and P,(t),

and planned inventory levels, (t) and I (t) are known before the planning horizon. The

objective of the managers of the firms is to mimenthe deviations from the fixed objective
level. The deviations are defined, as quadratiactionals with known parameters. This
phenomenon was empirically tested by Holt, ModiglidMuth, and Simon (1960).

The decision variables:

|..(t) the inventory level of the manufactured produds non-negativet D[O,T],
I.(t) theinventory level of the supplied product, in@n-negativet D[O,T],
P.(t) the rate of manufacturing, it is non-negatit/E,[O,T],

P.(t) the rate of supply, it is non-negative,] [O,T].

The decentralized model describes the situationreviiee supplier and the manufacturer
optimize independently, we mean the manufacturgerdenes its optimal production-
inventory strategy first (the market demand is givexogenously), then she orders the
necessary quantity of products to meet the knovmeaahel. Then the supplier accepts the order
and minimizes her own costs.

Next, we model the manufacturer in this HMMS-enmirent. The manufacturer
solves the following problem:

_T h_m T 2 Gy 5 2 .
3= {{Z[Im(t) o] + % [R0 -P@F ot - min ®
S.t.
(0= Ry() =S 10(0) =1, OSLST @

Assume that the optimal production-inventory policoy the manufacturer is
(I,ﬁi([)l P (D]) in model (1)-(2) and the manufacturer ord®s . {hen the supplier solves the
following problem:

e }{%[. O -LOf + > [R0- E(t)]z}dt - min 3)
S.t. 0
. (t)=P,@t)-P(t),1.,(0=1,, 0<t<T (4)
Notice that problem (3)-(4) has the same plannioigzbn [0,T] as that of model (1)-
@ To solve problem (1)-(2) we apply the PontryagiMaximum Principle (see e.g.

Feichtinger and Hartl, (1986), Seierstad and Sydsafl987)). The Hamiltonian function of
this problem is as follows:



1100, PO 0.0) =2 [0 - 107+ S [P0 - ROF 0,0 80 - D)

This problem is an optimal control problem with @wstate variable constraints. To
obtain the necessary and sufficient conditionsptineality we need the Lagrangian function:

Lo (1 @), P (0,00, (1), A (), 1) = H (1, 0), P (0), 92, (1), 1) + A, (1) O, (1) -

Lemma 1 (|g(g,P,g(g) is the optimal solution of problem (1)-(2) if andly if there exists
continuous functionp , () such that for ald<t<T ¢, (t) # 0 and

@y )=~ 2ella®PIO.0,0.4,0.4

a.() 1) =n 150 -T,0]-1,0),

max{H (1 4(t), P&, ().t} = H, (1 41, PL (0.4, (1).)

P, (1)20
o) -
= maxH.(120.P.0.0.0.0 =00 R0 -2 0)-Fof,
(©) A 005 =0 A,()=0,
@ wa(T)04T)=0, g,(T)z0

We do not prove the above lemma, its proof canoo@d in the above mentioned literature.
The optimal solution can be easy constructed,afdptimal production rate and the optimal
inventory level is positive in along the planningrizon.

Lemma 2 Assume that production-inventory strate@;‘z (L P? (D]) is an optimal solution for
model (1)-(2). Then the optimal solution must $atibe following differential equation:

4 0 1) /4 - S(t)
n® ] _| h MONNN .
(F’,ﬁ(t)]_[ﬁ OJ[EP,:(t)J’{Pm(t)-Q—mDm(t)J'

with initial and terminal condition

17 (0) =1, B (T) = P, (T).

We do not prove this lemma, the proof can be fomnBobos (2003). If production strategy
PY(00 is known, then problem (3)-(4) can be solved.

After optimal production strateg’ O(is given we can solve problem (3)-(4). The
Hamiltonian function of problem (3)-(4) is as folte



HL(1,0. ROY0.1)= —{%[I 0 -Le* [+ =[Po- E(t)]z} +, R0 - P 0)

This problem is also an optimal control problemhapiure state variable constraints.
To get the necessary and sufficient conditions pifn@ality, we need again the Lagrangian
function:

L (1.0, PO, 0, A, (0),) = H.(1.0), P.O). . (1), ) + A(t) 0. (t).
The proof of the following lemma can be found agaithe mentioned literature.

Lemma 3 (I;’(Lﬂ P? ([ﬂ) Is optimal solution of problem (3)-(4), if and gnif there exists
continuous functiony, [{ puch that for al0st<sT ¢ (t) # 0 and

@ ws(t)=—ds('3(t)’PS}ts)(f)” 0408 -y )=nfiz0-Lo-40)
maxH (10, P.(0).42, ().t = H.(1£0). P 0.4, (0).t)

v = mafH.(10.P0O¢.0=e.0 P 0-2'0-Ro)

(©) Abo)=0 Af)=zo,

() w,(r)os(m)=0 g.(r)z0

For the case of positive inventory level and prditucrate the optimal strategy is presented
in the next lemma.

Lemma 4 Let us assume that production-inventory strat&(tgfy([)l P! ([ﬂ) Is an optimal
solution for model (3)-(4). Then the optimal sabutimust satisfy the following differential

equation:
_ pd
irw)_ (R Yoy, RO
o) | e °J P PO-1.0)
with initial and terminal condition

120) =14, PYT)=R.(T).

Later we use the following notations: Igf, and J¢ be the optimal values of cost
functions (1) and (3) respectively, that is, let



3¢ = H%mh Sty -1, )f + %m[Png‘ (t) - P, (t)]z}dt

and
3¢ = Hh—;[l 20-Lof +Z[Pro- E(t)]z}dt .

3 The centralized system

In this section we solve the centralized modelt thathe model, where the manufacturer and

supplier coordinate their decisions. The modekifodows

In :Hﬁ[l -1, 0 +%[R0-P,0 +21.0-T,0f +3;[Ps(t)—é(t)]z}dt ~min (5)

)2
s.t.
() =Py(t) - S(t), 0<t<T )
I.(t)=R(t)-P,(t), 0<t<T, -

(o) ()
The Hamiltonian function of model (5)-(8) is
H (1 (1), Po(0), 15(0), PO, 40 (0,404 (1)
=200 - L0+ SRo-Rol + So-Lof +$Ro-Ro |
0,0 AP, - SO]+ ¢, DR, - R, 1)] -

The Lagrangian function is

L1y (), Pa(), 150), P(), ¢ (0, 804 (1), A (8), A (),1)
= H(1,(t), Py(), 15(0), Po(t), ¢ (0, (), 1) + A, (0) 0, (1) + A (£) O, 1) -

The following lemma formalizes the well-known opéhty conditions. Its proof can be found

in the literature mentioned in the previous section

Lemma 5 (I,‘;(m Po(OL1<(On Pj([ﬂ) is optimal solution of problem (5)-(8), if and gnf the
following points hold



AL(15.(1), PE(), 1 S(1), PE ()., (0, 80.(1), A (1), A, (1), 1)
1) ol (1)
= [180) - T+ 4,0 = ),
AL(1&.(t), PS (0, 15(1), PE (8), 4, (1), 07 (1), A (0, A2, )
3l (1)

=-h[150)- .0+ A0 = 4.0,

maxdH (15, (t), Py (0, 1£(1), P (0.4 (0.4, 0.t}

R (t)>O

2) C = 2
2R AN AR CHORACI
max{H (150, PO, 150, P09 040, 0.t}
=000 - PO -ROf,
3) A0)oe)=0 A.@)=0,
A)D:)=0 Al)=o0
4) wn(T)-w.(T)o(T)=0, m(T)ZO-

4115(T)EI (r)=0. ¢(r)=0

The optimal centralized production strategies foe thanufacturer and the supplier
respectively are

0 it Ynl)=9:l), 5 ' () <0,
POy -0, 5 0 Gl ),
”‘C—S +P,(t), if )=l +P,(t) >0,
and
0, if“’(t)+P(t)<o
PE() = ‘
v, p0, i1 20ipm>0

These two equations are thgtimal linear decision rules. (See Holt-Modigliani-Muth-Simon
(1960).) Differentiating adjoint variableg () and Y, Q, and then substituting into the

conditions, the necessary and sufficient conditibesome a system of linear differential
equations:



. 0O 0 10 - S(t)

O) [0 0 -1 1|(150 0

O N ol kO LR o o+ ©)
Prr?(t) m Cm Pnc](t) Cm m

Pt | o :_ 0 o P Bs(t)—%;(t)

with initial and ending conditions
Ir?"l(o) _ ImO
I ;:(0) l sO ,

P(T)) _(P.(T)
P (P(M))

Finally, consider a notation: led; =J; +J; denote the optimal value of cost
function (5), where

and

3 :1{%[| cO-T,0f +C_;[P,; (t)- 5m(t)]2}dt
and

2 I{%[I -1 +S0-Pof o

4 The cost sharing

In this section we provide a sharing rule of theirsgs the cooperation induces. It is easy to
see the following result:

Lemma 60<JS =J¢+JS<J8+7¢,

This result can be interpreted as follows: Theltotst of the decentralized system,
that is, the sum of the supplier's and manufactsi@sts is higher than that of the centralized
system. The question is that now, how to share sénéngs induced by the players’
cooperation.

First, we introduce the concept of transferablétyicooperative games. Let N= {1,
2,..., n} be the nonempty, finite set of the playavkreover, letv:2" - O be a function
such thatv(@) = Q where 2" is for the class of all subsets &f. Then v is called
transferable utility (TU) cooperative game, henceforth game with player siit.

10



Gamev can be interpreted as every coalition (subselgfhas a value. E.gS[1 N
is a coalition consisting of the players 8f and v(S ) is the value of coalitior§. The value
of a coalition can be the profit the coalition mergcan achieve if they cooperate, or the cost
they induce if they harmonize their actions.

In our model there are two players: the manufacture) and the suppliery), that is,
N ={m,s}, and the value of a coalition is the cost the iioal members induce if they
coordinate their production plans and inventorgtsiies.

In the decentralized model the players do not baire their actions, and achieve
their minimal costs independently of each otheer€fore (see Subsection 5.1)

v({m) =3y

and
v({sh) =,

In the centralized model the manufacturer and thgpléer form a coalition, that is,
they cooperate. Therefore (see Subsection 5.2)

v({m,s}) =3

Henceforth letv denote theupply chain game defined above.

To sum up the above discussion, the decentradimelcthe centralized model generate
a (TU cooperative) game.

To answer the question of how the players shouddlesthe savings their cooperation
induces, we apply three solution concepts of capar game theory.

First, we introduce the concept obre (Gillies (1959)). In our model the core of
supply chain game is defined as follows:

C(v) ={xO00™¥:x_+x =J°,x <J¢ x <J%},
wherex,, andxs are coordinates belonging to the manufacturertia@dupplier respectively.

The core can be described as it consists of ditota of the total cost of the
centralized model such that none of the playersheabetter off by leaving the centralized
model, by stopping cooperation, that is, the caneststs of stable (robust) allocations of the
costs. It is easy to see that in this mothe core is not empty, that is, there is a stable
allocation of the costs.

In our model the core has the disadvantage thagrghy it consists of many points,
that is, it is a map-valued solution. Therefore tbllowing natural question comes up: How
can we pick up only one point as a solution? Nexicansider a point-valued solution.

Let w,,,w, =0 such thatw +w, =1, then w, and w, are called the weights of the

manufacturer and the supplier respectively. Thessghg can be interpreted as the
exogenously given “bargaining powers” of the player

Shapley (1953) introduced the following point-valusolution concept: Theeighted
Shapley value of the manufacturer and the supplier respectiveluipply chain game

wsh(v),, = L- @) 3¢ +a, (38, - 3¢),

11



and
1 d c d
wh(v), = (1—0)3)5 Jg + a)s(JmS - Jm).

The weighted Shapley value can be interpreted @sah adjusted (by the weights)
expected value of the given player's marginal dbaotron. In other words, e.g. the
manufacturer's weighted Shapley value is the exgkcvalue with the distribution
((l—wm),wm) of the manufacturer’s marginal contribution to twst of the two coalitions not

containing her, to the empty collatiod) and to coalitio{s }J¢ —J).

: , 1
In the symmetric case, when the two players hawalgopwer, that isw, = w, ZE’

wSh,,(v) and wSh,(v ) are the so called Shapley value of the manufactumd the supplier

respectively in game .
Next we show that in our model the Shapley solutgom the core, hence it is a real
refinement of this map-valued solution concept.

Lemma 8 For any supply chain game (wSh(v),,, wsSh(v), )0 C(v).
Proof. Let (w,,w,) be an arbitrary weight system. Take the manufactfirst: Lemma 4
implies that

WSh(V), = (L= @) g + @, (I = 35) < Q- @, ) I + @ Jiy,

that is, wSh(v),. < J? . In a similar way we can see thagh(v) < J{.
Finally, it is obvious thatvsh(v) , + wsh(v), = J;. (see e.g. Shapley (1953)).  []

5 A numerical example

Take the following parameters and cost functiongroblems (1)-(2), (3)-(4) and (5)-(8), as
in Table 1.

12



Table 1. Parameter specification for the example

Description Data
Length of planning horizont 5
Demand ratesy(t) sin(t)+2
Delay of the supplyr 0.5
Manufacturing rate goal leveP_ ([} 1.0
Supply rate goal levelP, (I} 0.85
Inventory size goal level in manufacturing stol_g;([ﬂ 0.5
Inventory size goal level in supply stork;([)] 0.3
Initial inventory level in manufacturing storé; (O) 0.25
Initial inventory level in manufacturing storé; (0) 0.5
Manufacturing cost coefficient;, 1.0
Supply cost coefficient 0.5
Inventory holding cost coefficient in manufacturisigre:h,, 2
Inventory holding cost coefficient in supply stohe: 1

In the following we solve the decentralized anddbetralized problem.

5.1 The solution of the decentralized problem

The decentralized problem is a hierarchical prddactplanning problem. First the
manufacturer solves her planning problem, thenotitemal ordering policy is forwarded to
the supplier. Finally, the supplier optimizes havnorelevant costs based on the known

ordering policy of the manufacturer.
The problem of the manufacturer is as follows:

J, =i{§[| _()-05) +%[Pm(t) —1]2}dt ~ min

s.t.
I,.(t)=P_(t)-sint)-2,1,(0) =025 0<t<5

The optimal solution can be determined with helph@hma 2, because the optimal inventory
level and production rate are positive. Let théroat the optimal solution be functior®’ 0 ()

and1? Q.

The minimal cost of the manufacturer is 4.604 yritat is,J¢ = 4. 604

13



Figure 2. Optimal manufacturing and supply rates fo the decentralized models

t

In the next step we solve the problem of the sepplvhere the manufacturer’s
ordering policyP? [)is given:

J, i{%[ls(t) - 03[ +%[Ps(t) - OBS]Z}dt ~ min

S.t.
() =P@t)-P!(),1.,(0)=05 0<t<5

The optimal solution for the supplier is functio®s ()] and 1 (, applying the results of
Lemma 4.

The optimal production rates and inventory leveéssihown in Figures 2 and 3.

Figure 3. Optimal manufacturing and supply inventory levels for the decentralized
models

14



The minimal cost of the supplier is 2.335 unitsattlis, J¢ =2.335 The total cost of
manufacturer and supplier is 6.939 units in thisetdralized strategy of the supply chain, that
is J¢+J¢ =6.939.

5.2 The solution of the centralized problem

In the following we solve the centralized problem:
3= E{%[I (®-05] +%[Pm(t) 1) +%[| (- 03] +%[Ps(t) - 085]2}dt . min
s.t.
I (t)=P,(t)-sint)-2, 0<t<5
() =P,(t)-P,(t), 0<t<5
(I m(0)] =(025J
1.(0)) | 05

The optimal solution of this problem is given aftee solution of the following differential
equation (see (9)):

1S} (0 0 1 0)(I5@t)) (-sint)-2

|.§c(t) _[00 -11 |§c(t) .\ 0 ©
PS(t)| |2 -1 0 Of]P(t) -07

PE(t)) (0 2 0 0)|P(t) - 06

with initial and terminal conditions

1,(0))_( 025
1.0)) | 05)
Pa(T) _( 1 j
Pe(T)) | 085/

The optimal production rates and inventory leveéssihown in Figures 4 and 5.

and

15



Figure 4. Optimal manufacturing and supply rates fo the centralized model

s

The minimal cost of the centralized system is 6.88ifs, where the manufacturer’s cost is
4.656 units and the supplier’s cost is 2.231 urtisit is, J;, =6. 887 J. =4.656 and

X =2231

5.3 Comparison of the solutions of the decentraliceand the centralized system

First, compare the production rate and inventovgll®f the manufacturer and the supplier in
the cases of the decentralized and the centraigstém, where Imgdimg, Isd and Isg are
for the inventory level for the manufacturer and ttee supplier in the decentralized and the
centralized model respectively.

16



Figure 6 The inventory level of the
centralized system

0.6

manufacturer in the decentralized and the
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Figure 7 The

inventory level of the supplier in thedecentralized and the centralized
system

0.6

-02 l | | |
) 200 400 600 800 1000

t
In this example the inventory level of the manufiaet decreases in the case of cooperation,

that is, in the centralized system. The inventemel of the supplier first decreases, and then
increases when the participants cooperate in thelygehain, see Figures 6 and 7.
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Figure 8 The production rate of the manufacturer inthe decentralized and the

centralized system
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As we see, the production level in the centraliggstem is smoother, that is, the growth of
the production rate is smaller than that in theecab the decentralized system, and the
contrary is true for the supplier, that is, in thexentralized system the production rate of the
supplier is smoother than that in the centralizestesn, where PmdPme, Psd and Pscare

for the production level for the manufacturer andthe supplier in the decentralized and the
centralized models respectively, and S(t) is far ¢lxogenously given demand, see Figures 8
and 5. This phenomenon is the decreased bullwkegtah the centralized model.

Figure 9 The production rate of manufacturer in the decentralized and the centralized

system
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The optimal costs of the decentralized and therakred problem are presented in Table 2.
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Table 2. The optimal costs of the example

Decentralized Centralized
problem problem
Manufacturer costs (Jy) 4.604 4.656
Supplier costs(Js) 2.335 2.231
Total costs(Jns) 6.939 6.887

As we have seen, the total cost of the centralipezblem is lower than that of the
decentralized one. The cost reduction is approxipat%. In the centralized problem the
manufacturer cost increases with more than 1% laadupplier cost decreases with 4.5%.

After the above analysis the question of how taeshiae savings, the cooperation of
the participants in the supply chain induces, coamestage.

5.4 Cost sharing

Before we introduce the weighted Shapley value stvew graphically the cor€(v) of the
supply chain game. The core of our problem is @efjras

C(v) ={x00'™9 :x_+x_ =6.887 x_ <4604 x_<2335.

1 m —

Using the results from Table 2, Figure 10 presémtscore of our supply chain game with a
thick black line.

Figure 10 The core
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Assume the manufacturer’s “bargaining power” is timoes of the supplier’s, that is,

W, :g and w, :%. The weighed Shapley value of the manufacturer thedsupplier are

wSh, (v) = 457 and wSh,(v) = 2. 317 respectively. It means that the players sharer thei
savings equally. The weighted Shapley value is shawFigure 10, it is the(w,,w, -)
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weighted average of the two endpoints of the corghat s,
(WS, (), WEh,(V)) = @ (I = 35, 35) + (I I — Im) -

Notice that, since the cooperation does not alodhe savings according to the
exogenously given weights, a transfer between tippleer and the manufacturer is needed.
As a result of cooperation the manufacturer cagieimse and the supplier’s cost decrease, that
is, all the savings go to the supplier. In ordergach the allocation, the parties agree on, that
is, the weighted Shapley value a transfer is: tngpker must transfer 0.086 units to the
manufacturer. It means that the manufacturer aadstipplier agree on a contract such that
the parties commit themselves to cooperate andupelier commits herself to pay 0.086
units to the manufacturer as a "price” for his cexgpion.

6. Conclusion and further research

In this paper we have solved two two-stage HMMSetgppply chain models: a decentralized
and a centralized model. We have showed that tbperation of the two players induces
savings in costs.

In the next step we have considered sharing fioleshe savings. We have applied
cooperative game theory solution concepts to thablpm, and we have introduced the
concept of supply chain games. It was shown thahentwo player supply chain games the
core is not empty and that the weighted Shapleyeved always in the core.

As an illustration for our results we have presdran exact number example. In this
example the supplier's cost of adaption in productio the fluctuations in the orderings of
the manufacturer is higher than that of the martufac. Moreover, the production costs are
dominant over the inventory costs. Therefore mas surprising at all that in the centralized
model the supplier has reduced her inventory lemsd, the manufacturer’s inventory level is
higher than that in the decentralized model, acd versa for the supplier.

The reason of this fact is that the manufacturemimmies her relevant cost in the
decentralized model, so that her production lev@lgar to the demand rate. After cooperation
the manufacturer gives up to follow her cost optipraduction strategy to allow the supplier
to reduce her own production-inventory cost implyia decrease in the total cost of the
supply chain as well, since the supplier's costirgawalances out the increase of the
manufacturer’s cost.

This phenomenon points at the well known bullwhiie& of supply chains in a way:
the supplier decreased the inventory level aftéwrination sharing (cooperation), and she
adjusted her production rate closer to the demated r

In this type supply chains the two players mighvéhasymmetrical roles. It can
happen that the manufacturer has much strongenrinang position than that of the supplier
or vice versa. To consider the asymmetric barggimoesitions we apply the weighted
Shapley value as solution concept for sharing #wings among the parties. The weights are
for the supply chain participants’ “bargaining peg/e the bigger the weight, the stronger the
given party’s “bargaining power”.
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