
Incomplete pairwise comparison 
matrices and weighting methods

by 

László Csató, Lajos Rónyai

C
O

R
V

IN
U

S
 E

C
O

N
O

M
IC

S
 W

O
R

K
IN

G
  
P

A
P

E
R

S

http://unipub.lib.uni-corvinus.hu/1869

CEWP 5/2015



Incomplete pairwise comparison matrices and
weighting methods*
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Abstract

A special class of preferences, given by a directed acyclic graph, is considered.
They are represented by incomplete pairwise comparison matrices as only partial
information is available: for some pairs no comparison is given in the graph. A
weighting method satisfies the property linear order preservation if it always results
in a ranking such that an alternative directly preferred to another does not have
a lower rank. We study whether two procedures, the Eigenvector Method and the
Logarithmic Least Squares Method meet this axiom. Both weighting methods break
linear order preservation, moreover, the ranking according to the Eigenvector Method
depends on the incomplete pairwise comparison representation chosen.

Keywords: Directed acyclic graph, incomplete pairwise comparison matrix, Eigen-
vector Method, Logarithmic Least Squares Method

JEL classification number: C44

1 Introduction
Pairwise comparisons are widely used in multi-attribute decision making since Saaty
published the AHP method (Saaty, 1980). It is assumed that decision makers give
a numerical answer to the question ’How many times is the 𝑖th alternative more im-
portant/better/favorable than the 𝑗th?’, which are incorporated into a matrix with an
appropriate size.

Let R𝑛
+ denote the positive orthant of the 𝑛-dimensional Euclidean space and R𝑛×𝑛

+
denote the set of positive matrices of size 𝑛 × 𝑛.

Definition 1. Pairwise comparison matrix: Matrix A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛
+ is a pairwise

comparison matrix if 𝑎𝑗𝑖 = 1/𝑎𝑖𝑗 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
* We are grateful to Sándor Bozóki for reading the manuscript and for useful advices.

The research was supported by OTKA grants K 111797 and NK 105645.
† Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest (BCE)
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The final aim of the use of pairwise comparisons is to determine a weight vector
w = [𝑤𝑖] ∈ R𝑛

+ for the alternatives such that 𝑤𝑖/𝑤𝑗 somehow approximates 𝑎𝑖𝑗.

Definition 2. Consistency: Pairwise comparison matrix A = [𝑎𝑖𝑗] is consistent if 𝑎𝑖𝑘 =
𝑎𝑖𝑗𝑎𝑗𝑘 for all 𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛.

Every consistent pairwise comparison matrix can be associated to a weight vector w
where 𝑎𝑖𝑗 = 𝑤𝑖/𝑤𝑗 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛. w is unique up to multiplication by positive
scalars.

Pairwise comparison matrices provided by decision makers are usually do not meet
the consistency condition, they are inconsistent. Then the real weight vector w can only
be estimated on the basis of the inconsistent pairwise comparison matrix. A number of
weighting methods is proposed for this purpose.

Saaty (1980) has used the Perron theorem (Perron, 1907): a positive matrix has
a dominant eigenvalue with multiplicity one and an associated strictly positive (right)
eigenvector.

Definition 3. Eigenvector Method (𝐸𝑀) (Saaty, 1980): 𝐸𝑀 gives the weight vector
w𝐸𝑀(A) ∈ R𝑛

+ for any pairwise comparison matrix A such that

Aw𝐸𝑀(A) = 𝜆maxw𝐸𝑀 ,

where 𝜆max denotes the maximal eigenvalue, also known as Perron eigenvalue, of matrix A.

Distance-minimization techniques minimize the function ∑︀
𝑖

∑︀
𝑗 𝑑(𝑎𝑖𝑗, 𝑤𝑖/𝑤𝑗) where

𝑑(𝑎𝑖𝑗, 𝑤𝑖/𝑤𝑗) is some sort of a distance of 𝑎𝑖𝑗 from its approximation 𝑤𝑖/𝑤𝑗. the following
is an important example with 𝑑(𝑎𝑖𝑗, 𝑤𝑖/𝑤𝑗) = [log 𝑎𝑖𝑗 − log (𝑤𝑖/𝑤𝑗)]2.

Definition 4. Logarithmic Least Squares Method (𝐿𝐿𝑆𝑀) (Crawford and Williams, 1980,
1985; De Graan, 1980): 𝐿𝐿𝑆𝑀 gives the weight vector w𝐿𝐿𝑆𝑀(A) ∈ R𝑛

+ for any pairwise
comparison matrix A as the optimal solution of the problem:

min
w∈R𝑛

+,
∑︀𝑛

𝑖=1 𝑤𝑖=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

[︃
log 𝑎𝑖𝑗 − log

(︃
𝑤𝑖

𝑤𝑗

)︃]︃2

.

It may also happen that a subset of pairwise comparisons are unknown due to the
lack of available data, uncertain evaluations, or other problems. Incomplete pairwise
comparison matrices were introduced in Harker (1987).

Definition 5. Incomplete pairwise comparison matrix : Matrix A = [𝑎𝑖𝑗] of size 𝑛 × 𝑛 is
an incomplete pairwise comparison matrix if 𝑎𝑖𝑖 = 1 for all 𝑖 = 1, 2, . . . , 𝑛, and for all 𝑖 ̸= 𝑗,
𝑎𝑗𝑖 = 1/𝑎𝑖𝑗 ∈ R+ or both 𝑎𝑖𝑗 and 𝑎𝑗𝑖 are missing.

Notation 1. Missing elements of pairwise comparison matrices are denoted by *.

Example 1. An incomplete pairwise comparison matrix of size 4 × 4 is the following:

A =

⎛⎜⎜⎜⎝
1 * 𝑎13 𝑎14
* 1 𝑎23 *

1/𝑎13 1/𝑎23 1 𝑎34
1/𝑎14 * 1/𝑎34 1

⎞⎟⎟⎟⎠ .
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Generalization of 𝐸𝑀 to incomplete pairwise comparison matrices requires some
comment on measuring inconsistency. Saaty (Saaty, 1980) defined the index 𝐶𝑅 as

𝐶𝑅(A) = (𝜆max(A) − 𝑛) /(𝑛 − 1)(︁
𝜆𝑛×𝑛

max − 𝑛
)︁

/(𝑛 − 1)
= 𝜆max(A) − 𝑛

𝜆𝑛×𝑛
max − 𝑛

,

where 𝜆𝑛×𝑛
max denotes the average value of the maximal eigenvalue of randomly generated

pairwise comparison matrices of size 𝑛 × 𝑛 such that each element 𝑎𝑖𝑗 , 𝑖 < 𝑗 is chosen from
the set {1/9; 1/8; . . . ; 1/2; 1; 2; . . . ; 8; 9} with equal probability. 𝐶𝑅(A) is a positive linear
transformation of 𝜆max(A). 𝐶𝑅(A) ≥ 0 and 𝐶𝑅(A) = 0 if and only if A is consistent.
Saaty recommended the rule of acceptability 𝐶𝑅 < 0.1.

The idea that larger 𝜆max indicates higher (𝐶𝑅) inconsistency led (Shiraishi et al.,
1998; Shiraishi and Obata, 2002) to introduce variables for missing elements, arranged in
vector x and consider the eigenvalue optimization problem

min
x>0

𝜆𝑚𝑎𝑥(A(x))

in order to find a completion that minimizes the maximal eigenvalue, or, equivalently, 𝐶𝑅.
Extension of distance-based weighting methods to the incomplete case seems to be

straightforward: in calculating the optimal weights, only the known terms are considered
in the objective function (Kwiesielewicz, 1996; Bozóki et al., 2010).

Bozóki et al. (2010) discuss the question of uniqueness of the optimal solution for 𝐸𝑀
and 𝐿𝐿𝑆𝑀 in the incomplete case, solve the 𝐿𝐿𝑆𝑀 problem1 and propose an algorithm
for finding the best completion of an incomplete pairwise comparison matrix according to
𝐸𝑀 . We will use their results extensively.

This paper investigates a special class of preferences described by incomplete pairwise
comparison matrices (Section 2), for which some natural rankings of the alternatives exists.
Section 3 reveals that 𝐿𝐿𝑆𝑀 does not result in one of these orders. Section 4 presents
that 𝐸𝑀 do not meet the required condition either, moreover, the ranking depends on
the representation chosen. They are the main results of our paper. Finally, in Section 5
we pose some related questions.

2 Linear order preservation
Sometimes the decision maker is unable to give a numerical answer to the question ’How
many times is the 𝑖th alternative more important/better/favorable than the 𝑗th?’. However,
he/she can provide an ordinal information such as the 𝑖th alternative is preferred to the
𝑗th. In this model, incomplete pairs (missing comparisons) are allowed but draws are
excluded: when the 𝑖th and the 𝑗th alternatives have been compared, the 𝑖th or the 𝑗th is
preferred to the other.

Definition 6. Ordinal pairwise comparison matrix: Incomplete pairwise comparison
matrix A = [𝑎𝑖𝑗] of size 𝑛 × 𝑛 is an ordinal pairwise comparison matrix if 𝑎𝑖𝑖 = 1 for all
𝑖 = 1, 2, . . . , 𝑛, and for all 𝑖 ̸= 𝑗, 𝑎𝑖𝑗 ∈ {𝑏; 1/𝑏} or both 𝑎𝑖𝑗 and 𝑎𝑗𝑖 are missing. 𝑏 > 1 is an
arbitrarily fixed real number.

Note that the value 𝑏 > 1 corresponds to the (strict) preference relation between the
alternatives.

1 See also Kaiser and Serlin (1978).
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Ordinal pairwise comparison matrices can be represented by directed graphs. Let A
be an ordinal pairwise comparison matrix of size 𝑛 × 𝑛. Then 𝐺 := (𝑉, 𝐸) where 𝑉 =
{1, 2, . . . , 𝑛}, the vertices correspond to the alternatives, and 𝐸 = {𝑒(𝑖, 𝑗) : 𝑎𝑖𝑗 = 𝑏, 𝑖 ̸= 𝑗},
there is a directed edge from vertex 𝑖 to vertex 𝑗 if and only if the 𝑖th alternative is
preferred to the 𝑗th. The directed graph associated to an ordinal pairwise comparison
matrix A is independent of the value 𝑏 > 1.

Note that different choice of the parameter 𝑏 > 1 is equivalent to take a corresponding
positive power of A by elements. In other words, the associated directed graph is the same
for every A(ℎ) =

[︁
𝑎ℎ

𝑖𝑗

]︁
, ℎ > 0.

Definition 7. Existence of a linear order of the alternatives: Let A = [𝑎𝑖𝑗] be an ordinal
pairwise comparison matrix of size 𝑛 × 𝑛. There exists a linear order of the alternatives if
there is a permutation 𝜎 : {1; 2; . . . ; 𝑛} → {1; 2; . . . ; 𝑛} on the set of alternatives such that
C = [𝑐𝑖𝑗] is the permuted ordinal pairwise comparison matrix given by 𝑐𝑖𝑗 = 𝑎𝜎(𝑖)𝜎(𝑗) for
all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑐𝑖𝑗 = 𝑏 if 𝑖 < 𝑗 and 𝑐𝑖𝑗 is known.

Existence of a linear order of the alternatives means that the ordinal pairwise comparison
matrix can be permuted such that every known value above the diagonal is 𝑏 > 1. Regarding
the directed graph representation, it is equivalent to acyclicity.

The following condition concerns the weighting methods for ordinal pairwise comparison
matrices. A similar requirement has been introduced by Bana e Costa and Vansnick (2008)
called Condition of Order Preservation (COP), however, it is defined on complete pairwise
comparison matrices and takes into account the intensity of preferences.

Definition 8. Linear order preservation (𝐿𝑂𝑃 ): Let A = [𝑎𝑖𝑗] be an ordinal pairwise
comparison matrix of size 𝑛 × 𝑛 such that there exists a linear order of the alternatives.
It can be assumed without loss of generality that 𝑎𝑖𝑗 = 𝑏 if 𝑖 < 𝑗 and 𝑎𝑖𝑗 is known. A
weighting method associating a vector w(A) ∈ R𝑛

+ to A satisfies linear order preservation
if 𝑤𝑖(A) ≥ 𝑤𝑗(A) for all 𝑖 < 𝑗 such that 𝑎𝑖𝑗 is known (𝑎𝑖𝑗 = 𝑏).

In an ordinal pairwise comparison matrix exhibiting a linear order of the alternatives,
there exist some ’natural rankings’. Linear order preservation requires that the ranking
according to the weighting method examined always corresponds to one of them.

Note that a weighting method associating the same weight for each alternative meets
the property 𝐿𝑂𝑃 .

3 Linear order preservation and the Logarithmic
Least Squares Method

In this section it will be scrutinized whether 𝐿𝐿𝑆𝑀 satisfies the property 𝐿𝑂𝑃 .
Notation 2. y(A) ∈ R𝑛 is given by 𝑦𝑖(A) = log 𝑤𝐿𝐿𝑆𝑀

𝑖 (A) for all 𝑖 = 1, 2, . . . , 𝑛.

Proposition 1. Let A = [𝑎𝑖𝑗] be an ordinal pairwise comparison matrix. w𝐿𝐿𝑆𝑀(A)
is unique if and only if the directed graph associated to A is weakly connected: for all
𝑘, ℓ = 1, 2, . . . , 𝑛, there exists a sequence of alternatives 𝑘 = 𝑚0, 𝑚1, . . . , 𝑚𝑡−1, 𝑚𝑡 = ℓ such
that 𝑎𝑚𝑠−1𝑚𝑠 is known for all 𝑠 = 1, 2 . . . , 𝑡.
Then the ranking of alternatives is independent of the value of 𝑏 > 1, that is, 𝑤𝐿𝐿𝑆𝑀

𝑖 (A) ≥
𝑤𝐿𝐿𝑆𝑀

𝑗 (A) ⇔ 𝑤𝐿𝐿𝑆𝑀
𝑖 (A(ℎ)) ≥ 𝑤𝐿𝐿𝑆𝑀

𝑗 (A(ℎ)) for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and ℎ > 0 where
A(ℎ) =

[︁
𝑎ℎ

𝑖𝑗

]︁
.
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Proof. The necessary and sufficient condition for uniqueness is given by Bozóki et al. (2010,
Theorem 4).

y(A) = D(A)r(A) where r(A) =
[︁∑︀

𝑗:𝑎𝑖𝑗 is known log 𝑎𝑖𝑗

]︁
∈ R𝑛, so r(A(ℎ)) = ℎr(A)

and D(A) depends only on the positions of known comparisons but is not affected by
their values (Bozóki et al., 2010, Remark 3). Therefore y(A(ℎ)) = ℎy(A), which proves
Proposition 1.

Since linear order preservation is based on the directed acyclic graph representation of
an ordinal pairwise comparison matrix, Proposition 1 provides that it is meaningful to
question whether 𝐿𝐿𝑆𝑀 satisfies 𝐿𝑂𝑃 .

Corollary 1. It does not depend on the choice of 𝑏 > 1 whether 𝐿𝐿𝑆𝑀 satisfies 𝐿𝑂𝑃 or
not. In other words, 𝐿𝐿𝑆𝑀 gives the same ranking for every ordinal pairwise comparison
matrix associated to a given directed acyclic graph.

Intuition appears to suggest that LLSM satisfies LOP. The first of our main results
contradicts this expectation.

Theorem 1. 𝐿𝐿𝑆𝑀 violates 𝐿𝑂𝑃 .

Proof. It is provided by Example 2.

Figure 1: The directed acyclic graph of Example 2

1

2

3

4

5

6

7

Example 2. Consider the directed acyclic graph on Figure 1. The associated ordinal
pairwise comparison matrix A is as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑏 * * * 𝑏 𝑏
1/𝑏 1 𝑏 𝑏 * * *
* 1/𝑏 1 𝑏 𝑏 * *
* 1/𝑏 1/𝑏 1 𝑏 𝑏 *
* * 1/𝑏 1/𝑏 1 𝑏 𝑏

1/𝑏 * * 1/𝑏 1/𝑏 1 *
1/𝑏 * * * 1/𝑏 * 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where 𝑏 > 1.
In Example 2, property 𝐿𝑂𝑃 is satisfied if 𝑤1(A) ≥ 𝑤2(A), 𝑤1(A) ≥ 𝑤6(A), 𝑤1(A) ≥

𝑤7(A) as well as 𝑤𝑖(A) ≥ 𝑤𝑖+1(A) and 𝑤𝑖(A) ≥ 𝑤𝑖+2(A) for all 𝑖 = 2, 3, 4, 5.
However, 𝐿𝐿𝑆𝑀 results in

y(A) =
[︁

34 36 24 1 −14 −42 −39
]︁⊤

log 𝑏/49,

namely, 𝑤𝐿𝐿𝑆𝑀
1 (A) < 𝑤𝐿𝐿𝑆𝑀

2 (A), in contradiction with preservation of linear order.

Remark 1. Example 2 is minimal regarding the number of alternatives (7) and among
them, with respect to the number of known comparisons (11).2 However, there exist
more than ten examples with 7 alternatives, and some of them contains only 11 known
comparisons.
Remark 2. There exist some examples to Theorem 1 with 8 alternatives and 10 known
comparisons. Two of them are presented in Example 3.

Figure 2: The directed acyclic graphs of Example 3

(a) Graph of matrix A
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(b) Graph of matrix A′
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Example 3. Consider the directed acyclic graphs on Figure 2 and the associated ordinal
pairwise comparison matrices A and A′. 𝐿𝐿𝑆𝑀 gives

y(A) =
[︁

95 103 43 43 −17 −65 −113 −89
]︁⊤

log 𝑏/128, and

y(A′) =
[︁

71 95 47 −1 7 −53 −53 −113
]︁⊤

log 𝑏/128,

where 𝑤𝐿𝐿𝑆𝑀
1 (A) < 𝑤𝐿𝐿𝑆𝑀

2 (A) and 𝑤𝐿𝐿𝑆𝑀
4 (A) < 𝑤𝐿𝐿𝑆𝑀

5 (A), in contradiction with
preservation of linear order.

The violation of 𝐿𝑂𝑃 can be arbitrarily ’strong’ regarding the difference of the weights
of the alternatives involved.

2 It can be verified by brute force, examining all ordinal pairwise comparison matrices up to size
6 × 6. It is possible because of Corollary 1, which implies that comparisons above the diagonal may have
essentially two ’values’, known or missing. There exist 215 = 32 768 acyclic directed graphs of size 6 × 6.
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Theorem 2. For every 𝐾 ∈ R+ there exists an ordinal pairwise comparison matrix
A = [𝑎𝑖𝑗] exhibiting a linear order of the alternatives with a given 𝑏 > 1 such that
𝑤𝐿𝐿𝑆𝑀

𝑖 (A) − 𝑤𝐿𝐿𝑆𝑀
𝑗 (A) ≤ −𝐾 for some 𝑖 < 𝑗.

Proof. It is provided by Example 3 for any 𝑘 ≥ 2.

Figure 3: The directed acyclic graph of Example 3
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3
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56
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Notation 3. In a directed acyclic graph, 𝑆 → 𝑇 if and only if there exists an edge from
every vertex 𝑖 ∈ 𝑆 to every vertex 𝑗 ∈ 𝑇 .
Example 4. Consider the family of directed acyclic graphs with 𝑛 = 𝑘𝑚 + 2 vertices
where 𝐶𝑖 = {(𝑖−1)𝑘+3, (𝑖−1)𝑘+4, . . . , 𝑖𝑘 +2} for all 𝑖 = 1, 2, . . . 𝑚 (so 𝐶𝑖 has 𝑘 elements)
such that the edges are given by {1} → {2}, {1} → 𝐶𝑚, {2} → 𝐶1 and 𝐶𝑖 → 𝐶𝑖+1 for all
𝑖 = 1, 2, . . . 𝑚 − 1. Figure 3 shows a member of this family if 𝑘 = 2 and 𝑚 = 3, that is,
𝐶1 = {3, 4}, 𝐶1 = {5, 6} and 𝐶3 = {7, 8}.

The directed graphs of Example 4 are weakly connected for any pair of 𝑘 and 𝑚.
𝐿𝐿𝑆𝑀 weights can be obtained as the solution of the following system of linear equations
(note that alternatives of 𝐶𝑖 have the same weight 𝑦𝐶𝑖

since the 𝐿𝐿𝑆𝑀 weight vector is
unique and alternatives of 𝐶𝑖 are symmetric):

(𝑘 + 1)𝑦1 − 𝑦2 − 𝑘𝑦𝐶𝑚 = 𝑘 + 1; (for the 1st alternative) (1)
(𝑘 + 1)𝑦2 − 𝑦1 − 𝑘𝑦𝐶1 = 𝑘 − 1; (for the 2nd alternative) (2)

(𝑘 + 1)𝑦𝐶1 − 𝑦2 − 𝑘𝑦𝐶2 = 𝑘 − 1; (for alternatives in 𝐶1) (3)
2𝑘𝑦𝐶𝑖

− 𝑘𝑦𝐶𝑖−1 − 𝑘𝑦𝐶𝑖+1 = 0; (for alternatives in 𝐶𝑖, 𝑖 = 2, 3, . . . 𝑚 − 1) (4)
(𝑘 + 1)𝑦𝐶𝑚 − 𝑦1 − 𝑘𝑦𝐶𝑚−1 = −(𝑘 + 1). (for alternatives in 𝐶𝑚) (5)

For instance, the 2nd alternative has 𝑘 + 1 known comparisons: with the first, and with
all 𝑘 alternatives of 𝐶1, the 2nd being favorable in the latter 𝑘 of these. The derivation
can be found in Bozóki et al. (2010).

Subtract (2) from (1) in order to get

(𝑘 + 2) (𝑦1 − 𝑦2) − 𝑘 (𝑦𝐶𝑚 − 𝑦𝐶1) = 2. (6)

7



The difference of equations (3) and (5) gives,

(𝑦𝐶1 − 𝑦𝐶𝑚) − (𝑦2 − 𝑦1) − 𝑘 (𝑦𝐶2 − 𝑦𝐶1) − 𝑘
(︁
𝑦𝐶𝑚 − 𝑦𝐶𝑚−1

)︁
= 2𝑘. (7)

It follows from equations (4) that

𝑦𝐶2 − 𝑦𝐶1 = 𝑦𝐶3 − 𝑦𝐶2 = · · · = 𝑦𝐶𝑚 − 𝑦𝐶𝑚−1 = 𝑦𝐶𝑚 − 𝑦𝐶1

𝑚 − 1 . (8)

Equations (7) and (8) lead to

(𝑦𝐶1 − 𝑦𝐶𝑚) − (𝑦2 − 𝑦1) + 2𝑘

𝑚 − 1 (𝑦𝐶1 − 𝑦𝐶𝑚) = 2𝑘,

which results in
𝑦𝐶1 − 𝑦𝐶𝑚 = 𝑚 − 1

2𝑘 + 𝑚 − 1 [2𝑘 + (𝑦2 − 𝑦1)] . (9)

Substituting (9) into (6) gives

(𝑘 + 2) (𝑦1 − 𝑦2) = 2 − 𝑘 (𝑦𝐶1 − 𝑦𝐶𝑚) = 2 − 𝑘(𝑚 − 1)
2𝑘 + 𝑚 − 1 [2𝑘 + (𝑦2 − 𝑦1)] .

After some calculation we infer

(𝑘 + 2)(2𝑘 + 𝑚 − 1) (𝑦1 − 𝑦2) = 4𝑘 + 2𝑚 − 2 − 2𝑘2(𝑚 − 1) − 𝑘(𝑚 − 1) (𝑦2 − 𝑦1) ;(︁
2𝑘2 + 4𝑘 + 2𝑚 − 2

)︁
(𝑦1 − 𝑦2) = −2𝑘2(𝑚 − 1) + 4𝑘 + 2𝑚 − 2.

It means that
𝑦1 − 𝑦2 = −𝑘2(𝑚 − 1) + 2𝑘 + 𝑚 − 1

𝑘2 + 2𝑘 + 𝑚 − 1 ,

so lim𝑚→∞ (𝑦1 − 𝑦2) = −∞ for any 𝑘 ≥ 2. Hence 𝑤𝐿𝐿𝑆𝑀
2 − 𝑤𝐿𝐿𝑆𝑀

1 can be arbitrarily large
independent of 𝑏.3

Remark 3. In Example 4, 𝑤𝐿𝐿𝑆𝑀
1 − 𝑤𝐿𝐿𝑆𝑀

2 > 0 if 𝑘 = 2 and 𝑚 = 2 (so there are 6
alternatives), but 𝑤𝐿𝐿𝑆𝑀

1 − 𝑤𝐿𝐿𝑆𝑀
2 < 0 if 𝑘 = 3 and 𝑚 = 2 or 𝑘 = 2 and 𝑚 = 3 (so

there are 8 alternatives with 13 and 16 known comparisons, respectively). This family of
directed acyclic graphs does not give an example with 7 alternatives as Example 2 does.

4 Linear order preservation and the Eigenvector
Method

In this section we examine whether 𝐸𝑀 satisfies the property 𝐿𝑂𝑃 or not.

Proposition 2. Let A = [𝑎𝑖𝑗] be an ordinal pairwise comparison matrix. w𝐸𝑀(A) is
unique if and only if the directed graph associated to A is weakly connected: for all
𝑘, ℓ = 1, 2, . . . , 𝑛 there exists a sequence of alternatives 𝑘 = 𝑚0, 𝑚1, . . . , 𝑚𝑡−1, 𝑚𝑡 = ℓ such
that 𝑎𝑚𝑠−1𝑚𝑠 is known for all 𝑠 = 1, 2 . . . , 𝑡.

Proof. See Bozóki et al. (2010, Theorem 2).
3 It is trivial if 𝑏 can vary as log 𝑏 may also be arbitrarily large.
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Theorem 3. 𝐸𝑀 may violate 𝐿𝑂𝑃 .
Proof. Consider the directed acyclic graph on Figure 2. An associated ordinal pairwise
comparison matrix A is as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 * * * * 3 3
1/3 1 3 3 * * * *
* 1/3 1 * 3 3 * *
* 1/3 * 1 3 3 * *
* * 1/3 1/3 1 * 3 3
* * 1/3 1/3 * 1 3 3

1/3 * * * 1/3 1/3 1 *
1/3 * * * 1/3 1/3 * 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Property 𝐿𝑂𝑃 is satisfied if 𝑤1(A) ≥ 𝑤2(A), 𝑤1(A) ≥ 𝑤6(A), 𝑤1(A) ≥ 𝑤7(A),
𝑤2(A) ≥ 𝑤3(A), 𝑤2(A) ≥ 𝑤4(A) as well as 𝑤𝑖(A) ≥ 𝑤𝑗(A) for all 𝑖 = 3, 4 and 𝑗 = 5, 6;
𝑖 = 5, 6 and 𝑗 = 7, 8.

However, 𝐸𝑀 results in

w𝐸𝑀(A) =
[︁

0.2404 0.2442 0.1481 0.1481 0.0729 0.0729 0.0367 0.0367
]︁⊤

,

that is, 𝑤𝐸𝑀
1 (A) < 𝑤𝐸𝑀

2 (A), in contradiction with preservation of linear order.

A parallel of Corollary 1 is not true in the case of 𝐸𝑀 , it may give a different ranking
for a certain ordinal pairwise comparison matrix corresponding to the same directed acyclic
graph.
Proposition 3. Let A = [𝑎𝑖𝑗] be an ordinal pairwise comparison matrix representing a
directed acyclic graph. The ranking of the alternatives according to 𝐸𝑀 depends on the
value of 𝑏 > 1.

Note that it does not mean the violation of linear order preservation if the 𝑎𝑖𝑗 is missing.
For instance, the relative ranking of alternatives 6 and 7 can be arbitrary in Example 2.

Proof. Consider the directed acyclic graph on Figure 2. Besides A, another representation
by ordinal pairwise comparison matrix A′ is as follows:

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 * * * * 4 4
1/4 1 4 4 * * * *
* 1/4 1 * 4 4 * *
* 1/4 * 1 4 4 * *
* * 1/4 1/4 1 * 4 4
* * 1/4 1/4 * 1 4 4

1/4 * * * 1/4 1/4 1 *
1/4 * * * 1/4 1/4 * 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝐸𝑀 gives

w𝐸𝑀(A′) =
[︁

0.2828 0.2656 0.1404 0.1404 0.0594 0.0594 0.0260 0.0260
]︁⊤

,

thus 𝑤𝐸𝑀
1 (A) < 𝑤𝐸𝑀

2 (A) but 𝑤𝐸𝑀
1 (A′) > 𝑤𝐸𝑀

2 (A′), which verifies Proposition 3.

Remark 4. There exists an example with 6 alternatives and 5 known comparisons (which
is minimal provided weak connectedness) demonstrating Proposition 3. It is the smallest
in the number of alternatives.
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5 Conclusion
Logarithmic Least Squares Method seems to give a counter-intuitive ranking of the
alternatives for some incomplete pairwise comparison matrices representing preferences
described by a directed acyclic graph. The ranking according to the Eigenvector Method
may also contradict to the natural ranking order, while it depends on the correspondence
chosen for these preferences, too.

Our results open at least three topics for future research:

1. How can one characterize the set of ordinal pairwise comparison matrices with a
linear order of the alternatives for which 𝐿𝐿𝑆𝑀 obeys 𝐿𝑂𝑃?4

2. Hhat is the appropriate representation of preferences given by a directed acyclic
graph such that the ranking of the alternatives according to 𝐸𝑀 is well-defined?

3. Which weighting methods perform well with respect to the condition 𝐿𝑂𝑃?
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