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Abstract

We present a general model to find the best allocation of a limited amount of sup-

plements (extra minutes added to a timetable in order to reduce delays) on a set of

interfering railway lines. By the best allocation, we mean the solution under which the

weighted sum of expected delays is minimal. Our aim is to finely adjust an already

existing and well-functioning timetable. We model this inherently stochastic optimiza-

tion problem by using two-stage recourse models from stochastic programming, build-

ing upon earlier research from the literature. We present an improved formulation,

allowing for an efficient solution using a standard algorithm for recourse models. We

show that our model may be solved using any of the following theoretical frameworks:

linear programming, stochastic programming and convex non-linear programming, and

present a comparison of these approaches based on a real-life case study. Finally, we

introduce stochastic dependency into the model, and present a statistical technique to

estimate the model parameters from empirical data.
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1 Introduction

Planning railway timetables is a complicated task mainly for the following two reasons:

• From one perspective, it is an organization problem that involves planning the move-

ment of several trains through several periods by considering the needs of the passen-

gers and the available personnel and rolling stock, not to mention complex interactions

among trains.

• Additionally, it is a decision problem under uncertainty, as several uncertain fac-

tors need to be considered which may result in minor or major deviations from the

timetable.

In this paper, we shall ignore the first dimension of the problem, taking an initial timetable

for granted. Instead, we shall only consider a specific problem arising from the uncertainty

of the realized travel times.

1.1 The supplement allocation problem

To avoid delays resulting from unexpected occurrences (e.g. objects on the track, insufficient

acceleration, unexpected traffic control decisions etc.), travel times of trains between stations

are usually planned to be longer than the corresponding technically feasible travel times.

In railway terminology, any planned travel time between two stations consists of the sum

of a minimally feasible travel time and a supplement. In fact, nearly all delays could be

eliminated by introducing a sufficient amount of supplements in the timetable. However,

passengers would most likely disapprove of the resulting excessive travel times. Thus, railway

companies restrict the total amount of distributable supplements to some reasonable extent

in practice and try to distribute it efficiently in the timetable. We emphasize that the

aim of this approach is to improve an already existing and well-functioning timetable by

introducing minor changes in it instead of attempting to reconstruct it from scratch. Only

a few minutes of the given total will be reallocated, which may nevertheless result in large

reductions in expected delays, as we shall show later in our paper. As our aim is to increase
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the robustness of a timetable against small disturbances that do not completely overturn an

existing timetable, we shall only consider relatively small disturbances in our model.

1.2 A brief literature overview

Researchers and railway operators have created various models for the supplement allocation

problem outlined in the previous subsection. Most of these models are based on stochastic

simulation (e.g. [3]) or max-plus algebra (e.g. [6]), while some of them may be characterized

as analytical models (e.g. [7] and [32]). Some researchers in the Netherlands have produced a

remarkable amount of related academic research in the recent years including several compre-

hensive theses on the topic (e.g. [5], [6], [21], [24], [30] and [32]). An especially promising and

relatively new modeling approach is the application of the theory of stochastic optimization

and in particular, two-stage linear recourse models from stochastic programming (see e.g.

[1], [13] and [23]) within the broader discipline of operations research in order to successfully

tackle the supplement allocation problem. In contrast to other approaches, stochasticity and

optimization are simultaneously inherent components of these models, which may be formu-

lated in an elegant fashion, and a number of related well-researched algorithms are readily

available for their efficient solution (see e.g. [10] and [19]). This approach has been pioneered

by Kroon and Vromans, who have published several related important contributions in the

literature ([14]–[16], [22], [30] and [31]). Our paper aims to present a number of convenient

theoretical and practical contributions to this modeling approach.

1.3 Contribution

We construct a general stochastic optimization model which is, in our view, particularly

well-suited for an abundance of possible timetabling problems, and present evidence that it

possesses several attractive characteristics. In particular, we demonstrate that our model

may be simultaneously perceived of as a deterministic linear program (LP), a stochastic

linear program (SP) and a closed-form convex non-linear program (NLP), thereby building

bridges between this modeling approach and the broader OR community and opening up
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a whole new range of possibilities for efficient solutions algorithms. In contrast, only a

simple LP solution approach is presented e.g. in [16] and [30], which is rather impractical for

complex large-scale models due to computational issues, as we shall demonstrate in a case

study. Additionally, we examine the role of the total amount of supplements, and introduce

stochastic dependency among the random variables of the model, demonstrating numerical

evidence that the simplicity gained by the conventional independence assumption may be

very costly in terms of delays in the network. Finally, we provide a statistical estimation

technique for both the independent and dependent cases in order to estimate the unknown

parameters of the random components of the model using observable statistical data.

2 A general timetable optimization model

2.1 Description

First we present the assumptions of our model informally, to be reformulated into a formal

mathematical model later on in our paper:

• The model contains an arbitrary number of railway instances (or simply instances),

which represent scheduled railway connections between pairs of origins and destinations

within a day. Several modeled instances may share the same origins and destinations.

• Any instance is scheduled to complete a number of events that may include both

departures and arrivals at stations or other in-between locations. The model specifies

every event time as the number of minutes elapsed since 12 AM (midnight) of the

modeled day until the given event. Any event in the model has its own planned event

time as well as an actual event time, where the latter depends on a number of uncertain

factors and parameters.

For example, a first instance may be a connection from Haarlem to Maastricht by changing trains halfway

in Utrecht, another instance may be the subsequent connection in the reverse direction of the same line and a

third instance may be a connection from Alkmaar to Hilversum intersecting the line of the first two instances

halfway in Amsterdam.
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• Pairs of instances may interfere with one another at given interferences, where a given

instance is scheduled to give priority to another instance, and a prescribed safety

margin is to be respected both in the timetable and the realizations. The order of

passing through of the instances at the interferences is fixed in advance as our model

contains no traffic control decisions by design. Interferences may represent crossings

of lines as well as connections for passengers and rolling stock.

• The initial departure times of all instances are assumed to be given. Additionally, any

event in the model is associated with its own given (minimally) feasible event-to-event

time, which is an optimistic estimate of the time elapsed between the previous and

current events, to be expected in the absence of any disturbance as determined chiefly

by technical parameters (acceleration, speed restrictions etc.), as well as a supplement,

which increases the corresponding scheduled event-to-event time in order to reduce

delays. Planned event times are jointly determined by the initial departure times, the

feasible event-to-event times and the supplements.

• The sum of supplements for any instance is bounded from above by a given quantity

of distributable supplements in order to keep planned travel times reasonably short.

An arbitrary number of additional restrictions in the form of linear inequalities may

be placed on the supplements of the model. Supplements may not be negative, as the

events in question would inevitably be delayed otherwise.

• We assume that an instance incurs a random disturbance between any consecutive

pair of its events. Following the SP paradigm, we assume that random events may

be modeled by random variables with a known joint distribution. Actual event times

are determined by initial departure times, feasible event-to-event times, disturbances,

supplements and possible waiting times at predefined interferences.

• Delays are obtained as differences between actual and planned event times and may

not be negative. The objective of the model is to minimize the expected weighted mean

delay, where the weights of the events delays are given as parameters.
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2.2 Notation

The model requires the following model dimensions to be specified a priori:

m ∈ N+ : number of railway instances,

ni ∈ N+ : number of events of instance i (i = 1, 2, . . . ,m),

o ∈ N : number of interferences, to be detailed later,

p ∈ N : number of additional restrictions, to be detailed later.

The derived parameter n =
∑m

i=1 ni will denote the number of events in the model.

We introduce the following indices and ordered index sets :

i ∈ I = {1, 2, . . . ,m} : instance index,

j ∈ Ji = {1, 2, . . . , ni} : event index for instance i,

(i, j) ∈ J = ∪mi=1({i} × Ji) : combined instance and event index,

k ∈ K = {1, 2, . . . , o} : interference index,

` ∈ L = {1, 2, . . . , p} : additional restrictions index,

and for the sake of brevity, we will implicitly assume throughout this subsection that these

indices fall into the index sets specified above.

For i ∈ I, the following instance parameters are assumed to be given a priori:

ti,0 ≥ 0 : initial departure times in the original timetable,

qi > 0 : quantities of distributable supplements,

For j ∈ Ji, the same holds for the corresponding following event parameters :

fi,j ≥ 0 : feasible event-to-event times,

wi,j ≥ 0 : weights of the delays.

We introduce the normalized delay weights w̃i,j =
wi,j∑m

g=1

∑ni
h=1 wg,h

and their row vector

w = (w̃1,1, w̃1,2, . . . , w̃1,n1 , w̃2,1, w̃2,2, . . . , w̃2,n2 , . . . , w̃m,1, w̃m,2, . . . , w̃m,nm) ∈ Rn

in order to simplify the notation of the weighted mean delay later on.

Any interference comprises two instances; for each of these, the interference corresponds to

a particular event. A corresponding safety margin is necessary, as well, as described earlier.
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Thus, for any k ∈ K, we specify the following interference parameters a priori:

i′k, ik ∈ I : indices of the first and second instances in their order of passing through,

j′k, jk ∈ J : associated event indices of the first and second instances in the same order,

sk > 0 : safety margins.

The random variables ωi,j represent disturbances in the model. We introduce the vector

ω = (ω1,1, ω1,2, . . . , ω1,n1 , ω2,1, ω2,2, . . . , ω2,n2 , . . . , ωm,1, ωm,2, . . . , ωm,nm) ∈Rn
+ for simplicity.

The values of the following decision variables will be obtained via optimization:

xi,j : supplements,

yi,j : delays.

We introduce the following column vectors in Rn in order to keep the notation simple:

x = (x1,1, x1,2, . . . , x1,n1 , x2,1, x2,2, . . . , x2,n2 , . . . , xm,1, xm,2, . . . , xm,nm)T ,

y = (y1,1, y1,2, . . . , y1,n1 , y2,1, y2,2, . . . , y2,n2 , . . . , ym,1, ym,2, . . . , ym,nm)T .

The values of the following endogenous variables, which are included in the model only for

the sake of notational simplicity, will be determined by the values of the decision variables

and some of the parameters:

ti,j : planned event times,

ui,j : actual event times.

The following parameters of the additional restrictions are given a priori:

a`i,j ∈ R : coefficient of xi,j in additional restriction `,

b` ∈ R : right-hand side constant in additional restriction `.

The following model objectives, to be detailed later, will be obtained through optimization:

∆(x,ω) : minimum weighted mean delay,

D : minimum expected weighted mean delay.

We shall introduce additional symbols later on in the paper.
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2.3 Stochastic programming (SP) formulation

We now formulate the proposed general timetable optimization model as a stochastic linear

two-stage recourse model, which is a well-known model class in the literature of stochastic

programming. Two-stage recourse models may be written concisely in the following form:

min
x≥0
{cx + Eω [Q(x,ω)] : Ax = b}, where

Q(x,ω) = min
y≥0
{qy : Tx + Wy = ω}.

(1)

In our model, the first stage will represent a decision made by the planners of the timetable,

who must take timetabling constraints into account while they attempt to find an optimal

distribution of supplements that results in the lowest possible expected weighted mean delay,

and the second stage will describe the decisions of the drivers and railway operators, who

must take traffic circumstances into account while aiming to respect the given timetable as

precisely as possible. We shall construct a model of this form in a step-by-step manner.

2.3.1 First-stage constraints

The optimal values of the first-stage decision variables xi,j and ti,j (i ∈ I, j ∈ Ji), which

do not depend on the actual realizations of the random variables ωi,j (i ∈ I, j ∈ Ji), are

determined in this stage while taking into account the following constraints:

• Any planned event time ti,j is the sum of the previous planned event time ti,j−1, the

corresponding feasible event-to-event time fi,j and the supplement xi,j:

ti,j = ti,j−1 + fi,j + xi,j (i ∈ I, j ∈ Ji). (2)

• The sums of supplements per instance are bounded from above by the constants qi:
ni∑
j=1

xi,j ≤ qi (i ∈ I). (3)

• The difference between the planned event times of the two instances involved at an

More precisely, this is the canonical representation of a very commonly used special case of two-stage

recourse models with deterministic arrays q and W. All arrays are assumed to be of conformable dimensions.

We shall not follow the traditional notational convention of the names of the arrays in this formulation.
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interference may not be less than the prescribed safety margin sk:

tik,jk − ti′k,j′k ≥ sk (k ∈ K). (4)

• Additional restrictions may be written as:
m∑
i=1

ni∑
j=1

a`i,jxi,j ≤ b` (` ∈ L). (5)

• Supplements are non-negative:

xi,j ≥ 0 (i ∈ I, j ∈ Ji).

2.3.2 Second-stage constraints

The optimal values of the second-stage decision variables yi,j and ui,j (i ∈ I, j ∈ Ji), which

do depend on the actual realizations of the random variables ωi,j (i ∈ I, j ∈ Ji) (and also on

the values of the first-stage decision variables), are determined in this stage while considering

the following constraints:

• Any actual event time ui,j is at least the sum of the previous actual event time ui,j−1,

the corresponding feasible event-to-event time fi,j and the disturbance ωi,j (and it can

be even larger due to waiting for a possible interfering instance):

ui,j ≥ ui,j−1 + fi,j + ωi,j (i ∈ I, j ∈ Ji, ui,0 ≡ ti,0). (6)

• Delays yi,j are the differences of the corresponding actual and planned event times:

yi,j = ui,j − ti,j (i ∈ I, j ∈ Ji). (7)

• Safety margins must be respected by the realized event times just like in the timetable:

uik,jk − ui′k,j′k ≥ sk (k ∈ K). (8)

• Delays are non-negative:

yi,j ≥ 0 (i ∈ I, j ∈ Ji). (9)

2.3.3 A two-stage model with endogenous variables

The model proceeds as follows: the second stage minimizes the weighted mean delay for

any given combination of supplements and disturbances while considering the second-stage
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constraints of the model, whereas the first stage minimizes the expectation of the minimal

weighted mean delay obtained in the second stage by determining the optimal supplements

over the set of first-stage constraints, which may be written concisely as

D = min
x,t≥0
{Eω [∆(x,ω)] : constraints (2)–(5)}, where

∆(x,ω) = min
y,u≥0

{wy : constraints (6)–(8)}.
(10)

Here we introduced the vectors

t = (t1,1, t1,2, . . . , t1,n1 , t2,1, t2,2, . . . , t2,n2 , . . . , tm,1, tm,2, . . . , tm,nm)T and

u = (u1,1, u1,2, . . . , u1,n1 , u2,1, u2,2, . . . , u2,n2 , . . . , um,1, um,2, . . . , um,nm)T .

The variables ti,j and ui,j (i ∈ I, j ∈ Ji) are endogenous and thus redundant in the sense

that they are uniquely determined by the vectors x and y due to equations (2) and (7).

2.3.4 Reduced form

In this subsection, we eliminate all endogenous variables from the model in order to arrive

at a more tractable, albeit less elegant formulation, which will turn out to be useful later on.

As a first step, we solve equation (2) for the planned event times:

ti,j = ti,0 +

j∑
h=1

fi,h +

j∑
h=1

xi,h (i ∈ I, j ∈ Ji). (11)

Subsequently, we introduce the linear function dk(x) for the planned time difference between

the interfering instances at interference k and substitute equation (11) in order to eliminate

all planned event times from the first-stage interference constraints:

dk(x) = tik,jk − ti′k,j′k

= tik,0 +

jk∑
h=1

fik,h +

jk∑
h=1

xik,h − ti′k,0 −
j′k∑
h=1

fi′k,h −
j′k∑
h=1

xi′k,h (k ∈ K).
(12)

Using this notation, we reformulate inequality (4) in the straightforwardly interpretable form

dk(x) ≥ sk (k ∈ K). (13)

Subtracting ti,j from both sides of inequality (6) and substituting equation (2) yields

ui,j − ti,j ≥ ui,j−1− ti,j−1 + fi,j +ωi,j − (ti,j − ti,j−1) = ui,j−1− ti,j−1 + fi,j +ωi,j − (fi,j + xi,j).
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By considering equation (7), we arrive at the following reformulation of inequality (6):

yi,j ≥ yi,j−1 + ωi,j − xi,j (i ∈ I, j ∈ Ji, yi,0 ≡ 0). (14)

Rearranging and subtracting tik,jk from both sides of inequality (8) yields uik,jk − tik,jk ≥

ui′k,j′k − ti′k,j′k − (tik,jk − ti′k,j′k) + sk. By noting equations (7) and (12), we arrive at

yik,jk ≥ yi′k,j′k − dk(x) + sk (k ∈ K). (15)

Using the reduced constraints, we obtain the following concise SP formulation of the model:

D = min
x≥0
{Eω [∆(x,ω)] : constraints (3), (5) and (13)}, where

∆(x,ω) = min
y≥0
{wy : constraints (14) and (15)}.

(16)

This model of the form (1) contains m+o+p and n+o first and second-stage linear con-

straints, respectively, along with n first-stage as well as n second-stage decision variables. In

comparison, the extended form contains n+m+o+p and 2n+o first and second-stage linear

constraints, respectively, along with 2n first-stage and 2n second-stage decision variables.

2.4 Determining the optimal delays in the second stage

As we shall point out in Section 2.5, problem (16) always has an optimal solution under a few

reasonable assumptions. To demonstrate this, we first proceed by proving an intermediate

result, namely that the second stage of problem (16) always has a closed-form optimal solu-

tion under two very mild assumptions on the predefined interferences. The two assumptions

in question may be summarized informally as follows:

• Out of the two instances involved, neither instance must give priority to more than

one other instance at an interference.

• The interferences are not circular so that no deadlock may occur.

These rather technical restrictions are very natural and are without loss of generality, as we

shall point out in Section 2.6, where we shall discuss our model assumptions in detail.

Without loss of generality, we have been assuming since Section 2.2 that every interference only involves

two instances. If, in reality, three instances are involved at an interference, the situation may be modeled as

two interferences each affecting a pair of instances due to the assumption of the fixed order of trains.
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To motivate the concept of a closed-form solution of the second-stage problem, which will

turn out to be practical later, we note that if the disturbances ω are known, it is obviously

optimal to respond to them in a minimalist fashion: the operator does not want more de-

lays than it is strictly necessary due to the safety margins arising at the interferences, and

obviously, no event should take place earlier than it is listed in the schedule. As real-time

disturbances are encountered, the corresponding real-time ”natural” delays can be recorded

sequentially. This is possible, as interferences have a fixed order of instances and are non-

circular, as we assume. It is therefore not surprising that explicit formulas can be generated

for these ”natural” delays. Nor is it surprising that these ”natural” delays are optimal in

the second-stage minimization problem for every set of non-negative weights w.

In order to proceed with the outlined closed-form solution of the second stage, we now formal-

ize the two restrictions listed above by defining the concept of well-structured interferences :

Definition 1. Problem (16) contains well-structured interferences if the following is true:

(a) @ k1, k2 ∈ K : k1 6= k2 and (ik1 , jk1) = (ik2 , jk2), furthermore

(b) @ k1, k2, . . . , kc ∈ K : (ikh+1
, jkh+1

) = (i′kh , j
′
kh

)(h = 1, 2, . . . , c− 1) and (ik1 , jk1) = (i′kc , j
′
kc).

Subsequently, we combine inequalities (9) and (14) yielding

yi,j ≥ max(0, yi,j−1 + ωi,j − xi,j) (i ∈ I, j ∈ Ji, yi,0 ≡ 0). (17)

In order to extend the latter inequality with relevant interference constraints, we define a

function that identifies the index of the interference where instance i is scheduled to wait

before completing its event j:

K(i, j) = {k ∈ K : ik = i, jk = j}.

Assuming well-structured interferences, this function may either return a single value or the

empty set. Defining yi∅,1,j∅,1 ≡ d∅(x) ≡ s∅ ≡ 0 and considering inequalities (9) and (15), we

gain an additional lower bound:

yi,j ≥ yi′
K(i,j)

,j′
K(i,j)

− dK(i,j)(x) + sK(i,j) (i ∈ I, j ∈ Ji), (18)

where we use the function dk(x) defined by equation (12). This constraint describes possible

secondary delays that may occur due to interferences, as a delay of the second instance may

also delay the first instance that is scheduled to wait at the interference.
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We now define a new function that returns the maximum of the right-hand sides of inequal-

ities (17) and (18) in order to merge the two existing lower bounds:

Li,j(y,x,ω) =

max(0, yi,j−1 + ωi,j − xi,j, yi′
K(i,j)

,j′
K(i,j)

− dK(i,j)(x) + sK(i,j)) (i ∈ I, j ∈ Ji),
(19)

which provides us with the following combined lower bound:

yi,j ≥ Li,j(y,x,ω) (i ∈ I, j ∈ Ji). (20)

We argue that there is always a unique delay vector y for which the latter holds with equality

for all events if the interferences are well-structured, and it may be written as a closed-form

function of the given supplements and disturbances:

Theorem 1. If problem (16) contains well-structured interferences then ∃! y∗(x,ω) ∈ Rn :

y∗i,j(x,ω) = Li,j(y
∗(x,ω),x,ω) (i ∈ I, j ∈ Ji). Moreover, y∗(x,ω) may be expressed in

closed form in a recursive way.

Proof. We sort the set J of all events in a sequence Rh (h = 1, 2, . . . , n) successively such

that any event is preceded in the list by its immediate predecessor as well as any interfering

event that has priority, which is necessary as the delays must be determined sequentially due

to the recursive nature of inequality (20). The following is a possible appropriate sequence,

as we shall demonstrate:

Rh = min
i

min
j
{(i, j) ∈ J : ∃g < h : Rg = (i′K(i,j), j

′
K(i,j)),

@g < h : Rg = (i, j)} (h = 1, 2, . . . , n, R0 ≡ (0, 0)).

(21)

Since the interferences are well-structured, an event may not have more than one associated

interfering event with priority, which implies that the number of interferences may not be

greater than the number of instances, or formally o ≤ n. If o = n were true then the interfer-

ences would be circular, which is impossible due to the assumption of well-structuredness, so

we conclude that o < n so that there is at least one event without an interfering event, and

by construction, the first item of the list must be one of these. After removing the first event

of the list from J , if the remaining list J\R1 contains no event without an interfering instance

with priority then its interfering event with priority must be R1, otherwise the remaining

list of n−1 events with n−1 interferences would be circular. Thus R2 exists and is an event

different from R1. By repeating the same argument with the remaining list J\(R1∪R2), we
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conclude that R3 must also be either an event without an interfering event with priority or an

event that has either of the interfering events R1 or R2 with priority. Repeating the same ar-

gument n−1 times, we conclude by induction that our list contains every event exactly once.

Any event (i, j) is trivially preceded in this list by the previous event (i, j−1) if the latter ex-

ists due to the minimization involved with respect to j, which implies that the first item of the

list has j = 1, and due to K(R1) = ∅, y∗R1
(x,ω) = max(0, ωR1−xR1), which is a closed-form

expression of x and ω. By construction, any event (i, j) is trivially preceded also by a possible

interfering event with priority (i′K(i,j), j
′
K(i,j)), so y∗R2

(x,ω) = LR2(y
∗(x,ω),x,ω) is uniquely

determined in closed form, and by induction, we may determine y∗Rh
(x,ω) (h = 3, 4, ..., n) in

closed form in a sequential manner.

On top of this, we argue that the vector y∗(x,ω) defined by the previous theorem is

always an optimal solution of the second stage of problem (16):

Theorem 2. If problem (16) contains well-structured interferences then

y∗(x,ω) ∈ arg miny≥0{wy : constraints (14) and (15)}.

Proof. The vector y∗(x,ω) is a feasible second-stage solution as it obviously satisfies y ≥ 0

as well as constraints (14) and (15). Assume that y′ is another feasible solution with a better

objective function value: wy′ < wy∗i,j(x,ω). Then y′i,j < y∗i,j(x,ω) for a specific i ∈ I and

j ∈ Ji is impossible as it would contradict the feasibility of y′ by violating inequality (20).

Thus we conclude that y′ ≥ y∗i,j(x,ω), implying wy′ ≥ wy∗i,j(x,ω) due to w ≥ 0, which is

a contradiction.

2.5 The existence of an optimal solution

The following theorem states that assuming a few very mild technical conditions, our model

always has an optimal solution.

Theorem 3. If problem (16) contains well-structured interferences, E(ω) < ∞ and the

feasible set of its first stage is non-empty then problem (16) has an optimal solution.
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Proof. We showed in the previous section that a finite value of ∆∗(x,ω) may be determined

explicitly for any x and ω under well-structured interferences. As ∆∗(x,ω) is the optimal

value function of an LP, it follows due to the finiteness of the mean of the vector ω that

D(x) := E [∆∗(x,ω)] is finite and convex hence continuous. Because of inequality (3) the

feasible set is compact and it is assumed to be non-empty. Hence it follows that problem (16)

has at least one optimal solution.

2.6 Discussion of the model assumptions

We now turn our attention to the discussion of the (sometimes implicit) assumptions of our

model, arguing that the simplicity of our formulation comes with little loss of generality,

and it may easily be modified to accommodate additional requirements imposed by real-life

practice. We proceed one by one with a list of relevant assumptions: I

• No integrality constraints : Even though event times are published as integers in timeta-

bles, both planned and actual event times involve fractions of minutes in reality, thus it

is reasonable not to impose any integrality restrictions on either of these in the model.

• Non-negative delays : The assumption that initial departures take place on time is only

a technical one, which may be relaxed by introducing an additional departure event

with a feasible time of 0 minutes and an associated disturbance, supplement and delay,

as we shall do in Section 4. The assumption of no negative delays later on means that

instances are not permitted to complete any event before time, and if they accidentally

do so then they are required to wait until the planned time of the given event, which is

desirable for passengers, who would not like to miss their connections due to premature

departures. This may easily be omitted for certain events whenever necessary.

• Interferences : The fixed order of passing through at the interferences represents the

lack of traffic control decisions in the model, which is reasonable as we wish to improve

the initially given timetable with respect to small disturbances and delays, and it lies

outside the scope of our model to deal with cases where the whole traffic needs to be
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rescheduled due to a major anomaly (e.g. the breakdown of an engine resulting in a

one-hour delay of the given train as well as significant delays on other lines). The first

part of the well-structuredness of the interferences introduced by definition implies that

if an instance is scheduled to wait for two or more other instances at a given event then

the interference in question should be split up into two or more separate interferences

on the list, while the second part of the definition is very natural as deadlocks would

be unreasonable and would completely incapacitate the network.

• Known distributions : The joint probability distribution of the disturbances may be

estimated using measured delay data, which are meticulously collected by railway

companies in practice. We shall elaborate on this problem in detail in Section 5.

• Weighting of delays : Delays may be arbitrarily weighted in the model: being more

important for passengers, arrival events may have greater weights than departure events

(as later in Section 4), and additionally, the importance of the individual stations may

also be accounted for (e.g. based on ticket sales statistics).

• Cyclicity and symmetry : Several railway companies use so-called cyclic timetables

where planned event times of consecutive connections on a given line are shifted by a

common cycle time (e.g. half an hour or one hour) in relation to one another. Cyclic

timetable planning is described in detail and concise mathematical formulations are

given in the literature (see e.g. [14], [15], [16], [21], [22]). Even though cyclicity is not

the particular focus of our model, this type of constraints may easily be incorporated

in it by using the additional restrictions introduced in Section 2.2, since planned event

times are determined by the supplements according to equation (11). The principle

of symmetry means that running times on identical line segments should be identical

whenever possible, which may likewise be modeled by simple additional restrictions.

• Objective functions : Instead of minimizing expected delays, most railway companies

focus on maximizing the closely related punctuality, which is usually defined as the
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percentage of delays falling below a given threshold (or alternatively, unpunctuality,

which equals one minus the punctuality statistic). This formulation leads to models

based on chance constraints or integrated chance constraints (see e.g. [11] and [12]).

Another solution is to use progressively increasing penalty factors for delays falling into

different intervals. Following [16], we minimize expected delays, while the punctuality

of a solution may easily be calculated from the second-stage solution of model (16).

• Two-stage formulation: Due to the sequential nature of real-life delays, which is mir-

rored by the sequential approach of Theorem 1, no delay depends on subsequent dis-

turbances in the list introduced in the proof of the theorem. Otherwise it would be

necessary to construct a more complicated, multi-stage recourse model (see e.g. [1],

[10], [13] or [23]).

• Independence of disturbances from past delays : Our model implicitly assumes that

disturbances do not depend on previously accumulated delays, even though it could be

reasonable to assume an increased speed in case of a delay, within reasonable limits.

This phenomenon is a possible topic of future research.

The same model may be applied naturally to any other methods of public transportation

involving intermediate stops and interferences (e.g. buses, underground railways etc.). More

generally, our model may be applied to any timing problem involving the organization of

one or more series of possibly interfering, repetitive tasks with random completion times.

3 Alternative solution frameworks

An investigation of the computational aspects of our model presented in Section 2 is highly

relevant due to the high complexity of real-life railway networks, which necessitate the use

of fast and reliable algorithms in practical applications. As we shall show in this section,

problem (16) lies in the intersection of deterministic linear, stochastic linear and convex

For example, a 3-minute threshold is used by the Dutch Railways, and the company sets a target value

of this statistic at a national level.
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non-linear programming, which provide an abundance of viable solution algorithms. Hence-

forth, we shall assume ω to be discrete with the finite set of r distinct possible values

Ω = {ω1,ω2, . . . ,ωr}, where P(ω /∈ Ω) = 0.

3.1 Linear programming (LP)

Since problem (16) is an ordinary LP for a fixed value of the random vector ω, it follows

by introducing separate delay vectors y(1),y(2), . . . ,y(r) ∈ Rn for every realization, writing

the first-stage objective function as the probability-weighted sum of the optimal weighted

mean delays and merging the two stages that problem (16) is equivalent to the following

large-scale deterministic LP:

D = min
x,y(1),y(2),...,y(r)≥0

( r∑
h=1

P(ω = ω(h))wy(h) : constraints (3), (5), (13), (14), (15)
)
. (22)

The resulting LP has (r + 1)n decision variables and d(n + p + 2q) linear constraints (ex-

cluding non-negativity constraints of the decision variables), which may result in enormous

dimensions due to the combined effects of a large number of realizations and events even

in the case of a small-scale practical application. Even though the deterministic equivalent

LP problem may be solved by any LP solution algorithm in principle, this approach re-

quires brute force while ignoring the special structure of the problem and the availability of

a closed-form expression for the delay vector.

3.2 Stochastic programming (SP)

There are several advanced SP solution algorithms that benefit from the special structure

of two-stage linear recourse models instead of applying LP on the large-scale deterministic

equivalent (see e.g. [19]). As we shall demonstrate later, this approach may be substantially

more efficient due to being better adapted to this specific model type. A particularly effi-

Even though some SP solution techniques can tackle the case of an infinite set of distinct possible values,

these algorithms are not efficient for large-scale problems in practice, and these cases may be approximated

by the less general case described here, thus we are not considering the more general case in this paper.
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cient algorithm of this type is the Regularized Decomposition (RD) algorithm described in

[26] and implemented in the SP model management environment SLP-IOR (see [9]). Regular-

ized Decomposition is a variant of the L-shaped algorithm described in [29], which iteratively

constructs linear approximations of the first-stage objective function based on its subgradi-

ent, which may be computed from the dual optimal solution of the second stage. It has been

proved that it yields an optimal solution of problem (1) in finitely many iterations, assuming

that there is one. We remark that there are algorithms for continuous distributions (see

e.g. [19]), as well, but we have decided against their use due to their relative computational

inefficiency.

3.3 Convex non-linear programming (NLP)

We have shown in Section 2.4 how to construct a closed-form expression for the optimal

delay vector y∗(x,ω) as a function of the supplements and the random disturbances. Hence

we may eliminate the second stage of problem (16), replace the delay vector by its optimal

value and reformulate the remaining first stage as follows:

D = min
x≥0

( r∑
h=1

P(ω = ω(h))wy∗(x,ω(h)) : constraints (3), (5), (13)
)
. (23)

Due to equation (19) and Theorem 1, the functions y∗(x,ω(h)) (h = 1, 2, . . . , r) arise as

pointwise maxima of functions that are linear in x, so they are themselves convex in x,

and so is the objective function of problem (23). Hence this framework amounts to the

minimization of a closed-form convex function over a convex polyhedral feasible set, for

which an abundance of widely used convex programming algorithms and software solutions

are available (see e.g. [2] or [27]).

4 A real-life application with numerical results

In order to test the methods described in this paper on a real-life application, we constructed

a model with m = 7 instances based on actual timetables of the Haarlem-Maastricht (Haa-

Maa) and Alkmaar-Hilversum (Alk-Hil) lines of the Dutch Railways and some data provided
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by the railway company, which we extended by a few additional assumptions. The two

modeled lines intersect each other in Amsterdam (Ams) at the stations Amsterdam Centraal

(Ams-C) and Amsterdam Sloterdijk (Ams-S). Figure 1 is a schematic illustration of the two

intersecting lines. The case study contains n = 67 events in total. The parameters of

the instances (event counts, initial departure times as minutes after midnight, quantities of

distributable supplements and feasible event-to-event times in minutes) are summarized in

Table 1.

Figure 1: Map of the Haarlem-Maastricht and Alkmaar-Hilversum lines, intersecting in

Amsterdam

The model contains q = 7 interferences for scheduled passenger transfers at these stations as

well as rolling stock connections between the endpoint of an instance and the starting point

of the following instance in the reverse direction of the same line. The parameters of the

interferences (their instance and event indices and prescribed safety margins in minutes) are

Source of image: c©User: Lencer / Wikimedia Commons / CC-BY-SA-3.0, with additional modifications.

Some pairs of oppositely directed instances on identical lines have different event counts as we modeled

both express and local trains. Instead of modeling both departures and arrivals at all stops, we only modeled

one event per stop (only departures except for arrivals at final stations).
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i Endpoints ni ti,0 qi fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10 fi,11 fi,12 fi,13 fi,14

1 Haa-Maa 14 42 11.12 0 2.8 3.74 4.67 5.61 3.74 7.48 21.5 28.97 21.5 15.89 12.15 17.76 13.08

2 Maa-Haa 12 235 10.73 0 14.95 14.02 12.15 18.69 19.63 29.91 16.82 8.41 4.67 5.61 8.41 – –

3 Alk-Hil 13 0 5.10 0 3.74 4.67 4.67 3.74 2.8 2.8 1.87 4.67 5.61 5.61 14.02 18.69 –

4 Hil-Alk 7 95 4.58 0 20.56 11.21 5.61 6.54 11.21 10.28 – – – – – – –

5 Alk-Hil 7 189 4.51 0 7.48 14.02 6.54 5.61 12.15 18.69 – – – – – – –

6 Hil-Alk 7 275 4.58 0 20.56 11.21 5.61 6.54 11.21 10.28 – – – – – – –

7 Alk-Hil 7 369 4.51 0 7.48 14.02 6.54 3.74 14.02 18.69 – – – – – – –

Table 1: Parameters of the instances

summarized in Table 2.

k Station i′k j′k ik jk sk

1 Ams-C 3 11 1 5 5

2 Ams-S 2 11 7 5 5

3 Maa 1 14 2 1 5

4 Hil 3 13 4 1 5

5 Alk 4 7 5 1 5

6 Hil 5 7 6 1 5

7 Alk 6 7 7 1 5

Table 2: Parameters of the interferences

There are no additional restrictions in the model (r = 0). Before discretization, we assumed

the disturbances to be independent right-truncated exponential random variables with orig-

inal means µi,j = E(ω̃i,j) given by µi,1 = 0.2, µi,j = 0.07fi,j (j > 1) and a truncation

threshold of ten minutes: ωi,j = min(10, ω̃i,j) (i ∈ I, j ∈ Ji). We assigned (non-normalized)

delay weights of zero to initial departures, two to intermediate departures with transfer

opportunities (interferences) as well as to final arrivals and one to other intermediate depar-

tures, as initial departure delays are largely irrelevant, and the punctuality of transfers and

final arrivals has a key importance.

In this example, the sequence of events Rh (h = 1, 2, . . . , n) starts as

R1 = (1, 1), R2 = (1, 2), R3 = (1, 3), R4 = (1, 4), R5 = (3, 1), R6 = (3, 2) etc.,

We include truncation in the model following [16] as delays could explode otherwise, whereas the aim of

the model is to increase the robustness of timetables against regular relatively small disturbances.
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where a switch to the third instance occurs in the fifth term due to the first interference,

which prescribes that the fifth event of the first instance has two wait for the eleventh event

of the third instance before moving on. For the sake of illustration, we include here some

associated delay formulas in recursive form:

y∗1,1(x,ω) = (ω1,1 − x1,1)+,

y∗1,2(x,ω) = (y∗1,1(x,ω) + ω1,2 − x1,2)+,

y∗1,3(x,ω) = (y∗1,2(x,ω) + ω1,3 − x1,3)+,

y∗1,4(x,ω) = (y∗1,3(x,ω) + ω1,4 − x1,4)+,

y∗1,5(x,ω) = max((y∗1,4(x,ω) + ω1,5 − x1,5)+, y∗3,11(x,ω)− d1(x) + 5),

. . .

4.1 Numerical solution

We applied statistical sampling from the joint distribution of the disturbances via Monte

Carlo simulation, using the resulting empirical distributions in the model instead of the orig-

inal exponential distributions. This technique is called external sampling ([28]). Assuming

some fairly mild technical conditions, it may be proved that the optimal solution and the

optimal objective function value of the approximating problem are strongly consistent sta-

tistical estimators of those of the original problem (see [28] for a proof and further properties

of the method), so the optimal solution of the sequence of approximating problems with

increasing sample sizes converges to the true optimal solution with probability one. Addi-

tionally, following [16], we applied the technique of antithetic variables (see e.g. [25]) in order

to increase the precision of the discrete approximation for a given sample size. We solved

the problem with several sample sizes, and finally decided to use r = 1000 joint realizations,

as increasing the sample size only altered the optimal solution negligibly beyond this value.

We solved problem (16) in the model management system SLP-IOR using the Regularized

Decomposition algorithm for SP models. Additionally, for the sake of comparison, we also

We define the plus operator as a+ = max(a, 0) (a ∈ R).
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solved the equivalent LP and NLP formulations presented in Section 3 in the computer al-

gebra system Maplesoft Maple 2015 ([18]) using a built-in sparse interior point algorithm

for the LP and the Sequential Quadratic Programming algorithm for the NLP formulation.

The three algorithms arrived at the same optimal solution with computation times of 33.27

minutes (LP), 1.49 minutes (SP) and 1.06 minutes (NLP). These results indicate that us-

ing more advanced formulations instead of solving the equivalent LP as done earlier in the

literature (in e.g. [16] and [30]) pays off in terms of computational efficiency, especially for

larger models of even more complex real-life networks. In the remainder of our paper, we

shall stick to the SP formulation, as we shall focus on non-computational issues.

In addition to the three solution frameworks examined so far, we tested an additional, rather

heuristic solution to present evidence that relying on intuition may lead to poor allocations.

A naive analysis might suggest that it provides a fairly good solution to allocate the sup-

plements proportionally to the mean disturbances associated with the events, which is often

done by railway companies in real-life timetables. In order to test this approach, we fixed

the values of the decision variables in the SP model to follow a proportional allocation,

which increased the optimal objective function value by 13.0%. This is a highly signifi-

cant increase in practice, suggesting that using proportional allocations should be avoided

in real-life timetables.

4.2 Analysis of the role of distributional assumptions

Our choice of the exponential distribution was motivated by several previous publications

including [6], [16], [30] and [32], which described experiments indicating that observed dis-

turbances fit well to exponential distributions. Nevertheless, as a high level of sensitivity of

the optimal solution with respect to the chosen distributional form would indicate a low level

of practical reliability, it is important to investigate the effect of our choice on the optimal

solution. Therefore, in addition to the truncated exponential distributions, we performed a

sensitivity analysis using the following distributional assumptions for ωi,j (i ∈ I, j ∈ Ji, with

On a computer with a 2.8 GHz Intel Core i7 processor and 4 GB RAM.
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the parameters µi,j the same as in Table 1):

• Untruncated exponential with mean µi,j,

• Pareto with two degrees of freedom and cdf Fi,j(x) = 1−
(

µi,j
x+µi,j

)2

(x ≥ 0).

• Uniform on (0, 2µi,j).

We selected these three distributions in order to test the effects of omitting truncation,

introducing heavy tails and a lack of positive skewness, respectively, and calibrated them

to have equal means so as to ensure their comparability. We summarize the results of our

analysis in Table 3. The results indicate that the lack of truncation and heavy tails increase

Distributional assumption

Trunc. exp. Untrunc. exp. Pareto Uniform

Objective function 0.88 0.89 1.06 0.54

Unpunctuality (per 1000) 87.01 86.95 117.94 15.58

RMSD compared to original 0 0.09 0.14 0.12

Correlation between new and original solutions 1 0.99 0.97 0.98

Table 3: Main results for different disturbance distributions

the mean delay and unpunctuality, whereas the lack of skewness decreases them due to

increased predictability. More importantly, the RMSD (root-mean-square difference) and

the correlation coefficient of the new and original first-stage solution vectors indicates a very

high level of similarity of the optimal solutions of the modified problems to the original one,

which implies a high degree of robustness of the optimal solution of our model even if the

exponential distribution is not appropriate or truncation is dropped from the model.

4.3 Analysis of the role of the total amount of supplements

As increasing the amount of supplements results in decreased delays at the cost of increased

planned travel times, there is a natural trade-off between delays and planned travel times,

to be regulated by a reasonable choice of the amount of distributable supplements. For this

reason, it is important to analyze whether the actual values of the supplements used by the
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Dutch Railways, amounting to 7% of the planned travel times, are reasonable. To address

this question, we constructed the following modified version of problem (16):

D = min
x≥0,γ≥0

{Eω [∆(x,ω)] + βM(γ) :

ni∑
j=1

xi,j ≤ γqi (i ∈ I), constraints (5) and (13)}

where M(γ) = γ

m∑
i=1

ni∑
j=1

w̃i,jqi and ∆(x,ω) = min
y≥0
{wy : constraints (14) and (15)}.

In this modified problem, the total amount of distributable supplements for each instance

is scaled by a factor γ > 0, and their weighted mean M(γ) is penalized in the first-stage

objective function by a linear term with an exogenous penalty coefficient 0 < β < 1. Thus the

modified first-stage objective function is the sum of the expected weighted mean delay and

an additional penalty term, which is the product of a penalty coefficient and the weighted

mean of the planned excess travel times arising due to the use of supplements. Here the

penalty parameter expresses how many times planned excess times are more undesirable

than unexpected delays. It is natural to assume that β < 1, as passengers obviously prefer

expected excess times to unexpected ones. Due to the previously explained trade-off between

expected and unexpected excess times, the first term is decreasing and the second one is

increasing in the scale parameter γ, which implies that there is a value γ∗ that optimizes the

trade-off, and its value depends on the penalty parameter β. Thus by finding the parameter

value β∗ that results in γ∗ = 1, we may determine which penalty parameter results in the

same optimal quantities of distributable supplements as the ones currently used in practice.

We shall call this value β∗ the implied penalty parameter of the current timetable. We solved

the modified problem using different values of the parameter β and recorded the optimal

values γ∗ for each run. The numerical results shown in Table 4 indicate the implied penalty

parameter β∗ ≈ 0.56, or in other words, the current timetable assumes that unexpected

excess travel times are somewhat less than twice as undesirable as expected ones.

β 0.2 0.3 0.4 0.5 0.56 0.6 0.7 0.8

γ∗ 1.55 1.34 1.18 1.07 1 0.96 0.86 0.75

Table 4: Optimal scale parameters for different values of the penalty parameter

If e.g. it is more reasonable to assume that unexpected excess travel times are exactly twice
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as undesirable as expected ones, than the current values of supplements should be increased

by a factor of 1.07 according to Table 4.

4.4 Analysis of the effect of dependent disturbances

As the independence assumption is rather unrealistic, we now investigate the effect of possible

dependence among the disturbances. To this end, a parametric multidimensional distribu-

tion needs to be fully specified. This is greatly simplified by the use of copulas (see e.g.

[20]), which are cumulative probability distribution functions over the multidimensional unit

hypercube, as it is known from Sklar’s theorem (again, see [20]) that any multivariate prob-

ability distribution is uniquely determined by the associated marginal distributions and a

copula function. Out of several parametric families of copulas that are known in the liter-

ature, we propose the n-dimensional Gaussian copula due to its computational tractability.

It is defined as C(z1, z2, . . . zn) = ΦR

[
Φ−1(z1),Φ−1(z2), . . . ,Φ−1(zn)

]
(0 < z1, z2, . . . , zn < 1),

where ΦR and Φ−1 denote the joint cdf of the n-dimensional standard normal distribution

with correlation matrix R and the quantile function (inverse cdf) of the univariate standard

normal distribution, respectively. To make our analysis one-dimensional, we used a simple

correlation matrix with Rg,h = ρ (g 6= h, g, h ∈ {1, 2, . . . , n}, 0 ≤ ρ ≤ 1) and Rg,g = 1

(g ∈ {1, 2, . . . , n}), and solved the original SP problem with the additional assumption of

this Gaussian copula joining the disturbances, while leaving their marginal distributions un-

changed. In the external sampling algorithm, we sampled from the Gaussian copula using

the Cholesky decomposition of the matrix R (this technique is described in [4]).

Our numerical results for different correlation coefficients are summarized in Table 5.

Correlation coefficient (ρ) 0 0.2 0.4 0.6 0.8 1

Relative increase in unpunctuality 0% 1% 4% 7% 10% 14%

Correlation between new and original solutions 1 0.99 0.97 0.94 0.9 0.82

RMSD compared to original 0 0.09 0.16 0.22 0.28 0.36

Table 5: Main results for different levels of dependence

The relative increases in unpunctuality indicate that higher levels of dependence result in
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significantly diminishing punctuality and it is clear from the correlations and RMSD values

in the last two rows of Table 5 that the optimal solution vectors diverge largely from the

original one if the correlation coefficient increases. Thus we conclude that the underlying

dependence should not be ignored in practice. We shall introduce a statistical estimation

procedure that enables the modeler to account for dependence in the next section.

5 Statistical estimation of the parameters of the dis-

turbance distributions

Most railway companies keep detailed delay statistics. Even though delays are directly

observable and easily measurable, our model and its predecessors require distributional as-

sumptions for the underlying disturbances and not the delays. Thus a statistical procedure

is necessary to complete the path which leads from raw data to an optimal timetable. As-

suming a parametric joint distribution of the disturbances for convenience, the problem of

estimating its parameters should be addressed in a methodologically appropriate way. We

remark that no specialized estimation procedure has been described in the literature so far

to the best of our knowledge.

Additionally, our presentation aims to correct an important deficiency of previously known

models (e.g. [16] and [30]) only considering independent disturbances, as independence is

highly unrealistic due to common external environmental, operational and traffic factors

(e.g. storms, power outages or track maintenance works) that may simultaneously generate

increases in several disturbances within a day.

To construct an appropriate estimation procedure, first we notice the following relationship

by considering Theorem 1 and equation (19):

y∗i,j = max
(

0, y∗i,j−1 + ωi,j − xi,j, y∗i′
K(i,j)

,j′
K(i,j)

− dK(i,j)(x) + sK(i,j)

)
= max

(
y∗i,j−1 + ωi,j − xi,j, (y∗i′

K(i,j)
,j′
K(i,j)

− dK(i,j)(x) + sK(i,j))
+
)

(i ∈ I, j ∈ Ji),

An analysis tool developed by the Dutch Railways for analyzing railway log files and determining the

intensities of exponentially distributed disturbances is mentioned cursorily without explanation in [16].
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which yields n equations for the n disturbances.

For simplicity, we introduce S(i, j) := (y∗i′
K(i,j)

,j′
K(i,j)

− dK(i,j)(x) + sK(i,j))
+ (i ∈ I, j ∈ Ji) for

the secondary delay caused by waiting for an interfering instance with priority, arriving at

y∗i,j = max
(
y∗i,j−1 + ωi,j − xi,j, S(i, j)

)
(i ∈ I, j ∈ Ji).

The above relationship implies the following for a particular disturbance term:

ωi,j ≤ S(i, j) + xi,j − y∗i,j−1 if y∗i,j = S(i, j),

ωi,j = y∗i,j − y∗i,j−1 + xi,j if y∗i,j > S(i, j).
(24)

This is all that may be inferred about the disturbances based on measured delay data.

Denoting by y∗(g)(i, j) (i ∈ I, j ∈ Ji, g ∈ {1, 2, . . . , d}) the gth observed value of the delay

of event j of instance i out of a sample of d realizations (days) and assuming that delays

associated with distinct events are independent from one another as well as from all delays

measured on different days, we have an IID sample of d observations for every random

disturbance with the following associated log-likelihood:

LLi,j(θi,j) =
∑

{g:y∗(g)i,j =S(i,j)}

logFi,j

(
θi,j, S(i, j) + xi,j − y∗(g)i,j−1

)
+

∑
{g:y∗(g)i,j >S(i,j)}

log fi,j

(
θi,j, y

∗(g)
i,j − y

∗(g)
i,j−1 + xi,j

)
(θi,j ∈ Θi,j, i ∈ I, j ∈ Ji),

where the symbols Fi,j, fi,j, θi,j and Θi,j denote the cdf and pdf, the parameters and the

range of possible parameter values of the individual disturbance distributions, respectively.

These n functions may be maximized one by one in order to arrive at the estimated param-

eter vectors θ̂i,j for every (i, j) ∈ J .

For the framework of dependent disturbances conjoined by a Gaussian copula, which we

introduced in Section 4.4, we follow Joe ([8]), who advocates a two-stage procedure of first

estimating the parameters of the marginal distributions, to be followed by the estimation

of the copula parameters (the correlation matrix R in our case), arguing that the resulting

estimators are consistent. To estimate the correlation matrix R this way, first the distur-

bances must be transformed to follow standard normal distributions under the assumption

of the estimated marginal distributions by applying the transformation
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νi,j := Φ−1(Fi,j(θ̂i,j, ωi,j)) (i ∈ I, j ∈ Ji), transforming (24) into

νi,j ≤ Φ−1
[
Fi,j(θ̂i,j, S(i, j) + xi,j − y∗i,j−1)

]
=: T (i, j) if y∗i,j = S(i, j),

νi,j = Φ−1
[
Fi,j(θ̂i,j, y

∗
i,j − y∗i,j−1 + xi,j)

]
=: U(i, j) if y∗i,j > S(i, j).

(25)

To estimate the correlation coefficient of two transformed disturbances νj, νj′ (j, j′ ∈ J), from

a sample, we follow the procedure described in [17], and construct a log-likelihood function

by considering the four possible cases depending on whether y∗j = S(j) and/or y∗j′ = S(j′)

hold for a given observation:

LLj,j′(ρj,j′) =
∑

{g:y∗(g)j =S(j) and y
∗(g)
j′ =S(j′)}

log Φ12

(
ρj,j′ , T (j), T (j′)

)
+

∑
{g:y∗(g)j =S(j) and y

∗(g)
j′ >S(j′)}

log Φ1

(
ρj,j′ , T (j), U(j′)

)
+

∑
{g:y∗(g)j >S(j) and y

∗(g)
j′ =S(j′)}

log Φ2

(
ρj,j′ , U(j), T (j′)

)
+

∑
{g:y∗(g)j >S(j) and y

∗(g)
j′ >S(j′)}

log Φ
(
ρj,j′ , U(j), U(j′)

)
(−1 ≤ ρj,j′ ≤ 1, j, j′ ∈ J),

where Φ, Φ1, Φ2 and Φ12 are the joint cdf of the bivariate standard normal distribution,

its two partial derivatives and its mixed second-order partial derivative, respectively. These

functions may be maximized one by one to obtain the estimated pairwise correlation co-

efficients and eventually the estimated matrix R̂. This way we obtain the estimated joint

probability distribution by Sklar’s theorem. We finally remark that the estimation of the

joint distribution requires individual delay data, whereas we only possess aggregate data

from the Dutch Railways, so we have only tested the above estimation procedure under the

independence assumption on real-life data.
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