
CPAS/CUB, Budapest CES-KULeuven 

 Final, September 2007 

     

 

 

 

 

 

 

 

CGE Modelling: A training material 
Tamás Révész and Ernő Zalai 

Corvinus University of Budapest 

 

 

 

MENGTECH 
MODELLING OF ENERGY TECHNOLOGIES PROSPECTIVE IN A GENERAL AND 

PARTIAL EQUILIBRIUM FRAMEWORK  

Work Package 5 

 

 

RESEARCH PROJECT N°20121 

 

PARTNERS: CES KUL EUVEN, CUB, ERASME, IER,  LEPII,  NTUA 

 

 

 

Project funded  
by the European Community  

under the 6th Framework Programme (2006-2007) 



 i

Table of content 

 

Introduction .......................................................................................................................... - 1 - 

1. Salient models of general equilibrium ........................................................................... - 19 - 

1.1. The static Walras–Cassel model of general equilibrium......................................... - 19 - 

1.2. The periodic model of Walras with capital goods .................................................. - 21 - 

1.3. The circularity of production and Leontief’s model of general equilibrium .......... - 23 - 

1.4. The Paretian–Hicksian system of general equilibrium ........................................... - 24 - 

1.5. A Koopmans–Kantorovich variant: a linear model based on fixed coefficients .... - 30 - 

1.6. A step towards computable models: Johansen’s model of general equilibrium ..... - 33 - 

1.7. Summarizing the models presented ........................................................................ - 40 - 

1.8. Illustrative programs ............................................................................................... - 41 - 

2. Applied multisectoral models: a comparative review.................................................... - 42 - 

2.1. Applied input-output models .................................................................................. - 42 - 

2.1.1. The input-output table and Leontief’s static model ..................................... - 42 - 

2.1.2. Representation of foreign trade in the I-O tables ......................................... - 44 - 

2.1.3. Partial closure and extensions of the input-output models .......................... - 49 - 

2.1.4. Applied input-output volume models .......................................................... - 50 - 

2.1.5. Applied input-output price models .............................................................. - 54 - 

2.2. Multisectoral resource allocation models: optimum versus equilibrium ................ - 62 - 

2.2.1. Linear optimal resource allocation models for economic policy analysis ... - 62 - 

2.2.2. Ad hoc bounds in linear models to constrain overspecialization ................. - 65 - 

2.2.3. Flexible versus rigid individual bounds: nonlinear approach ...................... - 68 - 

2.2.4. Conclusions: towards the computable general equilibrium models ............ - 76 - 

2.3. The concept and the main building blocks of the CGE models .............................. - 81 - 

2.3.1. From programming to applied equilibrium model....................................... - 81 - 

2.3.2. A stylised CGE model based on problem 2.2-2 ........................................... - 83 - 

2.3.3. Counting equations and variables and closing the CGE model ................... - 88 - 

2.3.4. Notes on the calibration of substitution functions used in the CGE model . - 92 - 

2.4. Illustrative programs ............................................................................................. - 100 - 

3. The specific features of the GEM-E3 model ............................................................... - 101 - 

3.1. Household’s behaviour ......................................................................................... - 103 - 

3.2. Firms’ behaviour ................................................................................................... - 107 - 



 ii

3.3. Government’s Behaviour ...................................................................................... - 111 - 

3.4. Domestic demand and trade flows ........................................................................ - 112 - 

3.5. Equilibrium pricing identities ............................................................................... - 115 - 

3.6. The income distribution and redistribution block ................................................. - 115 - 

3.7. Market clearing conditions .................................................................................... - 119 - 

3.8. Model Calibration and Use ................................................................................... - 121 - 

4. Extensions of the GEM-E3 core models ..................................................................... - 123 - 

4.1. The environmental module ................................................................................... - 123 - 

4.1.1. Mechanisms of emission reduction ............................................................ - 125 - 

4.1.2. The firm's behaviour .................................................................................. - 125 - 

4.1.3. The consumer's behaviour ......................................................................... - 126 - 

4.1.4. End-of-pipe abatement costs ...................................................................... - 126 - 

4.1.5. User cost of energy .................................................................................... - 128 - 

4.1.6. Abatement decision .................................................................................... - 129 - 

4.1.7. The ‘State of the Environment’ module ..................................................... - 131 - 

4.1.8. Instruments and policy design ................................................................... - 133 - 

4.2. Multiple households .............................................................................................. - 135 - 

4.3. Illustrative programs ............................................................................................. - 137 - 

5. Statistical background of the GEM-E3 model ............................................................. - 138 - 

5.1. The primary data requirements of the model ........................................................ - 138 - 

5.2. Sources of the primary data .................................................................................. - 141 - 

5.3. Data availability and problems ............................................................................. - 144 - 

5.4. Data processing methods ...................................................................................... - 147 - 

5.4.1. Processing the Input-Output table .............................................................. - 148 - 

5.4.2. The compilation of the other blocks of the GEM-E3 SAM. ...................... - 150 - 

5.4.3. The baseline emission coefficients ............................................................ - 155 - 

5.5. Techniques for estimating the missing data .......................................................... - 156 - 

5.5.1. Using proxies: ............................................................................................ - 156 - 

5.5.2. Computing as residual: .............................................................................. - 156 - 

5.5.3. Routing through ......................................................................................... - 156 - 

5.5.4. ‘Rooking’ ................................................................................................... - 156 - 

5.5.5. Miniature programming methods .............................................................. - 156 - 

5.6. Techniques for the reconciliation (adjustment techniques) of inconsistent data .. - 157 - 

5.6.1. The RAS-method ....................................................................................... - 157 - 



 iii  

5.6.2. The ‘additive’ RAS-method ....................................................................... - 158 - 

5.7. Summary ............................................................................................................... - 159 - 

6. Compilation of the database for the GEM-E3 model: the example of Hungary ......... - 160 - 

6.1. Domestic output and imports ................................................................................ - 160 - 

6.2. Indirect taxes ......................................................................................................... - 161 - 

6.3. Investment transformation matrix ......................................................................... - 162 - 

6.4. Consumption transformation matrix ..................................................................... - 162 - 

6.5. Accounting for tourism ......................................................................................... - 163 - 

6.6. The Social Accounting Matrix (SAM) .................................................................. - 164 - 

6.7. Bilateral trade matrix ............................................................................................ - 167 - 

6.8. Energy balance sheets ........................................................................................... - 171 - 

6.9. Emission data ........................................................................................................ - 171 - 

7. Implementation of the GEM-E3 model ....................................................................... - 173 - 

7.1. The GAMS software ............................................................................................. - 173 - 

7.2. Reading in the data from CSV files and Excel tables ........................................... - 175 - 

7.2.1. Import data from Excel to GAMS ............................................................. - 175 - 

7.2.2. Export data from GAMS to Excel ............................................................. - 178 - 

References ........................................................................................................................ - 183 - 

APPENDIX 1: The I-O table in GEM-E3 nomenclature ................................................. - 191 - 

APPENDIX 2: Correspondence between NACE and external trade product code ......... - 193 - 

APPENDIX 3: The derivation of symmetric I-O tables................................................... - 194 - 

APPENDIX 4: The Consumption Matrix of Greece ........................................................ - 197 - 

APPENDIX 5: The United Kingdom Investment Matrix ................................................ - 197 - 

APPENDIX 6: Models of Optimal Resource Allocation ................................................. - 199 - 

Introduction .................................................................................................................. - 199 - 

Formal description of the models ................................................................................. - 199 - 

The NLP2 (primal optimal resource allocation) model ............................................... - 199 - 

The NLP3 model (first order conditions of the NLP2 model) ..................................... - 201 - 

The NLPKT model (modified version of the first order conditions) ........................... - 204 - 

The NLPGE model (slightly modified NLPKT) .......................................................... - 206 - 

The CGE and CGECLO models (toward a general equilibrium model) ..................... - 206 - 

APPENDIX 7: Flow chart of the Hungarian CGE model ................................................ - 208 - 



 

 

 

CGE Modelling: A training material  

 Introduction  
Computable General Equilibrium (CGE) modelling is an attempt to use general 

equilibrium theory as an operational tool in empirically oriented analyses of resource 
allocation and income distribution issues. Economic theory helps to understand conceptually 
the linkages between trade, income generation, employment, and the effect of government 
policies.  

The distinguishing features of general equilibrium modelling derive from the Walrasian 
general economic equilibrium theory that considers the economy as a set of agents, interacting 
in several markets for an equal number of commodities under a given set of initial 
endowments and income distribution. Each agent defines individually his supply or demand 
behaviour by optimizing his own utility, profit or cost objectives. His decision yields a set of 
excess supply functions that fulfil the Walras law, i.e., the global identity of incomes and 
expenditures. Arrow and Debreu (1954), McKenzie (1954) and others have proved that under 
some general conditions, there exists a set of prices that bring supply and demand into 
equilibrium.  

Computable general equilibrium (CGE) models turned the above theory into an 
operational model to be used for comparative static analysis. CGE models determine 
simultaneously changes in quantities of goods supplied and demanded, and their prices, in an 
aggregated multi-sectoral and multi-agent setup. Facilitated by the explicit representation of 
markets, the CGE models have been often extended beyond the original Walrasian framework 
to model market imperfections and other economic mechanisms that deviate from the original 
general equilibrium paradigm. For this and similar other reasons, some authors used the term 
“generalized equilibrium modelling” (Nesbitt, 1984) or “general equilibrium programming” 
(Zalai, 1982a) to underline the flexibility of the computable general equilibrium models. 

Salient CGE models 

CGE models have grown out of and combine different modelling traditions. The first CGE 
model, L. Johansen’s Multisectoral Growth (MSG) model (Johansen, 1960) was built for 
Norway. The MSG model was a combination of the dynamic Leontief-type (input-output) 
model with macroeconomic production and consumption functions, thus extending the input-
output model with relative price driven substitution possibilities. Many models followed or 
were inspired later by Johansen’s pioneering work both in Norway (see, for example, Longva, 
Lorentsen and Olsen, 1985) and elsewhere (see, for example, the ORANI model in Australia, 
Dixon et al., 1982).  

In a related but somewhat different approach D. Jorgenson and his associates combined 
the input-output model with macro functions based on the econometric tradition (see, Hudson 
and Jorgenson, 1974 and 1977, Jorgenson, 1984, Jorgenson and Wilcoxen, 1990a and 1990b). 
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The work of Jorgenson has also inspired many modelling efforts, in which particular 
emphasis has been put to issues related to energy and environmental policy (see, for example, 
Bergman, 1988 and 1990, Capros and Ladoux, 1985, the OECD, 1994 GREEN model, 
Conrad and Henseler-Unger, 1986).  

The 1970s and the 1980s witnessed a widespread use of CGE models for the analysis of 
economic development problems of the developing countries (see, e.g., Adelman and 
Robinson, 1978, Dervis, De Melo and Robinson, 1982, Devarajan, Lewis and Robinson, 
1987). These models have enriched the CGE modelling tradition extending the focus of the 
previous models with elaborate treatment of foreign trade, income distribution and various 
policy instruments. Many of these models have further departed from the Walrasian concept 
by including “structuralist” features into the general equilibrium framework (see, for example 
Taylor and Black, 1974, Taylor and Lysy, 1979). Modellers associated with the World Bank 
have animated a large number of modelling projects. Their work contributed to the 
standardization of the CGE approach: data base cantered around the Social Accounting 
Matrix (see, Decaluwe and Martens, 1988) and computer software packages for handling 
CGE models such as like GAMS, HERCULES, MPS/CGE. 

A significant source of inspiration for CGE modelling was the competitive general 
equilibrium interpretation of the primal-dual solutions to linear programming (LP) models of 
nation-wide resource allocation. LP models were extensively used in the 1960s and 1970s for 
economic policy analysis, both in the developing and the centrally planned economies. A 
distinct method that developed from that tradition was the activity analysis approach to CGE 
models (Ginsburgh and Waelbroeck, 1981). The development of the HUMUS model family 
has also taken this point of departure, interpreting CGE models as natural “general 
equilibrium” extensions of the LP programming-planning models (see, Zalai, 1984a). 

Harberger’s (1962) early numerical two-sector model analyzing the incidence of taxation 
and the pioneering work of Scarf (1973) presenting the first constructive method for 
computing fixed points initiated another distinct trend of general equilibrium modelling. It 
oriented chiefly towards the study of tax policy and international trade (see, for example, 
Shoven and Whalley, 1972 and 1984, Scarf and Shoven, 1984, Fullerton, King, Shoven and 
Whalley, 1981, Pereira and Shoven, 1988). Shoven and Whalley provided a state-of-the-art 
methodology for model calibration and formulating multi-national market clearing 
mechanisms in a general equilibrium framework. 

A more recent trend in computable general equilibrium modelling consists in 
incorporating an IS-LM mechanism (termed also macro-micro integration) which has been 
traditionally used in Keynesian models. Bourguignon, Branson and De Melo (1989) and 
others have proposed the ensuing hybrid models. These models often incorporate additional 
features that enhance their short or medium term analysis features, such as, for example, 
financial and monetary constraints and rigidities in wage setting. 

Another recent development was the incorporation of economies of scale and non-
competitive (oligopolistic) market structures into the CGE framework, in order to model the 
effects of trade liberalization and integration on micro efficiency. The forerunner of these 
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models is a Harris’s (1984) pioneering work and the partial equilibrium model of Smith and 
Venables (1988). In the 1990s several models carried further this line of research, including 
Harrison, Rutherford and Tarr (1994), Willenbockel (1994), Burniaux and Wealbroeck 
(1992), Capros at al. (1997). 

Thus, in the last 20 years or so, an enormous number of practically useful CGE models 
have been developed to study a wide range of policy areas in which simpler, partial 
equilibrium tools would not be satisfactory. Equilibrium models have been used to study a 
variety of policy issues, including tax policies, development plans, agricultural programs, 
international trade, energy and environmental policies and so on. A range of mathematical 
formulations and model solution techniques has been used in these modelling experiences. 
The practice of model building itself became increasingly systematized, as reflected for 
instance, in the increasing use of standard and rather powerful packages such as GAMS. 

The advantages of computable general equilibrium models for policy analysis compared 
to traditional macro-economic models are now widely admitted. The general equilibrium 
models allow for consistent comparative analysis of policy scenarios by standardizing their 
outcome around the concept of an equilibrium point, fulfilling the same consistency criteria. 
In addition, the computable general equilibrium models incorporate micro-economic 
mechanisms and institutional features within a consistent macro-economic framework, and 
avoid the representation of behaviour in reduced form. This allows analysis of structural 
change under a variety of assumptions. 

Several surveys are available in various handbooks and journals from different points of 
time and focusing on models developed for one or other specific purpose. We call attention to 
a few of them. “A Bibliography of CGE Models Applied to Environmental Issues” by Adkins 
and Garbaccio (1992) contains most of the relevant literature up to the beginning of 1990s. In 
their conceptual, theoretical review, “CGE Modeling of Environmental Policy and Resource 
Management” Bergman and Henrekson (2003) provide a more up-to-date account on the area 
that is of special concern of our study: analysis of the interrelation of energy, environment and 
economy. Table 1 lists the models and their main characteristics they have covered in their 
review. It provides a useful quick orientation of the most known modelling experiments and 
their characteristics for the interested reader. Ghersi and Toman (2003) have also put together 
a very informative summary of 15 models in their paper, "Modeling Challenges in Analyzing 
Greenhouse Gas Trading" (see Table 2). Finally, Francois and Reinert eds. (1997/98) 
annually update their table contained in "Applied Methods for Trade Policy Analysis: A 
Handbook", the last update (2004) of their summary table available on the WEB is 
reproduced as Table 3. 
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TABLE 1: KEY CHARACTERISTICS OF SELECTED GLOBAL AND REGIONAL E3 CGE MODELS (BERGMAN AND HENREKSON, 2003) 

 

Model Reference Regions Sectors per 

region 

Dynamics Energy sector Backstop 

technology 

Technological 

change 

Environmental 

benefits 

WW Whalley and Wigle (1991) 6 3 Static Top-down No None Yes 

GREEN Burniaux et.al. (1992) 

 

12 11 Quasi-

dynamic 

Top-down Yes AEEI No 

Global 2100 Manne and Richels (1992) 5 2 Fully 

dynamic 

Bottom-up Yes AEEI No 

12RT Manne (1993) 

 

12 2 Fully 

dynamic 

Bottom-up Yes AEEI No 

CRTM Rutherford (1992) 

 

5 3 Quasi-

dynamic 

Bottom-up Yes AEEI No 

G-Cubed McKibbin et.al. (1995) 

 

8 12 Fully 

dynamic 

Top-down No None No 

MIT-EPPA Yang et.al. (1996) 12 8 Quasi-

dynamic 

Top-down Yes AEEI No 

RICE Nordhaus and Yang (1996) 13 1 Fully 

dynamic 

Energy a single 

prod. sector 

Yes AEEI Yes 

IIAM Harrison and Rutherford (1997) 5 2 Fully 

dynamic 

Top down No None No 

ÚR Babiker et.al. (1997) 

 

26 13 Static Top down No None No 



 - 5 -

MS-MRT Bernstein et.al. (1999) 10 6 Fully 

dynamic 

Top down Yes AEEI No 

AIM Kainuma et.al. (1999) 

 

21 11 Quasi-

dynamic 

Top-down No AEEI No 

WorldScan Bollen et.al. (1999) 13 11 Quasi-

dynamic 

Top-down No None No 

GEM-E3 Capros et.al (1995) 

(14 EU Member States and ROW) 

15 18 Quasi-

dynamic 

Top-down No AEEI Yes 

BFR Böhringer et.al. (1998) 

(Germany, France, UK, Italy, Spain, 

Denmark and ROW) 

7 23 Static Top-down No - No 

HRW Harrison et.al. (1989) 

(US, Japan, France, Italy, UK, 

Ireland Germany, Netherlands, 

Belgium, Denmark, and ROW) 

11 6 Static Top-down No - Yes 
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Table 2: Summary of Various Models (Ghersi and Toman, Appendix) 

 Goulder  

Goulder (1995) 

EPPA (version 1.6) Yang et al. (1996) Jacoby et al. 

(1999)  

MARKAL-MACRO 

Hamilton et al. (1992)  

Equity issues  regions  1 (U.S.)  12 (global)  1 (U.S.)  

 sectors 

households  

13 (6 energy-related) 1 infinitely-lived 

representative household  

10 (7 energy-related) 1 myopic representative household  infinitely-lived single 

agent economy  

 other  n.a. n.a. bottom-up energy 

module  

Technical 

change  

in energy  carbon liquid backstop, available 2010  • carbon liquid backstop, available 2000 • carbon-free 

electric backstop, av. 2000 • global constant AEEI in all 

non-energy sectors  

AEEI differing in 

energy demands  

   • global constant efficiency improvement for oil and gas 

supplies  

 

 other  n.a. n.a. n.a.  

Carbon trade  modeling  as a carbon tax (Bovenberg et al., 2000)  n.a.  as a carbon tax  

 market powers  n.a. n.a. n.a.  

 supplementarity  n.a.  n.a.  n.a.  

 geographic 

restrictions  

n.a.  no trading, Annex 1  n.a.  

 CDM  n.a.  n.a.  n.a.  

International 

linkage  

Trade  • Armington specification for all goods except oil 

and gas Heckscher-Ohlin • zero balance constraint 

every period  

• Armington specification for all goods except oil and gas 

Heckscher-Ohlin • zero balance constraint after 4 periods  

n.a.  

 Finance  n.a.  n.a.  n.a.  
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 MERGE  

Manne et al. (1995, 1999), http://www.stanford.edu/group/MERGE/  

SGM  

MacCracken et al. (1999) Edmonds 

(1995)  

G-CUBED  

McKibbin et al. (1995, 1999)  

Equity issues  regions  5 (global), 9 (global) in MERGE 3.0  12 (global)  8 (global)  

 sectors 

households  

infinitely-lived single agent economy  13 (11 energy-related) 1 myopic (?) 

representative household  

12 (5 energy-related) 1 hybrid 

representative household  

 other  9 electric, 9 non-electric energy supplies in energy module  n.a. n.a.  

Technical 

change  

in energy  • 2 carbon-free electric backstops, av. 2010 (low cost) and 2020 (high 

cost) • carbon liquid backstop (high price) • global constant AEEI in 

the aggregated sector  

sector-specific exogenous growth in 

total productivity rate for energy 

sectors  

• global constant AEEI • region-

specific exogenous growth in total 

productivity rate for energy sectors  

 other  n.a.  sector-specific exogenous growth in 

total productivity rate  

region-specific exogenous growth in 

total productivity rate  

Carbon trade  modeling  regional endowments are traded on an interregional market  as a carbon tax harmonized within 

trading limits  

regional endowments are auctioned 

then traded on an interregional 

market  

 market powers 

supplementarity  

buyer's and seller's market cap on trade (33% of targeted reductions for 

net buyers)  

seller's market cap on trade (10% of 

targeted reductions for net buyers, 

exact compensation in actual 

domestic efforts for net sellers)  

n.a. n.a.  

 geographic 

restrictions  

no trading, Annex 1, global trading  no trading, double bubble, Annex 1, 

global trading  

no trading, double bubble, Annex 1, 

global trading  

 CDM  supplies an exogenous 15% of observed global trading transactions  global trading is provided as a limit 

of its benefits  

n.a.  

International 

linkage  

Trade  • oil, gas, coal, and the single output, plus energy-intensive goods 

(EIG) in MERGE 3.0 are perfectly substitutable • carbon permits are 

perfectly substitutable • zero balance constraint every period • 

international transport priced • S/D ratio of domestic EIG provide 

assessment of trade impacts n.a.  

• all goods perfectly substitutable 

except distributed gas nontradable • 

possibility of fixed quantities or 

prices • zero balance constraint 

after a few periods n.a.  

Armington specification for all 

goods, with sensitivity analysis on 

the elasticities global investment 

market, perfect in OECD, constrained 

elsewhere  

 Finance  n.a.  n.a.  n.a.  
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 RICE-99 

Nordhaus et al. (1999a, b)  

FUND (version 1.6)  

Tol (1999)  

GRAPE  

Kurosawa et al. (1999)  

Equity issues  regions  13 (global)  9 (global)  10 (global)  

 sectors households  infinitely-lived single agent economy  non-overlapping generations single agent economy  infinitely-lived single agent economy  

 other  n.a. n.a. bottom-up energy module  

Technical 

change  

in energy  • carbon-free energy backstop (high 

price) • region-specific A Carbon EI 

in the aggregated sectors  

• global AEEI in the aggregated sector • global A 

Carbon EI in the aggregated sector  

• AEEI in the aggregated sector • oil 

substitutes in transports av. 2010 • nuclear 

substitute available 2050  

 other  region-specific exogenous growth in 

total factor productivity in the 

aggregated sector  

n.a. n.a.  

Carbon trade  modeling  as a carbon tax harmonized within 

trading limits  

as cooperation in a game-theoretic sense: sum of the 

welfares of the trading regions is maximized with 

actual regional reductions as control variables  

as a carbon tax harmonized within trading 

limits, with a constant unit transaction 

cost of 1990$10 a ton  

 market powers 

supplementarity  

n.a.n.a.  n.a.cap on trade (10% of targeted reductions for net 

buyers, for net sellers, and for both jointly)  

n.a. n.a.  

 geographic 

restrictions  

no trading, OECD, Annex 1, global 

trading  

no trading, double bubble, Annex 1, Annex 1 and 

Asia, global trading  

no trading, Annex 1, global trading  

 CDM  n.a.  n.a.  global trading has emissions outside 

Annex 1 constrained to their no-trading 

level; CDM is not explicitly mentioned  

International 

linkage  

trade  n.a. except single output in 

compensation of permits  

n.a.  • in single output • in energy products in 

the bottom-up energy module  

 finance  n.a.  n.a.  n.a.  
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  WORLDSCAN  

Bollen et al. (1999), 

http://www.cpb.nl/nl/pub/pubs/bijzonder_20/ 

AIM  

Kainuma et al. (1999)  

http://www-cger.nies.go.jp/ipcc/aim/  

MS-MRT  

Bernstein et al. (1999)  

Equity issues  regions  13 (global)  21 (global)  10 (global)  

 sectors  11 (4 energy-related)  11 (7 energy-related)  6 (4 energy-related)  

 households  overlapping generations  1 myopic representative household  1 infinitely-lived representative 

household  

 other?  • high and low-skilled labour • region-specific unformal 

(low-productivity) sectors  

n.a. n.a.  

Technical 

change  

in energy other  n.a. region- and sector-specific exogenous growth in factors 

productivity rate  

• global constant AEEI • global 

constant A Carbon EI n.a.  

• carbon-free backstop (high price) • 

AEEI growth in total factor productivity, 

endogenous returns on capital  

Carbon trade  modeling  as a carbon tax harmonized within trading limits  regional endowments are traded on an 

interregional market  

regional endowments are traded on an 

interregional market  

 market powers 

supplementarity  

n.a.cap on trade (10, 15 and 25% of targeted reductions for 

net buyers, and for net sellers)  

n.a.n.a.  seller's market • cap on trade • ban on 

"hot air"  

 geographic restrictions  no trading, double bubble, Annex 1, global trading  no trading, double bubble, Annex 1, 

global trading  

no trading, Annex 1, global trading  

 CDM  • financing of retrofit projects following a cost-benefit 

analysis with additionality constraint (cf. text) • exogenous 

5% of targeted reductions  

as global trading with emissions outside 

Annex 1 constrained to their BAU level  

supplies an exogenous 15% of observed 

global trading transactions  

International 

linkage  

trade  Armington specification for all goods turning to Heckscher-

Ohlin in the long-run  

• all foreign goods perfectly 

substitutable • Armington specification 

for domestic and aggregated foreign 

goods  

• Armington specification for all goods 

except oil, electricity nontradable • trade 

balanced over time horizon • study of 

terms-of-trade variations  

 finance  Imperfect global investment market  perfect global investment market  • zeroed on the growth path • perfect 

mobility of capital  
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 GTEM  

Tulpulé et al. (1999) 

http://www.abare.gov.au/pdf/gtem.doc  

OXFORD  

Cooper et al. (1999)  

CETA  

Peck and Teisberg (1992, 1999)  

Equity issues  
regions  

18 (global)  22 (mostly OECD), key macro variables for 

50 more  

2 (global)  

 
sectors 

households  

16 (5 energy-related) 1 myopic representative 

households  
infinitely-lived single agent economy  Infinitely-lived single agent economy  

 
other  

saving decisions (forward-looking) are 

disaggregated in age groups  

6 energy supplies, 4 energy demands in 

energy module for 8 regions  

7 electric, 5 nonelectric energy supplies 

in energy module  

Technical 

change  in energy  endogenous  n.a.  

• nonelectric and electric carbon-free 

backstops (high prices) • global constant 

AEEI in aggregated sector  

 

other  endogenous  

region-specific growth in total factor 

productivity, exogenous trend corrected by 

energy prices ("crowding-out wise")  

n.a.  

Carbon trade  
modeling  

as a carbon tax harmonized within trading 

limits, with impact on GNP  

as a carbon tax harmonized within trading 

limits, with impact on GNP  

Regional endowments are traded on an 

interregional market  

 market powers  n.a. n.a. n.a.  

 supplementarity  n.a.  n.a.  n.a.  

 geographic 

restrictions  
no trading, double bubble, Annex 1  

no trading, double bubble without trade in 

the EU, Annex 1  
Annex 1, global trading  

 CDM  n.a.  n.a.  n.a.  

International 

linkage  trade  

• Armington specification for all goods • 

international transport priced  

Armington specification for the single output  Carbon permits, the nonenergy good, oil 

and gas, and synthetic fuel are perfectly 

substitutable  

 finance  imperfect global investment market  perfect global investment market  n.a.  
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Table 3: Calibration-based numerical trade policy models (Francois and Reiner, 2004) 

 

 Description  Software 
required 

 Partial or 
general 
equilibrium 

 Single 
or 
multi-
region 

Partial equilibrium models 
   

The GSIM model: (Global SIMulation model) included in 
the  World Bank’s WITS package for tariff and trade 
analysis, along  with a short background technical paper 
from Francois and Hall  (2002). This is a global, multi-
region, partial-equilibrium model. 
 ? GSIM4x4.XLS (a compact example model with up to 4  
regions, and only import tariffs) 
 ? GSIM25x25.XLS (a large template, for up to 25 regions, 
with tariffs, export taxes/subsidies, and production  
subsidies). 

 Excel  PE  MR 

Perfect substitutes trade model: from Francois and Hall, 
Chapter 5 in Applied Methods for Trade Policy Analysis: A 
Handbook, J.F. Francois and K.A. Reinert, Cambridge 
 University Press, 1997-1998.  

Excel PE SR 

Imperfect substitutes trade model: from Francois and Hall, 
Chapter 5 in Applied Methods for Trade Policy Analysis: A  
Handbook, J.F. Francois and K.A. Reinert, Cambridge 
University Press, 1997-1998.  

Excel PE SR 

Anti-Dumping &tc: The USITC’s set of COMPAS models 
(including some documentation on the spreadsheet). These 
are used (or have been and sometimes are, depending on the 
political relevance of economics for any given fair trade 
investigation) for antidumping and countervailing duty 
investigations, for assessment of injury.  

Excel PE SR 

SWOPSIM: from Chapter 8 in Applied Methods for Trade 
Policy Analysis: A Handbook, J.F. Francois and K.A. 
Reinert, Cambridge University Press, 1997-1998.   

Excel PE MR 

General equilibrium Excel® models     

 123 Model: Excel implementation Devarajan et al 1997, 
Chapter 6 in Applied Methods for Trade Policy Analysis: A 
Handbook, J.F. Francois and K.A. Reinert, Cambridge 
University Press, 1997-1998. 

Excel GE SR 

 123 model for Egypt: Excel implementation with Egyptian 
data for 1998, J. Francois (2001). 

Excel GE SR 

123 model in steady-state: a steady-state extension 
(combining Chapters 6 and 12 from Applied Methods for 
Trade Policy Analysis: A Handbook, J.F. Francois and K.A. 
Reinert,  Cambridge University Press, 1997-1998. 

Excel GE SR 

GE Armington model: General equilibrium extension of the  
Imperfect substitutes trade model from Francois and Hall, 

Excel GE SR 
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with a  short background technical paper from Francois and 
Hall  (1998).   
Shipping model: International trade with imperfect 
competition in  shipping, from Francois and Wooton (2001), 
“Market Structure,  Trade Liberalization, and the GATS,” 
European Journal of  Political Economy.  

Excel GE MR 

GTAP: Dominique van der Mennsbrugghe’s spreadsheet 
implementation of the GTAP model.  

Excel GE MR 

General equilibrium models in GAMS® and GAUSS®     

GTAP-E: A GAMS implementation of a model of 
international trade that includes carbon emissions. You will 
need access to the GTAP database (not provided here). This 
version is for GTAP4, which is benchmarked to 1995.  

GAMS GE MR 

IFPRI standard model: This is the standard model developed 
by Sherman Robinson et al. when at IFRPI.  

GAMS GE SR 

123 Model: GAMS implementation of the 123 model from 
Devarajan et al 1997, Chapter 6 in Applied Methods for 
Trade Policy Analysis: A Handbook, J.F. Francois and K.A. 
Reinert, Cambridge University Press, 1997-1998  

GAMS GE SR 

Single region U.S. CGE model: (from Chapter 7 of J.F. 
Francois and K.A. Reinert, Cambridge University Press, 
1997-1998.) 

GAMS GE SR 

Transition dynamics: a model of the Austrian economy from  
Chapter 13 in Applied Methods for Trade Policy Analysis: A  
Handbook, J.F. Francois and K.A. Reinert, Cambridge 
University Press, 1997-1998. 

GAUSS GE SR 

Labor markets in GE: from Chapter 14 in Applied Methods 
for  Trade Policy Analysis: A Handbook, J.F. Francois and 
K.A. Reinert, Cambridge University Press, 1997-1998. 

GAMS GE SR 

The Small model: a 3-region model implemented in 
MPSGE. This is the same aggregation used for the 
“SIMPLE” model below. HTML-based documentation is 
available. 

GAMS GE SR 

The Large Model: a multi-region, MPSGE-based model used 
while I was at the GATT/WTO to assess the Uruguay Round 
agreements. This model is SAM-based (our global SAM is 
included). This was published, in various forms, e.g,:  
Francois, J.F. B.J. McDonald, and H. Nordstrom (1996),  
"The Uruguay Round: A Numerically Based Qualitative 
Assessment," in W. Martin and A Winters, eds., The 
Uruguay  Round and Developing Countries, Cambridge 
Univesity  Press.  
This includes a number of features that were innovative for 
CGE models once upon a time: (1) explicit quotas (included 
in the file), (2) global monopolistic competition, and (3) 
steady-state investment effects  (included in the file, and 
called “numeric ballistics” by Glenn Harrison when he first 
commented back in 1993). 

GAMS GE MR 



 

 

- 13 -

General equilibrium models in GEMPACK®    

GTAP model (old version): from Chapter 9 in Applied 
Methods for Trade Policy Analysis: A Handbook, J.F. 
Francois and K.A. Reinert, Cambridge University Press, 
1997-1998.  
This is a multi-region CGE model. Further documentation is 
available from  
Chapter 2 of Hertel, T. (1996), Global Trade Analysis, 
Cambridge University Press. 

GEMPACK GE MR 

Steady-state investment effects: from Chapter 12 in Applied 
Methods for Trade Policy Analysis: A Handbook, J.F. 
Francois and K.A. Reinert, Cambridge University Press, 
1997-1998. 

GEMPACK GE MR 

Imperfect competition in GTAP: from J. Francois, Scale 
Economies and Imperfect Competition in the GTAP Model, 
GTAP Technical Paper No. 14, 1998. 

GEMPACK GE MR 

Capital accumulation in GTAP: from J. Francois, B. 
McDonald, and H. Nordstrom, , Liberalization and Capital 
Accumulation in the GTAP Model, GTAP Technical Paper 
No. 07, 1996. 

GEMPACK GE MR 

The SIMPLE model:  
This is a self-contained (i.e. executable) somewhat-dated 
version of the GTAP model. It includes scale economies, 
imperfect competition, nested- and non-nested import 
demand, rigid wages, and some capital mobility treatment. 
The idea is to follow a single experiment across different 
model features. HTML-based documentation is available. 
These examples are built on the same dataset as the “Small” 
model in GAMS/MPSGE linked above. 

GEMPACK GE MR 

 

Purpose and organization of the monograph 

This monograph is part of the effort to increase the capacity to apply multisectoral models 
for economic policy analysis, especially lacking in the New EU Member States, where such 
models have been missing from both university curricula and practice. As a result, there are 
hardly any experts in these countries knowledgeable or experienced in multisectoral modelling 
methodology widely used in a variety of areas of economic policy analysis in other parts of the 
world. The proper use of CGE models requires substantial knowledge and skills in several 
fields, including economic theory, statistics and computation techniques. The monograph was 
tailored first of all to the needs of students, research assistants and modellers coming from this 
environment, but might be useful additional reading for other interested beginners in the field 
elsewhere too. The monograph is supplemented by various computer programmes to provide 
numerical illustration and models to the themes presented. 

This training material has been organized into chapters and sections as follows. The first 
chapter reviews and deepens the reader’s knowledge of the theoretical and methodical 
foundations of general equilibrium models necessary for the proper understanding of the 
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strengths and weaknesses of general equilibrium analysis. It is especially designed for those 
who have not studied in a systematic fashion mathematical economics and the history of 
economic thoughts.  

It starts with two abstract models developed by Walras to explain concepts such as Walras 
law, price homogeneity, counting equations and macro-closure that reappear in the CGE 
models. The use of simpler models facilitates the understanding of those concepts and provides 
a useful introduction to the art of CGE model building. We also touch upon the issue of the use 
of weak inequalities and complementary restrictions in the market clearing conditions as well 
as the structural and reduced forms of the models by invoking the Cassel and Schlesinger-Wald 
variants of the first model of Walras.  

The models presented above were stylized theoretical models not intended for practical 
application. Unlike those models Leontief developed the first applied general equilibrium 
model for policy analysis, the model of interindustrial or input-output analysis. In the third 
section the basic concepts and equilibrium conditions of Leontief’s model are introduced and 
discussed. 

The early models of general equilibrium were holistic, macroeconomic models, not using 
any behavioural explanation for the determination of the choice of technology or final use. The 
pioneering works of Hicks and Samuelson filled this gap by merging the holistic, macro-
economic framework with the neoclassical theories of firms and consumers. That approach 
became the framework of modern applied general equilibrium models. Section 1.4 describes 
the main components and conditions of general equilibrium in a model based on micro-
economic foundations (differentiable production and utility functions). 

The functions used in the neoclassical GE model however are not easy to estimate in the 
practice. Modellers therefore had to circumvent often the problem by using an alternative 
representation of technology and preferences based on the use of fixed coefficients and linear 
relationships. Koopmans and Kantorovich were awarded for laying down the theoretical and 
methodological foundations of applied linear economic models. In section 1.5 we discuss the 
basic concepts and theorems of linear activity analyses, which form the basis of the linear 
programming (LP) approach used extensively in the analysis of resource allocation. The 
nation-wide LP models can be interpreted as linear GE model. We illustrate that point by 
presenting a Koopmans–Kantorovich type model of general equilibrium that is the linear 
equivalent of the Hicks–Samuelson GE model presented in the previous section. 

In section 1.6 we pave further the way leading to modern CGE models by presenting a 
stylized version of the first applied general equilibrium model developed by Leif Johansen. 
This model is a combination of Leontief-type input-output model with macroeconomic 
production and consumption functions, thus an input-output model extended with relative price 
driven substitution possibilities. Many models followed or were inspired later by Johansen's 
pioneering work and retained its original structure. In order to keep the model transparent, we 
present a prototype version of the model with no foreign trade and taxes, and with no income 
redistribution.  
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Finally, the last section summarizes the models presented and discussed in order to ease 
their survey and comparison. 

The chapter is accompanied by two numerical examples and exercise package. The first is 
an Excel realization of the Cassel-model assuming 2 factors and 3 products (Cassel-2x3.xls and 
Cassel-2x3.doc). This exercise illustrates how the neoclassical theory works in practice and 
how the equilibrium solution depends on the parameters of the model. The second is an Excel 
illustration of the simplified Johansen CGE model (Johansen-DinLeo.xls). This program 
demonstrates also how simpler CGE models can be solved by iterating only with a few 
variables and repeatedly solving a set of simultaneous equations. 

In the second chapter the main variants of applied multisectoral models macroeconomic 
models, the input-output, linear programming and computable general equilibrium approach 
discussed and compared with each other. Special emphasis is laid on their close similarity and 
features which link them together. The systematic review and discussion of the alternative 
macroeconomic multisectoral models reveals their common features and differences. The 
comparative analysis of the various model types is a crucial step in the explanation of the CGE 
approach especially for modellers coming from the former socialist countries. It enables the 
reader (student) to understand better the general philosophy lying behind the computable 
general equilibrium approach and models. In the training seminar we could see that it was 
considered to be very useful even for students who have acquired already some experience in 
building and running CGE models. 

In the first section the basic concept and content of the statistical input-output tables (one of 
the main data source of the CGE models), and their relation to Leontief’s static input-output 
model are reviewed. Next we discuss the alternative ways in which foreign trade can be 
represented in the I-O tables. The partial closure possibilities and possible extensions of the 
input-output models prepare the ground for the presentation of complex volume and price 
models, which reappear as product balance and equilibrium pricing conditions in the 
computable general equilibrium models as well, not only un the pure input-output models. 

The second section deals with the optimal resource allocation models taking the form of a 
linear or nonlinear programming problem and based on an input-output technology. By means 
of simple models we discuss in brief how optimal resource allocation models can be used for 
economic policy analysis. We point out to the basic problem of the linear programming 
approach, namely that these models tend to produce unrealistic overspecialized solutions. The 
only way to constrain overspecialization in a linear model is the introduction of ad hoc bounds 
on certain groups of variables, which in turn distorts the shadow prices of the commodities and 
resources on the other hand.  

We demonstrate next that the use of rigid bounds is equivalent to assume less then perfect 
substitution between certain pairs of commodities in use or production represented by piece-
wise linear isoquants or indifference curves. Switching to smooth, differentiable curves one 
can arrive at a nonlinear version of the same resource allocation problem that uses ‘flexible’ 
rather than rigid bounds to constrain specialization. The nonlinear model produces much more 
meaningful prices for the commodities and resources appearing in the model. 
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It is pointed out that the first order necessary conditions of the optimal solutions of a 
nonlinear resource allocation model – using appropriate functional forms – resemble the 
conditions of general equilibrium. There can be only a few conditions which will have to be 
revised and changed in order to get the conditions of a perfect competitive equilibrium. 
Introducing taxes and subsidies in appropriate places into the set of equilibrium conditions one 
can arrive at a stylized CGE model.  

In the third section the main building blocks of the CGE models are introduced and 
discussed: the commodity structure, representation of technology and production decisions, the 
representation of exports and imports, income distribution and final demand (consumption and 
investment), and market clearing equilibrium conditions. We close the section and the chapter 
by discussing the CES functional forms typically used in CGE models, and their calibration 
procedure. 

This chapter is also accompanied by exercise programmes and materials. To facilitate the 
understanding of the characteristics of the programming models we developed an Excel 
program (LP-2x2-6eset-CES.xls), which computes and graphically displays the feasible set, the 
main functions and the optimal solution. The use of a CES welfare function helps also the user 
to understand the nature and role of CES functions in CGE-models. The program also 
illustrates the sensitivity analysis of the multisectoral macroeconomic models.  

Another exercise possibility is provided by a GAMS model that distinguishes 3 sectors and 
10 household groups, and was calibrated using Hungarian data for 1998 (MultHH-opt-
scen.GMS). The model, by setting appropriately the value of certain parameters, can be used 
for the solution of both an NLP and CGE variant of the same problem and for the comparison 
of their behaviour. We have also developed an Excel interface for this GAMS program, which 
can present and compare the results of up to 7 simulation runs in a transparent Excel format. 
The GAMS code of this program provides thus a useful exercise that teaches the user how to 
present model results in Excel. 

Having prepared the ground in this way, in chapter 3 we turn to the detailed presentation of 
the specific features of a typical GEM-E3 model in the third chapter. We go through one by 
one the issues related to the assumed household’s, firm’s and government’s behaviour, 
domestic demand and trade flows, the equilibrium pricing identities, the representation of 
income distribution and redistribution, the market clearing conditions. We pay special attention 
to the issues related to model calibration and use in economic policy analysis. 

Extensions of the GEM-E3 model include the generalization of the household utility 
function to take into account of the geographic variety of consumer goods, imperfect 
competition, the financial module determining the general price level, etc. In the training 
material we presented only the environmental module and discussed the possibility of 
representing private consumption and income generation with multiple households. 

Chapter 4 describes two important extensions of the GEM-E3 model. In the first section the 
environment module is introduced, which represents the effects of different environmental 
policies on the economy and the state of the environment. It concentrates on three important 
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environmental problems: (i) global warming (ii ) problems related to the deposition of 
acidifying emissions, and (iii ) ambient air quality. 

Next, the three components of the environmental module are described in details. Namely, 
the “behavioural” module representing the effects of different policy instruments on the 
behaviour of the economic agents, a “state of the environment” module, and the “policy-
support component”, including the policy instruments related to environmental policy. 

The three mechanisms that affect the level of actual emissions in the model: (i) end-of-pipe 
abatement technologies (ii ) Substitution of fuels, and (iii ) production or demand restructuring 
between sectors and countries are also explained in some details. 

The presentation of the GEM-E3 model’s environmental module was accompanied by a 
model developed for Hungary, which was based on the extension of the GEM-E3 
environmental module. 

The second section describes the problems that arise, when multiple households and their 
relationships with the labour market and income distribution are represented in a CGE model. 
After discussing the various socio-economic group-formation criteria, we present a 
neoclassical quasi-dynamic CGE-model. The model was calibrated for Hungary and 
distinguishes 3 sectors and 10 household groups (MULTHH.GMS program). The model 
contains group specific human capital (accumulated by the “productive” use of the household 
expenditure) and group specific financial wealth. CET-labour supply functions and alternative 
closures rules increase the flexibility of the model in policy analysis. This program allows also 
for useful practical exercises. 

The fifth chapter is devoted to the issues related to the statistical background of the GEM-
E3 models. In order to calibrate the parameters of a GEM-E3 model one has to compile 
benchmark year data on the production technology (incl. emission of air pollutants), 
consumption patterns, taxes, income distribution, savings and final demands. These data can be 
derived from various sources. The following data, their availability and method of estimation 
or derivation is discussed in details in this chapter: 

− I-O tables and their supplementary tables, the import matrix and the matrix of indirect taxes 
and subsidies, import duty matrix; 

− foreign trade matrices (exports and imports by commodity groups and partner countries); 

− consumption transformation matrix; 

− investment matrix; 

− income distribution data, such as like the value added and its primary distribution /wages, 
social security, production taxes, production subsidies, operating surplus, income-
expenditure balance sheets; 

− environmental data needed for GEM-E3, for example, emission coefficients per type of 
activity for the pollutants considered in the model, marginal abatement cost functions for 
some of the pollutants, coefficients representing pollutants’ transformation and 
transportation between countries, damage per pollutant and its monetary valuation; 
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− auxiliary data, such as like factor endowment data, interest rates, inflation rate in the base 
year, demographic data, foreign tourists domestic consumption expenditure by supplier 
branches and the related VAT and consumption tax, energy balance sheets, energy taxes, 
stocks of energy consuming durable goods, share of gasoline and gas-oil within motor-fuel 
demand, share of non-energetic use of the energy carriers, etc. 

The GEM-E3 model distinguishes 18 branches, 13 consumption categories, the list of 
which and their content can be seen in the tables of Appendix 1 of the training material. The 
method of reclassification (aggregation) from the original break-downs to the desired break-
downs can be found in Appendix 2. Since most of the above data enter into a SAM (Social 
Accounting Matrix) scheme, designed specially for the GEM-E3 model, this chapter gives a 
detailed description of the SAM and instructions how to fill it with the available data.  

A separate appendix contains an extract of the SNA 1968 volume’s method for the 
compilation of the Input-Output tables from the so called ‘Make’ and ‘Use’ tables. To illustrate 
this method in a simplified case, in this chapter we present an Excel-worksheet (MakeUse.XLS 
file) elaborated for the Hungarian CGE model. Several special programmes developed for 
these purposes of estimating missing data, reconciling and aggregating the available data (e.g., 
the flexible and general aggregation-reclassification program or the ‘additive-RAS’ algorithm) 
are also presented. 

Chapter 6 describes step by step and in great details how the Hungarian data were compiled 
for the GEM-E3 model in order to illustrate the whole process. The compilation of the income 
distribution block of the SAM is discussed in the greatest detail, drawing useful conclusions for 
a similar process for other countries. This special emphasis is justified by the fact that the data 
availability and methodology of the income distribution is rather different across countries, so 
it is important to demonstrate how we can overcome these problems especially in new EU-
countries where income distributional data are the least accurate and detailed. 

Chapter 7 outlines the model implementation process. The latest versions of the GEM-E3 
model involve systems of about 60,000 non-linear equations per time period. The GEM-E3 
model has been successfully transformed into a mixed complementarity model and solved in 
GAMS using the PATH solver. Previous attempts to solve the model in other solution 
algorithms (as with MINOS and CONOPT) have been unsuccessful mainly due to the model’s 
large size and complexity. The PATH solver on the other hand, has been successful in solving 
very large scale models and through the complementarity approach that it uses, enables the 
expansion of GEM-E3 to include inequalities and a separate optimisation energy sub-module. 

The www.gams.com website contains the documentation and the system files of the GAMS 
package. The GAMS is a rather efficient and model-builder friendly software to handle and 
solve large nonlinear models with ’well-behaving’ (twice differentiable, etc.) functions in its 
equations. Several sample programs are used to explain and illustrate the structure of the 
GAMS programmes and highlight the main syntactic rules which are important from the point 
of view of the GEM-E3 model’s program.  
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1. Salient models of general equilibrium 

1.1. The static Walras–Cassel model of general equilibrium 

Walras modelled the exchange of commodities at macro level, as if it would take place 
only between two agents, one representing the households and the other the firms (producers). 
The exchange taking place between various households or producers is thus left out of 
consideration. Households own all stocks and resources, including the factors of production, 
and demand produced goods for consumption. At a given set of product and production factor 
prices they decide on the supply of factors and the demand for goods. Walras assumes that 
their choice can be represented by two sets of demand-and-supply functions: demand functions 
for the produced goods, vi(p, r ), i = 1, 2,…, n and supply functions of the factors of production, 
sk(p, r ), k = 1, 2,…, s. The nomenclature used is the following: n is the number of products 
(final goods), s is the number of primary resources, p = (pi) and r  = (rk) are the price vectors of 
products and primary resources, respectively.  

Walras assumes that the household’s demand and supply functions are homogeneous of 
degree zero (only price ratios matter) and always fulfil the budget constraint, that is, the total 
value of demand equals that of supply (the so called Walras’s law): 

 ∑i pi⋅vi(p, r ) = ∑k rk⋅sk(p, r ). 

Firms possess nothing, but merely organize production by demanding factors from 
households and supplying produced goods. Production technology is represented by fixed dkj 
coefficients, which indicate how much factor k is used (on average) to produce one unit of final 
output j. At any given set of prices, firms produce only those commodities, the prices of which 
cover or exceed their cost of production. Walras assumes that no profit can be earned in 
perfectly competitive equilibrium, for any profit would lead to bidding up the prices of some 
factors of production. In equilibrium, therefore, prices have to meet the requirements of the so-
called non-profit pricing rule: 

pj = r1·d1j + r2·d2j +…+ rs·dsj, j = 1, 2,…, n.   (WS-1) 

where the variables are 
pi  unit price of product i (i = 1, 2,…, n),  

rk  unit price of factor k (k = 1, 2,…, s).  

The further conditions of general equilibrium in the static Walras model are the supply-
demand equations on the product markets: 

 vi(p, r ) = yi, i = 1, 2,…, n,   (WS-2) 

where yi is the (final) output of product i (i = 1, 2,…, n), 

and on the factor markets: 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk(p, r ), k = 1, 2,…, s.   (WS-3) 

The three sets of equations contain 2×n + s variables (unknowns). However, because of the 
assumed homogeneity of the demand and supply functions and the price formation rule, the 
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price level is left undetermined by the above set of equations. It can be assigned any positive 
value, e.g., by selecting some commodity as numeraire good and setting its price to one. The 
total number of equations seems to exceed that of unknowns, and the model over-determined 
therefore.  

We can however remove one equation by Walras's Law. Multiplying the equations with 
their complementing variables, yj, pi and rk, respectively and summing them up, after some 
rearrangement we get:  

 ∑i pi⋅vi(p, r ) = ∑k rk⋅sk(p, r ), 

which is the above introduced Walras’s Law? In other words: if all markets clear but one, then 
that last one will have to clear too. Thus, we can drop one of the market-clearing conditions out 
of the model. Thus, the number of equations becomes also 2×n + s – 1, equal to the number of 
the unknowns. 

Although the equality of the number of equations and variables is neither necessary, nor 
sufficient condition for solution to exist, for Walras and his contemporaries this guaranteed that 
the model was consistent with the concept of equilibrium. This type of equation counting was 
not meant to prove the existence of equilibrium, as it is often falsely interpreted nowadays, but 
enough to prepare the ground for parametricising and calibrating the model in such a way that 
its solution would replicate the observed state of the economy concerned. 

CASSEL’S VARIANT OF THE STATIC WALRAS MODEL 

The Swedish economist, Cassel (1918) illustrated with almost the same set of equations the 
concept of general equilibrium as Walras, apparently independently from him. He ignored 
factor supply functions and assumed that all factors are supplied inelastically by agents, or 
better to say, by nature (primary resources). The final demand for produced goods in his 
formulation was function of their prices alone: 

 pj = r1·d1j + r2·d2j +…+ rs·dsj, j = 1, 2,…, n.   (C-1) 

 yi(p) = yi, i = 1, 2,…, n,   (C-2) 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk, k = 1, 2,…, s.  (C-3) 

 This set of conditions can be derived from a model consisting of equations (C-1), (C-2’), 
(C-3) and (C-4), where  

 yi(p, e) = yi, i = 1, 2,…, n,   (C-2’) 

 e = ∑k rk⋅sk,    (C-4) 

where e is the expenditure (income) of the housholds and the yi(p, e) demand functions are 
homogeneous of degree zero and satisfy a generalized form of Walras’s law: ∑i pi⋅yi(p, e) = e. 
Setting e = 1 as numaraire, and dropping (C-4) we arrive at Cassel’s form.  

This model can easily be reduced further. Equations (C-1) define the pj product prices as 
functions of the factor prices. Substituting the pj variables with the resulting pj(r ) functions in 
equation (C-2) we can express all yi as functions of r . Finally, substituting yi variables in 
equation (C-3) by the resulting yi(r ) functions the demand for factors can be expressed as 
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functions of their own prices: dk(r ). As a result, the conditions of equilibrium can be reduced to 
the market clearing equations of the production factors alone: 

 dk(r1, r2, …rs) = sk. 

Cassel’s model played crucial role in the later development of general equilibrium models. 
For a mathematician it was clear that the existence of solution of the above equation systems 
was far from a trivial mathematical problem that could be checked simply by counting 
equations. The examination of this problem made some Viennese scholars interested in this 
problem, and it was a variant of Cassel’s model, proposed by Schlesinger (1935), within which 
Wald (1935) proved rigorously for the first time the existence of general equilibrium. In order 
to overcome some mathematical problems (negative factor prices) they used inequalities and 
complementary slackness conditions instead of the original equations in prescribing the 
equilibrium conditions on the factor markets:  

 dk1·y1 + dk2·y2 +…+ dkn·yn ≤ sk, k = 1, 2,…, s, (C-3a) 

i.e., in equilibrium there can be no excess demand, but  

 rk·(dk1·y1 + dk2·y2 +…+ dkn·yn) = rk·sk, k = 1, 2,…, s. (C-3b) 

the price of the oversupplied factor must be zero (rule of free goods). 

Using matrix algebraic notation, r  = (rk), D = (dkj) and so on, we can rewrite the general 
equilibrium conditions of the Schlesinger–Wald model as follows: 

  r ≥ 0,   p = p(y),   p = rD ,   Dy ≤ s,   rDy  = rs. 

1.2. The periodic model of Walras with capital goods 

Decreasing the level of abstraction Walras introduced discrete time intervals and capital 
goods in the second version of his general equilibrium model. The formulation of that model 
gave rise to the problem of closure, a problem which is present in the typical CGE models as 
well. We will present a slightly more generalized version of this model. The goods serving for 
final consumption and investment will not necessarily be distinct commodities in our model. 
There will be three kinds of goods in our model:  

− final products (goods produced but used only for consumption or investment in the given 
time period),  

− capital stocks (final goods accumulated in the previous periods, physically the same as 
their currently produced counterparts) and  

− primary (non-produced) factors of production.  

Let us decompose final use (yi) into consumption (vi) and investment (zi), and introduce, in 
addition to the variables and parameters of the static model the following ones:  

bij the input coefficients of the capital goods,  

ki0 the accumulated stock of capital good i (the supply of capital goods),  

qi the unit price (cost) of capital good i, 

r i
a the rate of amortization of capital good i,  
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πi the net rate of return on capital good i. 

Following Walras, we can formulate the necessary conditions of general equilibrium in this 
model as follows:  

 qj = (r j
a + πj)·pj, j = 1, 2,…, n, (WP-1) 

 pj = r1·d1j + r2·d2j +…+ rs·ds + q1·b1j + q2·b2j +…+ qn·bnj, j = 1, 2,…, n,  (WP-2) 

 vi(p, q, r ) + zi = yi, i = 1, 2,…, n,  (WP-3) 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk(p, q, r ), k = 1, 2,…, s,  (WP-4) 

 bi1·y1 + bi2·y2 +…+ bin·yn = ki0, i = 1, 2,…, n, (WP-5)  

where vi(p, q, r ) is the consumers’ demand function for good i, and sk(p, q, r ) is the supply 
function of the kth primary factor of production, and p = (pi), q = (qi) and r  = (rk).  

Introducing appropriate vectors and matrices we can rewrite the entire system as 

  q = p<ra + π> (WP-1a) 

  p = rD  + qB (WP-2a) 

  v(p, q, r ) + z = y (WP-3a) 

  Dy = s(p, q, r ) (WP-4a) 

  By = k0 (WP-5a) 

The first condition, (WP-1) is simply the definition of what is called nowadays the Walras 
cost of capital (amortization plus the net rate of return). The costs making up the price of the 
produced goods include now the cost of capital goods as well, as seen in (WP-2). Equations 
(WP-3) – (WP-1) represent the demand-supply equilibrium conditions on the markets of 
currently produced goods, primary factors of production and accumulated capital goods. 

The number of the unknowns (yi, zi, pj, qj, πi, rk) in the above system of equations is (5n + 
s), whereas the number of the equations is (4n + s). The system is thus underdetermined as yet, 
having n degrees of freedom. At the same time, investment demand has yet not been specified 
and the equality of the net rates of return on capital has not been postulated yet either that must 
be fulfilled in equilibrium. There are thus two competing sets of n additional equations to make 
the model mathematically well determined. Choosing any of them would let the values of the 
other set of variables determined by the model arbitrarily (as residuals), and not in accordance 
with the theoretical assumptions. 

Walras was perfectly aware of the fact that the equality of the rates of return would require 
the harmonization of the accumulation of capital stocks with the demand for them. If he chose 
to close the model by prescribing the equality of the rates of return, nothing would ensure the 
above harmony. If, on the other hand, he specified the investment demand in one way or 
another, then nothing would guarantee the uniformity of the rates of return. The formal 
(mathematical) closure of the model leaves thus the model essentially open ended. This 
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problem became to be known as the issue of macro-closure, which is present in any similar, 
finite period model with investment variables.1 

Walras chose to close his model by prescribing the equality of the rates of return, i.e., 
substituting the equations (WP-1) with 

 qj = (r j
a + π)·pj,  j = 1, 2,…, n.  (WP-1’) 

and getting rid of the variables πi. This reduces the number of unknowns and the degree of 
freedom to one, which can be eliminated by the numeraire, i.e. by fixing the price level 
(assuming, as usual, demand and supply functions homogeneous of degree zero). Walras left it 
simply for conviction that investments would adjust in such a way that maintained equilibrium 
on longer run and the equality of the rates of return. Walras’s model with capital goods was 
essentially a static representation of long-term equilibrium. This is exactly the reason why the 
problem of macro-closure emerged in it. 

1.3. The circularity of production and Leontief’s model of general equilibrium 

The models discussed above did not take into account the fact that ‘commodities are 
produced by means of commodities’ (Sraffa, 1960). In any given period a significant part of 
the total demand for produced goods is generated by the production itself. Not only by future 
production (through accumulation, as in the second model of Walras), but also and mainly by 
current production. The mutual interdependence of the various branches, the circularity of 
production creates in an economy a set of equilibrium conditions and linkages, which were 
neglected in the models discussed above.  

It is easy to make up for this deficiency and introduce the intermediate use of the produced 
goods into the above models. Let aij denote the material input coefficients, the amount of 
produced good i used to produce one unit of good j and xj the total production (output) of good 
j. (We will use yj to denote total final demand, as before.) 

The conditions of demand-supply equilibrium on the produced commodity markets will 
change as follows: 

 xi  = ai1·x1 + ai2·x2 +…+ ain·xn + yi,   where  yi = vi(p, q, r ) + zi   

and the cost-of-production pricing rule will be modified accordingly too 

 pj = p1·a1j + … + pn·anj + r1·d1j + …+ rs·dsj + q1·b1j + …+ qn·bnj.  

The rest of the equilibrium conditions remain practically the same as before, except that 
factor demand depends now on total (x) and not just final output (y). Rewriting the conditions 
of equilibrium of the previous model we get the following set of equations: 

  q = p<ra + π·1> (WL-1a) 

  p = pA + rD  + qB (WL-2a) 

  Ax + v(p, q, r ) + z = x (WL-3a) 

                                                 
1 The issue of macro-closure has been discussed in the literature on computable general equilibrium models, for example, 
by Dewatripont and Michel (1987) and Taylor et al. (1979).  
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  Dx = s(p, q, r ) (WL-4a) 

  Bx = k0 (WL-5a) 

The modified set of the WL-equations yields nothing but the theoretical framework of 
Leontief’s (1928, 1941) static input-output model. Leontief’s method of input-output analysis 
was designed for practical application and focused on the intersectoral linkages represented by 
the ain input coefficients. Instead of using demand and supply functions he turned his model 
into a partial equilibrium model, in which final demand and value added became exogenous 
variables. Leontief’s static input-output model consists of two sets of equations only: 

 xi = ai1·x1 + ai2·x2 +…+ ain·xn + yi, i = 1, 2,…, n,  (L-1) 

 pj = p1·a1j + p2·a2j +…+ pn·anj + cj, j = 1, 2,…, n,  (L-2) 

where ci is the coefficient of value-added, which – unlike in the previous models – in addition 
to the cost of primary factors may contain pure profit as well. Rewriting the above equations 
into matrix algebraic forms one can see their perfect duality: 

  x = Ax + y (L-1a) 

  p = pA + c (L-2a) 

Under normal conditions2 (I  − A)−1 exists and is non-negative, and the above two systems 
of equations can thus be rearranged and uniquely solved for the xi and pj unknowns: 

  x = (I  − A)−1y, (L-3) 

  p = c(I  − A)−1, (L-4) 

where I  stands for the identity matrix, and (I  − A)−1 is the so called Leontief-inverse of matrix 
A.  

The Leontief-inverse matrix acts like a multiplier in the above equations, expanding and 
distributing the effect of any exogenous change in final demand and/or value added among 
various sectors. Unlike the model of Cassel, which is completely supply-driven (the given 
amounts of primary resources determine the level of economic activity), Leontief’s model is 
fully demand-driven (the level of final demand determines the level of production). Its basic 
assumption is that the economy operates at less than full capacity and the changes in total 
output are not constrained by the availability of primary resources (labour and capital stocks). 
These seemingly simple forms can be developed into a variety of input-output models as we 
will illustrate it later. 

1.4. The Paretian–Hicksian system of general equilibrium 

The basic structure of the Paretian system is similar to the static Walras–Cassel model. 
Unlike, however, Walras and Cassel, Pareto (1906) represented the choice of consumers and 
producers not by demand and supply functions, but by optimal decisions derived from well-
behaved (differentiable, strictly concave) utility and profit functions. Given a set of output and 

                                                 
2 They are usually referred to as the Simon–Hawkins or productivity conditions. 
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factor prices, households are assumed to choose their demand for produced goods and supply 
of factors via the unique solution of a utility-maximization problem, and firms to set their 
demand for factors and supply of produced goods via a profit-maximization problem. The rest 
of the model followed as in Walras’s static model. 

In the 1930s and 1940s this approach was further developed. The most influential among 
the contributors was Hicks (1939). Whereas the models of Walras and Cassel were basically 
macroeconomic, holistic constructs, their Paretian–Hicksian version is based on microecono-
mic foundations, due to the assumption of optimizing economic agents. This reformulation put 
the emphasis on efficiency of resource allocation and exhibits, as we will see, close similarity 
to the nation-wide models of optimal resource allocation.  

Let us assume that there are m firms and the technology of firm j can be represented by the 
following differentiable production function:  

 Fj(t
(j)) = Fj(t1

j, t2
j, ... , ti

j, ... , tn
j) = 0  (j = 1, 2, ... , m), (1.4-1) 

where t(j) = (ti
j) is the vector of net outputs, positive if output of good i exceeds its use, zero or 

negative otherwise.  

Adapting this notational convention, the profit (net income) of production activity t(j) 
earned at prices p = (pi) can be expressed by the following scalar product: 

 pt(j) = p1·t1
j + p2·t2

j + ... + pi·ti
j + ... + pn·tn

j.     (1.4-2) 

The profit-maximization problem of firm j consists of the maximization of function (1.4-2) 
subject to the constraint given by (1.4-1). According the classical Lagrange method, the 
optimal solution must be a stationary point of the following Lagrange-function: 

 Lj(t
(j), λj) = pt(j) – λj·Fj(t

(j)). 

Setting the  

 j
i

j

t

L

∂
∂

 =  pi – λj· j
i

j

t

F

∂
∂

 

partial derivatives of the Lagrangian function equal to zero and replacing λj with its value 
given by the last equation, 

 λj = pn : j
n

j

t

F

∂
∂

, 

the necessary first order conditions for profit maximum can be expressed by the following set 
of equations:  
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where j
i

j
ji

t

F
F

∂
∂

=  is the ith partial derivative of function Fj, and 
jn

ji

i

n

F

F

dt

dt =−  represents the 

marginal rate of transformation between commodity n and i, which in optimum is equal to the 
ratio of their prices (the so called tangency condition).  

Let us denote the utility function of the hth (h = 1,2, ... , k) household by 

 uh(y
(h)) = uh(y1

h, y2
h, ..., yi

h, ..., yn
h), 

and his disposable income by eh(p). 

Household h faces the following optimization problem: 

 max uh(y
(h)),   s.t.   eh(p) = py(h) = p1y1

h + p2y2
h + ... + piyi

h + ... + pnyn
h. 

The first order conditions for utility maximum can be expressed by the following set of 
equations: 

 ,
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dy ==−    (i = 1, 2, ... , n −1), 

where h
i

h
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y

u
u

∂
∂=  is the ith partial derivative of function uh, the marginal utility of good i and 

hn

hi
h

i

h
n

u

u

dy

dy =−  represent the marginal rates of substitution between commodity n and i in the 

case of  household h, which must be equal to the ratio of their prices (another set of tangency 
conditions). 

Let us denote the vector of initial endowments owned by the households by vector a. The 
sum a + ∑j t

(j) defines the vector net supply of different goods. According to Walras’s law the 
total value of this net supply, the sum of profits and the value of the endowments must be equal 
to the value of the net demand of the consumers: 

 e(p) = p(a + ∑j t
(j)) = p∑h y

(h) =  ∑h eh(p). 

The fulfilment of this law can be secured if we assume that the net income of households is 
always equal to a given fraction of the total planned net supply: eh(p) = αh⋅e(p) = αh⋅p(a + t), 
where αh ≥ 0 and ∑h αh = 1 represent the distributions share parameters. 

Summing up: a general equilibrium is achieved if all markets clear, which means that 
prices are such that the demand for each good equals the supply of each good, i.e. there is a set 
of prices p = (p1, p2, ... , pi, ... , pn) such that: 

PH(a): optimal producers’ decisions (j = 1, 2, ... , m, n×m equations): 

 Fj(t1
j, t2

j, ..., ti
j, ..., tn

j) = 0,  
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PH(b): optimal consumers’ decisions (h = 1,2, ... , k, n×k equations): 

 p1y1
h
 + p2y2

h
 + ... + piyi

h
 + ... + pnyn

h = αh⋅p(a + ∑j t
(j) ) 

 ,
n

i

hn
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h
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h
n
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p

u

u

dy

dy ==−  (i = 1, 2, ... , n −1),  

HS(c): the demand for each good equals its supply (n equations): 

 ai + ti
1 + ti

2 + ... + ti
j + ... + ti

m = yi
1 + yi

2 + ... + yi
h + ... + yi

k  (i = 1, 2, ... , n).  

Thus we have n(m + k +1) number of equations. Let us now turn to the establishing the 
number of unknowns. From firm j 's optimization problem the unknowns are ti

j for each good i 
= 1,..., n. As we have m firms, then we have n×m unknowns from the production side. Thus, as 
many unknowns as many equations characterize the optimal producers’ decisions. From 
households’ optimization problem the unknowns are yi

h for each good and each household, that 
is n×k unknowns all together. Again, the number of unknowns matches number of equations in 
this exercise. And finally, each market-clearing equation can be matched by one commodity 
price. Thus, for the entire system there are equal number of unknowns and equations. 

It is easy to check that the equations characterizing equilibrium depend only of the price 
ratios, their level can be set arbitrarily. We can thus set, say, the price of the last commodity to 
one (i.e. pn = 1), whereby one of the unknowns will be eliminated. Thus the total number of 
equations seems to exceed that of the unknowns. But we should not forget Walras’s law. 
Summing up the households’ budget constraints and taking into account that ∑h αh = 1, after 
some rearrangement we get:  

 pa + pt(1) + pt(2) + ... + pt(j) + ... + pt(m) = py(1) + py(2) + ... + py(h) + ... + py(k), 

wich is the same as the eqation we would get if we cross-multiplied each market-clearing 
equation by the price of the corresponding good and summed up them over commodities. We 
can thus remove one equation by Walras's law. The total number of equations is therefore 
equal to the total number of unknowns. 

We should note that the above equations are first order necessary but not sufficient 
conditions for equilibrium in general and the equality of the numbers of unknowns and 
equations does not guaranty in general the existence of solutions. In any numerical exercise 
one has to make sure that the concrete forms of the production and utility functions are such 
that guaranty the fulfilment of the second order conditions of optima as well. The equality of 
the numbers of unknowns and equations is normally required for the local uniqueness and 
stability of the solution. 

As we have seen, if we consider prices as parameters in the agents’ maximization 
exercises, than the first order necessary conditions of optimum will define regular equation 
systems, see PH(a) and PH(b). Choosing well-behaving functional forms one can express the 
optimal solutions as functions of prices p: t(j)(p) net supply and y(h)(p) net demand functions. 
Substituting these functions into the market-clearing equations we can reduce the conditions of 
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general equilibrium to the equality of total net supply and total net demand on each good’s 
market: 

 a + t(1)(p) + t(2)(p) + ... + t(m)(p) = y(1)(p) + y(2)(p) + ... + y(k)(p). 

These are formally nothing but the conditions of equilibrium used in the models of Walras 
and Cassel, in which the supply and demand functions are no longer a priori given macro-
functions to be estimated, but the aggregates of the supply and demand functions of the 
individual agents, derived from their assumed optimal behaviour. As we will see later, in 
applied general equilibrium models we use this latter approach rather than econometrically 
estimated supply and demand functions, which is a task impossible in most cases. 

EQUILIBRIUM, EFFICIENCY AND OPTIMALITY 

As noted earlier, the significant novelty of the Paretian–Hicksian version of general 
equilibrium was the explicit introduction of optimizing economic agents. This made it possible 
to investigate the problems of efficiency and optimality within the framework of the general 
equilibrium model, not just the equality of supply and demand. Pareto introduced his well 
known concept of efficiency, which stated that a given allocation of economic resources is 
efficient if and only if there is no other feasible allocation such that would yield higher level of 
utility for at least one household and not lower for any one else. 

In the case of the above model this can be interpreted and characterize as follows. The 
feasible set of allocations in our case means such collections of the variables T = (ti

j), Y = (yi
h) 

and u = (uh) that satisfy the following resource and technological constraints: 

 ∑h yi
h − ∑j ti

j = ai (i = 1, ... , n);   (FA-1) 

 Fj(t
(j)) = 0 (j = 1, ... , m);    (FA-2) 

Each feasible allocation can be evaluated in terms of the utility levels, uh = uh(y
(h)) it 

provides for the various households. From the definition of Pareto efficiency it follows that if a 
feasible allocation Te, Ye resulting in utility levels ue is efficient than ti

je and yi
he satisfy 

constraints (FA-1) and (FA-2), and in addition there is no such allocation ti
j and yi

h that would 
satisfy these constrains and at the same time uh

e ≤ uh(y
(h)) weak inequality would hold for all h, 

and uh
e < uh(y

(h)) relation for at least one h. 

Consider now the following constrained optimization problem (we put in parentheses on 
the left margin the assigned Lagrange multipliers):  

  max u1(y
(h))  

s.t. (pi) ∑h yi
h − ∑j ti

j = ai (i = 1, ... , n); 

 (λj) Fj(t
(j)) = 0 (j = 1, ... , m); 

 (ηh) uh
e − uh(y

(h)) = 0 (h = 2, ... , k); 

From the definition of Pareto efficiency it follows that ti
je and yi

he is a feasible and in fact 
an optimal solution of the above maximization exercise, the Lagrangian function of which is 
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L(T, Y, p, λ, η) = u1(y
(h)) − ∑i pi⋅(∑h yi

h − ∑j ti
j − ai) − ∑j λj⋅Fj(t

(j)) − ∑
=

k

h 2

ηh⋅(uh
e − uh(y

(h))). 

Therefore they will satisfy the following first order conditions of constrained maximum: 

 ∂L/∂ti
j: pi = λj⋅Fji   (i = 1, ... , n; j = 1, ... , m); 

 ∂L/∂y1
h: u1i = pi (i = 1, ... , n); 

 ∂L/∂yi
h: ηh⋅uhi = pi    (i = 1, ... , n; h = 2,  ... , k); 

As one can easily check these resource allocation feasibility and optimality constraints 
(more precisely, once the Lagrange multipliers are eliminated) are entailed by the necessary 
conditions of equilibrium, therefore, competitive equilibrium provides by force an efficient of 
allocation of the resources. This is the first statement of the well known theorem of welfare 
economics. 

In the case of one (representative) household (k = 1) the conditions become simpler and at 
the same time the (single) utility function u(y) provides a measure for nation-wide optimality 
or welfare, by which we can compare different allocations. In the case of multiple houshold 
one has to define an appropriate welfare function to aggregate (comeasure) the utility levels of 
the various households (household groups). In both cases we can express gains and losses in 
utility in terms of money, using either the Marshallian consumers’ surplus or the Hicksian 
equivalent and/or compesating income variation formula, as we often do in applied models.  

Using the welfare function approach we can re-establish the above statement of welfare 
economics. The maximization problem in this case is as follows: 

 max W(u1, u2, ... , uk)  

  s.t.  (pi) ∑h yi
h − ∑j ti

j = ai (i = 1, ... , n); 

 (λj) Fj(t
(j)) = 0 (j = 1, ... , m); 

 (ηh) uh − uh(y
(h)) = 0 (h = 1, ... , k); 

The Lagrangian function of this problem takes the following form: 

L(T, Y, u, p, λ, η) = W(u)  − ∑i pi⋅(∑h yi
h − ∑j ti

j − ai) −  

   ∑j λj⋅Fj(t
(j)) − ∑h λh⋅(uh − uh(y

(h))), 

which yield the following set of first order conditions: 

 ∂L/∂ti
j: pi = ηj⋅Fji   (i = 1, ... , n; j = 1, ... , m); 

 ∂L/∂yi
h: λh⋅uhi = pi    (i = 1, ... , n; h = 1,  ... , k); 

 ∂L/∂uh: Wh = λh (h = 1,  ... , k); 

The first two sets of these conditions are the same as the necessary conditions of the 
previous maximization problem and their solutions differ only in terms of the numeraire.  
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1.5. A Koopmans–Kantorovich variant: a linear model based on fixed coefficients 

ALTERNATIVE REPRESENTATIONS OF TECHNOLOGY 

The early models of general equilibrium using fixed input coefficients represented production 
in an ex post manner, treating them simply as given average input coefficients, which could be 
observed once equilibrium is reached. Walras noted that they were in fact variables, depending 
on prices, but considered this fact a negligible technical detail, which can be ignored in an 
abstract model. In a later edition of his book he derived them from the marginal conditions of 
cost minimization. As for Leontief the use of fixed input coefficients was a pragmatic necessity 
dictated by the availability of statistical data as well as computational techniques and facilities. 

It was, however, not so much the use of fixed coefficients that raised theoretical concerns, 
but rather the neglect of technological choice and joint production, the proper representation of 
the technology. Smooth classical production functions, allowing for substitutability between 
pairs of inputs and outputs in a wide range, offered an alternative and they became standard 
tools in neoclassical microeconomic theory. Von Neumann (1937), on the other hand, in his 
model of equilibrium growth demonstrated that the technology allowing for technological 
choice and joint production can be represented using fixed input-output coefficients.  

It was Koopmans (1951) who laid down the axiomatic foundations of production theory, in 
general and the linear activity model, in particular. For Koopmans the choice between smooth, 
differentiable production functions or fixed coefficients was not a theoretical, but a practical 
problem, which should be governed by the purpose of the model (pure or applied), 
mathematical and computational algorithms and techniques, the availability of statistical data 
and so on.  

In applied models of optimal resource allocation and choice of techniques, based on 
detailed representation of technology, the linear activity model combined with the method of 
linear programming proved to offer a more suitable approach than the models based on 
smooth, differentiable production functions. The former can be based on the knowledge of 
discrete technological variants, whereas the estimation of production functions is severely 
constrained in practice. The linear input-output programming approach dominated for many 
years the applied macroeconomic modelling for policy analysis. 

The linear activity model rests on the assumption that the technology can be represented as 
the nonnegative combinations of finite number of elementary activities. Let us denote by 
vector ãj ∈ Rn the unit net input-output coefficients of the jth elementary activity, where ãij is 
positive if the output of good i exceeds its input, negative if its input is larger than its output, 
zero otherwise. Let us denote by x = (xj) the vector the (nonnegative) levels of the various 
elementary activities. The technology defined by linear activity model is the following: 

  T = {t: t = ∑
=

m

j 1

xj⋅ãj = Ãx, x ≥ 0},  

where Ã is the (unit) input-output coefficient matrix, where the unit levels of the elementary 
activities, and thus that of the unit coefficients, can be chosen arbitrarily.  
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The production set generated by the set of the following input-output coefficient matrix 
(two inputs and one output, four elementary activities) is illustrated on Figure 1.1 and 1.2. 

 Ã = 



















1,01,01,01,0

0,1-0,3-0,2-0,4-

0,5-0,4-0,3-0,2-

 

Figure 1.1 
The technological set defined by a matrix Ã 

 

The assumptions of proportionality and additivity imply constant returns to scale and lack 
of production externalities, and that the technology is a convex polyhedral cone (see Figure 
1.2). The production set generated by the linear activity model is a piecewise linear variant of 
the one defined as follows: 

  T = {t: t = ∑
=

m

j 1

t(j), Fj(t
(j)) = 0}, 

where Fj are the production functions used in the Paretian–Hicksian system of general 
equilibrium, and they are all homogenous of degree zero.  

Figure 1.2 
The input requirement set and the unit isoquant 

 

 

the input requirement set at unit 
level of output 
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A KOOPMANS–KANTOROVICH MODEL OF GENERAL EQUILIBRIUM 

We will present now a completely linear variant of the Paretian–Hicksian system of general 
equilibrium based on the linear activity description of technology. As we will show it in the 
next chapter, we can easily solve this model by means of a linear programming problem.  

The necessary conditions of equilibrium are as follows: 

(E0) feasible activity levels and prices: 

   x, y, p ≥ 0,  

(E1) producers maximize profit: 

     a) pÃ ≤ 0,  but  b) pÃx = 0  

(E2) consumers’ choice and Walras’s law: 

    a) y = y(p, e) = e⋅c/psy, where 

   b) e = pa, 

(E3) all commodity markets are clearing: 

     a) a + Ãx ≥ y,  but b) pa + pÃx = py. 

The commodity composition of consumption (sy) is considered to be fixed in order to 
maintain the linearity of the equilibrium conditions, as much as possible. The notable 
exceptions are the so-called complementarity conditions E1/b and E3/b, which state that the 
profit is maximal (zero) in the case of activities used in equilibrium and that the price of the 
commodities in excess supply is zero in equilibrium.  

Consumption is modelled here as if consumers’ choice would be the outcome of an optimal 
decision in the case of a Leontief-type utility function: 

 u(y1, y2, … , yn) = min { (y1/s1
y,  y2/s2

y, … , yn/sn
y}. 

Condition E2/a is so far nonlinear, but we can linearize it by choosing the unit basket of 
consumption as numeraire, by setting its value to one, that is psy = 1, when we get 

 yi(p, e) = e⋅si
y. 

It can be easily seen that the equilibrium conditions are equivalent to the optimality 
conditions of the following Kantorovich-type linear programming problem: 

  Primal problem Dual problem 

  x ≥ 0,  y ≥ 0 p ≥ 0 

 (p) a + Ãx ≥ y⋅sy   pÃ ≤ 0 (x) 

   psy ≥ 1 (y) 

  y → max! pa → min! 

where y = e/psy is the level of consumption. 

Thus, we have again demonstrated the close connection that exists between the models of 
nation-wide optimal resource allocation and the macro-models of general equilibrium. As we 
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will show it in the next chapter that close conceptual similarity led modellers for policy 
analysis to switch to computable general equilibrium from linear programming models in the 
second half of the 1990s. 

1.6. A step towards computable models: Johansen’s model of general equilibrium 

In the previous section we illustrated the formulation of a general equilibrium model based 
on productions and utility functions, and the assumption of optimizing agents. For illustrative 
purposes we chose a rather general and abstract construct. In this section we will present a 
much more concrete specification, a model such that uses parameters, which one can be 
relatively easily estimated on the basis of available macro-statistical data.  

As a matter of fact, we will construct a model very similar to the first CGE model, 
developed by Leif Johansen (1960) for Norway. This model is a combination of Leontief-type 
input-output model with macroeconomic production and consumption functions, thus an input-
output model extended with relative price driven substitution possibilities. Many models 
followed or were inspired later by Johansen's pioneering work and retained its original 
structure. In order to keep the model simple, we will consider a static and closed economy, 
with no foreign trade. 

THE REPRESENTATION OF PRODUCTION 

There will be two types of commodities: outputs of n kinds of production sectors, and two 
kinds of primary resources (labour and capital) with exogenously given supply (L0 and K0). 
Each productions sector will be modelled as a representative firm. They use sectoral outputs in 
fixed proportions (aij unit input coefficients, as in the case of Leontief’s model) and primary 
resources with variable unit input coefficients (l j, kj). The feasible combinations of these latter 
ones are defined by the following type of equations: 

 fj(l j, kj) = 1 

where each fj(l j, kj) is a linear homogeneous (constant return to scale) production function. 
Denoting in sector j the level of output by Xj, and the amount of labour and capital by Lj and 
Kj, respectively and the amount of materials originating from sector i by Xij the complete 
specification of the production function of sector j will be the following, so-called nested 
production function of Johansen-type:  

( ) .,,,,,,min
1

1














= jjj

jn

jn

ji
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j
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a

X

a
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fj(Lj, Kj) is the partial capacity defined by Lj amount of labour and Kj amount of capital and 
its value can be interpreted as a measure of a composite factor, made up by them. Because of 
the linear homogeneity of function fj, their minimal cost per unit of output (cj) will be 
independent of the level of Xj and it can be determined by solving the following optimizing 
problem:  

 w·l j + q·kj → min! fj(l j, kj) = 1, 
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where w and q is the unit cost (price) of labour and capital, respectively. The first order 
necessary conditions of this cost minimum can be derived from the following  

 L(l j, kj, λj) = w·l j + q·kj − λj⋅( fj(l j, kj) − 1) 

Lagrange-function and they will be the following: 

 w =
j

j
j l

f

∂
∂

λ ,  q =
j

j
j k

f

∂
∂

λ , fj(l j, kj) = 1. 

Because of the linear homogeneity of function fj, and by virtue of Euler’s Law we have 
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f
λ = λj = w·l j + q·kj = cj.  

The value of the Lagrange-multiplier λj is in fact equal to the marginal composite cost of 
labour and capital, which in this case is the same as their average as well as their unit cost. In 
the case of well-behaved fj functions the value of the three unknowns can be expressed as 
functions of the factor prices:  

 l j = l j(w, q), kj = kj(w, q), cj = λj = λj(w, q), 

which are equivalent representations of the first order necessary conditions. One can indeed 
choose among several alternative representations of the same conditions. Later, for example, 
we will use the following ones (two unit factor demand functions and their combined cost): 

 l j = l j(w, q), kj = kj(w, q), cj = w·l j + q·kj. 

If all factor prices, including sectoral goods, are all positive, than in a cost minimizing 
solution we will have  

 X1j = a1j⋅Xj,  X2j = a2j⋅Xj, ... ,  Xnj = anj⋅Xj,  Lj = l j(w, q)⋅Xj and Kj = kj(w, q)⋅Xj,  

thus the ratio of Lj and Kj is determined by the unit cost minimization problem. 

In equilibrium the prices of the produced commodities and the composite labour-capital 
factor will be equal to their minimal cost. The price-equal-cost definition is not only the 
reflection of the neoclassical convention, but also the only prices, which are compatible with 
the assumption of constant returns to scale (linearly homogeneous) production functions.  

In the case of sectoral output j its unit price, pj can be determined by any of the following 
forms: 

 pj = Σi pi·aij + w·l j + q·kj = Σi pi·aij + cj, 

which is formally the same as the price equation in Leontief’s static model. Here, however, the 
unit value added, cj is no longer exogenous but endogenous variable, and its value reflects 
changes in both the composition of labour and capital, and their relative scarcity. 

Thus, the equilibrium values of the labour and capital coefficients as well as the prices of 
the sectoral commodities can be determined once we know the factor prices as follows: 

(E1) l j = l j(w, q),  j = 1, 2, ... , n, 
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(E2) kj = kj(w, q),   j = 1, 2, ... , n, 

(E3)  pj = Σi pi·aij + w·l j + q·kj,  j = 1, 2, ... , n. 

which contain 3n unknowns and equations in addition to factor prices w and q.  

The level of the sectoral output can be adjusted to the size of demand, since the profit will 
be maximal (zero) at any production level at the above prices. 

THE REPRESENTATION OF CONSUMPTION 

Let us turn now our attention to the problem of final demand, which in our static model can be 
seen as household consumption. We will represent consumption as the decision of one agent, 
whose preferences can be represented by a so-called Stone–Geary-type utility function, which 
leads to a linear expenditure system. The utility function of this type will be illustrated on 
Figure 1.3 in the case of two commodities. 

The problem Stone (1954) faced was that in the case of the CES (constant elasticity of 
substitution) utility functions typically used in applied models the price elasticity of the various 
goods was uniform. He wanted to stay with the simplest possible form (Cobb–Douglas 
function) and still apply different price elasticities. In order to achieve that he assumed for each 
commodity that part of the consumption (committed consumption) is fixed at a certain 
(realistically given) levels (c1

0 and c2
0) and only the expenditure left after their purchase (the 

variable or excess expenditure, ev = e − p1·c1
0 − p2·c2

0) is allocated between various goods 
according to a utility function. In other words, the utility function is defined only over the set 
of excess (variable) consumption (yi

v = yi − ci
0). 

Let us denote the utility function given in terms of variable consumption by uv(y1
v, y2

v). 
Given the p1

 and p2 commodity prices and excess expenditure ev, the conditional utility 
maximization problem will be the following: 

 uv(y1
v, y2

v) → max! p1·y1
v + p2·y2

v = ev. 

The corresponding Lagrangian function:  

 L(y1
v, y2

v, λc) = uv(y1
v, y2

v) − λc⋅(p1·y1
v + p2·y2

v − ev). 

 

 

 

T2 

y0 optimal choice 
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Figure 1.3 

Optimal choice in the case of committed and variable consumption 
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The first order necessary conditions of optimum are thus 

 v
1y

uv

∂
∂

 = λc⋅p1, v
2y

uv

∂
∂

 = λc⋅p2, p1·y1
v + p2·y2

v = ev, 

where the optimal value of the Lagrange multiplier λc is the marginal utility of money and pcv 
= 1/λc is nothing but the minimal cost of reaching an additional unit of utility uv. If the utility 
function is homogeneous of degree one, as we usually assume, it is the same as the average or 
unit utility of money. This means that in the optimal solution uv(y1

v, y2
v) = λc⋅ev, as it can be 

seen from the following identities (the first identity is implied by Euler’s Law again): 

 v
1y

uv

∂
∂ ⋅y1

v + v
2y

uv

∂
∂ ⋅y2

v = v = λc⋅(p1·y1
v + p2·y2

v) = λc⋅ev. 

In the case of homogeneous utility function the optimal structure of excess consumption 
will be independent of its level, so we may arrive at the optimal solution in a different way too. 
First we can determine the optimal structure of excess consumption by solving first the 
following utility maximization problem: 

 p1·c1
v + p2·c2

v → min! v(c1
v, c2

v) = 1, 

the Lagrange multiplier of which – assuming that utility function is homogeneous of degree 
one – will be pcv = 1/λc, which is the minimal cost at which a consumption bundle (s1

v, s2
v), 

yielding one unit of utility, can be purchased.  

The cost minimizing bundle (s1
v, s2

v) can be interpreted as a composite good worth of one 
unit of utility, whose price is pcv. ev/pcv thus gives us the maximal level of utility that can be 
achieved from expenditure ev. Multiplying this by the above determined si

v coefficients, we 
can calculate the optimal level of the goods purchase in addition to committed consumption 

 yi
v = si

v⋅ev/pcv = si
v⋅yv. 

Following this route we have arrived at the demand system implied by the assumed 
preferences: 

 yi
v(p1, p2, ev) = si

v(p1, p2)⋅ev/pcv(p1, p2), 

or alternatively 

 yi(p1, p2, e) = ci
0 + si

v(p1, p2)⋅(e − p1·c1
0
 − p2·c2

0)/pcv(p1, p2). 

Let us now assume that the utility function is the following Cobb–Douglas type function:  

 ,21 v
2

v
1

αα
yyuv =  

where  α1 + α2 = 1, as Stone and Geary did. In such a case the implied demand system will be 

  yi = ci
0 + αi·ev/pi, 

from which we get 

 pi·yi = pi·ci
0 + αi·ev,   

thus, the expenditure structure is linear. This explains the origin of the term Linear Expenditure 
System. But of course one must not insist on using Cobb–Douglas type function and can 
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generalized the Stone–Geary approach. If, for example, one uses a Leontief-type utility 
function, which entails fixed si

v proportions, he will arrive at 

   yi = ci
0 + ci

v·yv, 

a form that is often used in linear models of nation-wide optimal resource allocation. 

We have not discussed yet the issue of the determination of consumers’ expenditure e. In 
order to fulfil the requirements of Walras’s law, we will assume here too that the households 
spend always as much at given prices as much the value of the initial endowments (labour and 
capital in this case) and the optimal level of profit is (zero in this case). Thus 

e = w·L0 + q·K0 or alternatively ev = w·L0 + q·K0 − p1·c1
0 − p2·c2

0.  

After all, the consumers’ decisions can be represented in a compact way via the derived 
excess demand system 

(E5) yi
v = yi

v(p1, p2, ... ,  pn, ev),  i = 1, 2, ... , n, where 

(E4) ev = w·L0 + q·K0 − Σi pi·ci
0, 

which precedes in logical order the previous ones. These conditions add n + 1 new unknowns 
and equations to their already existing sets.  

The above sets of equations fully describe the optimal choices of the representative 
economic agents and the formation of supply and demand. The market-clearing equations for 
sectoral outputs and primary inputs (n new unknowns and n + 2 additional equations) will 
make the set of necessary conditions of general equilibrium complete: 

(E6) xi = Σj aij·xj + ci
0 + yi

v,   i = 1, 2, ... , n, 

(E7) Σj l j·xj = L0,  

(E8) Σj kj·xj = K0.  

The market-clearing equations (E6) given for the sectoral outputs are again the same as 
those of the static Leontief model, except for the partly endogenous specification of final 
demand. 

   Table 1.4: Summary of the equations and variables  

(E1) l j = l j(w, q) l j n 

(E2) kj = kj(w, q)  kj n 

(E3)  pj = Σi pi·aij + w·l j + q·kj xj n 

(E4) ev = w·L0 + q·K0 − Σi pi·ci
0 ev 1 

(E5) yi
v = yi

v(p1, p2, ... ,  pn, ev) yi
v n 

(E6) xi = Σj aij·xj + ci
0 + yi

v  pi n 
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(E7) Σj l j·xj = L0  w 1 

(E8) Σj kj·xj = K0 q 1 

In Table 1.4 we have summarized the equations and variables of the Johansen model of 
general equilibrium. To each equation we assigned a variable (see in the third column) and in 
the last column we put the number of the corresponding equation and variable kind. It makes it 
easy to check that the total number of equations is equal to the total number of unknowns, 5n + 
3. One can also show that from equations (E3), (E5) - (E8) we can derive (E4) by Walras's law, 
therefore we can eliminate one equation as before. On the other hand, all terms are 
homogeneous of degree zero in the prices and value terms, we can thus remove one unknown 
as well by setting the price level. 

We can do the following. We remove the variable expenditure by setting its level equal to 
one, that is ev = 1. If the level of the committed consumption were all zero, than the demand 
function gained in this way, yi

v(p1, p2, ... ,  pn) would be the same as in Cassel’s model. Let us 
eliminate, on the other hand equation (E4), which defined ev. In this way we arrive at a 
generalized version of the Cassel model, in which there are two primary factors with variable 
input cooefficients, the produced goods enter not only final consumption but also as factors of 
production with fixed input cooefficients. 

   Table 1.5: A solution scheme of the model 

Equation Calculate 

w = wt,  q = qt  

l j = l j(w, q) l j 

kj = kj(w, q)  kj 

pj = Σi pi·aij + w·l j + q·kj pj 

yi
v = yi

v(p1, p2, ... ,  pn) yi
v 

xi = Σj aij·xj + ci
0 + yi

v  xi 

Ld = Σj l j·xj = L0  Ld 

Kd = Σj kj·xj = K0 Kd 

Ld ?? L0,  Kd ?? K0 (if necessary, 
adjust factor prices and continue) 

wt+1,  qt+1 

 

We present the corrected system of equations in Table 1.5 and indicate a possible algorithm 
to solve the system. The algorithm does in fact reduce the solution of the model to the markets 
of the primary factors, as we have shown this possibility while discussing Cassel’s model. We 
start the algorithm with some estimated primary factor prices (w and q), we solve sequentially 
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for equilibrium in a recursive manner until we arrive at the calculation of factor demand. Then 
we check if their demand matches their supply, and increase or decrease their prices depending 
on the sign of their difference. If the case of well-behaved production and utility functions, one 
can design a simple heuristic iteration process to find the equilibrium value of the factor prices.  

To show the close similarity of the Johansen and Cassel model we reduce further the 
equations to those of Cassel’s. 

xi = Σj aij·xj + ci
0 + yi

v(p1, p2, ... , pn), 

Σj l j(w, q)·xj = L0, 

Σj kj(w, q)·xj = K0, 

pj = Σi pi·aij + w·l j(w, q) + q·kj(w, q). 

THE OPTIMAL RESOURCE ALLOCATION EQUIVALENT OF THE JOHANSEN MODEL 

The equilibrium conditions of the Johansen model can be also easily reproduced from the 
necessary conditions of the following welfare maximizing resource allocation problem (on the 
left margin we put in parentheses the assigned Lagrange multipliers again):  

 max yv  

s.t. (pi) Σj aij·xj + ci
0 + yi

v = xi (i = 1, 2, ... , n), 

 (cj) xj =  fj(Lj, Kj)  (j = 1, 2, ... , n), 

 (w) Σj Lj = L0, 

 (q) Σj Kj = K0, 

 (pcv) yv = yv(y1
v, y2

v, ... , yn
v) 

 The Lagrangian function of the above problem is as follows: 

  L = yv − Σi pi·{ Σj aij·xj + ci
0 + yi

v − xi} − Σj cj·{  xj −  fj(Lj, Kj)} − 

   w·{ Σj Lj − L0} − q·{ Σj Kj − K0} − pcv·{  yv − yv(y1
v, y2

v, ... , yn
v)}. 

The partial derivatives provide as usual the further conditions of maximum: 

∂L/∂yv: pcv = 1, 

∂L/∂Lj: cj ·
j

j

L

f

∂
∂

 = w(j = 1, 2, ... , n),  

∂L/∂Kj: cj ·
j

j

K

f

∂
∂

 = q(j = 1, 2, ... , n),  

∂L/∂xj: pj = Σi pi·aij + cj (j = 1, 2, ... , n), 

∂L/∂yi
v: pcv · v

v

iy

y

∂
∂

 = pi(i = 1, 2, ... , n). 
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One can easily verify that the necessary conditions of the above optimal resource allocation 
problem are equivalent to those of equilibrium. Consider, for example, the case of production. 
The second and the third set of the first order conditions are nothing but the necessary 
conditions of cost minimization. Because of the linear homogeneity of the production functions 
and Euler’s theorem the following identities hold: 

 cj·
j

j

L

f

∂
∂

·Lj + cj·
j

j

K

f

∂
∂

·Kj = cj·xj = w·Lj + qj·Kj (= e),   

from which, dividing both sides of the second and third equation by xj, we get 

 cj = w·l j + qj·kj. 

Thus, the fourth set of the first order conditions states that the prices of the sectoral 
commodities are equal to their cost of production, which means that production choices are 
maximizing the profit at prices pj. In the same way we can show that 

 cj·xj = w·Lj + qj·Kj = Σi pi·yi = e,   

thus, Walras’s law holds. Also, because of Euler’s theorem 

 pcv·Σi v
v

iy

y

∂
∂

·yi
cv = pcv·yv = Σi pi·yi

v (= ev). 

This together with the last set of the first order conditions is nothing but the necessary 
conditions of utility maximization. Dividing both sides of the second and third equation in the 
above relation by ycv we get 

 pcv = Σi pi
hm·si

v, 

indicating that pcv can be interpreted as the cost-price of the composite consumption good (c1
v, 

c2
v, ... , cn

v), yv(c1
v, c2

v, ... , cn
v) = 1, and this composite good plays the role of the numeraire in 

the above solution. 

1.7. Summarizing the models presented 

In Table 1.6 we present the models discussed in order to ease their survey and comparison. 
Wherever it was possible we used matrix algebraic notation for brevity, and omitted the lists of 
variables and potential sign restrictions.  

Table 1.6: Comparing the various general equilibrium models 

Walras I. 

(x =) y = v(p, r ) 

Dy = s(p, r ) 

p − rD  = 0 

price level: free 

Cassel 

(x =) y = y(p) 

Dy = s  

p − rD  = 0  

price level: rs = 1 

Schlesinger–Wald  

(x =) p = p(y) 

Dy ≤ s, r  ≥ 0, de rDy  = rs 

p − rD  = 0  

price level: rs = 1 
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Walras II. 

(x =) y = v(p, q, r ) + z 

Dy = s(p, q, r ) 

By = k0 

p − rD  − qB = 0  

q = p<ra + π⋅1>  

price level: free 

Walras–Leontief 

(v, z, r  and π exogenous) 

(I  − A)x = v + z 

 

p(I  − A) − rD  − qB = 0  

q = p<ra + π> 

price level: free 

Leontief (static model) 

(y and c exogenous) 

 (I  − A)x = y 

 

p(I  − A) − c = 0  

 

price level: set by c 

Paretian–Hicksian 

  a + ∑j t
(j)  = ∑h y

(h)  

  Fj(t
(j)) = 0 

n

i

jn

ji
j

i

j
n

p

p

F

F

dt

dt ==−   

  py(h)
 = αh⋅p(a + ∑j t

(j) ) 

n

i

hn

hi
h

i

h
n

p

p

u

u

dy

dy ==−   

  price level: free (pn = 1) 

Koopmans–Kantorovich 

y = yc + e⋅cv 

e = pa 

a + Ãx ≥ y, but 

pa + pÃx = py 

pÃ ≤ 0, but  

pÃx = 0 

price level: pcv = 1 

Johansen 

y = yc + yv(p) 

(I  − A)x = y 

l(w, q)x = L0,  

k(w, q)x = K0  

p(I  − A) − w⋅l(w, q) −  

   q⋅k(w, q) = 0  

price level: ev = p(a − yc) = 1 

We want add one final general remark to the presented models. Except for the models 
named after Schlesinger–Wald and Koopmans–Kantorovich, we assumed that all variables take 
positive values in equilibrium and therefore the optimality and equilibrium conditions can be 
given in the form as equation. In a more general setting we should have used inequalities with 
complementarity restrictions. 

1.8.  Illustrative programs  

 The special programs accompanying this training material contain a numerical example for 
the Cassel-model with 2 factors and 3 products in Excel (Cassel2x3.xls and its description in 
Cassel-2x3.doc), which can be solved both by the built-in SOLVER dialog box explicitly as a 
root of a one-variable polynomial equation of degree 3. This illustrates how neoclassical theory 
can be put to work and how the equilibrium solution depends on the choice of model 
parameters. It may also dissolve aversions about the “black-box” nature of the more complex 
CGE-models and the “mysterious” nature of their solution. 

 Interested reader may also find an illustrative Excel-program developed for the Johansen-
type of CGE model (Johansen-DinLeo.xls). This program demonstrates how models can be 
solved by simple, heuristic iteration methods, using only a few iterandus (in our case only one 
factor price). 
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2. Applied multisectoral models: a comparative review 

2.1. Applied input-output models 

2.1.1. The input-output table and Leontief’s static model 

The statistical data base of input-output analysis is the input-output table, a macro-
economic accounting framework, which combines two sets of inter-sectoral balances (see 
Table 2.1). In the rows of the upper part of the table one finds a set of balances, which describe 
the sources and uses of sectoral outputs of a given period of time (typically a year). Each row 
corresponds to a particular sector (industry, commodity group), whereas the columns list the 
main areas of use, among them the sectors themselves. The intermediate uses of the sectoral 
outputs (xij, i,j = 1, … , n) are arranged into a quadratic matrix, and final uses into a rectangular 
one. Typical areas of final use (yil) are private and public consumption, investments, (net) 
exports and change in stocks. 

Table 2.1: The general scheme of the I-O tables 

 Intermediate use (sectors) 
1        2      ...     j      ...        n 

Final use 
1        2      ...       r 

Total 
source 

1 

2 

. 

i 

. 

n 

x11     x12    ...     x1j     ...      x1n 

x21     x22    ...     x2j     ...      x2n 

 

xi1     xi2    ...     xij     ...      xin 

 

xn1     xn2    ...     xnj     ...      xnn 

y11     y12     ...     y1r 

y21     y22     ...     y2r 

 

yi1     yi2     ...      yir 

 

yn1     yn2     ...      ynr 

x1 

x2 

. 

xi 

. 

xn 

1 

2 

. 

m 

h11     h12    ...     h1j     ...      h1n 

h21     h22    ...     h2j     ...      h2n 

 

hm1    hm2   ...     hmj    ...      hmn 

 

 x1       x2    ...      xj      ...       xn  

The first set of balances requirements state that the sum of the elements in a row (the total 
use) has to be equal to the total amount available, that is,  

 xi = xi1 + xi2 + ... + xin + yi1 + yi2 + ... + yir (i = 1, 2, ... , n). (2.1-1) 

Ex post, in a statistical table, this identity is always fulfilled by force, since the change in 
stocks creates balance between total source and use. In an ex ante analysis this set of equations 
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becomes an equilibrium condition.  Total source is either the total domestic output in the given 
period of time or the sum of domestic output and imports, depending on how one takes foreign 
trade into account (we will come back to this issue later). 

   Table 2.2: The I-O table in block form 

 Sectors  
(as users) 

Final use Total 
source 

Sectors  
(as producers) 

X = (xij) Y = (yil) x = (xi) 

Value added H = (hkj) 
 

 
The value 
distributed 

x = (xj)  

Looking at the columns of the sectors one will find the second set of accounting identities, 
which describe the composition of the cost of domestic production, adding to the cost of the 
consumed sectoral commodities (materials) various other cost and income components, so that 
the sum of the column will be equal to the value of the produced output:  

 xj  = x1j + x2j + ... + xnj + h1j + h2j + ... + hmj (j = 1, 2, ... , n). (2.1-2) 

Typical components of the value added (hkj) are amortization, the cost of labour and net 
operating surplus, and direct or indirect taxes, depending on the convention used. It is useful to 
remember the blocks of a typical I-O table (see Table 2.2) and the matrix algebraic 
representation of the two sets of balances. 

 x = X1 + Y1   (2.1-3) 

 x = 1X + 1H   (2.1-4) 

where 1 is a vector with elements all 1 (the summation vector). 

Dividing the elements in the various columns by the corresponding column sum one can 
calculate the average input coefficients, for example,  

 A = (aij) = X<x>-1,   C = (ckj) = H<x>-1,    S = (sil) = Y<y0>-1, 

which can be arranged in similar table. (y0 = 1Y, where 1 is the summation vector, all ones and 
<a> denotes a diagonal matrix made up by vector a.) 

A S 

C 0 

1 1 
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The basic equations can be rewritten, using the above derived input coefficients, as follows: 

 x = Ax + Y1 = Ax + y (2.1-3) 

 1 = 1A + 1C = 1A + c (2.1-4a) 

The interpretation of the first equation is straightforward. As we can see, it is nothing but 
the equilibrium requirement related to the sectoral product balance in Leontief’s static model. 
It is less clear, but the second equation can also be interpreted in terms of Leontief’s model of 
general equilibrium. In a comparative static exercise the elements of the summation vector 1 
can be interpreted as the base prices (p = 1). Better to say, they are the base price indexes of 
the various sectoral commodities, assuming that the observed data represent an economy in 
equilibrium. We can thus rewrite this equation also into the form it has appeared in Leontief’s 
model: 

 p = pA + c = pA + 1C (2.1-5) 

Introducing the equivalent counterparts of the different indicators measured in physical 
units, for example, q for x, v for y, R for A, we can present their equivalence in a tabular form 
(see Table 2.3). The terms in equal position in the two tables are equal, for example: <p>R<q> 
= A<x>, <p>q = x. In rewriting the value added we have borrowed notations and concept from 
the previous chapter, thus matrix D contains the input coefficients of primary factors of 
production, vector r  their prices, vector cπ the coefficients of the net operating surplus (profits).  

Table 2.3: Input-output tables based on value and physical units 

<p>R<q> <p>v <p>q  X = A<x> y  x 

<r>D<q> 

cπ<q> 
  = H = C<x>   

p<q>    x   

From the above table one can also see the reason why the elements of vector p in equation 
(2.1.5) represent price indexes and not their absolute values. 

2.1.2. Representation of foreign trade in the I-O tables 

So far we have been dealing with closed economies and did not bother with exports, 
imports and the balance of trade. We can do that in an abstract model, but in applied models 
one can not ignore them. We will use the following notation: 

• index of home origin h, index of foreign origin (import) m, 

thus, for example, the intermediate use of the sectoral commodities (X) can be split up into 
domestically produced (Xh) and imported part (Xm). We will use similarly the A, Ah and Am 
input coefficient matrices.  
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• index of domestic use d, index of terms related to export or foreign use e, 

for example, total final use can be split up into domestic use and exports: y = yd + z. 
Distinguishing final use with respect to origin as well we can write: yhd and ymd, where yh =  yhd 
+ z.  

Total use of imported goods in production and their input coefficients can thus be defined 
as xm = 1Xm and am = 1Am. Total import of various sectoral commodities, on the other hand, 
will be denoted by vector m, where m = Xm1 + ymd, and their sum is m = 1m. If we combine 
the two sources, domestic production and imports, we will denote their total by x̂  = x + m. 

The above examples illustrate the notation to be used, but their meaning will become 
clearer from the position they will hold in the various I-O tables which will be presented 
bellow. We will present four possible ways in which foreign trade can be incorporated into the 
scheme of an input-output table, without violating its basic convention, whereby the sectoral 
row and column totals must be equal. 

In the first arrangement (I/O table of type A) we treat imports as if all imported 
commodities were perfect substitutes for their domestic sectoral output. Therefore, domestic 
production and imports are presented together in the upper part of the input-output table. Thus, 
the total amounts of the distributed sectoral commodities equal to x + m = x̂ .  

I/O table of type A 

       I-O table   I-O coefficients 

X yd z x̂   Â  sd sz 

h     ĉ    

(x) yd z   (ŝh) 1 1 

m      ŝ
m   

x̂    x̂   1   

 

In order to make the sectoral column sums to be equal to their row equivalent the amounts 
of imported commodities (m) had to be added to the domestic output (x) at the end of each 
column. At first glance this looks to be an extremely artificial and meaningless correction, 
especially the coefficients calculated from the above table. It can be shown, however, that this 
solution is not meaningless at all.  

Let us write up first the commodity balance equations with the coefficients gained from I/O 
table of type A:  

 x̂  = Â x̂  + yd  + z, 

by means of which we could estimate the likely effect of a change in final demand on the 
supply of sectoral commodities. This equation is equivalent the following two:  
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 x = <ŝh>(Ax + yd + z) = Âhx + ŷ hd + hẑ   

 m = <ŝm>(Ax + yd + z) = Âmx + ŷ md + mẑ , 

where A = X<x>−1, Âh = <ŝh>A, Âm = <ŝm>A and so on. 

From this transformation it turns out that the implicit assumption behind such calculation 
would be that share of domestic production (ŝ

h) and imports (ŝm) would remain the same after 
the changes take place, and this same composition would prevail in every area of use, including 
the exports as well. Notice that import would become endogenously determined in such a 
model. 

As far as the pricing equation implied by the above table is concerned, i.e., equation 

p̂  = p̂ Â + pm⋅ŝm + ĉ ,  

it is easy to see that it can also be rearranged in the following two sets of equations: 

p̂  = ph<ŝh> + pm⋅ŝm 

ph = phÂh + pm⋅âm + c, 

where ph can be interpreted as the price index of the domestically produced sectoral 
commodities, pm the average or general price index of the imports, and âm = 1Âm = ŝmA. 
Vector p̂  can thus be interpreted as an average users’ cost-price of the sectoral commodities.  

The second arrangement (I/O table of type B) rests on the opposite assumption: imports are 
perfect complements to the domestic output of the same sectoral origin. The upper part of the 
table contains only the commodity balances of domestic production. The import used in 
production (xm = 1Xm) or in final consumption (ym) are represented in a separate row. 

I/O table of type B 

       I-O table   I-O coefficients 

Xh yhd z x  Ah shd sz 

xm ym 0 m  am sm 0 

h     c   

x yd z   1 1 1 

 

Let us write up again the commodity balance equations with the coefficients gained from 
I/O table of type B:  

 x = Ahx + yhd + z, 

to which we can immediately add the following two equations: 

 m = amx + ym, 

 m = Amx + yhm. 
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The first equation can be used to estimate the likely effect of a change in the final demand 
for domestically produced sectoral commodities on their output. The second and the third 
equations will show the repercussive effect of the above change on the imports, where the use 
of imports in production is endogenously determined via x. 

The interpretation of the  

 ph = phAh + pm⋅am + c 

price equation is straightforward. It can be used for tracing through the likely changes of the 
sectoral prices of domestically produced commodities resulting from an exogenous change in 
the cost of imports or some elements of value added. 

A third version (I/O table of type C) is aimed at correcting the criticized problem of type A, 
that is, adding imports to domestic output to regain the equality of the last row and column in 
the table. Instead of that they propose to subtract imports from final demand, and make the sum 
of rows be equal to domestic production. In effect, instead of the exports the table contains 
only net exports (z − m). 

I/O table of type C 

       I-O table   I-O coefficients 

X yd z − m x  A sd 

h 0    c 0 

x yd    1 1 

As a result both exports and imports will be exogenous variables in the input-output 
analysis based on the coefficients gained from I/O table of type C, as can be seen from the 
basic equations: 

x = Ax  + yd  + z − m, 

p = pA + c. 

These equations are the straightforward extensions of the forms we got in the case of the 
closed model. It suffers, however, from the problem that imported goods are considered to be 
completely the same in all respect (quality, price) as their domestic counterparts. It provides no 
explanation for the size of foreign trade. 

And finally, a fourth version (I/O table of type D) has been designed exactly with the 
purpose of making foreign trade, both exports and imports endogenous variables in the 
otherwise conventional input-output multiplier analysis. It is achieved by the introduction of an 
additional ‘extern trade’ sector, which purchases foreign currency by means of exports, which 
in turn finances imports. The total value of imports (m = xm1 + ym) as a rule differs from the 
total value of exports (z = 1z). Their difference, the balance of trade (m − z = de) can be placed 
in different positions of the revised I-O table. We will show two possible arrangements here. 
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Both solutions are based on sound economic logic, both are meant to make up for the 
difference of produced and realized national income. It can be shown that using the first 
solution (D1), in which the balance of trade (de) appears as part of the value added, one 
assumes implicitly that the ratio of the balance of trade to total imports, that is, ce = de/m, 
remains constant in the analysis. In the case of the second its absolute value should be set 
exogenously. 

I/O table of type D 

 D1:      I-O table   I-O coefficients 

Xh z yhd X  Ah r z shd 

xm 0 ym m  am 0 sm 

h de 0 hd  c ce 0 

x m yd   1 1 1 

 

 D2:      I-O table   I-O coefficients 

Xh z yhd x  Ah sz shd 

xm 0 ym − de z  am 0 sm − sde 

h 0 0 h  c 0 0 

x z yh   1 1 1 

 

The basic equation of the conventional input-output multiplier analysis, assuming change 
in final domestic demand, takes the following form in the case of D1: 
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decomposing the equation we get: 

 ∆x = Ah∆x + r z·∆m + ∆yhd 

 ∆m = am∆x + ∆ym. 

These equations reveal the nature of this solution: the change in domestic final demand will 
not only directly effect domestic production, but indirectly too. It is assumed that export will 
change too, in order to restore the balance of trade which is upset by the change in imports. As 
a matter of fact, the change in the exports will be proportional to the change in the import, as 
can be seen from the first equation. 
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We can eliminate ∆m by substituting its value with the expression standing on the right 
hand side of the second equation. In this way we may derive the condensed form equivalent of 
the augmented input-output model equation: 

 ∆x = (Ah + r z
◦am)∆x + r z·∆ym + ∆yhd = Az∆x + r z·∆ym + ∆yhd. 

where r z
◦am denotes the dyadic product of the two vectors. The matrix Az = (Ah + r z

◦am) is 
now of the same size as matrix Ah, containing larger elements. Thus if the changes effects only 
the final demand for domestic goods, its impact on domestic output can be estimited by solving 
the equation 

 ∆x = Az∆x + ∆yhd, 

which looks exactly like the basic equation, but the input-output coefficient matrix contains 
now elements that transmit the indirect effect of the changing export as well. 

This modification of the input-output system will influence the form and content of the 
price multiplier associated with it too. On the basis of the above augmented input-output 
coefficient matrix we get the following price form: 
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which can be decomposed as follows: 

 ph = phAh + pe·a
m + c, 

 pe = phr z + ce, 

where ce denotes the balance of trade coefficient, which belongs to the column of the exports in 
the value added part of the modified input-output table.  

In the definition of the domestic price indexes, unlike in its open version, the cost of import 
(am) is revaluated by the price index pe. The value of this latter index, given by the second 
equation, reflects changes in the domestic cost of earning foreign exchange via exports. 

2.1.3. Partial closure and extensions of the input-output models 

The solution followed above is called partial closure in the input-output literature, which 
can be applied to other initially exogenous parts of the model, not accounted for in the chain of 
repercussion initiated by some external change. Take for example amortization, which is part 
of the exogenously given value added. One may want to take it into account that if output 
increases it will automatically generate an increase in investments proportional the increase of 
amortization, which represents the value of replacement investment. One may, thus, augment 
the model in the following way: 
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where ca is the row vector of the amortization coefficients, ye the exogenous part of final 
demand, ∆xb the sectoral level of amortization generated by the change in the level of 
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production, and B the matrix of investment coefficients (use of sectoral commodities for 
investments in different sectors). The meaning of the form becomes clearer if we decompose it: 

 ∆x = A∆x + B∆xb + ∆ye, 

 ∆xb = <ca>∆x, 

from which we can derive again the equivalent condensed form: 

 ∆x = (A + B<ca>)∆x + ∆ye = Ad∆x + ∆ye. 

The modification of the input-output system 
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which can be decomposed as follows: 

 p = pA + pb<ca> + cr, 

 pb = pB + cb, 

and cr denotes the value added coefficients other than amortization and cb the additional cost 
coefficients belonging to sectoral investments but not included into the commodity block of the 
table (e.g., taxes, when material cost is measured at base prices). pb can be interpreted as the 
vector of price indexes of capital goods invested into various sectors, which are supposed to 
modify the value of amortization too (pb<ca>). 

By appropriate substitutions we can again eliminate pb and the second equation to an 
equivalent condensed form:  

 p = p(A + B<ca>) + cb<ca> + cr = pAd + cb<ca> + cr, 

Partial closure thus extends the scope of the endogenously treated phenomena in the 
conventional input-output multiplier analyses. By the latter we mean the analysis which rests 
on a given input-output coefficient matrix and its Leontief inverse, and on a simple matrix-
vector multiplication. For example, in last case on the following formulas: 

 ∆x = (I  − Ad)−1∆ye p = (cb<ca> + cr)(I  − Ad)−1. 

We could also see that the decomposed (structural) schemes are much more transparent 
then the augmented or the condensed (reduced) multiplier forms. Their only advantage was the 
computational convenience (a simple matrix-vector multiplication), which mattered in the early 
years of input-output analysis, but are no longer required.  

2.1.4. Applied input-output volume models 

We provide two examples to illustrate how one can formulate somewhat more complex 
input-output models in their structural form, based on the knowledge of coefficients gained 
from statistical input-output tables and potentially from other statistical sources.  The various 
balance and functional equations of the input-output model will reappear in the computable 
general equilibrium models as well, thus, this illustration paves the way for the better 
understanding the latter models as well.  
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Table 2.4: The assumed structure and content of the input-output table 

 absolute values   coefficients 

 Xh ych ygh Yvh z ykh x 
 

Ah sch sgh Bh sz bkh 

 Xm ycm ygm Yvm 0 ykm m 
 

Am scm sgm Bm 0 bkm 

 tam tcm tgm tvm 0 tkm tm  τam τcm τgm τvm 0 τkm 

 ta tc tg tv -tz tk t  τa τc τg τv -τz τk 

 

d 

w 

tw 

π  

      

 ca 

cw 

τw 

cπ 

     

 tx        τx      

∑ x yc yg yv z yk   1 1 1 1 1 1 

(We advise the reader to come back to that table when he or she feels lost in the midst of 
the – at the first glance – somewhat complicated notations.) 

Table 2.4 lists the data, both the absolute values and the coefficients (the absolute values 
divided by the appropriate column sum) in an input-output table format. The first two blocks 
row wise describe the sectoral product balances, i.e., distribution the sectoral products 
available from home production (x, index h) or import (m, index m), where the notations are as 
follows: 

Xh, Xm, Ah, am intermediate use and their input coefficients  

ych, ycm, sch, scm personal consumption and their coefficients  

ygh, ygm, sgh, sgm  public consumption and their coefficients  

Yvh, Yvm, Bh, Bm sectoral investment and their coefficients 

ykh, ykm, bkh, bkm change in stocks and their coefficients 

Following the two blocks one can find two rows. The first contains the import tariffs (tam, 
tcm, tgm …; τam, τcm, τgm …), because we assume here that the volume of import is measured at 
their world market prices, converted to local currency. Therefore, the total value of imports, m 
= m1 measures the amount of foreign currency needed for their purchase, converted to local 
currency. The second row contains net indirect taxes and subsidies (ta, tc, tg …; τa, τc, τg …). 
The volume of exports (z) is assumed to show the revenue of the producers, which may be 
higher than the actual price paid by the foreign buyers. Their difference, the export subsidy (tz) 
appears also in this block (with negative sign). By this correction the column total exports, z 
becomes equal to the foreign currency earned by them, converted to local currency. The 
difference of m and z measures thus the foreign trade deficit (de).  
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Finally, the remaining block contains the value added items and their coefficients: 

d and ca amortization  

w, tw and cw, τw  wages and wage surcharges  

π and cπ  net operating surplus (profit) 

tx, τx production taxes/subsidies and their coefficients 

Based on the above data we can formulate alternative structural models that can be used for 
comparative static analysis. For example, we can split up final consumption in such a way that 
makes it easy to introduce exogenous or endogenous variables into an input-output model: 

ydh = yh0 + svh·ycv + sgh·yg + Byv,  

ydm = ym0 + svm·ycv + sgm·yg + Bmyv, 

where the new symbols are as follows: 

 yh0, ym0 exogenously fixed part of final demand (cf. committed consumption) 

 ycv level of variable (personal) consumption 

 svh, svm unit coefficients of (variable) personal consumption (if different from sch, scm) 

 yg level of public consumption 

 yv level of sectoral investment 

We can split up (gross) investment into replacement and net investment (yv = yrv + ynv) and 
the former can be made endogenous by means of the following definitional equation:  

yrv = <ra><k>x, 

where ra<k> = ca, k is the vector of capital coefficients per unit of output and ra is the vector of 
the rates of amortization, as before. 

Next we may assume that the level of variable personal consumption changes in proportion 
to wages, where the propensity to consume (ϕ) is a potential exogenous variable: 

ycv = ϕ·cwx. 

Summing up, we have so far defined the following sets of equations: 

 x = Ahx + yh0 + svh·ycv + sgh·yg + Bhyrv + Bhynv + z (2.1-6) 

 m = Amx + ym0 + ϕ·svm·ycv + sgm·yg + Bmyrv + Bmynv (2.1-7) 

 yrv = <ra><k>x (2.1-8) 

 ycv = ϕ·cwx (2.1-9) 

We have altogether 3n + 1 number of equations. If we chose x, m, yrv and ycv as unknown 
(endogenous) variables, the number of which is also 3n + 1, we would arrive at a well defined 
model, which could be solved once the values of the parameters and potential exogenous 
variables (first of all z, yg, ϕ, ynv, yh0 and ym0) are given. We could thus run comparative static 
simulations to test the likely effect of their changes on the endogenous variables. 
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Eliminating the unknowns other than x we reduce the set of equations to n equations, 
containing only the sectoral levels of output as variables: 

x = (Ah + Bh<ra><k> + ϕ·svh
◦cw)x + yh0 + sgh·yg + Bhynv + z, 

the solution of which is 

 x = (I  − Ah − Bh<ra><k> − ϕ·svh
◦cw)−1(yh0 + sgh·yg + Bhynv + z), 

where the coefficient matrix 

(Ah + Bh<ra><k> + ϕ·svh
◦cw) 

is nothing but the coefficients of a partially closed input-output table. The structural form given 
by equations (2.1-6) - (2.1-9) is, however, a more transparent presentation of the model, than 
its reduced form. 

The special advantage of the structural form is that it makes easy to redefine the model. We 
may for example introduce further variables and add further equations to the above core model. 
For example, the definition of the balance of trade 

 de = pwmu – pwez,  (2.1-10) 

where pwm and pwe are the exogenously given price indexes of imports and exports. As long as 
we consider de an endogenous variable this equation would be just an epilogue added to the 
rest of the equations, since de does not appear in them.   

One can also define the demand for labour and capital 

 ld = lx (2.1-11) 

 kd = kx (2.1-12) 

or the level of total exports and imports 

 z = 1z – tz (2.1-13) 

 m = m1.  (2.1-14) 

As long as we do not change the rest of the model, the value of the new variables (de, ld, kd, 
z, m) can be simply calculated after we have solved already the model given by equations (2.1-
6) - (2.1-9), since none of the new variables appears in them. We can, nevertheless, revise the 
model with respect to variables considered to be endogenous or exogenous. We might want, 
for example fix the value of k, interpreting it as capital constraint, at the cost of freeing some 
variable that was exogenous so far (e.g. ϕ or yg). We might want to fix the structure of exports 
(z = z·sz) and make its level depend on the volume of imports (z = m·r z). 

All these changes would imply another model structure and require another type of 
solution. One more reason why one might prefer structural to reduced form. Consider, for 
example, a variant of the model consisting of (2.1-6a), (2.1-7) - (2.1-9), (2.1-10a), where 

 x = Ahx + yh0 + svh·ycv + sgh·yg + Bhyrv + Bhynv + z·sz (2.1-6a) 

 pwmu − z·pwesz = de. (2.1-10a) 
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In this variant of the model we handle foreign trade (exports and imports) in a similar way 
as in the analysis based on an input-output model of type D2. One could define a variant 
analogous with an input-output model of type D1 by the set of equations (2.1-6b), (2.1-7) - 
(2.1-9), (2.1-10a) and (2.1-14), in which de becomes endogenous variable too, moving in 
proportion to the level of imports and exports, leaving thus their observed proportion (sde) 
unchanged.  

 x = Ahx + yh0 + svh·ycv + sgh·yg + Bhyrv + Bhynv + m·r z, (2.1-6b) 

 sde·m = de. (2.1-10b) 

The possibilities to form models for economic policy analysis on the basis of statistical 
input-output tables is wide enough, nevertheless, constrained especially by the rigidity of the 
linear forms. For example, they do not allow for making some of the coefficients dependent on 
price changes. The price models based on the input-output tables are developed with no 
reference to the volume side either. Let us turn now our attention to applied input-output price 
models. 

2.1.5. Applied input-output price models 

Input-output tables can be compiled using two different price concepts: at users’ prices 
and/or at net (producers’) prices, expressing material cost net of indirect taxes/subsidies. Table 
2.4 presented in the previous section was supposed to be compiled at net prices, that is, the 
value of the domestic goods expressed in producers’ prices, and that of the imported goods in 
their cost of purchase, not including import tariffs. This is why a separate row had to be added 
to the table, which contained the sum of indirect taxes, subsidies and import tariffs. If we 
started from a table compiled at users’ prices, we should try to separate, as accurately as 
auxiliary data allow for, the various components that make up unit prices. This will be 
discussed in more details later, in Chapter 5. 

As pointed out earlier, the column sum identities of the first block of the input-output 
tables, i.e. the equations 

 1Ah + 1Am + τam + τa + ca + cw + τw + cπ + τx = 1 

reflect the basic price accounting identity: prices (revenues) equal costs.  In other words, they 
define the base price levels of the domestically produced sectoral outputs. The summation 
vectors (1) represent in the above equations indeed the base price levels, all assumed to be 
equal to 1, because the volume of the sectoral outputs are measured with their values expressed 
at base prices.  

So, one can easily revise the above price accounting identity by explicitly indicating the 
price indexes that are hidden in them. Let us introduce in the first step the domestic and import 
price indexes of the sectoral outputs, ph = (pi

h) and pm = (pi
m), which are equal to 1 in the base 

case. Assuming that pm contains import tariffs as well, one gets the following form: 

 ph = phAh + pmAm + τa + ca + cw + τw + cπ + τx,  (2.1-15) 

where the values in ph will be taken to be endogenous, whereas those in pm and the rest of the 
components exogenous variables in the price model. Note that the domestic price of the 
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imported sectoral commodities (elements of vector pm) is assumed to include the import tariffs 
as well. This is why they do not appear explicitly in equation (2.1-15). 

With the model defined in this way we can evaluate the likely effect of expected changes in 
the exogenously treated (tax and value added items) variables on domestic sectoral price levels. 
This is the basic idea lying behind the input-output price models. The above model is just their 
simplest version. One can get more complex and complicated models by introducing further 
exogenous explanatory variables. 

For example, the consumers’ price index (pc) can be defined, based on data from Table 2.4 
as follows 

 pc = phsch + pmscm + τc. (2.1-16) 

Observe, that in the base case, when ph = pm = 1, the value of pc is also 1, and the above 
equation coincides with that defining the column sum identity of private consumption. We can 
use the consumers’ price index (pc) defined in this way to revaluate the wage level in case of 
assumed changes in the price levels of the sectoral commodities. If one introduces this price 
index into equation (2.1-15), as an index variable that valorises wages in an endogenous way, 
he will get the following set of equations: 

  ph = phAh + pmAm + τa + ca + pc·c
w + τw + cπ + τx.   (2.1-17) 

Changing some elements of pm, for example, and solving equations (2.1-16) and (2.1-17) 
for variables ph and pc, one can estimate the likely effect of expected changes in import prices 
on domestic sectoral price levels, assuming that the wages and salaries will also increase in 
proportion to the consumers’ price index. We pause here for a moment and show that the 
reduced form of the above simple price model can be derived from a partially closed input-
output table, in which wages are expressed in terms of private consumption. Eliminating pc we 
get  

 ph = ph(Ah + sch
◦cw) + pm(Am + scm

◦cw) + τa + ca + τc·c
w + τw + cπ + τx, 

from which, after simple rearrangement, we can calculate the value of vector ph as 

 ph = { pm(Am + scm
◦cw) + τa + ca + τc·c

w + τw + cπ + τx} ( I  − Ah − sch
◦cw)−1. 

The input-output coefficient matrix in the above equations, (Ah + sch
◦cw) is nothing but the 

coefficients gained from a partially closed input-output table, in which wages (cw) are 
represented by consumption basket units, composed as (sch, scm, τc). 

A somewhat more complex version of this model can be formulated by the following set of 
equations: 

 ph = phAh + pz⋅pmAm + τa + pb<ca> + pc⋅(cw + τw) + τx + cπ,  (PM-I-1) 

 pc = phsch + pz⋅pmscm + τc,     (PM-I-2) 

 pb = phBh + pz⋅pmBm + τv,     (PM-I-3) 

 pz = phsz – τz,     (PM-I-4) 
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In this model not only the wages but the surcharges on wages are also valorised by the 
consumer price index, pc⋅(cw + τw), taking into account their ad valorem nature. Also, we have 
introduced the investment price indexes (pb) to reflect the revaluation of the investment goods 
and thus the value of amortization. Finally, the export price index, pz has been introduced, 
which can be interpreted as the cost index of purchasing foreign currency via exports. If 
domestic prices increase, pz will increase too, raising automatically the cost of imports as well. 
It acts thus as an endogenous exchange rate index that neutralizes, in a sense, the impact of the 
domestic price level on the position of the trade balance.  

MORE COMPLEX INPUT-OUTPUT PRICE MODELS 

The price models presented so far were using only data available from an I-O table, and they 
were structural variants of some straightforward multipliers, which could be composed on the 
basis of partially closed input-output tables. These models can be augmented and refined. 

In more complex models, depending on the availability of auxiliary data and the purpose of 
investigation, we can for example represent material cost, i.e. the total cost of the commodities 
used in various sectors of production or areas of final use in different ways. The options differ 
from each other with respect to the treatment of indirect taxes/subsidies (which make the users’ 
prices different from the producers’ prices) and imports. 

a) Representing the users’ cost of commodity inputs 

Consider first the issue of indirect taxes and subsidies. In the statistical input-output tables 
expressed in base prices (like in Table 2.4) only their sum is presented in one raw, thus, we can 
calculate and use only the average tax or subsidy coefficients (τa, τc, τg, τv, -τz, τk) paid or 
received by the specific users.3 In the statistical input-output tables expressed in users prices 
the indirect taxes/subsidies are represented, inseparably from the base price, in the cost of 
materials. In any case, one needs access to a rectangular tax table in order to define a model in 
which indirect taxes/subsidies are represented in sectoral details. In order to keep the number 
of parameters and/or variables of the model relatively small, even if we have at our disposal an 
estimated tax table, we would not represent specific tax rate in each cell of use. Either we use 
average tax rates calculated for given areas of material use (i.e., column wise) or the average 
tax rates calculated for given type of sectoral commodity (i.e., row wise). 

Another issue related to taxes and subsidies is the question of valorisation. Most of the 
indirect taxes are of ad valorem type. This means that they change in proportion to the value of 
the material cost measured at base prices. In the above (PM-I) price model, however, most of 
the tax/subsidy coefficients remained nominal, not valorised. This is the inherent weakness of 
the simple input-output price models, which can be easily eliminated in the refined models. Let 
us take the example of the investment price indexes to illustrate the alternative ways in which 
indirect taxes/subsidies can be represented in valorised (real rather than nominal) form. Using 

                                                 
3 In this subsection and only here we will notationsτ, τ′  and τ″ to distinguish from each other the tax coefficient calculated 
from an input-output table (τ), the average ad valorem tax rate in a given area of use (τ″) and the average ad valorem tax 
rate imposed on some kind of sectoral commodity (τ′). 
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nominal (unvalorised) tax coefficients the definition of the investment price index takes the 
following form: 

    pb = phBh + pmBm + τv.  

If we know only the average tax coefficients, i.e., the vector τv, we can equivalently use 
any of the two following forms to valorise the indirect taxes:  

   A) pb = phBh + pmBm + pb<τv>,  that is,   pj
b = Σi (pi

h⋅bij
h + pi

m⋅bij
m) + pj

b⋅τj
v, or 

   A’) pb = (phBh + pmBm)<1 + τ″v>,  that is,   pj
b = (1+τ″j

v)⋅Σi (pi
h⋅bij

h + pi
m⋅bij

m), 

where τ″j
v = τj

v/(1+τj
v), that is, using matrix algebraic notation: τ″v = τv<1 − τv>−1.   

If we know the average tax rates (τ′v), which are imposed on various sectoral commodities 
used for investment, we may assume that the same rate applies in each sector (i.e., in each cell 
in a given raw of the investment matrix). In such a case the definition of the investment price 
indexes will be as follows:  

    B) pb = (ph<1+τ′v>Bh + pm<1+τ′v>Bm),   that is,    pj
b = Σi (1+τ′iv)⋅(pi

h⋅bij
h+ pi

m⋅bij
m), 

It is often the case that one has access only to an input-output table of type A and there is 
no separate rectangular import table available. Even in such a case one may separate the use of 
domestic and imported commodities, making a bold assumption that their ratio is the same in 
each area of use. Let sh = (si

h) and sm = (si
m) be the vectors of shares of domestic supply (xi − zi) 

and imports (mi) in total domestic supply of various sectoral goods (xi − zi + ui), i.e.,  

 si
h = (xi − zi)/(xi − zi + ui)   and  si

m = ui/(xi − zi + ui). 

With the above share coefficients one can hypothetically split up the commodities used into 
domestic and imported parts. For example, in the case of the production and investment input 
coefficient matrixes, matrixes A and B can be split up as follows:  

 Ah = <sh>A and Am = <sm>A, Bh = <sh>B and Bm = <sm>B, 

and the missing real Ah, Am, Bh and Bm coefficients can be approximated by their above rough 
estimates. 

This solution implies yet another possible definition of the investment price indexes, which 
is based on formula B) and the above estimates of Bh and Bm: 

    C) pb = (ph<1+τ′v>Bh + pm<1+τ′v>Bm) = phm<1 + τ′v>B, 

where 

 phm = ph<sh> + pm<sm>, that is,  pi
hm = pi

h⋅si
h + pi

m⋅si
m, 

the vector of average price indexes of the domestically produced and imported cost. They are 
weighted averages, as a matter of fact, where the weights are the share coefficients sh and sm. 
This solution rests on the assumption, as noted earlier, that each user gets domestic and 
imported commodities in the same composition, as if they used a special composite 
commodity.  
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In the absence of an investment matrix, one may simply use the average investment price 
index, defined by the average sectoral composition of investments, for example, as 

  pb = (phbh + pmbm)(1 + τv), or (ph<1+τ′v>bh + pm<1+τ′v>bm) or phm<1+τ′v>b. 

Mutatis mutandis the same possibilities are open for representing the material cost of 
production, which – depending on the availability of date – can be expressed by any of the 
following forms: 

 (phAh + pmAm)<1 + τ″a>,  that is,   (1+τ″j
a)⋅Σi (pi

h⋅aij
h + pi

m⋅aij
m), 

 (ph<1+τ′a>Ah + pm<1+τ′a>Am),  that is,   Σi (1+τ′ia)⋅(pi
h⋅aij

h+ pi
m⋅aij

m), 

 phm<1 + τ′a>A,  that is,   Σi (1+τ′ia)⋅pi
hm⋅aij, 

where τ″j
a = τj

a/ (Σi (pi
h⋅aij

h + pi
m⋅aij

m) and τ′ia is the tax imposed on sectoral commodity i used 
in production. The users’ price of commodity i is usually taken to be the same across all uses 
except in private consumption, where additional taxes/subsidies modify it.  

b) Representing foreign trade prices 

If sufficiently detailed foreign trade information is available, one can define the indexes of 
the imported sectoral commodities as 

 pm = v⋅pwm<1 + τ′m>, that is,  pi
m = (1+τ′im)⋅v⋅pi

wm,    

where v is the exchange rate, τ′m = (τ′im) are the average ad valorem import tariff rates across 
sectors of origin.  

Table 2.4 contained only the sums of the import tariffs paid by the different users, (tam, tcm, 
tgm …; τam, τcm, τgm …). If we have only these data, we can only calculate ad valorem rates of 
import tariffs for the different users of the imported commodities, (τ″am, τ″cm, τ″gm …). In such 
a case we could define the pm import prices as we assumed above. Instead of the term pmAm, 
for example, we would have to use v⋅pwmAm<1 + τ″m> to represent the value of the imported 
commodities used in the different sectors of production, v⋅pwmBm<1 + τ″vm> in investment and 
so on. 

One can define the domestic price indexes of exported commodities in a way similar to the 
case of imports. In case we know the subsidy rates commodity by commodity we can define   

 pe = v⋅pwe<1 + τ′e>, that is,   pi
e = (1+τ′ie)⋅v⋅pi

we,    

where pwe = (pi
we) is the vector of world market price indexes of the sectoral commodities, and 

τ′e = (τ′ie) that of the ad valorem export subsidy ratios.  

Setting v = pi
m = pi

e = 1 for the base, the corresponding values of the world market price 
indexes (pi

wm, pi
we) can be calculated from their above definitions as 

 pi
wm = 1/(1+τi

m),   pi
we = 1/(1+τi

e).  

From the above definitions it follows that the export prices, calculated from the model 
assuming changes in the exogenous variables, may be different from the ph = (pi

h) domestic 
prices, despite the fact that in principle they should be regarded homogenous goods. Therefore, 
the unit value of the output, the price of the domestic/export composite, must be calculated as 
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the weighted average of the prices achieved on the two markets, where the weights (sj
d, sj

e) are 
the observed market shares: 

 pa = ph<sd> + pe<se>, that is,  pj
a = pj

h⋅sj
d + pj

e⋅sj
e.    

c) Representing the components of value added 

One may also introduce further explanatory variables into the definition of the labour cost 
and define it as w<l>, where l = (l j) is the vector of labour input coefficients, and w is the unit 
cost of labour defined as 

 w = w⋅dw<1 + τ′w>, that is,  wj = (1+τ′jw)⋅w⋅dj
w,    

where w is the average (general) wage level (w = 1 in the base), the vector dw = (dj
w) contains 

the average sectoral wage coefficients, whereas τ′w = (τ′jw) the wage tax rates.  

The treatment of net operating surplus deserves special attention. In theory, this should be 
interpreted as net return on capital, which in equilibrium is uniform across sectors. In practice, 
however, the net returns on capital exhibit lasting sectoral variations. One could follow the 
solution used by L. Johansen to overcome this problem in his pioneering CGE model. He used 
a variable to indicate the general rate of net return on capital (π), yet he differentiated the rates 
among sectors by multiplying it with their observed differences in the base case, represented 
here by vector dπ. Adopting this solution one may redefine Walras’s cost of capital as indicated 
by the following form: 

 q = pb<ra + π⋅dπ>, that is,  qj = pj
b⋅(r j

a + π⋅dj
π), 

where the vector ra = (r j
a) contains the rates of amortization as before.  

The price indexes in pb serve here for the revaluation of capital used in the different sectors 
(kj capital/output coefficients). pj

b = 1 and π⋅dj
π⋅kj = πj in the base. Once the capital/output 

coefficients are known and the base value (πa) of the general rate of net return is set (usually to 
1), the value of parameters dπ = (dj

π) can be uniquely determined. One can assign the average 
rate of return as base value to πa, too. The capital cost component in the price formation 
equation will thus take the form q<k> = pb<ra + π⋅dπ><k>. 

d) An input-output price model based on Table 2.4  

We will first list the equations of a price model, whose parameters are calibrated only using 
data in Table 2.4. We will assign a set of endogenous variables to each set of equations of the 
model (on the left hand side), which makes it easy to check the equality of the numbers of 
variables and equations. 

(w) w = w⋅dw<1 + τ″w> (PM-II-1) 

(q) q = pb<ra + π⋅dπ> (PM-II-2) 

(pb) pb = pBh + v⋅pwmBm<1 + τ″vm> + pb<τv> (PM-II-3) 

(ph) ph = (phAh + v⋅pwmAm<1 + τ″m>)<1 + τ″a> + w<l> + q<k> + ph<τx> (PM-II-4) 

In this model the general wage level (w), the rate of net return (π) and the exchange rate (v) 
are exogenous variables. We could, for example, estimate with this model the likely effects of 
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their change on the sectoral price levels. In this definition it is implicitly assumed that 
producers continue to receive the same prices for their products on both home and foreign 
markets (pe = ph). It is, therefore, implicitly also assumed, that if world market prices or the 
exchange rates changed, the export subsidies would adjust. Their rates are thus endogenous 
variables too, which can be determined by solving the following set of equations for τ′e. 

(τ′e) ph = v⋅pwe<1+τ′e> (PM-II-5) 

This additional set of equations are separable from the above ones, form an epilogue, since 
the τ′e variables play no role in the other equations. One could also add further equations, as 
part of the epilogue. For example, we can calculate the average consumers’ price index in the 
following way: 

(pc) pc = phsch + v⋅pwmscm⋅(1+τ″cm) + pc⋅τc, (PM-II-6) 

where τc is the net tax/subsidy coefficient directly taken over from the input-output table, and 
the general rate of import tariffs on consumption, which can be calculated from the coefficient 
τcm of the same table. By means of the consumers’ price index, we can determine the general 
real wage index (ω) as 

(ω) ω = w/pc.  (PM-II-7) 

In a similar way, we can calculate the price index of the exported goods by the following 
form: 

(pe) pz = phsz + pz⋅τz,  (PM-II-8) 

which is the average cost of earning one unit of foreign exchange. This could be used to define 
a real exchange rate (υ) as follows: 

(υ) υ = v/pz.  (PM-II-9) 

We introduced τ′e, pc, pz, ω and υ as endogenous variables therefore the equations which 
define them form part of the epilogue. We could, however, redefine the role of the real wage 
rate or the real exchange rate, turning them into exogenous variables instead of their nominal 
counterparts, w and v. That would, of course, take their equations out of the epilogue, and place 
them into the simultaneous set of core equations. As a result, we would get a variant of the 
model (PM-II). 

This change would affect profoundly the model, because – as one can check easily – the 
resulting model will be homogenous of degree zero with respect to prices and other nominal 
cost and value items. Thus, their general level is undetermined, in other words, can be set 
freely, for example, by choosing v = 1. But this means that the number of the variables is less 
by one than the number of equations. As a result, the profit rate (π) (or some other formerly 
exogenous parameter) can no longer remain exogenous variable either, it must be freed.  

By the technique of substitution and elimination one can reduce the model we got after 
these changes to a set of equations of the following form: 

 ph = phS(ω, π, υ), 
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where matrix S represents the parameters of the reduced form, which depend on the values of 
ω, π and υ. Because, as one can see, this form is also homogenous in terms of the prices, we 
can choose freely only two of the above three variables. This phenomenon will reappear in the 
CGE models as well. 

d) The input-output pricing block of a typical CGE model 

Below we present an input-output price model that forms a part of a typical CGE model as 
well. The only new symbol in this model is τ′u, the vector of the commodity specific excise tax 
rates imposed on every user, except private consumers, in which case the tax rates are different 
(τ′c), due to special consumption tax/subsidy provisions, including VAT. 

(pm) pm = v⋅pwm<1+τ′m>  (PM-III-1) 

(pe) pe = v⋅pwe<1+τ′e> (PM-III-2) 

(ph) pa = ph<sd> + pe<se> (PM-III-3) 

(w) w = w⋅dw<1 + τ′w> (PM-III-4) 

(q) q = pb<ra + π⋅dπ> (PM-III-5) 

(pb) pb = phm<1 + τ′u>B (PM-III-6) 

(pa) pa = phm<1 + τ′u>A + w<l> + q<k> + pa<τ′x> (PM-III-7) 

(phm) phm = ph<sh> + pm<sm> (PM-III-8) 

(pc)  pc = phm<1 + τ′c>sc, (PM-III-9)  

(pc) pc = pcsc, (PM-III-10) 

To end this section we list the equations of the last model in scalar form as well, for later 
reference, to ease for the reader the comparison of these equations with the price formation 
equations typically present in the programming and CGE models.  

(pi
m) pi

m = (1+τ′im)⋅v⋅pi
wm  

(pi
e) pi

e = (1+τ′ie)⋅v⋅pi
we 

(pi
a) pi

a = pi
h⋅si

d + pi
e⋅si

e    

(wj) wj = (1+τ′jw)⋅w⋅dj
w 

(qj) qj = pj
b⋅(r j

a + π⋅dj
π) 

(pj
b) pj

b = Σi (1+τ′iu)⋅pi
hm⋅bij 

(pj
a) pj

a = Σi (1+τ′iu)⋅pi
hm⋅aij + wj⋅l j + qj⋅kj + pj

a⋅τj
x =  

         (1+τ′jx)⋅(Σi (1+τi
u)⋅pi

hm⋅aij + wj⋅l j + qj⋅kj) 

(pi
hm) pi

hm = pi
h⋅si

h + pi
m⋅si

m  

(pi
c)  pi

c  =  (1+τi
c)·pi

hm 

 (pc)  pc  =  Σi pi
c⋅si

c 
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2.2. Multisectoral resource allocation models: optimum versus equilibrium 

In this section we will briefly review the once dominant linear programming approach 
applied to planning and policy analysis. Our aim is partly to remind the reader of the main 
concepts and methods of the programming approach as applied to macroeconomic policy 
analysis. More importantly, we want to call attention to the fundamental methodological 
connections that link together the applied macroeconomic linear or nonlinear programming 
models, on the one hand and the general equilibrium models, on the other. Presenting a series 
of multisectoral models, starting with simple linear models, we will gradually shift to their 
nonlinear versions just in order to arrive at their computable general equilibrium version.  

One of the lessons that should be learned form this exercise is to dismiss the claim or 
criticism that the computable general equilibrium are applicable only to completely or almost 
completely perfect market economies. They are instead special nonlinear macroeconomic 
resource allocation models that borrow adjustment mechanisms from microeconomic theory on 
practical grounds.  

Most of the symbols that will be used have already been introduced previously, and we will 
not repeat their definitions, which will make our presentation easier. In order to make the 
models more readily understandable and comparable similar models presented before, we will 
present some of the models in scalar as well as matrix algebraic form. 

2.2.1. Linear optimal resource allocation models for economic policy analysis 

Let us start with a rather simple model that is based on input-output technology (Leontief) 
and in which the structure of final demand (sy) is assumed to be fixed (Kantorovich). So it 
could be named a Leontief–Kantorovich model. The problem is to find an optimal allocation of 
resources that provides the highest level (y) of final consumption at given level of primary 
resources. First we take the example of a closed economy with no foreign trade and having 
only two primary resources, labour and capital. 

We will use the following convention to represent the primal (P) and the corresponding 
dual (D) problem:  

(LP-2.2-1) (P) (D) 

  x ≥ 0, y ≥ 0 p ≥ 0, w, q ≥ 0 

 (p) Ax + y⋅sy ≤ x p ≤ pA + w⋅l + q⋅k (x) 

 (w) lx ≤ L0 1 ≤ psy (y) 

 (q) kx ≤ K0  

  y → max! w⋅L0 + q⋅K0 → min! 

With scalar algebraic notation: 

(LP-2.2-1a)  (P) (D)  

 xj, y ≥ 0 pj, w, q, v ≥ 0  
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(pi) Σj aij·xj + y·si
y ≤ xi pj ≤ Σi pi·aij + w·l j + q·kj (xj) 

(w) Σj l j·xj ≤ L0 1 ≤ Σi pi·si
y
  (y) 

(q) Σj kj·xj ≤ K0   

 y → max! w·L0 + q·K0 → min!  

On the left and the right margins we have indicated the complementary variables assigned 
to the constraints. Just to remind the reader, in the optimal solution the complementary 
slackness conditions must be satisfied, and the optimal values of the dual variables can be 
interpreted as (shadow) prices of the respective goods, whose balance requirement is 
represented by the given constraint. 

Under normal assumptions (productive A, sy, l, k, L0 and K0 positive) unique optimal 
solution will exist, and 

 x0, p0 > 0,  y0 > 0,  x0 = y0⋅(I  − A)−1sy,  p0 = (w0⋅l + q0⋅k)(I  − A)−1 and  p0sy = 1 

It can be easily seen that this is nothing but the general equilibrium of the given Leontief–
Kantorovich economy. The numeraire, setting the price level, is sy, the unit consumption basket 
(p0sy = 1). The equality if the optimal values of the objective functions  

 y = y⋅p0sy = w0·L0 + q0·K0 

ensures the fulfilment of Walras’s law, that is, the value of final demand will be equal to the 
value of the primary resources. In fact, it a special case of Koopmans–Kantorovich model 
presented in the previous chapter, we will therefore leave its further analysis for the reader.  

Figure 2.1 

The optimal solution of the LP problem 2.2-1 in the case of two goods 

 

 

 

 

 

 

 

 

 

 

 

l(E − R)–1y = ply = M0 

k(I − A)–1y = pky = K0 

xo = yo⋅(I  − A)−1cy 

k2⋅x2 = K0  

k1⋅x1 = K0  

y

y1  

y2  

T1  

T2  

l1⋅x1 = L0  
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From the perspective of the input-output models, x0 and p0 are the solutions of the 
following sets of input-output equations: 

 x = Ax + y⋅sy  and  p = pA + w⋅l + q⋅k 

They are, however, different from Leontief’s original model in that both final demand and 
the prices of primary resources (value added) are now endogenous variables, whereas their 
values were exogenously given in Leontief’s model. As a matter of fact, as a rule, only one 
price of the primary resources will assume positive value (see Figure 2.1, where we assumed 
that only the capital constraint is binding). 

Let us now introduce the foreign trade possibilities into our model. As will be seen it alters 
qualitatively the solutions, and we bump into the problem of over-specialization, which is a 
typical phenomenon of the linear resource allocation models. 

(LP-2.2-2) (P) (D) 

  x, m, z ≥ 0, y ≥ 0 p ≥ 0, w, q, v ≥ 0 

 (p) Ax + y⋅sy + z ≤ x + m p ≤ pA + w⋅l + q⋅k (x) 

 (w) lx ≤ L0 p ≤ v⋅pwm (m) 

 (q) kx ≤ K0 p ≥ v⋅pwe (z) 

 (v) pwmm − pwez ≤ de psy ≥ 1 (y) 

  y → max! w⋅L0 + q⋅K0 + v⋅de → min! 

where notations → max! and → min! indicate the maximand or minimand objective functions. 

Using scalar algebraic notation we rewrite the problems as follows: 

(LP-2.2-2a)  (P) (D)  

 xj, mi, zi, y ≥ 0 pj, w, q, v ≥ 0  

(pi) Σj aij·xj + y·si
y + zi ≤ xi + mi pj ≤ Σi pi·aij + w·l j + q·kj (xj) 

(w) Σj l j·xj ≤ L0 pi ≤ v·pi
wm (mi) 

(q) Σj kj·xj ≤ K0 v·pi
we ≤ pi   (zi) 

(v) Σi (pi
wm·mi − pi

we·zi) ≤ de 1 ≤ Σi pi·si
y
  (y) 

 y → max! w·L0 + q·K0 + v·de → min!  

We assume that 0 < pi
we ≤ pi

we. Under normal condition we may expect that in the optimal 
solution all primal constraints will be binding. The commodity prices will be all positive, and 
as can be seen from the dual conditions they will assume values somewhere between the world 
market export and import prices, in line with the theories on small open economies. The 
shadow price of the foreign trade constraint (v) can be interpreted as the optimal rate of foreign 
exchange. The equality of the optimal values of the objective functions  

 y = y⋅p0sy = w0·L0 + q0·K0 + v0·de 
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pwy = pw(I − A)x0
 

yo⋅cv = yo + mo − zo 

y

y1  

y2  

T1  

T2  

yo = (I − A)x0
 

ensures the fulfilment of Walras’s law in this case too. In fact, this solution is similar to the one 
we have seen in the analysis done with the input-output of type D1, where the foreign trade 
deficit (de > 0) or surplus (de < 0) increased or decreased the level of domestic expenditure 
also. 

The opportunity to trade makes it thus possible for the economy to exhaust both primary 
resources.  It introduces, on the other hand, the possibility to specialize. As a matter of fact, it 
can be shown, that in the case of unique optimal solution at most to sectors will have positive 
output. Figure 2.2 illustrates the optimal solution in the case of two sectors, assuming that pwm 
= pwe = pw.  

Figure 2.2 

The optimal solution of the LP problem 2.2-2 in the case of two goods 

 

 

 

 

 

 

              

 

 

2.2.2. Ad hoc bounds in linear models to constrain overspecialization 

In the applied linear programming models designed for policy analysis this possibility of 
overspecialization was a bothering fact (it challenged the relevance of the models) and 
therefore the modellers tried to avoid by introducing upper and/or lower bounds on some key 
variables. We will illustrate this technique and its consequences in our model by introducing 
upper and lower bounds on the volume of exports  

 zl ≤ z ≤ zu, that is,  zi
l ≤ zi ≤ zi

u, 

and on the ratios of import/domestic supply:  

 rml<xh> ≤ m ≤ rmu<xh>, that is,  r i
mlxi

h ≤ mi ≤ r i
mlxi

h, 

where xi
h = xi − zi as before, and r i

m = mi /xi
h.  

As a result we get the following, slightly modified version of the previous LP problem. 
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 (LP-2.2-3a)  (P) (D)  

 xj
h, xj, mi, zj, y ≥ 0 pj

h, pi
hm, w, q, v, τi

ml, τi
mu, τi

el, τi
eu ≥ 0  

(pj
h) xj

h + zj ≤ xj pj
h ≤ Σi pi

hm·aij + w·l j + q·kj (xj) 

(pi
hm) Σj aij·xj + y·si

y ≤ xi
h + mi 1 ≤ Σi pi

hm·si
y
  (y) 

(w) Σj l j·xj ≤ L0 pi
hm + τi

mu·r i
mu – τi

ml·r i
ml ≤  pi

h (xi
h) 

(q) Σj kj·xj ≤ K0 pi
hm ≤ v·pi

wm + τi
mu – τi

ml (mi) 

(v) Σi (pi
wm·mi − pi

we·zi) ≤ de v·pi
we – τi

eu + τi
el ≤  pi

h   (zi) 

(τi
ml) r i

mlxi
h ≤ mi   

(τi
mu) mi ≤ r i

muxi
h   

(τi
el) zi

l ≤ zi   

(τi
eu)  zi ≤ zi

u   

 y → max! w·L0 + q·K0 + v·de + τi
eu·zi

u − τi
el·zi

l → min!  

What becomes apparent at the first glance that there is a price for keeping all output, export 
and import levels all positive, not falling too far from their observable levels (for the sake of 
simplicity we assumed that all the sectoral commodities were traded in the base). The dual 
problem became much less transparent and it is less obvious how one can interpret its optimal 
solution. Since all the primal variables are positive, the dual constraints will be fulfilled in the 
form of equations. The first two sets 

 pj
h = Σi pi

hm·aij + w·l j + q·kj 

 Σi pi
hm·si

y = 1 

are basically the same as before, except for the notation. The first primal constraint belongs to 
the domestic output, the second to domestic (composite) supply. This is why we assigned to 
them the dual variables pj

h and pi
hm, in line with notation introduced in the previous section. 

The meaning of the 

 pi
hm = pi

h – τi
mu·r i

mu + τi
ml·r i

ml = v·pi
wm + τi

mu – τi
ml 

equations can be deciphered on the basis of the following economic reasoning.  

Observe that the formulation of the problem implicitly assumes, that domestic outputs and 
imports are perfect substitutes, therefore, their prices should be equal in perfect equilibrium. 
And in fact, both should be sold at prices pi

hm. However, the purchasing price of the imports is 
v·pi

wm, whereas the producers’ price of domestic output is pi
h, and they will be different, as a 

rule. The shadow prices assigned to the individual constraints, confining their ratios into the 
given range, generate such taxes/subsidies that equalize them. If the lower limit is binding, 



 

 

- 67 -

which indicates that the import is more expensive than the domestic production, than τi
ml will 

be positive and it will lower the domestic sales price of the import and increase that of the 
domestic output in order to equalize them.  

It can be shown that in effect pi
hm will be equal to the weighted average of the component 

prices,  

 pi
hm = pi

h⋅si
h + v·pi

wm⋅si
m, 

just the way as we defined the price of the domestic/import composite it in the previous 
section. Observe, however, that here the prices are equalized at the same time, and the 
taxes/subsidies serve for this purpose. In the previous section we did not assume that, we just 
calculated the average price. Thus, according to the logic of the model these taxes/subsidies 
just redistribute income among the users of the commodity, so it will not affect the total 
available net income, which is given by the objective function of the dual problem as before. 
The equality of the optimal values of the two objective functions ensures the fulfilment of 
Walras’s law in this case too: 

 y = y⋅p0sy = w0·L0 + q0·K0 + v0·de + τi
eu·zi

u − τi
el·zi

l. 

As we can see, these taxes/subsidies do not appear in the net income, unlike those related to 
the regulations of the export prices, which follows a different logic. Since the prices of the 
domestic products is determined by their cost, to make the producers sell on both the domestic 
and the foreign market, the export price have to be made equal to the former. This is exactly 
the meaning of the dual equation 

 v·pi
we – τi

eu + τi
el =  pi

h. 

The producers sell their products at prices pi
h, whereas the foreign buyers pay v·pi

we.   The 
price differences (taxes/subsidies) can be interpreted here as income transfers between the 
domestic tax authority and the foreign buyers, which modify the level of domestic income. 

We can illustrate the logic followed in the case of import constraint on Figure 2.3. 

Figure 2.3 

The logic and working of the import constraints in the LP problem 2.2-3 
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The above graph should be all familiar from the microeconomics textbooks, except for the 
use of piece-wise linear rather than smooth indifference and demand curves. The algebraic 
representation of the problem illustrated on the graphs is the following 

  min pi
h·xi

h + pi
m·mi,   s.t.   xi

h + mi = xi
hm,    r i

ma·xi
h ≤ mi ≤ r i

mf·xi
h, 

and xh0, m0 and r0 on the graph represent the observed (base, not the optimal!) values of the 
variables. Note also, that pi

h, pi
m and xi

hm are considered here to be parameters, unlike in the 
model itself. 

The original indifference curves were linear, in line with the implicit assumption that the 
domestically produced and the imported goods are perfect substitutes. What the individual 
bounds do is they turn this relationship into less then perfect substitutability. In a rather rigid 
manner: they are perfect substitutes between the given bounds, and perfect complements 
beyond them.  

Consider also the case, when domestic outputs and imports are assumed to be perfect 
complements, that is, their ratio is fixed: r i

m0 = mi /xi
h. In the above linear model this would 

mean that r i
ma = r i

mf = r i
m0. Modifying the problem accordingly, we would only have one 

equality condition, 

 ri
m0xi

h  = mi 

instead of the pair of inequality constraints, 

 ri
mlxi

h ≤ mi,   and mi ≤ r i
muxi

h,  

and the sign of the dual variable assigned to it (τi
m) would be undetermined, and the 

corresponding dual constraints would take the following forms: 

 pi
hm ± τi

m·r i
m0 ≤  pi

h     (xi
h) 

 pi
hm ≤ v·pi

wm ± τi
m     (mi) 

The optimality conditions would, thus, only slightly change. What we wanted to illustrate, 
as a matter of fact, was that letting the ratio of import/domestic supply (r i

m) move within some 
bounds could also be interpreted as relaxing a former assumption of perfect complementarity. 

2.2.3. Flexible versus rigid individual bounds: nonlinear approach 

One may rightly ask, would it be a better solution to introduce imperfect substitutability by 
a smooth relationship, as it is usually assumed in microeconomics. The corresponding graph, 
the equivalent of Figure 2.3 is illustrated on Figure 2.4. 

The introduction of smooth substitution possibility would have the same effect as the 
individual bounds, and in a flexible way. The larger is the difference between their shadow 
prices, the further the ratio of the two components may depart from their observed value (r0). 
Unlike in the case of the rigid bounds, where it jumps to the lower or to the upper bound, 
whenever they are different. So it makes sense to experiment with such smooth curves. 

All we have to do is to replace the constraints 

 Σj aij·xj + y·si
y ≤ xi

h + mi 
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 ri
ml·xi

h ≤ mi 

 mi ≤ r i
mu·xi

h 

by the following one: 

 Σj aij·xj + y·si
y ≤ xi

hm(xi
h, mi), 

where xi
hm(xi

h, mi) is an appropriately chosen smooth function that represents the substitution 
possibility assumed to exist between the two goods, taken to be less then perfect substitutes. 
And we will soon see, exactly this is what we do in the applied models of general equilibrium 
as well.  

Figure 2.4 

The logic and working of the flexible bounds 
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(together with the cost shares) the own and cross price elasticity of demand. In applied models 
imperfect substitutability is most often represented by CES (constant elasticity of substitution) 
functions, the parameters of which are easy to estimate, once we set the elasticity of 
substitution. The size of the elasticity is usually chosen on the bases of somewhat ad hoc expert 
judgment. But as long we want to use such functions to generate flexible bounds in applied 
resource allocation models, the ad hoc choice of the elasticity parameters is perhaps still 
superior to the ad hoc choice of rigid lower and upper bounds on certain variables.  

If we carry out this replacement, the so far linear model of optimal resource allocation will 
become nonlinear. But this would not matter nowadays, since we have rather powerful 
algorithms and software that could solve a nonlinear programming model, as long as the 
nonlinear functions used in the model are well-behaved. So let us do that, and only in the case 
of the domestic/import supply, but in other parts of the model too. In the case of the ratio of 
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domestic sales and exports (r j
e = zj /xj

h) we can also use flexible bounds by means of properly 
chosen xj(xj

h, zj) transformation functions.  

We could and will go on and extend further the scope of using similar smooth functions 
elsewhere in the model too, for example, in the case of labour and capital, the composition of 
the personal consumption. But before we do that, we will illustrate with help of the yet simple 
enough model, how the conditions of optimality will be modified as a result of changing its 
specification. The table bellow contains the nonlinear version of the LP-2.2-3a model, where in 
the place of the dual conditions we put the first order necessary conditions of maximum 
derived by means of the Lagrange (or Kuhn–Tucker) method. Since we assume the observed 
values of all variables were and remain positive in the optimal solution (including the Lagrange 
multipliers), we may represent the conditions as equalities (in general, we should use in 
equalities and complementary slackness conditions as in the case of the LP problem). 

NLP-2.2-1   (P)   (KTD)  

 xj
h, xj, mi, zj, y ≥ 0, pj

a, pi
hm, w, q, v ≥ 0,  

(pj
a) xj(xj

h, zj) = xj, pj
a = Σi pi

hm ·aij + w·l j + q·kj,  (xj) 

(pi
hm) Σj aij·xj + y·si

y = xi
hm(xi

h, mi), pi
hm · h

hm

i

i

x

x

∂
∂

 = pi
a · h

i

i

x

x

∂
∂

,  (xi
h) 

(w) Σj l j·xj = L0, pi
hm ·

i

i

m

x

∂
∂ hm

 = v·pi
wm,  (mi) 

(q) Σj kj·xj = K0, v·pj
we = pj

a ·
j

j

z

x

∂
∂

,  (zi) 

(v) Σi (pi
wm ·mi − pi

we ·zi) = de, 1 = Σi pi
hm ·si

y
 .  (y) 

  y → max!   

The optimality conditions that appearing in the right column of the table can be derived 
from the differentiation of the following Lagrangian function:  

 L = y − Σj pj
a·{ xj(xj

h, zj) − xj} − Σi pi
hm·{ Σj aij·xj + y·si

y − xi
hm(xi

h, mi)} −  

   − w·{ Σj l j·xj − L0} − q·{ Σj kj·xj − K0} − v·{ Σi (pi
wm·mi − pi

we·zi) − de}. 

We have changed the notation of the dual variable (the Lagrange multiplier) assigned to the 
first constraint, because here the output is also a composite good, and its shadow price will be 
interpreted as its equilibrium cost-price, as it will become clear later. In order to be able to 
decipher the meaning of the dual prices and constraints, we introduce a few auxiliary symbols 
(pi

h, pi
m and pi

e) by means of the following definitions (the second and the third elements of the 
equations are taken from the optimality conditions): 
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 pi
h = pi

hm· h

hm

i

i

x

x

∂
∂

= pi
a· h

i

i

x

x

∂
∂

, pi
m = v·pi

wm = pi
hm·

i

i

m

x

∂
∂ hm

, pi
e = v·pi

we = pi
a·

i

i

z

x

∂
∂

. 

The names given suggest already in advance their intended meaning. We will show that pi
h, 

pi
m and pi

e can indeed be interpreted as the equilibrium price of the domestically produced and 
sold, imported and exported product variety of the same sectoral origin, which are assumed to 
be imperfect substitutes. 

One can easily show that the dual conditions are the same as the ones which characterize 
the optimal solutions of the following constrained cost minimization and revenue maximization 
problems: 

 min pi
h·xi

h + pi
m·mi,  s.t.  xi

hm = xi
hm(xi

h, mi),   

 max pj
h·xj

d + pj
e·zj  s.t.  xj = xj(xj

d, zj), 

where the variables are xi
h, mi and pi

hm Lagrange multiplier in the first problem, and xj
d, zj and 

pj
a Lagrange multiplier  in the second problem. (Notice that in the programming model both the 

domestic demand for (xi
h) and the supply of home produced commodities (xi

d) are denoted by 
the same variable (xi

h), whereby we implicitly assume the fulfilment of the xi
h = xi

d equilibrium 
condition. We will switch to this notation in the following discussion as well.) Let us show it 
for the first case, where the Lagrangian functions takes the following form: 

 L(xi
h, mi, pi

hm) = pi
h·xi

h + pi
m·mi – pi

hm·{xi
hm(xi

h, mi) – xi
hm}. 

∂L/∂xi
h: pi

hm· h

hm

i

i

x

x

∂
∂

= pi
h, 

∂L/∂mi: pi
hm·

i

i

m

x

∂
∂ hm

= pi
m, 

where in case of linearly homogeneous xi
hm function, that we assume, by force of Euler’s 

theorem we have 

  pi
hm·( h

hm

i

i

x

x

∂
∂

·xi
h + 

i

i

m

x

∂
∂ hm

·mi) = pi
hm·xi

hm = pi
h·xi

h + pi
m·mi, 

from which we get  

  pi
hm = pi

h·si
h + pi

m·si
m. 

Thus, as in the case of the linear programming solution, the optimal the shadow, that is the 
equilibrium cost-price of the domestic/import composite commodity will be the weighted 
averages of component prices, where si

h and si
m are functions of the prices, homogenous of 

degree zero: 

  si
h(pi

h, pi
m)  and  si

m(pi
h, pi

m). 

However, unlike in the linear case, the values of si
h and si

m are no longer constants, and 
they are not simply shares in a linear composition. Since, in this case, the amount of the 
composite commodity is not the algebraic sum, the components, the domestic (xi

h) and the 
import (mi) supply, but their nonlinear aggregate: xi

hm = xi
hm(xi

h, mi), where xi
hm measures the 
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joint use value of the two components. The values of si
h and si

m are the cost minimizing levels 
of the components making up at least one unit use value. In the jargon of competitive 
equilibrium, they could be interpreted as demand functions. si

h + si
m > 1, as a rule, except for 

the base equilibrium at unit level prices, when si
h + si

m = 1, as the share coefficients in the 
linear case  

Following the same line of argument we can show that the first order conditions in the case 
of the constrained revenue maximization problem are the following: 

∂L/∂xj
h: pj

a· h
j

j

x

x

∂
∂

 = pj
h, 

∂L/∂mi: pi
a·

j

j

z

x

∂
∂

= pj
e, 

  pj
a·( h

j

j

x

x

∂
∂

·xj
h + 

j

j

z

x

∂
∂

·zj) = pj
a ·xj = pj

h·xj
h + pj

e·zj, 

  pj
a = pj

h·sj
d + pj

e·sj
e, 

as before, where sj
d and sj

e are again functions of the prices, homogenous of degree zero: 

  sj
d(pj

h, pj
e)  and  sj

e(pj
h, pj

e), 

which can be interpreted as supply functions of a firm in a perfectly competitive market. 

Next, note that there are three unknowns in both optimization problems and same number 
equations representing the first order necessary conditions of the optimal solutions. If the 
chosen functions are well-behaved and simple, we can explicitly solve analytically the model 
before any calculation, and express the values of the unknown variables (e.g., xi

h, mi and pi
hm) 

as functions of the variables (e.g. pi
h, pi

m and xi
hm) assumed to be known and the parameters of 

the substitution functions. Thus, if we wish, we can derive the closed analytical forms of the 
following solution functions: 

  xi
h = xi

h(pi
h, pi

m, xi
hm),  mi = mi(pi

h, pi
m, xi

hm) and pi
hm = pi

hm(pi
h, pi

m, xi
hm), 

the first two of which are derived demand functions, the third a price index aggregator. 

We can in fact arrive at the optimal values of the variables in various ways. Because of the 
assumed first order homogeneity of the substitution (aggregation) functions, the optimal ratios, 
such as si

h = xi
h/xi

hm, mi = mi/xi
hm and r i

hm = mi/xi
h = si

m/si
h, in the first case, depend only on the 

price ratios, and not on the level of xi
hm. This also means that we can replace the first order 

optimality conditions with equivalent alternative forms, which may be more familiar for the 
user or the reader. For example, the following three sets of the dual equations, 

  pi
hm·

h

hm

i

i

x

x

∂
∂

= pi
a·

h
i

i

x

x

∂
∂

 ,     pi
hm·

i

i

m

x

∂
∂ hm

 = v·pi
wm ,    v·pj

we = pj
a·

j

j

z

x

∂
∂

 

upon introducing the three sets of new variables pi
h, pi

m and pi
e, could be equivalently 

represented by the following six sets of equations: 
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  pi
m = v·pi

wm, pi
hm = pi

h·si
h(pi

h, pi
m) + pi

m·si
m(pi

h, pi
m), mi = r i

hm(pi
h, pi

m)·xi
h, 

  pj
e = v·pj

we,  pj
a = pj

h·sj
d(pj

h, pj
e) + pj

e·sj
e(pj

h, pj
e), zj = r j

de(pj
h, pj

e)·xj
h, 

where r i
hm(pi

h, pi
m) = si

m(pi
h, pi

m)/si
h(pi

h, pi
m), and the si

h and si
m demand functions are derived 

from solving parametrically the following cost minimization problem:  

 min pi
h·si

h + pi
m·si

m,  s.t.  xi
hm(si

h, si
m) = 1,  

and r j
de(pj

h, pj
e) = sj

e(pj
h, pj

e)/sj
d(pj

h, pj
e), and the sj

d and sj
e supply functions are derived from 

solving the following revenue maximization problem: 

 max pj
h·sj

d + pj
e·sj

e  s.t.  xj(sj
d, sj

e) = 1. 

Such a formulation of the dual condition of the optimal solution would be more familiar for 
a former student of economics than the original ones. They are also closer to the forms input-
output models.  

Let us now make some steps forward and make use of the possibility provided by the use of 
nonlinear functional forms in our resource allocation model. Let us first of all separate, as we 
did in the case of the applied input-output models, the main components of final use,  

  yi = yi
cv + gi·yg + Σj bij·yj

b + ci
0, 

where ci
0 denotes the fixed (‘committed’) part, and the sectoral levels of gross investments (yj

b) 
are defined as before: 

  yj
b = r j

a·Kj + yj
bn. 

Since our model is nonlinear, we have to insist no longer on using fixed coefficients in 
describing the commodity composition of personal consumption. We may allow for some 
degree of substitutability by introducing the following,  

  ycv = yv(y1
cv, y2

cv, ... , yn
cv) = ycv·yv(c1

cv, c2
cv, ... , cn

cv). 

linear homogenous utility (welfare) function to determine variable consumption yi
cv, where the 

variables si
cv take the place of the unit coefficients and the consumption level, since yi

cv = 
ycv·si

cv. 

At prices pi
hm and expenditure level ev the constrained utility maximum problem and the 

optimality conditions take the following forms: 

  max yv(y1
cv, y2

cv, ... , yn
cv),   s.t.   Σi pi

hm·yi
cv = ev, 

  pcv · cv
v

iy

y

∂
∂

 = pi
hm, 

where pcv is the Lagrange multiplier. We expect and will see these latter conditions to appear 
among the dual constraints of the optimality conditions. 

Production technology will be represented by Johansen type production functions, which 
were introduced in the previous chapter. We will thus allow for substitution between labour 
and capital, by using smooth, well-behaved production functions given in the forms of 
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  xj = fj(Lj, Kj). 

At factor prices wj and qj the optimality conditions of cost minimum are as follows: 

 cj ·
j

j

L

f

∂
∂

 = wj  

 cj ·
j

j

K

f

∂
∂

 = qj, 

where cj’s are the Lagrange multipliers (the unit cost of the composite labour-capital input). 
They will also appear among the necessary conditions of the optimal macroeconomic resource 
allocation.  

As long as functions fj are homogeneous of degree one and well-behaved, as we usually 
assume, one can derive the identities 

 cj·
j

j

L

f

∂
∂

·Lj + cj·
j

j

K

f

∂
∂

·Kj = cj·xj = wj·Lj + qj·Kj,  that is 

 cj = wj·l j + qj·kj, 

where l j = Lj /xj,  kj = Kj /xj, and their values can be determined by the following unit factor 
demand functions:  

 lj = l j(wj, qj) and kj = kj(wj, qj). 

What concerns the flexible bounds one can use in the case of exports, we have in fact two 
possibilities. One of them is the xj(xj

d, zj) transformation functions, used in the previous model, 
which put limits on the movement of the export volume from the supply side. Instead of or 
together with it, we can also use smooth export demand functions, which can also effectively 
constrain their levels. We will introduce them in the form of indirect demand functions, pi

we(zi), 
which define their external market price in the foreign trade balance. As a result we will end up 
with the following model and its optimality conditions. We will discuss later the potential side 
effects of this solution. 

As a result of introducing the suggested changes into our optimal resource allocation 
model, we will arrive at the following nonlinear programming model and optimality 
conditions. Note, that yg and yj

bn are treated as exogenous variables in this version of the 
model. In the column on the left we find the resource allocation constraints (4n + 4 numbers of 
equations in terms of 8n + 1 number of variables) and the assigned Lagrange multipliers. On 
the right, we have listed the Lagrange (or Kuhn–Tucker) first order necessary conditions of the 
optimal solution (8n + 1 number of equations in terms of 4n + 4 numbers of variables). We 
have attached to each of them the primal variable according to which we differentiated the 
Lagrangian function in order to derive them. The total number of unknowns and equations in 
the Lagrange (Kuhn–Tucker) conditions of the optimal solution are thus 12n + 5, arranged into 
17 blocks. 
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NLP-2.2-2  (P)   (KTD)  

 xj
h, xj, yi

cv, yj
b, mi, zj, Lj, Kj, ycv ≥ 0   pj

a, pi
hm, cj, w, ρ, v, pcv ≥ 0  

(pj
a) xj(xj

h, zj) = xj pj
a = Σi pi

hm·aij + cj   (xj) 

(pi
hm) Σj aij·xj + yi

cv + gi·yg + Σj bij·yj
b + ci

0 = xi
hm(xi

h, mi) pi
hm· h

hm

i

i

x

x

∂
∂

 = pi
a · h

i

i

x

x

∂
∂

   (xi
h) 

(pj
b) r j

a·Kj + yj
bn = yj

b  pj
b = Σi pi

hm·bij   (yj
b) 

(w) Σj Lj = L0  pi
hm·

i

i

m

x

∂
∂ hm

 = v·pi
wm   (mi) 

(ρ) Σj Kj = K0   v·(pj
we + 

j

j

z

p

∂
∂ we

·zj) =  (zj) 

(cj) xj =  fj(Lj, Kj) cj·
j

j

L

f

∂
∂

 = w   (Lj) 

(v) Σi (pi
wm·mi − pi

we(zi)·zi) = de  c ·
j

j

K

f

∂
∂

 = pj
b·r j

a + ρ   (Kj) 

(pcv) ycv = yv(y1
cv, y2

cv, ... , yn
cv) pcv· cv

v

iy

y

∂
∂

 = pi
hm

   (yi
cv) 

  ycv → max! 1 = pcv  (ycv) 

As before, it will be useful to introduce some auxiliary variables, which make it easier to 
interpret the solution. Thus, we may introduce again the symbols pi

h, pi
m and pi

e with slightly 
different definitions as above (the second and the third members of the equations are again 
implied by the second, fourth and fifth optimality conditions): 

pi
h = pi

hm· h

hm

i

i

x

x

∂
∂

= pi
a · h

i

i

x

x

∂
∂

, pi
m = v·pi

wm = pi
hm·

i

i

m

x

∂
∂ hm

, pi
e = v·(pi

we + 
i

i

z

p

∂
∂ we

·zi) = pi
a·

i

i

z

x

∂
∂

. 

In addition to these, we introduce also qj, l j and kj as 

  qj = pj
b·r j

a + ρ,  l j = Lj /xj,  kj = Kj /xj. 

Their meaning is suggested by the chosen notation. They are in fact the shadow prices of 
the capital goods in the different sectors. They differ from each other only to the extent the 
amortization rates (r j

a) and the prices of the composite sectoral capital goods (pj
b) are different. 

The above definition of the cost of capital is slightly different from Walras’s, which would be 

  qj = (r j
a + πj)·pj

b. 

The reason behind this difference is that in the capital constraint we treat capital as a 
homogeneous factor, which takes up a uniform net shadow rate of return, ρ. Unlike its 
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counterpart in Walras’s definition, the uniform rate of return is defined here in relation to the 
physical volume of capital (Kj) used and not on its value (pj

b·Kj). In Walras’s definition this 
latter is assumed to be uniform in competitive equilibrium, whereas here they are different, as a 
rule, since πj = ρ/pj

b.  

What explains this strange logic is the somewhat contradictory treatment of capital goods 
in the above model. In the capital constrain capital is considered to be freely mobile across 
sectors, which would imply uniform composition (bi), price (pb = Σj pi

hm·bi) and a uniform rate 
of return (ρ on the physical volume and π = ρ/pb on the value of capital used).  

We could dissolve this contradiction in two ways. The first possibility is to enforce fully 
the assumption that capital is a homogeneous good and revise the definition accordingly, that 
is, replace the yj

b variables with a single yv scalar, and the sectorally different bij investment 
coefficients with bi’s, as suggested above. The other possibility is to treat capital as sector 
specific goods in all its appearance, thus, replace the single capital constrain with sector 
specific constraints: Kj = Kj0. As a result of this solution the net return both on the physical 
volume (ρj) and the value of the capital (πj) would be different in the various sectors in general. 
This latter differentiation would, however, violate the requirement of competitive equilibrium. 
Neither treatment provides, thus, a fully satisfactory solution. The root of this dilemma lies 
basically in the problem of macro-closure, discussed earlier. 

Another questionable feature of the above model is the derived definition of the shadow 
price of exports: 

  pi
e = v·(pi

we + 
i

i

z

p

∂
∂ we

·zi) = (1 + 1/εi)·v·pi
we, 

where εi is the price elasticity of export demand. Since under normal conditions the sign of the 
latter is negative, the term 1/εi can be interpreted as a tax rate applied on incomes earned via 
exports. This solution is well known in international trade theory and they are called optimal 
tariffs. The theory calls attention to the possibility that the introduction of such tariffs could 
make price-taking producers behave collectively as a monopoly. Nevertheless, it would not be 
reasonable to use such an assumption in a macroeconomic resource allocation model.  

2.2.4. Conclusions: towards the computable general equilibrium models 

By means of introducing auxiliary variables and mathematically equivalent alternative 
forms, the conditions of optimal resource allocation can be rearranged into an alternative 
specification. We have chosen such an alternative set of equations, which will be easy to 
compare with the input-output volume and price models. Their comparison reveals the real 
nature of not only the optimal resource allocation model chosen, but also of the typical 
computable equilibrium models, the structure and the underlying logic of which is basically the 
same. The system will consist of 20n + 5 unknowns and equal number of equations. The 
variables and parameters of the derived equation system can be classified in the following way: 

Endogenous variables:  real (volumes) xj, xi
hm, xj

h, zj, mi, (5n) 

(20n+5) real (structural) si
h, si

m, sj
d, sj

e, pi
we, l j, kj, si

cv, ycv, (8n+1) 

   nominal (value) pi
h, pj

a, pi
m, pi

e, pi
hm, pj

b, qj, w, ρ, v, pcv. (7n+4) 
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Potential (endogenous or exogenous) variables: yg, yj
bn, ci

0, pi
wm, L0, K0 and de.  

Parameters: aij, bij, r j
a, gi and the parameters of the various functions. 

We will group the conditions characterizing the optimal solution of the problem NLP-2.2-2 
similarly into three categories:  

A) balances and definitions of volume categories (xj, xi
hm, xj

h, zj, mi), 

B) balances and definitions of price categories (pi
h, pj

a, pi
m, pi

e, pi
hm, pj

b, qj, pcv, w, ρ, v), 

C) definitions of structural parameters si
h, si

m, sj
d, sj

e, pi
we, l j, kj, si

cv. 

A) BALANCES AND DEFINITIONS OF THE VOLUME CATEGORIES (5n + 3): 

We can further divide this category into two subgroups. (On the left hand side we will assign 
list numbers to the equation blocks, whereas, on the right hand side, endogenous variables, that 
will make it easier to count the number of unknowns and equations, and check the regularity of 
the equation system.) 

A1) Sectoral commodity balances and their components (5n): 

 (P1) xi
hm = Σj (aij + bij·r j

a·kj)·xj + si
cv·ycv + gi·yg + Σj bij·yj

bn + ci
0 (xi

hm) 

 (P2) xj = xj(xj
h, zj) (xj) 

 (P3) xi
hm = xi

hm(xi
h, mi) (xi

h) 

 (P4) zj = xj
h·sj

e/sj
d (zj)  

 (P5) mi = xi
h·si

m/si
h (mi) 

This subgroup defines an extended input-output volume model, in which both imports and 
exports are treated as endogenous variables by setting them proportional to domestic supply. 
We have discussed earlier an almost identical linear version of this model, in which we had xj = 
xj

h + zj and xi
hm = xi

h + mi (it was different from this one only in the way exports were made 
endogenous variables).  

In a conventional linear input-output volume model only xj, xi
hm, xj

h, zj and mi would be 
considered endogenous variables, ycv would be, thus, in addition to yg, yj

bn and ci
0 also 

exogenous variable, whereas si
h, si

m, sj
d, sj

e and si
cv constant parameters, in addition to aij, bij, r j

a 
and gi. In such a setup, the equation system, which consists of the same number (5n) of 
unknowns and equations, is a well determined macro-model. Under normal conditions would 
expect it to have a unique solution, thus, the values of xj

h, zi and mi would also be determined in 
it. Consequently, the value of the expressions on the right hand side of following balance 
equations (labour, capital and foreign currency demand) would be also determined by them: 

A2) Balances of the primary resources (3): 

 (P6) Σj l j·xj = L0 
 (w, L0) 

 (P7) Σj kj·xj = K0 
 (ρ, K0) 

 (P8) Σi (pi
wm·mi − pi

we·zi) = de, 
 (v, de) 
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where pi
we, l j, kj would also be constant parameters in a conventional input-output model. 

The natural closure of the extended input-output system, defined by the parameters and 
unknowns, and equations (P1) – (P8), would be to treate L0, K0 and de as endogenous demand 
variables (this is why we have also assigned these variables to the equations). The extended 
input-output model with such a closure would be final demand driven. We have discussed the 
closure possibilities of such a model in connection with the applied linear input-output volume 
models. We have pointed out that one can not expect that the above equation system, in which 
two or more of the supply constraints would be fixed, would have a sensible solution.  

We could choose, in general, only one out of L0, K0 and de as exogenous supply variable 
and turn, in exchange, the level of some final demand (e.g., ycv, as in the optimal resource 
allocation model) into endogenous variable. With such a change, the demand driven model 
would become supply driven, as the optimal resource allocation model. In the latter model all 
the three, that is, L0, K0 and de were considered to be fixed (exogenous supply variables). This 
is why we would assign w, ρ and v as complementary variables in the optimal resource 
allocation model to the same equations, in which their values reflect their relative scarcity.  

B) PRICE IDENTITIES AND EQUATIONS (7n+1): 

This block contains shadow price identities and equations, derived from the dual optimum 
conditions. Most of them can be interpreted and take the form of cost-price definitions, as we 
have discussed already. 

 (P9)  pj
a = Σi pi

hm·aij + w·l j + qj·kj
 (pj

h) 

 (P10)  pj
a = pj

h·sj
d + pj

e·sj
e (pj

a) 

 (P11)  pi
m = v·pi

wm (pi
m) 

 (P12)  pj
e = (1 + 1/εj)·v·pj

we (pj
e) 

 (P13)  pi
hm = pi

h·si
h + pi

m·si
m  (pi

hm) 

 (P14)  pj
b = Σi pi

hm·bij 
 (pj

b) 

 (P15) qj = pj
b·r j

a + ρ  (qj) 

 (P16) pcv = Σi pi
hm·si

cv. (pcv) 

It should not be surprising at all that the 7n+1equations (P9) – (P16) define a complete, 
well defined extended input-output model in terms of the 7n+1 number of unknowns, pi

h, pj
a, 

pi
m, pj

e, pi
hm, pj

b, qj and pcv, listed on the right hand side in brackets. In a conventional input-
output price model pj

we, w, ρ and v would be, of course, exogenous variables, and si
h, si

m, sj
d, 

sj
e, si

cv and εj constant parameters, in addition to aij, bij, r j
a. 

C) EQUATIONS OF STRUCTURAL VARIABLES AND WORLD MARKET EXPORT PRICES (8N): 

The last block contains equations that define the required proportions between various volume 
and price variables, which were also derived mainly from the dual optimality conditions. The 
coefficients setting these proportions would be typically fixed in a linear input-output or 
programming model of resource allocation. The constraint defining the inverse export demand 
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function seems to behave like a cuckoo’s egg among the other variables. But it could be 
rearranged into such an alternative form that would also define a proportion, namely that of the 
domestic export to the offer of foreign competitors.  

As we have demonstrated, these constraints can be interpreted as setting flexible upper and 
lower bounds on specific variables to confine their departure from their observed values into 
reasonable ranges. In addition to that these proportion variables link together the first two, the 
volume and price blocks of equations, which would be completely independent from each 
other, were these proportions exogenously fixed, as in the input-output models. 

 (P17) si
h = si

h(pi
h, pi

m) (si
h) 

 (P18) si
m = si

m(pi
h, pi

m)  (si
m) 

 (P19) sj
d = sj

d(pj
h, pj

e)  (sj
d) 

 (P20) sj
e = sj

e(pj
h, pj

e)  (sj
e) 

 (P21)  pi
we = pi

we(zi) (pi
we) 

 (P22)  si
cv = ci

v(p1
hm, p2

hm, ... , pn
hm)  (si

cv) 

 (P23) l j = l j(w, qj)
 (l j) 

 (P24) kj = kj(w, qj) 
 (kj) 

COUNTING EQUATIONS AND VARIABLES 

We have listed above 20n+4 equations altogether, whereas there are 20n+5 variables. It seems 
as if the equation system is yet not fully determined. Checking the variables assigned to the 
constraints listed, we can see that the only variable, which does not have a counterpart 
equation, is the level of variable (private) consumption, ycv. It can be shown that the rest of the 
equations will uniquely define its value by force of Walras’s law.  

One could introduce one more variable, ev as the expenditure spent on variable consumption 
and add one more equation, the expenditure constraint, to the system in one of the following 
forms  

 pcv·ycv = Σi pi
hm·si

cv·ycv = ev  or  Σi pi
hm·si

cv·ycv = ev.   (ycv) 

In such a specification ev could be taken as the undefined variable, whose value is set by 
Walras’s law, as in the case of the Johansen model.  

In any case, there would be one more unknown than equations. One can, however, easily 
check, here again, that all equations are independent of the general level of the price and value 
terms (i.e., homogenous in prices), therefore we can fix the price level by setting the value of 
one them, for example set pcv = Σi pi

hm·si
cv = 1, as in the programming model, or ev = 1, as the 

Johansen model). That would make the equations system well determined (regular). 

SUMMARY AND CONCLUSIONS 

It is worth summing up what we have demonstrated. We have seen, first of all, that the 
feasibility conditions of the resource allocation problem are nothing but the conventional 
macroeconomic accounting identities: balance requirements described in terms of supply-
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demand equations for sectoral commodities, primary resources and foreign currency (see, 
balance of trade). They are the same conditions that should appear in any nation-wide model, 
especially in those, which are built upon the input-output tables.  

The number of the equations defined by these constraints is relatively small compared to 
the number of the potential unknowns. For example, in the case of NLP-2.2-2, the primal 
(physical) resource allocation constraints consisted of 4n + 3 equations, expressed in terms of 
8n variables (ignoring ycv and its definition, which could have been put directly into the 
objective function). Unlike, thus, in an input-output model, there will be a large degree of 
freedom left by the primal resource constraints and balance requirements. (In the case of the 
input-output models we reduced the degree of freedom to zero by fixing the value of many 
potential variables exogenously). In other words, the set of feasible resource allocation patterns 
will be quite large. We try to reduce this set to a single point by optimizing an appropriate 
welfare function over it. If there is a single solution, the model can be used for comparative 
static exercises, that is, compare solutions received by assigning different values to specific 
exogenous variables. 

We have demonstrated that the above ‘regularisation’ of the set of feasible allocation 
patterns, i.e., its representation by just one salient point, is equivalent with complementing the 
set of primal variables and equations with appropriate dual variables and constraints, which 
would together define a regular equation system. The numerical solution of the optimizing 
model would, however, not be able to replicate the observed values of the variables, even if the 
benchmark data set were consistent with the implicitly assumed optimizing behaviour. For the 
simple reason that the necessary conditions of the optimal solution are not all reflecting the 
actual rules of accounting, especially not in the case of the pricing rules, which ignore taxes 
and subsidies. The programming approach corresponds to the world of perfect competition. 

It is important to note in this connection that that the majority of the dual variables and 
conditions follow quite closely the conventional accounting principles. So, if one changed the 
specification of the unrealistic dual conditions, he could achieve both goals, i.e., the feasible set 
would become ‘regularised’ and the solution of the equation would replicate the observed 
values of the endogenous variables. As a matter of fact, as we will soon show it, this is exactly 
the purpose of model calibration in the case of the computable general equilibrium models. 
(Calibration means the adjustment of parameter values of the model until the output from the 
model matches an observed set of data.) 

What makes the general equilibrium approach feasible is the way we introduced another set 
of dual variables and constraints (various proportions), which so as to set flexible upper and 
lower bounds on specific variables. As we have seen, they could be derived from the 
optimizing behaviour of representative agents (producers, consumers, foreign buyers) put in 
charge to make analogous decisions. This is in fact their usual interpretation based on 
neoclassical economics. Our above demonstration should have, however, convinced the reader 
that it would be more proper to view these dual equations as describing the behaviour of the 
structural variables, rather than of some mysterious representative agents.  
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This would not contradict the fact that we borrowed concepts and tools for our macro 
model from microeconomic theories. It will not make the indisputably macro model, built up 
from macroeconomic aggregates, into a microeconomic construct either. What justifies the use 
of microeconomic rules of behaviour in a genuinely macroeconomic model is that they provide 
a convenient way to link together, and at the same time limit the movement of certain 
macroeconomic variables, as we have pointed out (see, flexible bounds).  

2.3. The concept and the main building blocks of the CGE models 

2.3.1. From programming to applied equilibrium model 

As noted before, the necessary conditions of the optimal solution are not all reflecting the 
actual rules of accounting, especially not in the case of the pricing rules, which ignore taxes 
and subsidies. The only place they have appeared was the formation of the export prices (see, 
optimal tariffs), the use of which in an applied model would be unrealistic. Because of the 
aggregate representation of labour and capital the wage rate and the net rate of return are 
uniform across sectors, whereas empirical data make it clear they are sector specific. Also, as 
we have seen, the net rate of return is proportional with the physical amount and not the value 
of capital, as its theoretical concept would imply.  

These and similar other potential shortages of the condition of optimality can be taken care 
simply by modifying the equation system derived from the optimality conditions in accordance 
with economic theory or observed practices. The solution of the revised equation system will, 
of course, be no longer the optimal solution of the programming model. As a matter of fact, 
what we would like to achieve is that the model solution would reproduce the observed values 
of the endogenous variables, if the values of the parameters and exogenous variables were set 
according to their observed values too, and the unobservable parameters of functions xj, xi

hm 
and fj were calibrated in such a way that the choices at base prices would show consistent with 
the assumed optimizing behaviour. The solution obtained would thus look like a state of 
equilibrium, distorted by the presence of taxes and subsidies and other imperfections, for 
example, on the factor markets. This is the idea behind the computable general equilibrium 
approach. 

We will introduce, to this end, various rates of indirect and direct taxes/subsidies, including 
VAT taxes, in the equations and terms, which define the rules of price and cost formation. 
Instead of the cost based producers’ and supplier’s prices we will use, where ever appropriate, 
users’ prices, which include the net result of taxes and subsidies. We assume that the indirect 
taxes/subsidies applied to commodity use can be classified into three categories of use, use in 
production and public consumption, in private consumption and in investments. Their rates 
may differ across these categories, but they are the same within these categories for the same 
commodity. The tax/subsidy rates and the revised prices and costs will be as follows (the same 
symbols will be used as before, where ever it is possible). 

Use in production and public consumption, rates:   τu = (τi
u), users’ prices:  

 pi
u = (1+τi

u)⋅pi
hm,  

Private consumption, rates: τc = (τi
c), consumers’ prices: 
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 pi
c = (1+τi

c)⋅pi
hm, 

Investment inputs, rates:  τv = (τi
b), users’ prices in investment,  

 pi
b = (1+τi

b)⋅pi
hm,  

Export taxes/subsidies τe = (τi
e), export prices  

 pi
e = (1+τi

e)⋅v⋅pi
we, 

Import duty rates: τm = (τi
m), import prices:  

 pi
m = (1+τi

m)⋅v⋅pi
wm, 

Production taxes/subsidies, rates: τx = (τi
x), producers’ prices  

 pj
a = (1+τj

x)⋅pj
ac, 

Social security contribution, rates: τw = (τi
w), labour cost  

 wj = (1+τj
w)⋅w⋅dj

w,  

The revised cost of capital: 

 qj = pj
b·(r j

a + π·dj
π). 

In order to see the differences, we will compare the original (optimality) and the revised 
(equilibrium) price equations. The latter equations will be the same, as will be seen, as the ones 
introduced already in the case of the input-output price models. The tax/subsidy rates will be, 
as a rule, considered to be as parameters, but in certain exercises they could become exogenous 
or even endogenous variables.  

The revised conditions: The original optimality conditions: 

(P9’) pj
a = (1+τj

x)⋅(Σi (1+τi
u)⋅pi

hm⋅aij + wj⋅l j + qj⋅kj), (P9) pj
a = Σi pi

hm·aij + w·l j + qj·kj,  

(P11’) pi
m = (1+τi

m)·v·pi
wm, (P11) pi

m = v·pi
wm, 

(P12’) pi
e = (1+τi

e)·v·pi
we(zi), (P12) pi

e = (1 + 1/εi)·v·pi
we(zi).  

(P14’) pj
b = Σi (1+τi

b)·pi
hm·bij, (P14) pj

b = Σi pi
hm·bij, 

(P15’) qj = pj
b·(r j

a + π·dj
π), (P15) qj = pj

b·r j
a + ρ,  

(P16’) Σi pi
c·si

cv = pcv, (P16) Σi pi
hm·si

cv = 1 (= pcv), 

(P22’) si
cv = ci

v(p1
c, p2

c, ... , pn
c),  (P22) si

cv = ci
v(p1

hm, p2
hm, ... , pn

hm), 

(P23’) l j = l j(wj, qj) (P23) l j = l j(w, qj) 

(P24’) kj = kj(wj, qj) (P24) kj = kj(w, qj) 

(P25’) wj = (1+τj
w)·w·dj

w, wage rate was uniform before, 

(P26’) pi
c = (1+τi

c)·pi
hm, no special consumers’ prices before. 
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The reformulation of the producers’ prices allows us to depart further from the idea of 
perfect competition. One might want to redefine operating surplus as differentiated profit 
mark-ups (πj

c) instead of the differentiated net rates of return on capital. As a result, one would 
redefine producers’ prices as follows: 

(P10’’) pj
a = Σi(1+τi

u)·pi
hm·aij + wj·l j + qj·kj + pj

a·(πj
c + τj

x), 

where we can make further choices. In the case of pure mark-up profits the cost of capital 
should be redefined as qj = pj

b·(r j
a + π·dj

π), whereas the profit mark-ups as πj
c = π·dj

π. This 
would leave the number of variables unchanged, and one can show that π would reflect 
changes in the relative scarcity of the factor constraints and foreign currency as before. In 
another solution πj

c could be introduced as parameters, and retain the definition of the cost of 
capital as qj = pj

b·(r j
a + π·dj

π). This would result in a lower base value of the net rate of return 
and a narrower range for π to vary in general.  

2.3.2. A stylised CGE model based on problem 2.2-2 

The previous section has paved the way for reformulating the optimum conditions of the 
studied optimal resource allocation problem into a set of equilibrium conditions. We will use 
the equations characterizing the optimum conditions, revised in the way suggested above, 
organized into the same 26 blocks as before. We will simply tell the story of the origin of these 
conditions using the language and terminology of general equilibrium theory, and following its 
logic, rebuild the model using the typical building blocks of the CGE models. 

It will be ease to identify the equations, and the following summary table will help the 
reader to recall the meaning of the 27 blocks of core variables used. We call them core 
variables, because the 26 blocks of equations define yet not a complete stylised CGE model, 
and we will have to introduce further equations and variables to complete the model.  

Endogenous variables of the core model 

xj (composite) production levels pi
h producers' prices of domestic sales 

xj
h production supplied on domestic markets pj

a average producers' prices 

zj volume of exports pi
m domestic prices of imports 

sj
d Share coefficients of domestic sales pi

we world market prices of exports 

sj
e share coefficients of exports pi

e domestic prices of exports 

xi
hm (composite) supply on domestic markets pi

hm average users' prices net of taxes 

mi volume of imports pi
c consumers' prices 

si
h share coefficients of domestic supply pcv consumers' price index 

si
m share coefficients of imports pj

b prices of capital goods 

si
cv structure of variable consumption qj cost of capital 

ycv level of variable consumption wj cost of labour 
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l j labour input coefficients w general level of wages 

kj capital input coefficients π net rate of return on capital 

  v exchange rate 

PRIMARY GOODS, DOMESTICALLY PRODUCED AND IMPORTED COMMODITIES 

There are two types of commodities: n kinds of goods produced in n sectors, and two kinds of 
primary resources (labour and capital) with exogenously given supply (L0 and K0). It is 
assumed that all users of the various commodities minimize their costs. Domestic products 
compete with imported commodities of the same sort in each sector, and that they are 
imperfect substitutes of each other, making up a special composite commodity (the so-called 
Armington assumption). The joint use value, that is, the volume of the domestic/import 
composite commodity of sectoral origin i is given as  

(P3) xi
hm = xi

hm(xi
h, mi), j = 1, 2, ... , n,  (E1) 

where xi
hm is a linear homogeneous (aggregator) function, and xi

h and mi the amount of the 
domestically produced and imported component, respectively.  

Domestic outputs as well as imported goods are assumed to be composed of homogenous 
commodities themselves. xi

hm is a linear homogeneous function and all users to minimize their 
cost, therefore each user will use domestic and imported goods of the same variety in the same 
proportion: mi/xi

h = si
m/si

h, where xi
hm(si

h, si
m) = 1.  

The unit share coefficients, si
h and si

m, are determined by the relevant cost minimizing 
exercise. We assume that they are uniquely determined and their values can be expressed in 
closed forms, by the following unit demand functions (homogeneous of degree zero): 

(P17) si
h = si

h(pi
h, pi

m), i = 1, 2, ... , n,  (E2) 

(P18) si
m = si

m(pi
h, pi

m), i = 1, 2, ... , n,  (E3) 

where pi
h and pi

m are the component prices, given in the cost minimizing exercise, and 

(P11’) pi
m = (1+τi

m)·v·pi
wm,  i = 1, 2, ... , n.  (E4) 

Based on the above forms, the ratio of imports to domestic supply can be defined as 
follows:  

(P5) mi = mi(pi
h, pi

m, xi
h) = xi

h·si
m/si

h, i = 1, 2, ... , n.  (E5) 

The demand for sectoral goods is always given in terms of the domestic/import composite 
commodity. In the case of linear homogeneous production (aggregation) functions, the only 
prices, which are compatible with the assumption of profit maximization and equilibrium, are 
such that are equal to their minimal cost. Therefore, the unit price of the domestic/import 
composite good of sector origin i (pi

hm) must also be equal to their minimal combine cost (the 
value of the Lagrange multiplier in the cost minimizing problem):  

(P13)  pi
hm = pi

h·si
h + pi

m·si
m, i = 1, 2, ... , n.  (E6) 
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THE REPRESENTATION OF PRODUCTION AND EXPORTS 

Production is organized into n sectors, each producing jointly two commodities of the same 
sector origin, close, but not perfect substitutes for each other. One is supplied on domestic, the 
other on foreign markets. The joint level of the output in sector j is given by the set of 

(P2) xj = xj(xj
h, zj), j = 1, 2, ... , n,  (E7) 

linear homogeneous transformation (aggregation) function, and it can be interpreted as 
measuring the volume of a special home/export composite good. One unit of such composite 
commodity can be achieved by various combinations of the two goods, which must satisfy the 
condition xi(si

d, si
e) = 1. 

The home/export composite commodities are produced by means of domestic/import 
composite commodities (aij fixed unit input coefficients), and primary resources (l j and kj 
variable unit input coefficients). Various combinations of labour and capital can provide the 
same level of capacity, defined by fj(Kj, Lj), linear homogeneous (constant return to scale) 
production functions. The scale of these functions is set in such a way that the production of 
one unit home/export composite good requires (at least) one unit of the composite factor:  

 fj(l j, kj) = 1,  j = 1, 2, ... , n. 

The overall production function and capacity constraint in sector j takes, thus, the following 
form:  

 xj(xj
h, zj) = xj = ( ) .,,,,,,min
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Production sectors are assumed to operate as price taking and profit maximizing firms, 
which maximize revenues and minimize costs, ceteris paribus. Thus, deciding on how large 
part of their output will be supplied on the domestic and how large on foreign markets, they 
solve a revenue maximizing exercise taking the prices offered on the two markets (pj

h and pj
e) 

as given. We assume that these problems, too, have always unique solutions, and the revenue 
maximizing compositions, at unit level of the outputs, can be expressed in closed forms, by the 
following supply functions (homogeneous of degree zero): 

(P19) sj
d = sj

d(pj
h, pj

e), j = 1, 2, ... , n,  (E8) 

(P20) sj
e = sj

e(pj
h, pj

e), j = 1, 2, ... , n,  (E9) 

where pj
h and pj

m are the component prices, given in the cost minimizing exercise, and 

(P12’)  pj
e = (1+τj

e)·v·pj
we,  j = 1, 2, ... , n,  (E10) 

and the world market price of exports is given by the following inverse demand functions: 

(P21)  pj
we = pj

we(zj), j = 1, 2, ... , n.  (E11) 

Based on the above forms, the ratio of exports to domestic supply can be defined as 
follows:  

(P4) zj = xj
h·sj

e/sj
d, j = 1, 2, ... , n,  (E12) 
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The revenue achieved in sector j by selling one unit of output in optimal proportions can be 
expressed as 

(P10)  pj
a = pj

h·sj
d + pj

e·sj
e, j = 1, 2, ... , n,  (E13) 

which is equal to the value of the Lagrange multiplier in the revenue maximizing problem, and 
it defines the unit price of the domestic/export composite output in sector j (pj

a). 

Similarly, producers choose such combination of labour and capital that minimizes their 
joint cost. The labour and capital demand per unit of output in sector j is, thus, determined by a 
cost minimization exercise, in which the unit costs (prices) of labour and capital are given by 
the following forms:  

(P25’) wj = (1+τj
w)·w·dj

w, j = 1, 2, ... , n,  (E14) 

(P15’) qj = pj
b·(r j

a + π·dj
π), j = 1, 2, ... , n.  (E15) 

Here again, it is assumed that functions fj are all well-behaved and the cost minimizing 
demand for labour and capital at unit level of the output can be expressed as functions 
(homogeneous of degree zero) of the factor prices:  

(P23’) l j = l j(wj, qj), j = 1, 2, ... , n,  (E16) 

(P24’) kj = kj(wj, qj), j = 1, 2, ... , n. (E17) 

The unit cost of the output in sector j will be, thus, as follows: 

 pj
ac = Σi (1+τi

u)⋅pi
hm⋅aij + wj⋅l j + qj⋅kj,  j = 1, 2, ... , n, 

where the value of l j and kj is given by the above unit level factor demand functions. Apart 
from the producers’ taxes and revenues, the unit price of the domestic/export composite output 
in equilibrium must be equal to its cost, therefore the following equilibrium pricing condition 
must hold: 

(P9’) pj
a = (1+τj

x)⋅(Σi (1+τi
u)⋅pi

hm⋅aij + wj⋅l j + qj⋅kj),  j = 1, 2, ... , n. (E18) 

THE REPRESENTATION OF FINAL DEMAND 

Final demand for the domestic/import composite commodities will be grouped into the 
following components: (variable) private consumption, public consumption, replacement and 
net investments and the rest in the following way:  

 FDi = si
cv·ycv + gi·yg + Σj bij·(yj

br + yj
bn) + ci

0. 

In the current specification of the model, only the variable part of private consumption (ycv 
and si

cv variables) and the commodities used for replacement investments (yj
br variables) will 

be treated as endogenous variable. The category rest includes, thus, committed consumption as 
well in addition to the change in stock, if we employ, as usual, a utility function of Stone–
Geary type to explain private consumption decisions.  

The levels of the replacement investments in the different sectors (yj
br) will be defined by 

the depreciation of the capital used, that is, yj
br = r j

a·kj·xj. The equilibrium prices of the sector 
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specific capital goods (pj
b), which appear in the definition of the cost of capital, are equal to the 

costs of their formation via the investments, that is, 

(P14’) pj
b = Σi (1+τi

b)·pi
hm·bij,  j = 1, 2, ... , n.  (E19) 

Consumption decisions are assumed to imitate that of a representative household, having a 
(linear homogeneous) utility function, which is defined over the set of variable consumption 
only: yv(y1

cv, y2
cv, ... , yn

cv). The utility level, ycv = yv(y1
cv, y2

cv, ... , yn
cv) can be interpreted again 

as defining the volume of a composite consumption good represented by the basket of (y1
cv, 

y2
cv, ... , yn

cv). The optimal composition of this basket (si
cv) is determined by the cost 

minimizing choice at unit level of utility. It is assumed again the cost minimizing solution is 
unique and yields the following demand functions:  

 (P22’) si
cv = ci

v(p1
c, p2

c, ... , pn
c), i = 1, 2, ... , n.  (E20) 

where the set of the consumers’ prices are given as: 

(P26’) pi
c = (1+τi

c)·pi
hm,  i = 1, 2, ... , n.  (E21) 

The optimal consumption basket will be the numeraire, and its price index is given as 

(P16’) Σi pi
c·si

cv = pcv (= 1),   (E22) 

where pcv is equal to the value of the Lagrange multiplier used in the above cost minimization 
exercise, and it will be set to be equal to one. 

MARKET CLEARING CONDITIONS AND THE CURRENT ACCOUNT 

The above definitions of the behavioural rules and optimal decisions determine the supply and 
demand of the various goods represented in the model. We can now formulate the market 
clearing conditions of general equilibrium. 

(P1) xi
hm = Σj (aij + bij·r j

a·kj)·xj + si
cv·ycv + gi·yg + Σj bij·yj

bn + ci
0,  i = 1, 2, ... , n.  (E23) 

(P6) Σj l j·xj = L0,  (E24) 

(P7) Σj kj·xj = K0,  (E25) 

(P8) Σi (pi
wm·mi − pi

we·zi) = de.  (E26) 

The last equation represents the current account (the balance of trade). If  its balance, de is 
exogenously set, as in this specification, it behaves as a special commodity (foreign currency) 
with limited external supply. Therefore, the price associated with it (v) reflects the scarcity of 
this resource relative to the other primary resources and the final goals, as we have seen it in 
the programming version of the same model. The only variable part of final demand that can 
adjust to the production capacity determined by the technology and the available stock of 
resources (labour, capital and currency, in this case) is variable personal consumption. As we 
have seen it in the programming version of the model, the utility function of the representative 
households takes in fact the place of a welfare function to be maximized.  
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2.3.3. Counting equations and variables and closing the CGE model 

We have above formulated set of equations similar to those representing the optimal 
solution of the nation-wide resource allocation model NLP-2.2-2. They are different from each 
other in as much we have used the revised forms of the equations suggested above. This is also 
the reason that we have 2n more equations and variables than before. The total number of 
equations is 22n+4, and we have 22n+5 variables. All equations are homogenous in prices, 
therefore we can fix the price level by setting the value of one them, for example, pcv = 1. 
Thus, the number of unknowns is equal to that of the equations, the equations system is 
regular.  

Although we could expect the derived system of equations to have solution, the general 
equilibrium model is not yet complete and its specification provides opportunities for revision. 
Consider first of all that yg and yj

bn are exogenous variables and ycv is set by Walras’s law, 
rather than by means of utility maximization subject to budget constraints. There are no budget 
considerations introduced explicitly into the model, despite the fact that the distribution and 
redistribution of incomes is an important constraint as well as means in generating final 
demand that matches total supply in a monetary economy.  

Let us try to construct the budgets of the economic agents represented in one way or 
another in our model. They are the private households, in charge of making the private 
consumption and savings decisions, the government, who decides on public consumption and 
budget deficit or surplus, the firms (production sectors), who can be charged to make the 
investment decisions as well in addition to production decisions, and the foreigners, who 
represent the rest of the world.  

One of the special advantages of the computable general equilibrium models is that they 
can cover all the major aspects of public finance including all substantial taxes, social policy 
transfers, public expenditures and deficit financing instruments. The models contain, usually in 
considerable detail, the process of income distribution and redistribution, which takes place via 
various channels. The primary incomes received can be interpreted in broader sense than usual, 
to include not only wages and gross operating surplus (labour and capital), various taxes, for 
example on wages, consumption, imports and exports. Secondary income generation takes 
place in the form of transfers between the above mentioned various agents.  

Most of the transfers are assumed to be proportional to some activity levels, represented in 
the model, and are assumed to be set in real (valorised) terms so as to maintain the price 
homogeneity of the model. Here we will represent them only by their net outcome (± tra) in the 
budgets of the economic agents, which eventually define the net monetary savings (Sa) as the 
difference between disposable incomes and expenditures.  

We will, thus, introduce for each agent a function, tra(·), representing the net result, the 
positive or negative balance of the transfers taking place between them. The net transfer 
functions depend on specific endogenous variables, which determine the levels of the various 
activities that form the basis of the transfers. The sum of the transfers is by definition zero, that 
is, 

 



 

 

- 89 -

  trh(·) + Σj tr j
f(·) + trg(·) + trrw(·) = 0.  

We have to introduce also n+3 additional variables, Sh, Sj
f, Sg and Sw, to represent the net 

monetary saving position (savings or borrowings) of the households, the firms (production 
sectors), the government and the foreigners.  

We will also add the same number of equations to the system, to define the budget 
conditions of the various agents that must be satisfied by the feasible solutions. The primary 
incomes received and the net result of the transfers will be presented on the left hand sides of 
the budgets, which defines thus the total income available for the given economic agent. On the 
right hand side one will find the expenditures and the net result of savings/borrowings. 

To keep the presentation simple, we assume that the whole of ci
0 consists of committed 

private consumption. The budget of the private households will thus be as follows (wages 
plus/minus transfers equal to consumption expenditure plus net savings): 

 Σj w·dj
w·l j·xj ± trh(·) = Σi pi

c·(ci
0 + ycv·ci

v) + Sh.    (E27) 

The budget of production sector j will take the following form (amortization plus net 
operating surplus plus/minus transfers equal to investment expenditure plus net savings, 
typically minus borrowings): 

 pj
b·(r j

a + π·dj
π)·kj·xj ± tr j

f(·) = pj
b·yj

bn + Sj
f,  j = 1, 2, ... , n. (E28) 

The government collects direct and indirect taxes, gives subsidies, redistributes income via 
transfers, finances public expenditure and the resulting balance will be equal to the budget 
deficit or surplus:  

Σj{ Σiτi
u·pi

hm·aij + τj
w·w·dj

w·l j + pj
a·τj

x} ·xj + ΣjΣiτi
b·pi

hm·bij·yj
bn + Σi{τi

c·pi
hm·(ci

0 + ycv·ci
v) 

+ 

τi
u·pi

hm·aij + τi
b·pi

hm·bij·yj
b + τi

m·v·pi
wm·mi − τi

e·v·pi
we·zi}  ± trg(·) = Σi pi

u·gi·yg + Sg. (E29) 

Finally, the budget of the foreigners (rest of the world) 

 Σi v·pi
wm·mi + trrw(·) = Σi v·pi

we·zi + Srw,   (E30) 

which could also be written as the sum of the current account and monetary transfers, which 
result in the balance of payments, represented by Sw: 

 v·de + trw(·) = Sw.     (E30’) 

The sum of the net savings/borrowings should be zero, that is,  

  Sh + Σj Sj
f + Sg + Srw(·) = 0.  

It can be shown that equations (E1) - (E26) imply the basic accounting identity that states 
that the value of final demand is equal to the sum of primary incomes, as required by Walras’s 
law. The same identity is implied by equations (E27) - (E30), if we assume that total savings 
and borrowings match each other. The above equilibrium condition will, thus, be automatically 
satisfied, so there is no need to introduce it separately. 



 

 

- 90 -

As we have discussed it, equations (E1) - (E26) can be solved for the variables contained 
by them. Once we know their solution, equations (E27) - (E30) can be independently solved 
for the net savings/borrowings variables. This shows the specificity of the implied macro-
closure of the CGE model specification derived, step-by-step, from the macro-programming 
model 2.2-2. Namely, savings adjust to the structure of final demand, which is set basically by 
fiat, externally, by considering public consumption (yg) and net investments (ynv) to be 
exogenously given. This choice of endogenous and exogenous macro variables can be called a 
programming macro-closure. 

It is, however, far not clear, which potential variables should be treated as exogenous and 
which as endogenous variables in the model. As a matter of fact, exogenous variables are 
partly used to counterbalance the shortage of the static model (see the discussion of the 
problem of macro-closure in the case of Walras’s second model), partly the lack of well tested 
theories to describe the complex interdependence of the main economic variables. Each 
exogenous variable represents in a sense an equation missing from the model. As a matter of 
fact, when we set the value of certain variables exogenously, we make a conditional (‘what 
if�) forecast in terms of the endogenous variables. By the same token, choosing one or another 
plausible specification possibility, we fix some conditions as corner stone for our analysis.   

The above uncertainty and certain arbitrariness involved in the choice of specification can 
be counterbalanced by using alternative assumptions and test the robustness of the conditional 
forecasts. With each specification option we can generate an internally consistent forecast for 
the endogenous variables. In this way, we can derive “packages”, that indicate alternative, 
possible and consistent changes in macroeconomic variables (see, Zalai et al., 2002 for more 
details on this). 

We will illustrate the macro-closure possibilities by some characteristic macro-closure 
options (see Dewatripont and Michel, 1987, Lysy, 1983, Taylor, 1983 and 1990 on a theoretical 
discussion of closure options). Let us take first the example of public consumption, the level of 
which (yg) is usually set exogenously in the CGE models, because it is decided by economic 
policy makers in a way, which is difficult to model. Nevertheless, an alternative variable that 
could be exogenously set instead of yg, is public deficit (Sg), which has become a growing 
concern in many countries nowadays. Yet another option is to fix both macro-variables, that is, 
both yg and Sg, and free the general level of some tax rates (e.g., social security contribution, 
τj

w), by means of which the government collects income. That could to bring public budget into 
the required balance. 

In the given specification of the model, there was no behavioural equation that would have 
explained the amount of the net savings of the households (Sg). It was rather adjusting to the 
level of private consumption. One might want to introduce such behavioural equation, for 
example, by assuming constant propensity to save or using the so-called ELES (Extended 
Linear Expenditure System) model, which would derive the level of savings from the 
optimizing behaviour of the representative household. That would require, in either case, the 
introduction of additional equation into the model, which in turn would necessitate to free 
some variable, considered to be exogenous so far, that would bring the households budget into 
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balance instead of savings. A new endogenous variable to play this role could be, for example, 
the general level of investments. 

The general level of investments could be made endogenous also by fixing the level of 
some other components of savings instead. That would shift the Keynesian macro-closure 
towards a neoclassical one, in which investments adjust to savings. As a matter of fact, a major 
source of savings, the balance of payments, is to a large extent determined exogenously, as one 
can see it from equation (E30’), in which de is considered to be an exogenous variable. Again, 
to shift further towards a Keynesian macro-closure, one might make de endogenous and fix the 
nominal exchange rate (v) instead exogenously.  

In typical neoclassical models, the supply of labour would be made an endogenous 
variable, the level of which would be also defined by the optimizing choice of the 
representative household. A radical shift in the direction of the Keynesian world would be to 
fix the nominal wage level (w) and let the labour market move out of equilibrium. This could 
be made technically feasible by introducing a new variable, the labour utilization index (lu) and 
replacing L0 in the labour market clearing condition with lu⋅L0. That would, of course, 
completely change the original meaning of that condition. It would simply set the level of the 
labour utilization index (lu), which could be seen as an indicator of disequilibrium or tension on 
the labour market, rather than a resource constraint as before.  

Another variant of this closure would be fixing the real wage rate instead, that could make 
more sense, especially in economies with strong labour unions. Instead of the real wage rate 
one could fix the level of utility function (the real value of consumption), that Taylor would 
classify as a Marxian macro-closure. 

One may find difficult to justify the assumption of fixed capital stock, the scarcity of which 
determines the rate of return on capital, in a CGE model meant to generate a longer term 
perspective scenario. One could instead fix the rate of return and introduce a capital utilization 
index (ku) as in the case of labour above.  

As can be seen from the above examples, the macro-closure problem is closely related to 
the mechanism that sets the proportions between the main components of final demand, such as 
the general level of private and public consumption, investments and net exports, on the one 
hand, and the level of the key variables that determine the distribution of the national income, 
such as the general rate of wages, return on capital and foreign exchange. The above sets of 
variables compete with each other, that is, they can increase only at the expense of each other, 
because the overall level of the national income (net product) is determined practically by the 
available stocks of primary resources in our model. The two sets of macro variables are 
connected to each other through the income (re)distribution rules, which should secure that the 
demand generated by disposable income matches the emerging supply. 

Some CGE models attempt to integrate the microeconomic general equilibrium models 
with macroeconomic IS-LM mechanism (termed as macro-micro integration), which has been 
traditionally used in Keynesian models (see for example Bourguignon, Branson, DeMelo, 
1989, Capros et al., 1990). These hybrid models are designed to overcome the limitation of 
arbitrary closure rules, which must otherwise be adopted. In addition, due to the introduction of 
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financial market mechanisms and related structural adjustment, they allow to set the level of 
prices as well. 

2.3.4. Notes on the calibration of substitution functions used in the CGE model 

General equilibrium is about supply and demand, and relative price driven changes. The 
economic agents are assumed minimize cost and maximize their profit or utility. Comparative 
static analysis requires the model to possess locally stable solution, which in turn implies 
mathematical restrictions on the forms of the production and utility functions, and other 
possible functions that are assumed to direct and limit choices flexibly between alternatives. 

Substitutability between goods in production or in consumption is a key element that makes 
adjustment to changing prices or, the other way around, price adjustments to changing volumes 
of supply or demand feasible, and in this way the emergence of an equilibrium solution 
possible. The representative firms and households react on prices (including taxes) and adjust 
their mix of inputs and outputs, or consumer goods by substituting away from the relatively 
more expensive input or good. 

The representation of technologies and preferences with well-behaved functions, and the 
assumption of rational (optimizing) representative agents provide a pragmatic approach to 
model changes in aggregate macroeconomic variables, as we have discussed it in the previous 
chapter. Even if one treated this assumption as real, observable and testable behaviour, the 
theoretical structure of applied general equilibrium models is far too rich to allow for the 
proper estimation of their parameters by means of econometric techniques (the information 
required for the direct econometric estimation is incomplete, scattered, does not show enough 
variation, and is utterly unreliable). 

The issue related to the use of well-behaved functions and their elasticities is essentially 
twofold. First, it is the question of the choice of functional forms to describe the assumed 
substitution possibilities (constant or variable elasticities of substitution), second the way one 
sets the values of the parameters of the chosen functions (statistical estimation versus 
calibration). 

The elasticity is a mathematical concept related to differentiable functions. In general, if y 
= f(x), the elasticity of y with respect to x measures in percentages the change in y induced by 
an infinitely small change in x (the logarithmic derivative of the f function with respect to x): 
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The direct partial elasticity of substitution, for example, in the case of the production 
functions characterizes the ease at which factor j can compensate a change in the amount of 
factor i, ceteris paribus, that is, when the output and all other factors are fixed. It measures the 
curvature of the partial isoquant (in the case of a utility function the indifference curve). The 
concept of direct elasticity assumes that the ratio of the two factors (r ji = xj/xi) is a function of 
the slope of the isoquant (fj/fi = dxi/dxj, the marginal rate of substitution, which is equal to the 
ratio of the factor prices in the optimal solution), and it is the elasticity of that function: 
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Another concept is the Hicks-Allen partial elasticity of substitution, which can be viewed 
as normalized price elasticity. It is defined as the ratio of the price elasticity of factor demand 
and the factor’s cost share. It measures by how much the demand for factor j changes in 
response to a change in the price of factor i, when output and the prices of all the other factors 
are taken as given (where i and j can be the same). 

The general form of the constant-elasticity-of-substitution (CES) functions can be written 
as   

 ββββ
1
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where Ai are called share parameters. The direct elasticity of substitution between any pair of 
factors is σ = 1/(1+β). 

At given the factor prices the derived (minimum) unit cost function is given also by a CES 
form, which is dual to the original (the production) function: 
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The so-called Shephard lemma states that the unit factor demand function is nothing but the 
derivative of that cost function with respect to the price of the given factor:  
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where c is the value of the minimum cost, equal to the cost-price of the output in equilibrium. 

A) SUBSTITUTION ELASTICITIES IN THE SECTORAL PRODUCTION FUNCTIONS 

CGE models focusing on environmental and energy policy issues need to have an elaborated 
treatment of the demand for energy resources and energy intensive sectoral goods. That 
determines to a large extent the sectoral break-down used in such models, and has certain 
implications for the specification of production functions, as well. Production sectors that are 
fossil fuel intensive may consist of sub-sectors that differ significantly from this point of view. 
This is clearly the case for the electricity sector where the output can be produced both by 
fossil fuel intensive technologies such as coal and oil power, and fossil fuel free technologies 
such as hydroelectric power and nuclear power. In order to capture these substitution 
possibilities in a realistic way the technological constraints of the electricity sector, or the 
entire energy sector, is sometimes represented by a separate sub-model rather than by a 
standard neoclassical production function (bottom-up approach). 

The sectoral production functions basically define substitution possibilities between 
explicitly defined input factors. In CGE models focused on environmental policies distinguish 
not only between capital, labour, non-energy intermediate inputs and energy, but also between 
fossil and non-fossil energy. Often it is also convenient to distinguish between fuels and 
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electricity. In some CGE models instead of the production function its dual, the cost functions 
appears. This is typically the case if flexible form (translog or generalized Leontief) functions 
are used, the parameters of which are econometrically estimated. However, lack of data often 
prevents econometric estimation of sectoral cost functions. Instead, both the nesting structure 
of the production functions and the adopted numerical values are based on literature surveys of 
relevant econometric studies.  

The constant elasticity of substitution (CES) form is convenient especially because it uses 
but a few parameters and can be relatively easily handled mathematically. The particular 
disadvantage of the basic CES function is that the direct elasticity of substitution between any 
pair of inputs is the same, as we have seen. One can allow the elasticity of substitution to vary 
between certain separable groups of inputs by using nested functions. The existing literature on 
econometric studies of production does not lead to definite conclusions about the most 
appropriate nesting structure. However, in most models fuels and electricity are combined in a 
CES function with a relatively high elasticity of substitution. The input “fuels” is often defined 
as a CES-aggregate of different type fossil and non-fossil fuels. The elasticities of substitution 
between different types of fuels are usually taken to be relatively high. 

Treating goods produced for domestic (Xd) and foreign (Xe) markets also as imperfect 
substitutes, represented by a constant-elasticity-of-transformation (CET) function, a typical and 
quite general representation of the technology in a model of GEM-E3 type would be of the 
following structure: 

Xp(Xd,  Xe) = Xc(L,  M,  Q{ K,  EN[E,  F(F1,  F2, …  , Fk)]} ) 

Thus, fuels (F), which is a CES aggregate of k different types, and electricity (E) are 
combined in a CES aggregate that defines a composite energy good (EN). The composite 
energy input is then combined with capital in a CES aggregate of capital-energy (Q). Finally, 
the composite capital-energy input Q is combined with labour (L) and materials (M) that 
determines the capacity of the given amount of production factors (Xc) expressed in terms of 
the composite output. Xp, on the other hand, combines the capacity need of the two types of 
products. 

In the simplest case, when the production function is given by the form of X{ L, KE(K, E)}, 
with substitution parameters σVA (outer function) and σKE-DE (inner function is). The Hicks-
Allen elasticity of substitution between energy and capital can be calculated by means of 
Keller’s formula (Keller, 1980, p. 83) as 

 σKE-HA = (σKE-DE – σVA)/SKE + σVA = (σKE-DE – SLσVA)/SKE . 

We have noted also that the Hicks-Allen elasticity is the ratio of the price elasticity and the 
cost share of the input, whose price has changed: σKE-HA = εE/Pk/SK, where SKE and SK is the cost 
share of the KE-composite and K in the value-added (outer nest), respectively. If the level of 
the composite capital/energy input remained constant instead of the level of output, the 
resulting elasticity of substitution would be σKE-DE, which is often denoted simply by σKE. It is 
important to note that if σKE-DE is smaller than σVA, then σ KE-HA can be negative, implying 
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complementarity between K and E in the outer nest, while K and E are substitutes in the inner 
nest (in the KE composite).   

To calculate the elasticity of substitution between any two inputs n and m at a particular 
level L in the nested-CES structure, the formula derived by Keller takes the following form: 
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where l represents the lowest level in the nested-CES structure at which a component exists, 
associated with both the n and the m inputs (the lowest common level) and h is the highest 
level in the nested structure at which the elasticity σnm is calculated, and the cost share Sn,s  is 
defined by 
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that is, the sum of all the cost shares associated with the aggregate input n at level l, or, in other 
words, the cost share of the input component n. 

In some models capital and labour rather than capital and energy are combined, and one 
can find further varieties in the literature. Which particular structure should be used to 
represent the substitution possibilities between alternative fuels (inter-fuel substitution) and 
between the energy aggregate as a whole and other primary factors, such as labour and capital 
(fuel-factor substitution)? In particular, the question of energy-capital complementarity or 
substitutability is a major issue in the literature. The econometric evidence is conflicting. Some 
studies indicate that capital and energy are substitutes at the relevant level of aggregation, 
while others suggest that capital and energy are complements. Most CGE models assume that 
capital and energy are substitutes, although the elasticity of substitution between capital and 
energy is generally taken to be quite low.  

The issue of energy-capital complementarity or substitutability (whether output produced 
goes up or down after an increase in the energy price, indicated by σEK) may turn out to be a 
crucial one in determining the direction of the adjustment of aggregate output following energy 
price changes. Despite the importance of the σEK parameter, empirical estimates of this 
parameter must overcome many difficulties. Table 2.5 bellow gives some indicative values of 
elasticities used in various empirical studies. It can be seen from this table that both the sign 
and magnitude of the σEK parameter varies significantly between different studies.  

 Table 2.5: Some estimates of the Partial Hicks-Allen Elasticities of Substitution (σ) and 
Factor Shares (α) 

 US US US Europe Australia 
 Berndt-Wood 

(1975) 
Kulatilaka 
(1980) 

Pindyck 
(1979) 

Pyndyck 
(1979) 

Truong 
(1985) 

σKK  -8.8 -2.75 -1.66 -0.98 -16.46 

σLL -1.5 -0.22 -1.19 -0.82 -1.388 

σEE   -10.7 -2.70 -24.21 -13.16 -19.60 
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σMM   -0.39    -0.222 

σKL   1.01 0.69 1.41 0.69 1.02 

σKE -3.5 -1.09 1.77 0.60 -2.95 

σLE 0.68 0.61 0.05 1.13 1.77 

σKM   0.49    0.78 

σLM 0.61    0.42 

σEM 0.75    0.17 

αL   0.289 0.76 0.478 0.526 0.263 

αE 0.044 0.10 0.032 0.055 0.023 

αK 0.046 0.14 0.488 0.409 0.044 

αM  0.619    0.67 

K = Capital, L= Labour, E = Energy, M= Material.  

Source: Burniaux – Truong (2002), originally Vinals (1984), and Truong (1985).  

B) THE PARAMETERS OF THE DEMAND SYSTEMS OF HOUSEHOLDS 

Consumers' demand is represented by one or several utility maximizing representative 
households in the CGE models. The most widely used is the Linear Expenditure System (LES) 
or its extended version (ELES). The LES demand system is derived, as we have seen, on the 
basis of maximizing a Cobb-Douglas utility function defined over excess consumption, i.e., 
demand in excess to the so-called committed consumption (Stone-Geary preferences). This 
representation of consumption allows also for the differentiation of the price elasticities (as the 
nesting structures) among various goods, despite the use of a linear homogenous utility 
function.  

In its extended version not only the demand for ordinary goods but also that for reserved 
income (saving) is derived through preferences. Yet another extension of the preference 
approach includes leisure among the consumption categories, and in this way, utility 
maximization yields also the supply of labour. The demand for sectoral (produced and/or 
imported) goods is assumed to be separable from other goods and their preference ordering is 
represented by a separate nest in the utility function. The structure of this (sub-)utility function 
is often similar to that part of the production functions that relates to sectoral goods 
(materials/energy). 

A further extension of the LES approach is the introduction of consumption categories 
(wants), which are served by various bundles of sectoral commodities. Following such an 
approach the utility functions are defined in the space of wants, and the demand for wants is 
then translated by means of (so-called Lancaster) conversion matrices into demands for 
sectoral goods. In multi-period GEM-E3 type models special consideration is given to the 
consumption and accumulation of durable goods, and to the consumption of non-durable goods 
linked to durable ones. 
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C) THE ARMINGTON ELASTICITIES (SUBSTITUTION POSSIBILITIES VIA FOREIGN TRADE) 

The so-called Armington elasticities, used typically in CGE models, refer simply to the 
elasticities of substitution between domestically produced and imported goods. In an open 
economy, each commodity can be differentiated according to its source of production: 
domestic or foreign (import). In Armington’s approach these goods are assumed to be 
differentiated products, less the perfect substitutes. In this way one can model intra-sectoral 
trade in a theoretically consistent manner.  

Domestic absorption in the CGE models is given in terms of demand for domestic/imported 
composite goods, the actual mix of which is determined by their relative prices and the degree 
of their substitutability, captured by the Armington elasticities. The higher is the value of this 
parameter, the closer substitutes the domestically produced and imported goods are. In 
multiregional models Armington elasticities constitute a significant subset of the parameter 
space of the demand system. They play an especially important role in the analyses of the 
economic effects of trade policies. When the tariff applied to imports of a particular 
commodity changes, it directly affects the domestic price of the imported commodity, and 
indirectly the price of the domestically produced commodity and domestic resource allocation 
effects. Such changes in trade policy have, thus, an effect on the structure of domestic 
production, the size of which depends on the degree of substitutability between domestically 
produced and imported commodities. 

Multiregional models differentiate imports also by the region of origin. The empirical 
literature, however, concentrates on the differentiation between domestic supplies and imports, 
rather than on the differentiation among import supplies. This approach is followed also by the 
CGE models, which apply in most cases two-level nested CES functions. The upper nest 
defines the degree of substitutability between domestic production and the composite of 
imported goods. The lower nest does the same between imports coming from different regions. 
This may seem an oversimplification, but in view of the enormous difficulties to obtain 
accurate enough statistics on foreign trade, the difference between domestic and imported 
goods seems likely to be greater than the differences among imports coming from different 
countries. 

In many CGE models using nested import structure the “rule of two” is applied, by which 
the Armington elasticity of substitution across imports by sources (lower nest) is set equal to 
twice of the elasticity of substitution between domestic goods and imports (upper nest). We can 
see this rule of two at work in the table below, sampling elasticity values taken from the 
GTAP6 database. 

Table 2.6: Some elasticity values taken from the GTAP6 database 

Sector  Import-domestic Import-import 

Wheat 4,45 8,90 

Vegetables, fruit, nuts 1,85 3,70 

Forestry 2,50 5,00 
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Fishing 1,25 2,50 

Coal 3,05 6,10 

Oil 5,20 10,40 

Gas 17,20 34,40 

Sugar 2,70 5,40 

Textiles 3,75 7,50 

Leather products 4,05 8,10 

Wood products 3,40 6,80 

Paper products, publishing 2,95 5,90 

Chemical, rubber, plastic products 3,30 6,60 

Metal products 3,75 7,50 

Motor vehicles and parts 2,80 5,60 

Electricity 2,80 5,60 

Construction 1,90 3,80 

Trade 1,90 3,80 

Transport 1,90 3,80 

Communication 1,90 3,80 

THE PRACTICE OF CALIBRATING THE APPLIED SUBSTITUTION FUNCTIONS 

The real use of CGE models is in counterfactual analysis that is based on coherent theoretical 
framework (conditional insights based on theories with numbers, indications of the relative 
orders of magnitude for possible policy adjustments). This analysis consists of the following, 
equally crucial steps: 

step 1: choice of appropriate model (specification, alternative theoretical structures), 

step 2: construction of consistent equilibrium data set (benchmarking, data derived from 
several sources of information (extensive use of RAS, Row and Column Scaling technique), 

step 3: calibration, i.e., setting of specified parameters to replicate a benchmark data set, 

step 4: consistency check and preparation of the base scenario, 

step 5: counterfactual simulation and analysis. 

A variety of approaches have been used to obtain parameters for CGE models. By far the 
most common approach is to specify fairly parsimonious functional forms, obtain necessary 
behavioural parameters from the micro-econometric literature (or other sources), and then 
calibrate the remaining parameters such that the model perfectly reproduces a base year data 
set. Calibration means the setting of specified parameters to replicate a benchmark data set, 
making use of the equations characterizing an equilibrium solution (solution of the model for 
the unknown parameters), set out by Mansur and Whalley (1984). The calibration results have 
therefore only conditional predictive power and can not be used for forecasting. The model is 
conditional on the 

a) choice from the alternative theoretical structures (see for example the issue of macro-
closure), 
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b) choice of some key parameters (non-existent or contradictory estimates provided by the 
literature), 

c) selection of assumptions employed in the base scenario. 

This approach has the distinct advantage of not requiring time series data and leaving 
estimation issues to the econometricians, and of imposing the full set of general equilibrium 
constraints. On the other hand, it makes limited use of the historical record and provides no 
statistical basis for judging the robustness of estimated parameters. Therefore other, more 
ambitious, approaches to parameter estimation and/or model validation have been attempted. 

The CGE models embody three types of information: analytical, functional and numerical. 
The analytical structure is the background theoretical material which identifies the variables of 
interest and posits their causal relations. The functional structure is the mathematical 
representation of the analytical material, and consists of the algebraic equations which make up 
the actual model. The numerical structure consists of the signs and magnitudes of the 
coefficients in the equations which form the functional structure. The econometric critique is 
not directed at the analytical structure of these models, which is based on the neoclassical 
canon, but it is directed at the functional and numerical structures of calibrated CGE models. 

Calibration usually follows a method that includes the interaction of a strict theoretical 
structure with the observed benchmark data that are assumed to represent equilibrium solutions 
at the base prices. The elasticities that indicate the degree of response to changes in relative 
prices are often borrowed from independent databases, usually from other similar models, 
which include micro-econometric estimates on each of the required elasticities. Once the 
elasticity has been chosen, one can easily identify the share and scale parameters of the CES 
functions, which are in line with the assumption that the base data reflect equilibrium. 

It can be shown that the cost shares of the various components (Si) in the optimal solution 
must satisfy the following condition: 
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Thus, if the prices (w) and the elasticity of substitution (σ) is known, the above equations 
uniquely define the proportions of the share parameters. Their scale (the scale parameter) can 
then be adjusted so that the value of the function will be equal to its observed magnitude. 

In the case of the nested functions, the volume of the lower level composite goods can be 
freely chosen. More precisely, one can freely choose either the level of the unit base cost-price 
of the composite good (c) or their composite volume, xEK = xEK(xE, xK), because their product 
must be equal to their observed joint cost in the base case, which is given by c⋅xEK = wE

0⋅xE
0 + 

wK
0⋅xK

0.  

For example, the unit level of the composite labour/capital factor, the level of F(L, K) can 
be set by the X0 = F(L0, K0) equation, whereby we get f(l, k) = 1 for the unit composite 
coefficient, as we did in the case of the Johansen technology, and c = w0⋅l0 + q0⋅k0 = c0 in the 
base. Take as another example the case of the composite domestic/home supply. Suppose, the 
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base prices of the components were equal to one in the base (pi
h0 = pi

m0 = 1). It appears natural 
to set the base price level of their unit composite good to one (pi

hm0 = 1), too. In such a case the 
level of the composite good, xi

hm = xi
hm(xi

h, mi) will be set by the following condition: xi
hm(xi

h0, 
mi

0) = xi
hm0 = xi

h0 + mi
0. 

2.4.  Illustrative programs  

The special programs accompanying this training material contain illustrative numerical 
examples for the models covered in this chapter too. An Excel program (LP-2x2-6cases-
CES.xls) facilitates the understanding of the main characteristics of the programming models. 
The program automatically computes and graphically displays the feasible set and the optimal 
solution of the resource allocation model. The welfare function used is a generalized CES-
function, thus the program illustrates also the nature and role of CES functions in CGE-models. 
The program simultaneously shows the solutions of a closed and open model, comparing their 
results and showing how the comparative advantages improve welfare. 

Another package, a program written in GAMS and related files (PROJECT.ZIP, MultHH-
opt-scen) compares the behaviour of the NLP and CGE models. (See Appendix 6 for the 
derivation of the necessary conditions of the optimal solution of the NLP model, which are 
solved as those of a modified CGE model.) The model distinguishes 3 sectors and 10 
household groups and is calibrated for Hungarian data for 1998, and is complemented with an 
Excel interface, which presents, summarizes and compares the results of up to 7 simulation 
runs in a transparent Excel sheet. The GAMS code of this program illustrates also the way how 
model results can be presented in Excel. 

A flowchart in Appendix 7 demonstrates the interdependency of the individual blocks of a 
CGE model and shows how a particular macroeconomic closure defines the logic of the 
recursive computation of the variables. The example used is based on the structure of a CGE 
model (called HUMUS), developed originally for Hungary, and adaped for Austria (with 2000 
as the benchmark year). See Balabanov, T. – Revesz, T. – Zalai, E. (2007). 
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3. The specific features of the GEM-E3 model 

The GEM-E3 model (General Equilibrium Model for Energy-Economy-Environment 

interactions) has been developed as a multinational collaboration project
4
, partly funded by the 

Commission of the European Communities. The initial GEM-E3 European model has 
simultaneously represented fifteen European countries, linked through endogenous bilateral 
trade, and is being extended towards the associated countries and Switzerland. GEM-E3 aims 
at covering the interactions between the economy, the energy system and the environment. 
Figure 3.1 gives the basic scheme of the model.  

Figure 3.1: The basic scheme of the GEM-E3 model 

   Producers Consumers

Capital

Imports Exports

Revenues InvestmentInvestment
Financing

Investment

Goods Market Equilibrium

Labour Market  Equilibrium

Rate of return

Income flows and Transfers

PRODUCERS GOVERNMENT CONSUMERS FOREIGN

SURPLUS OR DEFICIT OF AGENTS

allocation

Maximising Profits Maximising Utility

ENVIRONMENT
 

The model is simultaneously multinational and specific for each country/region. Although 
global, the model exhibits a sufficient degree of disaggregation concerning sectors, structural 

                                                 
4 The GEM-E3 model was built under the auspices of European Commission (DG-Research) by a consortium involving 

BUES, ERASME, NTUA, KUL, PSI, ZEW and at the beginning of the project CORE, Univ. Strathclyde and CEA. 
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features of energy/environment and policy-oriented instruments (e.g. taxation). The model is 
multi-period, recursive over time. Technology progress is explicitly represented in the 
production function, either exogenous or endogenous. The model formulates pollution permits 
for atmospheric pollutants and flexibility instruments allowing for a variety options. 

The GEM-E3 model starts from the same basic structure as the standard CGE models. 
Following a micro-economic approach, it formulates the supply or demand behaviour of the 
economic agents regarding production, consumption, investment, employment and allocation 
of their financial assets. Prices are computed by the model as a result of supply and demand 
interactions in the markets. The current stream of CGE models, through its modular design, 
encompasses the whole area of modern economics going much beyond the standard neo-
classical economics on which the first generation of CGE models was confined. This new 
generation of model design is the inspiration behind the development of the GEM-E3 model. 

The model is built on the basis of a Social Accounting Matrix by combining Input-Output 
tables with national accounts data. The specification of production and consumption follows 
the generalised Leontief type of models. Technical coefficients in production and demand are 
flexible in the sense that producers can alternate the mix of production not only regarding the 
primary production factors but also the intermediate goods. Production is modelled through 
KLEM (capital, labour, energy and materials) nested production functions, involving multiple 
factors (all intermediate products and two primary factors, capital and labour). Consumers can 
also decide the structure of their demand for goods and services. Their consumption mix is 
decided through a flexible expenditure system involving durable and non-durable goods.  

Bilateral trade flows are also calibrated for each sector represented in the model, taking into 
account trade margins and transport costs. Consumption and investment is built around 
transformation matrices linking consumption by purpose to demand for goods and investment 
by origin to investment by destination. The model includes a very detailed treatment of 
taxation and trade. To this respect the model follows the methodology of the models that are 
developed to study tax policy and international trade. 

Through its flexible formulation, it also enables the representation of hybrid or regulated 
situations, as well as perfect and imperfect competition. The current model version for 
example, incorporates sectors in which only a limited number of firms operate under oligopoly 
assumptions. Models with imperfect competition are a rather recent addition to the literature of 
CGE models. 

The GEM-E3 model is built in a modular way around its central CGE core. The 
internalisation of environmental externalities is conveyed either through taxation or global 
system constraints, the shadow costs of which affect the decision of the economic agents. The 
current version of GEM-E3 links global constraints to environmental emissions, changes in 
consumption or production patterns, external costs/benefits, taxation, pollution abatement 
investments and pollution permits. It evaluates the impact of policy changes on the 
environment by calculating the change in atmospheric emissions and damages and determines 
costs and benefits through an equivalent variation measurement of welfare. 
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The model is recursive over time, and is solved for each year following a time-forward 
path. The model is written as a mixed non-linear complementarity problem and is solved by 
using the PATH algorithm of the GAMS software. The main building blocks of the GEM-E3 
model are specified as follows. 

3.1. Household’s behaviour 

Private consumption decisions are derived from an intertemporal model of the household 
sector with two stages. In a first stage the households decide each year on the allocation of 
their expected resources between present and future consumption of goods and leisure, by 
maximising over their entire life horizon an intertemporal utility function subject to an 
intertemporal budget constraint defining total available resources. It is assumed that at the end 
of his life they will have no savings left. The utility function has as arguments consumption of 
goods and leisure. The specification of the first stage problem is based on a Stone-Geary utility 
function. The discrete approximation of this problem can readily be solved5.  

Figure 3.2: The consumption structure of the GEM-E3 model 
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5 For a detailed presentation of the derivation of the demand functions using optimal control see C. Lluch (1973). A similar 
formulation can also be found in Jorgenson et. al (1977). 
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In the second stage households allocate their total consumption expenditure between 
expenditure on non-durable consumption categories (food, culture etc.) and services from 
durable goods (cars, heating systems, and electric appliances). In GEM-E3 the above general 
scheme is implemented with the structure as given in Figure 3.2.  

Households, modelled through one representative consumer for each EU country, allocate 
in each period their total expected income between consumption of goods (both durables and 
non-durables) and services, leisure and savings in the first stage.  

The Stone-Geary utility function, yielding a LES demand system is based on a Cobb–
Douglas utility function and the maximisation problem is written6: 

 Max ( ) ( ) ( )( )1 ln ln
t

t t
t

U stp BH HCDTOTV CH BL LJV CL
−= + ⋅ − + −∑  

where HCDTOTV represents the consumption of goods,  

 LJV  the consumption of leisure,  

 stp the subjective discount rate of the households, or social time preference,  

 CH  and CL  the committed amount of consumption and leisure, 

 BH  and BL  the cost shares of consumption and leisure. 

The expenditure choice is subject to the following budget constraint, which states that all 
available disposable income will be spent either now or some time in the future: 
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( ) ( )
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r HCDTOT PCI CH PLJ LJV PLJ CL

r YTR PLJ LTOT PCI CH PLJ CL

−

−

+ ⋅ − ⋅ + ⋅ − ⋅

= + ⋅ + ⋅ − ⋅ − ⋅

∑

∑
  

where r is the nominal discount rate (parameter),  

 PLJ LTOT⋅  is the value of the available time resources,  

 YTR is the total income of the households from sources other than wages (transfers).  

The household behaviour is assumed to be formed as a sequential decision tree: based on 
assumptions about the future, the household decides the amount of leisure, by which they 
define their labour supply. Computing the Lagrangian of the above problem the first order 
conditions are obtained. These consist of the budget constraint, plus the two derived demand 
functions: 

 ( ) ( ) ( )1 / 1 0
t t

t tstp BH HCDTOTV CH r PCI
− −+ ⋅ − − λ ⋅ + ⋅ =  

 ( ) ( ) ( )1 / 1 0
t t

t tstp BL LJV CL r PLJ
− −+ ⋅ − − λ ⋅ + ⋅ =  

the value of the Lagrange multiplier λ  can be derived by summing up these equations over 
time, and substituting them into the budget constraint.  

                                                 
6 Equations without numbering are not included in the model text, as they are only intermediate steps used for the 
derivation of other formulas. 
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Expressing now the above equations for the current time period (t = 0) and using the value 
of the multiplier, the two demand functions to be used in the model are obtained: 

 ( )stp BH
HCDTOTV CH YDISP PLJ LJV Obl

rr PCI
= + + ⋅ −  (1) 

 ( )stp BL
LJV CL YDISP PLJ LJV Obl

rr PLJ
= + + ⋅ −

⋅
 (2) 

where Obl PCI CH PLJ CL= ⋅ + ⋅  is the value of committed consumption and rr  the real 
discount rate. 

Given the fact that the model is calibrated to a base year data set in which households have 
a positive savings rate, the computed stp is less than rr . The savings rate computed from the 
above is not fixed but rather depends on such factors as the social time preference, the real 
interest rate and the relative shares of consumption and leisure in total potential disposable 
income. 

In the second stage, total consumption is further decomposed into demand for specific 
consumption goods. For this allocation an integrated model of consumer demand for non 
durables and durables, developed by Conrad and Schröder (1991) is implemented. The 
rationale behind the distinction between durables and non durables is the assumption that the 
households obtain utility from consuming a non-durable goods or services and from using 
durable goods. So for the latter the consumer has to decide on the desired stock of the durable 
good based not only on the relative purchase cost of the durable, but also on the cost of those 
goods that are needed in connection with the durable (as for example fuels for cars or for 
heating systems).  

The consumer problem can be written as 

 ( ) ( ) ji fix
j

i ji
ND DG

Max Uc SDGq ββ= − −γ γ∏ ∏  

subject to the constraint 

 ( )u fix
i i j j j j

ND DG

HCDTOTV PC p q p SDG p I⋅ = + +∑ ∑ , 

where Uc  is the level of utility, PC is the consumption price, SDG is the stock of durables, γ is 
the minimum obliged consumption and β  is the elasticity in private expenditure by category, 

non-durable goods and services are denoted by the index ND while durables by the index DG. 

Under this specification, one can derive the following LES expenditure system for non 
durables: 

 ( )( , , ) ( )DG NDND
ND ND DG

ND DG ND ND

PC
HCNDTOT E U p SDG PC Uc SDG

−β β= = ⋅ γ + ⋅ − γ ⋅
β∑ ∏ ∏ , 

which gives the (minimum) expenditure on non durables given the stock of durables and the 
utility level U. We obtain the derived demand functions for the non-durable goods by 
differentiating the expenditure function (Shephard's lemma): 
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 HCFV
PC

HCNDTOT PCND ND
ND

ND
ND ND

ND

= +








 ⋅ − ⋅








∑γ

β
γ  

where HCNDTOT is equal to E, the total expenditure on non durables.  

The cost of using a durable is obtained by differentiating the above expenditure function 
with respect to the stock of each of the durables. This quantity represents the amount of non-
durables that the consumer is willing to forsake for one extra unit of the particular durable: 

 
∂

∂

β γ

γ
E

SDG

HCNDTOT PC

SDG

DG ND ND
ND

DG

= −
− ⋅











−

∑
  

The cost of operating the durables, that is, consumption of linked non durables is included 
in the user's cost of the durable ( )PDUR :  

 PDURDG =  PCDG(rr  + δDG) + TXPROP, DG(1 + rr ) + ∑
LND  λLND,DGPC LND,DG (3) 

where  δDG  is the replacement rate for durable goods,  

 TX  is the property tax for the durables,  

 LND  is the set defining all linked non-durable goods and  

 λ is the consumption of non durables per unit of durable.  

The last part of the equation links non-durable goods to the use of durables, Energy being 
the main linked non-durable good. Consumption of energy does not affect the expenditure of 
durables through the change in preferences but rather through the additional burden in the user 
cost. 

To calculate the desired stock levels of the durables, this quantity is set equal to the 
marginal cost of holding one more unit of a durable good for one period. The desired stock 
level of the durables is: 

 DG
DG ND ND

NDDG

SDG HCNDTOT PC
PDUR

 β  = γ + ⋅ − ⋅ γ   
  

∑   (4) 

The demand for linked non-durable goods, coupled with the use of the durable is then: 

 ( ), ,ND DG ND ND DG
DG

LLNDC SDG= λ ⋅ θ∑  (5) 

where λDG  measures the proportion of the consumption of the linked non-durable good that is 
used along with the durable so as to provide positive service flow, θND DG,  represents the 

minimum consumption of the non-durable that is needed for a positive service flow to be 
created. If there is no need for non-durable good the θND DG, in the first equation of the linked 

non-durables becomes zero. Therefore, we get: 

 HCFVND = CHND + 








ND

ND

PC

β [HCNDTOT – ∑
ND

 PCND⋅γND] + LLNDCND.  (6) 
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 Total household’s expenditure is then the sum of consumption (for non-linked non-
durables) plus investment in durables plus consumption in non-durables used with durables. 

 
DG ND

HCDTOTV HCNDTOT HCFV LLNDC= + +∑ ∑  (7) 

where HCFV
DG
∑  represents the change in stocks of durables or in other words, the net 

investment that is necessary to move towards the long run equilibrium durable goods levels. 
Assuming a rate of replacement δ , this investment is equal to: 

 [ ](1 ) 1DG DG DGHCFV SDG SDG= − − δ ⋅ −   (8) 

The demand for consumption categories is then transformed into demand for products 
through a consumption transformation matrix with fixed coefficients: 

 ,
1

*
+

=
=∑

n m

j i j i
i

HC THV HCFV  

This equation determines the final consumption expenditure of the households. The 
consumption transformation matrix is also used to compute the consumption price as the 
weighted average of the consumers’ prices of products in private consumption (PH):  

 ,
1

*
l

i j i j
j

PC THV PH
=

=∑   

A cost-of-living index can be then derived as the ratio of the value and the volume of 
consumption: 

 1

1

*
n m

i i
i

n m

i
i

PC HCFV
PCI

HCFV

+

=
+

=

=
∑

∑
. 

3.2. Firms’ behaviour 

Production functions in GEM-E3 appear in the form of nested, constant return to scale CES 
functions. At the first level, production splits into two aggregates, one consisting of capital 
stock and the other of labour, materials, electricity and fuels. At the second level, the latter 
aggregate is further divided in their component parts. Figure 3.3 illustrates the nesting structure 
of the production functions. 

The model considers 18 production sectors, each represented as a firm which decides on 
the supply of goods or services given their sales prices and the prices of production factors. 
The stock of capital is fixed within each period, the supply curve of the produced goods 
exhibits, therefore, decreasing return to scale7. 

The production function has the following form (for the1st nest): 

                                                 
7 This description applies only to the case, where capital is assumed immobile across sectors and countries. 
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 ( )
1 1 11 1

, ,
PRtgk t

PR KAV PR PR LEM PR PRXD KAV e LEM

σ
σ−σ− σ−

⋅σ σ σσ
 

= δ ⋅ ⋅ + δ ⋅ 
 

  

where  XDPR is the level of domestic production,  

 KAVPR is the amount of fixed capital stock,  

 LEMPR  is the Labour-Energy-Materials composite factor of production, 

 σ  is the elasticity of substitution between KAVPR and LEMPR ,  

 tgk  is the technical progress of capital, whereas  

 ,KAV PRδ  and ,LEM PRδ  are scale parameters. 

Figure 3.3: Production nesting scheme in the GEM-E3 model8 

  Fuels

 Production (output)

Capital
Electricity

Labour
Materials
Fuels

 Capital  Electricity  Materials  Labour

• Coal

• Oil

• Gas
 

• Agriculture

• Ferrous and non-ferrous ore/metals

• Chemical products

• Other energy intensive industries

• Electrical goods

• Transport equipment

• Other equipment goods industries

• Consumer goods industries

• Building and construction

• Telecommunication services

• Transports

• Services of credit and insurance
institutions

• Other market services

• Non-market services

 

The dual function, representing the minimal unit production cost, can be expressed in the 
following way: 

                                                 
8 Production factors are denoted by bold letters and are in rectangle. Round boxes represent intermediate bundles of goods 
with no physical relevance. 
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1

1
1 1

, ,PR

PR
PR KAV PR LEM PR PRtgk t

PK
PD PLEM

e

−σ
−σ −σ

− ⋅

  = δ + δ ⋅  
   

  

where PDPR  is the cost-price index in domestic production, and PKPR  and PLEMPR are the 

rate of return for fixed capital and the cost-price index of Labour-Energy-Materials composite 
factor, respectively.  

The derived optimal factor demand function for the Labour-Energy-Materials bundle and 
desired capital stock are as follows: 

 ,
PR

PR PR LEM PR
PR

PD
LEM XD

PLEM

σ
 

= ⋅δ ⋅ 
 

   (9) 

 ( 1)
,

PRtgk tPR
PR PR KAV PR

PR

PD
KAV XD e

PK

σ
⋅ ⋅ σ − 

= ⋅δ ⋅ ⋅ 
 

  (10) 

The desired capital demand will be used in the capital market equilibrium equation, which 
derives the rate of return on capital, PKPR  as the equilibrium price that equalises demand and 
supply of capital.  

Similar formulas can be derived for the other levels of the nesting scheme of the production 
function, always linking the demand for a factor at a lower level of the nesting scheme to the 
bundle to which it belongs, with different substitution elasticities at each level. In this way we 
can derive the cost-minimising demand for each production factor, which will be represented 
here in general functional forms only: 

 ( )ENL f XD PEL PD ePR PR ENL PR PR PR
tge tPR= ⋅ ⋅ −, , , ,,

( )δ σ 2 1   (11) 

 ( )LAV f XD PL PD ePR PR LAV PR PR PR
tgl t= ⋅ ⋅ −, , , ,,

( )δ σ 2 1    (12) 

 ( )3( 1)
, ,, , , , tgi t

BRE PR PR IOVE PR BRE PRIOVE f XD PIO PD e ⋅ ⋅ σ −= δ   (13) 

 ( )4( 1)
, ,, , , , tgi t

BRM PR PR IOVM PR BRM PRIOVM f XD PIO PD e ⋅ ⋅ σ −= δ    (14) 

where ENLPR is the demand for electricity, PELPR  is the corresponding cost-price index, 
tgePR  is the technical progress in energy use, LAVPR  is the labour demand, PLPR is the unit 
cost of labour and tglPR  is the technical progress of embodied in labour.  

 The last two equations represent the demand for intermediate consumption of 
commodity BR used in the production of sector PR ( ,BRE PRIOVE  for energy and ,BRM PRIOVM  

for material inputs) with PIOBR  being the unit cost of the intermediate good. The unit labour 

cost is a function of the average wage rate (WR) that reflects the relative scarcity of labour: 

 ( )PL f WRPR =   (15) 

Under the above specification, the zero profit condition is always satisfied.  
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INVESTMENT DEMAND 

The demand for capital goods, which fixes the investment demand, is derived from the cost 
minimizing decision of the producers, as described above. The long run cost of capital is given 
by Walras’s definitions as  

  PKopt = PINV⋅(r + d), 

where PINV is the price index of investments, r is the real rate of interest, and d the rate of 
amortization (depreciation). The desired capital for the following year (Kfut ) is given as 

 exp
,

exp

fut
k PR

opt

K PD

Y PK

σ
 

= δ ⋅  
 

 

The exact formulation of the capital demand function above, depends on the type of 
expectations that producers are assumed to have concerning the evolution of the economy and 
the future prices. In the GEM-E3, these are linked to the expected rate of growth of the 
economy and the current price level. Although the exact formulation of the expectations affects 
the quantitative results of the simulations of GEM-E3, the qualitative ones remain unaffected. 

The comparison of the available stock of capital in the current year with the desired one 
determines the volume of investment decided by the firms. Given a partial adjustment 
mechanism and the fixed replacement rate d, the derived investment demand of the firm is  

PR PR, fut PR, fixedINVV = m×(K -(1- d)K ) 

or replacing future capital by the equation determining the desired capital 

 ( 1)(1 ) (1 )
( )

tgkPR
PR PR

PR

PK
INVV m× KAV STGR e d

PINV r d

σ
σ−

  
 = ⋅ ⋅ + ⋅ − − ⋅ +   

 (16) 

where PINVPR is the price index of investments in sector PR and STGRPR  is the expected 

growth rate of the sector.  

The capital stock of the next period is given by the equation: 

 
1 (1 )

(1 )
T

T
PR PR PR

d
KAVC d KAV INVV

d

 − −= − ⋅ + ⋅ 
 

   (17) 

where T is the length of the period in the model. 

The investment demand of each branch is transformed into a demand by product, through 
fixed coefficients, given by an investment matrix by product and sector. This and the 
government investments, which are exogenous in the model, define the total demand for 
investment goods. 

DERIVED PRICING EQUATIONS 

Firms supply their products on three market segments, namely, on the domestic market, for 
other EU countries and for the rest of the world. Firms do not differentiate their pricing 
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according to market segments, but set a uniform price (PXDPR) equal to unit cost (PDPR) 
modified by the amount of production taxes or subsidies (TXSUBPR ):  

 ( )PXD PD TXSUBPR PR PR= ⋅ +1   (18) 

 ( )1 /PR PR PRPWE PD TXSUB EX= ⋅ +   (19) 

where PRPWE  is domestic supply price of exports and EX is the rate of exchange. 

3.3. Government’s Behaviour 

Public consumption decisions are exogenous in GEM-E3. Government final demand (GV) 
by product (index omitted) is obtained by applying fixed coefficients (tG) to the exogenous 
volume of government consumption (GC): 

 GV = ⋅t GG C  

Public investment, also exogenous in the model, is represented by a special branch of non 
market services. Transfers to the households are computed assuming an exogenous rate per 
head. As far as government’s income is concerned, the model distinguishes between nine 
categories of receipts: indirect taxes, environmental taxes, direct taxes, value added taxes, 
production taxes/subsidies, social security contributions, import duties, foreign transfers and 
government firms. These receipts are coming from product sales (i.e. from production sectors) 
and from economic agents. The receipts from product sales in value (FG), which include 
indirect taxes, the VAT, subsidies and duties, are computed from the corresponding receipts in 
value, given the tax base and the tax rate.  

Import duties and production subsidies are defined as 

 FG,Duties = tDuties⋅ IMP, 

 FG,Subsidies = t Subsidies⋅XD⋅PD, 

where IMP and XD denote the value of import and domestic production, respectively, tDuties is 
import tariff s and tSubsidies are the subsidy rates. 

Indirect taxes and VAT is defined by the following formulas:  

 F
t

t

C C I I

t
I F SG Ind Tax

Ind Tax

Ind Tax

H G H G

VAT
C I, .

.

.

*=
+

+ + +

+
+ + +













∑∑
1 1

 

 ( )F
t

t
C C I IG VAT

VAT

VAT
H G H G, *=

+
+ + +

1
 

The receipts from agents are computed from the tax base and the tax rate (social security 
contributions, direct taxation), share of government in total capital income (for government 
firms’ income) or exogenous (transfers from and to the RW). 
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3.4. Domestic demand and trade flows 

The demand of products by the consumers, the producers (for intermediate consumption 
and investment) and the public sector define the total domestic demand. This total demand is 
expressed for the domestic/import composite goods, following the Armington specification. 
The supplier of the composite good (domestic) seeks to minimise his cost and decides on the 
mix of imported and domestic products.  

Figure 3.4: Trade matrix for EU and the rest of the world 

EXPORTER

IMPORTER

TOTAL EXPORTS

TOTAL

IMPORTS

COUNTRY-SPECIFIC

DEMAND BASED ON

RELATIVE PRICES
COMPETITIVENESS EFFECTS

EXPORT PRICES FROM

DOMESTIC PRICES

BY COUNTRY

ARMINGTON-TYPE MIX

OF IMPORTS BY ORIGIN

THROUGH RELATIVE EXPORT PRICES

 

The behaviour of the rest of the world (RW) is left exogenous: imports demanded by the 
rest of the world depend on export prices offered by the European Union countries, while 
exports from the rest of the world to the EU, i.e., the demand of the EU, are supplied by the 
RW flexibly at constant prices.  

Figure 3.5: The demand structure in the GEM-E3 model 
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GEM-E3 employs a nested commodity aggregation hierarchy, in which branch’s i  total 
demand is modelled as demand for a composite good or quantity index Yi , which is defined 
over demand for the domestically produced variant (XXDi ) and the aggregate import good 
( IMPi ). At a next level, demand for imports is allocated across imported goods by country of 

origin. Bilateral trade flows are thus treated endogenously in GEM-E3. 

The cost-price of the domestic/import composite (YPR) good is determined by its minimum 
unit cost. This is formulated through a CES unit cost function, involving the selling price of the 
domestic good and the price of imported goods, which is taken from the second level 
Armington. The allocation of total demand between domestic and imported is determined by 
cost minimization subject to the following CES functional form (index PR refers to the sectoral 
origin of the goods all the way along): 

 ( ) ( )
1 11

1, 1,(1 )

x

x xx
x

xPR PR PR PR PR PRY AC XXD IMP

σ
σ − σ −σ −
σσ

 
= δ ⋅ + − δ ⋅ 

  
 

where XXDPR  represents the demand for domestic production,  

 IMPPR is the demand for imports,  

 δ1,PR  is a scale parameter,  

 σ x  is the elasticity of substitution between domestic and imported goods.  

The corresponding dual form defines the prices of the domestic/import composite goods: 

 
(1 ) (1 )

1

1
1, 1,

1
(1 )

x x
x x x

PR PR PR PR PR
PR

PY PXD PIMP
AC

−σ −σσ σ −σ = δ ⋅ + − δ ⋅
 

 (20) 

where PYPR  stands for the absorption price of composite good,  

 PIMPPR  is the average price of imported goods of sector of origin PR,  

 PXDPR  is the price of the similar domestically produced goods, 

 AC  is the scale parameter in the Armington substitution function.  

The demand for domestic and imported goods can be derived by differentiating the above 
cost function with respect to the component prices (Shephard’s lemma): 

 ( 1)
1,

x

x x PR
PR PR PR PR

PR

PY
XXD Y AC

PXD

σ
σ − σ  

= ⋅ ⋅δ ⋅ 
 

  (21) 

 ( 1)
1,(1 )

x

x x PR
PR PR PR PR

PR

PY
IMP Y AC

PIMP

σ
σ − σ  

= ⋅ ⋅ − δ ⋅ 
 

  (22) 

At the second level, import demand is allocated across countries of origin using again a 
CES functional form. In the equation below, EU and CO denote the countries. Index EU refers 
to European Union countries, while index CO also includes the rest of the world. 
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1

1
(1 )

, , ,

xx
xx xx

PR EU PR EU CO
CO

PIMP PIMPO
−σ

σ −σ = β ⋅ 
 
∑    (23) 

where  PIMPPR EU,  denotes price of total imports demanded by country EU,   

 PIMPOPR EU CO, ,  denotes the EU import price of goods originating from country CO,  

 β  is the share parameter for Armington and xxσ  is the elasticity of substitution. 

Import prices are equal to the export prices set by the country of origin, multiplied by the 
appropriate import tariffs rate:  

 PIMPOPR,EU,CO = PWEPR, CO⋅EX CO/EXEU ⋅(1 + txdutiesPR,EU,CO). 

The EU’s import demand for goods coming from country CO can be calculated by means 
of the following form: 

 
COEUPR

EUPR
EUPRCOEUPR PIMP

PIMP
IMPIMPO

,,

,
,,, ∂

∂
=    (24) 

where IMPOPR EU CO, ,  denotes imports demanded by country EU from country CO. 

Imports demanded by the rest of the world from the EU (IMPOPR RW EU, , ) are, on the other 
hand, determined as 

 ,
, ,

,

RW

PR RW
PR RW EU RW

PR EU EU

PWEO
IMPO

PWEO EX

ε
 

= α ⋅  
 

  (25) 

where  αRW  is a scale parameter of export demand of the rest of the world,  

 PR,RWPWEO  is the exogenous price set by the rest of the world, and  

 PWEOPR EU RW, ,  is the export price set by the EU to the rest of the world.  

The export of goods of sector origin PR coming from country CO to the EU must, of 
course, be equal to their imports in the EU originating from country CO: 

 , , , ,PR CO EU PR EU COEXPO IMPO= ,    (26) 

and  

 EXPOT EXPOPR EU PR EU CO
CO

, , .= ∑ ,    (27) 

where EXPOTPR EU,  is the total export of good PR from country EU and EXPOPR EU CO, ,  denote 

exports of good PR from country EU to country CO. 

A trade flow from one country to another will thus be equal, by construction, to the inverse 
flow. The model ensures this symmetry in volume, value and price indexes. It is obvious, then, 
that the model guarantees (in any scenario run) all balance conditions concerning the trade with 
the rest of the world will be met. 
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3.5. Equilibrium pricing identities 

The users’ prices of the domestic/import composite commodities are derived from their 
cost-prices (YPR), by applying appropriate rules of taxation. Depending on the destination of a 
commodity, differentiated taxation may be applied, as for example indirect taxation τPR or 

VAT. The prices of goods at intermediate consumption are given by (28), while the prices of 
goods in final consumption are computed via (29) for households and by means of (30) for 
government. Finally, (31) defines the prices of goods used in investment formation. 

 PIOPR = PYPR⋅(1 + τPR),  (28) 

 PHCPR = PYPR⋅(1 + τPR)⋅(1 + vatPR),  (29) 

where vatPR is a rate of value added tax imposed on goodPR.  

 PGCPR = PYPR⋅(1 + τPR),  (30) 

 PINVPPR = PYPR⋅(1 + τPR).  (31) 

The unit cost of investment by sector of destination (owner) depends on its composition in 
investment goods (by sector of origin). This structure is represented by a set of fixed technical 
coefficients tcfPR BR, : 

 ∑ ⋅=
PR

PRBRPRBR PINVPtcfPINV , ,     (32) 

3.6. The income distribution and redistribution block 

The formation of the flows in volume and their closure are fully defined at this stage. It is 
necessary, then, to formulate the income and transfer flows in value at the level of the Social 
Accounting Matrix and ensure the closure of the model, by verifying the Walras law.  

CURRENT ACCOUNT 

In some versions of the model the balance of payments is an endogenous variable, while the 
rate of exchange is kept fixed. An alternative approach, implemented in the GEM-E3 model as 
an alternative option, is to set the current account of the EU with the rest of the world (RW) (as 
a percentage of total EU imports from the RW) to a pre-specified value, in fact, to a time-series 
of set values, specified in the baseline scenario. The shadow price of this constraint will 
determine the shift in the rat of exchange endogenously. 

THE SOCIAL ACCOUNTING MATRIX AND THE MONETARY POSITION OF THE ECONOMIC AGENTS  

The real sector of the model is grouped within the framework of a Social Accounting Matrix - 
SAM (see Table 3.1), which ensures consistency and equilibrium of flows from production 
(branches) to the economic agents (sectors) and back to consumption.  

The sources of income for consumers and producers are labour, capital rewarding and 
transfers. Respectively the sources of income for government are transfers and taxes. The 
agents use income for consumption or investment. Finally the surplus of deficit by agent equals 
net savings minus investment. To understand the notation used, consider a more detailed 
presentation of the SAM framework, in the table bellow. 
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Table 3.1: Framework of a Social Accounting Matrix (SAM) 

   
EXPENDITURES 

   

  Branches Factors Sectors Investment 

& Stocks 

Total 

expend. 

 Branches 

(producers) 

intermediate 

consumption 

0 demand for 

products by 

sector and 

exports 

demand for 

products by 

sector 

total 

demand 

 Factors 

(labour and 

capital) 

services in 

value added 

0 income transfers 

from abroad 

0  

total 

factors 

REVENUES Sectors 

(economic 

agents) 

indirect taxes, 

VAT, 

subsidies, 

duties and 

imports 

factor 

payments to 

sectors 

income transfers 

between sectors 

0  

total 

sectors 

 Gross 

Savings 

0 0 total revenues 

minus 

investment and 

stocks 

0  

 

 Total 

Revenues 

total supply total factors total sectors 0  

       

 Surplus or 

Deficit 

0 0 lending (+ or -) 

capacity by 

sector 

0  

 

All elements of demand for products, in value, are computed by multiplying the results in 
volume with the corresponding price index. This is derived from the composite good price 
inflated by the appropriate taxes. As already mentioned, in the description of the government 
receipts, the indirect taxes are applied to all domestic consumption (intermediate and final), 
while the VAT tax is only imposed on the consumption and investment of the government and 
the households. For imports, the deflator equals the export price that the country of origin has 
set augmented by the import duties rate. 

The income flows as in the SAM framework of the GEM-E3 model are presented in detail 
below. The following indexes are used to denote, respectively, the economic agents and the 
factors of production: m H:  (households), F  (firms), G (government) and W (foreign); and 
n K:  (capital) and L  (labour). 

• Revenues of sectors from branches (FSB), which includes capital and labour income, 
government receipts (indirect taxes, subsidies and duties) and imports; government receipts are 
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denoted in detail (by category) within the variable FG (value). The revenues of the rest of the 
world from the branches, is of course equal to the net value of imports by branch. 

• Revenues of sectors coming from other sectors (FSS), which includes transfers, taxes, 
social benefits etc.; government receipts are further detailed within the variable FGS (in value); 

 The most important of these are: 

(i) the dividends the firms pay to the households (FHF,), which is proportional to the net 
revenues of the firms 

(ii)  the social benefits that the government pays to the households (FHG,), which depends 
on the number of employees by branch (N) and the rate of government payments to the 
unemployed (U) 

(iii)  the direct taxes on the firms (FGS,F) which is again proportional to the net revenues of 
the firms (now excluding dividends) and the households(FGS,H), where the tax is proportional to 
their disposable income, and  

(iv) the payments of individuals to the government for social security (FGS,SS).  

 

( )
( )

( )

F t venues Payments

F t N t U

F t venues Payments F

F t Y

F t Income t ValueofLabourService

HF Dividend F F

HG Benefits

GS F Direct F F F HF

GS H Direct H Disposable

GS SS individuals firms

= ⋅ −

= ⋅ + ⋅

= ⋅ − −

= ⋅

= +

∑∑

∑

∑∑

Re

Re, ,

, ,

,

 

• Revenues of sectors coming from factors (FSF), e.g. labour income of households; 

• Revenues of factors coming from sectors (FFS); this mainly concerns factor income from 
abroad; 

• Flows considered as revenues of branches (in fact product demand) coming from sectors 
are detailed in: final consumption of products by sector in value (FC), which includes exports, 
investment by product and sector in value (I) and stock variation in value (S); 

• Flows considered as revenues of factors coming from branches represent the value 
added, in value;  

• Flows from branches to branches are the values of intermediate consumption, as 
computed from the production behaviour of the firms; 

• Flows from factors to factors and from factors to branches are equal to zero. 

• The change in stocks is considered proportional to the volume of production for each 
branch. 
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The disposable income (YD) of households (domestic) is evaluated as their net earnings 
which comprises their receipts from branches, factors and sectors minus their payments to the 
sectors and the factors: 

 Y F F F F FD HBi
i

HF
n

HS
m

FH
n

SH
m

= + + − −∑ ∑ ∑ ∑ ∑  

• Income transfers and factor payments to or from abroad are set equal to exogenous 
variables 

• Factor payments to sectors are coming from value added and distributed according to an 
exogenous structure: 

• Firms disposable income (FD) is computed as the sum of their income flows coming 
from branches factors and sectors: 

 F F F FD FB
B

FF
F

FS= + +∑ ∑ ∑  

The gross profits (GP) are then computed by subtracting from the disposable income the 
payments of the firms to the households and the rest of the world, as follows 

 G F F FP D HF WF= − −  

Public budget results are summarised by computing total government revenues (GREV ) and 
total government expenditures (GEXP ) which includes final consumption and investment of the 
government. 

 G F F FREV GB
i

GF
i

GS
i

= + +∑ ∑ ∑  

 G F F F IEXP C FS SS= + + +∑ ∑ ∑ ∑  

GROSS SAVINGS AND THE CLOSURE RULE 

Gross savings (SA) by sector are then computed as the difference between revenues (which 
consists of the receipts from the branches plus income from factors and sectors) and 
expenditures (which include final consumption and transfers to factors and sectors): 

 SAm = Revenuesm –  Expendituresm, 

where m stands for all the economic agents. The lending capacity, i.e., the net monetary 
position, positive or negative surplus (SU) of the various sectors can be given by subtracting 
investment (I) and stock variation (S) from gross savings: 

m m m mSURPLUS SA I S= − −  

If a monetary/financial sub-model is incorporated in the model, this identity is the starting 
point of the monetary/financial sub-model which, in fact, expands, the way the identity is 
satisfied. 
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where  τs is the rate of social security contribution,  

 HTRA denote income transfers from government to households,  

  GCPR  is government consumption,  

 PGCPR  is the price of government consumption, and  

 SURPLUSh  ∀ =h G H F W, , ,  denote the surplus or deficit of the agents. 

( )

∑

∑
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⋅−−⋅⋅+=

PR
PRPRPR

i
PR

PRPRH

INVVPINVTINV

HCTPCLAVPLHTRASURPLUS τ1

   (34) 

where  TINV  investments financed by the households (dwellings),  

 HCT is total household consumption and INVV is value of investments. 

SURPLUS PK KAV PINV INVVF PR PR PR PR
PRPR

= ⋅ − ⋅∑∑    (35) 

SURPLUS PIMPO IMPO PEX EXPOTW PR
PR

PR PR
PR

PR= ⋅ − ⋅∑ ∑   (36) 

The model is constructed in such a way that the sum of the net surpluses is zero, in other 
words Walras’s law is satisfied. The definition of the prices ensures the consistency of the 
SAM, also in current currency, a fact, this is reflected in the above condition.9 

3.7. Market clearing conditions 

The equilibrium in the real part of the model is achieved simultaneously in the goods 
market and in the labour market. In the goods market a distinction is made between tradable 
and non tradable goods. For the tradable goods the equilibrium condition refers to the equality 
between the supply of the composite good, related to the Armington equation, and the domestic 
demand for the composite good. This equilibrium combined with the sales identity, guarantee 
that total resource and total use in value for each good are identical. For the non tradable, there 

                                                 
9 Other aspects of the SAM (e.g., how one can fill in the SAM scheme with actual statistical data) will be discussed in section 
5.4. 
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is no Armington assumption and the good is homogeneous. The equilibrium condition serves 
then to determine domestic production. 

THE GOODS’  MARKET 

The equilibrium of the goods markets states that production must equal demand at the branch 
level. In the primal version, this condition serves to compute the unit cost of production (that is 
of course related to the selling price). 

 XD XXD EXPOTPR PR PR= +  serving to compute PDPR    (37) 

In the dual version, as GEM-E3, this equation determines the total production, the dual 
price equation gives the production price and the equilibrium condition on the capital market 
determines the rate of return of capital. 

In the case of capital mobility across branches and/or countries the equilibrium condition 
relates to the total country or EU capital stock: producers demand an amount of capital (as 
derived from their cost-minimising behaviour), while the total stock of capital available is 
fixed within the time period either at country or EU level The equilibrium of the market 
defines then the average uniform rate of return of capital across the area of capital mobility.  

If capital is mobile across branches only then: 

 KAV Supply KAVPR
PR

_ =∑      (38) 

computing an average country-wide rate of return of capital, while if capital is perfectly mobile 
across countries as well: 

 KAV Supply KAVPR
PREU

_ = ∑∑     (39) 

where KAV Supply_ is the total capital stock available, fixed within the time period. 

THE LABOUR MARKET 

For the labour market it is postulated that wage flexibility ensures full employment. On the 
demand side we have the labour demanded by firms (as derived from their production 
behaviour), while on the supply side we have the total available time resources of the 
households minus the households’ desire for leisure (which is derived from the maximisation 
of their utility function). The equilibrium condition serves to compute the wage rate. In another 
version, wage rigidity can be assumed. 

The equilibrium condition serves to determine the wage rate. 

 LAV TOTTIME LJVPR
PR
∑ = −     (40) 

Being within a competitive equilibrium regime, the labour market is influenced by the 
slope of labour supply (as decided by households simultaneously with consumption and 
leisure). In this sense, the model assumes that the entire unemployment is voluntary. However, 
as the model assumes that, if the economic conditions are favourable, the households can 



 

 

- 121 - 

supply more labour force, a relative high real wage elasticity of labour supply can reflect 
unemployment that prevails in European countries.  

The labour supply is not totally elastic. This elasticity can be thought of, as representing the 
bargaining power of the already employed people. A high bargaining power would entail that 
an increase of the labour demand, would lead to an important increase in the wage rate, without 
any additional employment. The other extreme would be for the wage rate to remain constant 
and the employment to increase to cover the whole labour demand. The elasticity used in the 
model, falls between these two extremes.  

Another market that can be activated in the model is the pollution permits market, which 
will be described in the section on the environmental module. 

3.8. Model Calibration and Use 

The first step for running the calibration procedure of the GEM-E3 model, is to define 
values for the elasticities that determine all coefficients that do not correspond to directly 
observable variables and then to run the calibration procedure. This is written as a separate 
model and has a recursive structure. The base-year data used for calibration, correspond to 
monetary terms, therefore appropriate price indices are chosen to compute the corresponding 
volumes (quantities). 

Figure 3.6: Using the GEM-E3 model 

Elasticities (econometrically
estimated taken from the
literature)

Benchmark Equilibrium
Data Set

Static Calibration to reproduce observed
equilibrium
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Specification of counterfactual
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• Policy change

• Institutional regime

Counterfactual simulation

Policy appraisal, based on comparison
between reference and counterfactual
scenarios
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Once the model is calibrated, the next step is to define a baseline scenario that starts from 
1995, tries to reproduce as accurately as possible the last year for which observations are 
available (2000) and then gives some projections up to a future year which is the final year of 
the model simulation (usually 2030). This simulation defines the model baseline projection 
against which the policy simulations can be evaluated. 

The “counterfactual” equilibria can be computed by running the model under assumptions 
that diverge from those of the baseline. This corresponds to scenario building. In this case, a 
scenario is defined as a set of changes of exogenous variables, for example a change in the tax 
rates. Changes of institutional regimes, that are expected to occur in the future, may be 
reflected by changing values of the appropriate elasticities and other model parameters that 
allow structural shifts (e.g. market regime). These changes are imposed in the baseline scenario 
thereby modifying it. To perform a counterfactual simulation it is not necessary to re-calibrate 
the model. The exact process of calibrating and running GEM-E3 is illustrated in figure 3. 

POLICY EVALUATION OF CHANGES IN CONSUMERS’  WELFARE 

Every policy simulation can be characterised by the implied equivalent variation change. The 
equivalent variation of a scenario, giving the index A in a policy simulation and B in the 
reference situation, is given as: 

 ( ) ( ) ( ), , , , ,A B H A B B H B B B
t t t t t t t t t t tEV U U C U PCI PLJ C U PCI PLJ= −   (41) 

for every time period t, where HtC  is the expenditure function 

 ( )( ) ( )
B B

H BH BLt t
t t

PC PLJrr
C U

BH BL
=

ρ
 

Putting in base year prices and summing over the whole time period, the present value of 
the equivalent variation is obtained: 

 ( )
0

1

1

T
B B A B
t t t T

t

EV PC PLJ CH CH
=

 = ⋅∆ ⋅∆ − + ρ 
∑    (42) 

where  
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represent weighted changes in the consumer’s price index and the valuation of leisure (equal to 
net wage rate) between the reference and the counterfactual simulation. 
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4. Extensions of the GEM-E3 core models 

The above set equations represented the core of GEM-E3 model. The web-site in which 
various documents10 deal with the elaborated extensions of the GEM-E3 model, include the 
generalization of the household utility function to take into account of the geographic variety 
of consumer goods, the imperfect competition, the financial module taking into account the 
portfolio decisions, etc. Of these extensions we present here only the environmental module. In 
addition to that we also discuss the possibility of representing private consumption and income 
generation with multiple households. 

4.1. The environmental module 

The objective of the environment module is to represent the effect of different 
environmental policies (i) on the EU economy and (ii ) on the state of the environment. It 
concentrates on three important environmental problems: (i) global warming (ii ) problems 
related to the deposition of acidifying emissions and (iii ) ambient air quality linked to 
acidifying emissions and troposheric ozone concentration. Hence, we consider energy-related 
emissions of CO2, NOx, SO2, VOC and particulates, which are the main source of air pollution. 
NOx is almost exclusively generated by combustion process, whereas VOC’s are only partly 
generated by energy using activities (refineries, combustion of motor fuels; other important 
sources of VOC’s are the use of solvents in the metal industry and in different chemical 
products but are not considered here. For the problem of global warming, CO2 is responsible 
for 60% of the radiative forcing (IPCC, 1990). 

The environment module contains three components: 

1. a “behavioural” module, which represents the effects of different policy instruments on the 
behaviour of the economic agents (e.g. additive (end-of-pipe) and integrated (substitution) 
abatement)  

2. a “state of the environment” module, which uses all emission information and translates it 
into deposition, air-concentration and damage data. Depending on the version of the model, 
there is a feedback to the behaviour modules. 

3. a “policy-support component”, which includes representation of policy instruments related 
to environmental policy, such as taxation, tradable pollution permits and global constraint 
emissions; through policy instruments, emissions may influence on the behaviour of 
economic agents as formulated in the model. 

The emission factors and other data related to the pollutants are differentiated by country, 
sector, fuel, and type of durable good (e.g. cars, heating systems). The links to inputs to 
production or consumption only concern the use and conversion of energy. Non-energy sources 
of emissions, like refinery and other processing are treated separately. To be able to evaluate 
excise taxes on energy, the energy content of fuels and electricity is also considered. For 

                                                 
10 http://www.gem-e3.net/, with detailed description of the model at: http://www.gem-e3.net/download/GEMmodel.pdf, 
http://gem-e3.zew.de/, with reference manual of the model at: http://gem-e3.zew.de/geme3ref.pdf 
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private consumption the major links between energy inputs and consuming durable goods are 
specified as follows: cars and gasoline; heating systems and oil; coal, gas and electricity; 
electrical appliances and electricity. 

Figure 4.1: Flow chart of the environmental module 
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The explicit formulation of a cost function in the supply side of the GEM-E3 model eases 
the representation of the effects of emission or energy based environmental policy instruments 
on economic behaviour. The costs induced by the environmental policy instruments act on top 
of production input costs. Derived demand for intermediate goods is derived from the unit cost 
function that takes these environmental costs into account. Similarly the demand of households 
for consumption categories is derived from the expenditure function, which is derived from 
utility maximisation. Hence, the environment-related policy instruments convey effects on 
prices and volumes of equilibrium. 

The model takes into account the trans-boundary effects of emissions through transport 
coefficients, relating the emissions in one country to the deposition/concentration in other 
countries. For secondary pollutants as the tropospheric ozone, this formulation needs to 
consider the relation between the emission of primary pollutants (NOx emissions and VOC 
emissions for ozone) and the level of concentration of the secondary pollutants. 

Damage estimates are computed for each country and for the EU as a whole, making the 
distinction between global warming, health damages and others. The data for damages per unit 
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of emission, deposition or concentration and per person as well as their monetary valuation are 
based on the ExternE project of the EC Joule programme. 

4.1.1. Mechanisms of emission reduction 

There are three mechanisms that affect the level of actual emissions in the model: 

• End-of-pipe abatement (SO2, NOx, VOC and PM): end-of-pipe abatement technologies 
are formulated explicitly through abatement cost functions associated to production 
sectors. These cost functions differ across sectors, durable goods, and pollutants but not 
between countries. It is assumed that these abatement technologies are available all over 
Europe at uniform costs. The data come from bottom-up studies. As the cost of 
abatement is an increasing function of the degree of abatement, the sectors and countries 
differ according to the country- or sector-specific abatement efforts already assumed to 
be undertaken in the base year. 

• Substitution of fuels (all fuels): as the production of the sectors is specified through 
nested CES-functions, some degree of substitution between production factors is 
allowed. The demand for production inputs depends on relative factor prices and is 
therefore influenced by additional costs conveyed by environmental policy or constraints. 

• Production or demand restructuring: in a general equilibrium framework sectors and 
countries are interdependent. Environmental constraints imply additional costs that differ 
across sectors or countries as they have different possibilities for substitution or 
abatement. This situation may further imply restructuring, for example by inducing a 
decline of a sector or a shift of demand to some countries. 

4.1.2. The firm's behaviour 

The abatement activities are modelled such as to increase the user cost of the energy in the 
decision process of the firm. When an environmental tax is imposed it is paid to the 
government by the branch causing the pollution. This has the following implications for the 
energy price modelling: 

• the price of energy, inclusive abatement cost and taxes, is used in the decision by the firm 
on production factors; it represents the user's cost of energy; 

• the price of energy, exclusive taxes and abatement cost, is used to value the delivery of 
the energy sectors to the other sectors; 

• a price for the abatement cost per unit of energy has been defined, because the abatement 
cost is defined in constant price. 

In modelling the abatement activities, the instalment of abatement technologies is treated as 
an input for the firms and not as an investment. This formulation is simple and the abatement 
costs do not increase directly GDP as it would if modelled as investment. For the latter purpose 
a depreciation and replacement mechanism would have to be introduced. The input demand for 
abatement is modelled in the following way: 

• the demand for abatement inputs is allocated to the delivery sectors through fixed 
coefficients; 
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• the total delivery for abatement is added to the intermediate demand and these inputs are 
valued as the other intermediate deliveries. 

4.1.3. The consumer's behaviour 

The consumer's side modelling is rather similar to the one used for the firm, with one 
difference regarding the payment of the environmental taxes to the government. While in case 
of firms, the environmental taxes are paid by the branch causing the pollution, for the 
households the tax is paid by the branch delivering the product causing pollution to the 
household. The environmental tax is therefore treated as the other indirect taxes paid by 
households. This has the following implications for the modelling of the price equations: 

• the price of energy in the consumer allocation decision, includes the abatement cost and 
the tax; it is modelled as a user's cost of energy; 

• the price of delivery of energy to the household includes the pollution  and/or energy tax; 

• the abatement cost-price is defined. 

The abatement expenditures of households are modelled as in the case of the production 
sectors (allocation to branches through fixed coefficient and valued as the other deliveries). 
They are not added to the private consumption and do not enter directly in the allocation of 
total consumption by categories, only indirectly through the user’s cost of durables as they are 
considered as a 'linked' consumption (to energy) and are added directly to the consumption by 
goods of production (i.e. the deliveries by branches to the households). 

4.1.4. End-of-pipe abatement costs 

The average abatement cost reflects annualised costs and the value for the parameters in the 
equation are based on the RAINS database. The cost functions that were derived from this data 
are represented by the marginal abatement cost function. 

 mc a ap s
ab

p s p s p s
p s~ ( ) ( ), , , ,

,= ⋅ −β γ1 , 

where 

 ap s, : degree of abatement of pollutant p  of sector s , 

 β γp s p s, ,, : estimated parameters ( )β γp s p s, ,,≥ ≤0 0 . 

By integrating the above formula one obtains the total cost curve per ton unabated emission 
assuming constant returns to scale: 
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The degree of abatement ap s,  can be exogenous or determined through the implicit 

equation, imposing equality between marginal cost of abatement and tax (see bellow). 

The abatement cost function of sector s  for pollutant p, given the output Xs  of this sector 
and the degree of abatement ap s,  is then 
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 ( ) ( ) ( ), , , , , , , , , ,
ab ab pot ab
p s p s p s p s p s p s p i s i s i s s

i

C c a EM c a ef X= ⋅ = ⋅ ⋅µ ⋅α ⋅∑% % % , 

where  

 efp i s, , : emission factor for pollutant p of input i  in sector s , 

 µ i s, : share of energetic use of demand of input i . 

These costs indicate an additional intermediate demand ABIp i s

~
, , ; the allocation of these 

costs to the delivering sectors is based on the assumption of fixed coefficients. The main 
deliveries for abatement technologies are investment goods, energy (due to a decrease in 
efficiency) and services (maintenance). 

ABI tab Cp i s p i s p s
ab

~ ~
, , , , ,= ⋅ , 

where  

 tabp i s, , :share of deliveries of sector i for abatement of pollutant p  in sector s. 

The price index of abatement per unit of energy by branch is determined by the prices of 
the required intermediate inputs. 

 ( )∑ ⋅+⋅=
i

isisip
ab

sp PYttabPC ,,,, 1 , 

where ti s,  is the indirect tax rate. 

This allows for calculating the average abatement cost per unit of energy by branch in 
value, corresponding to the abatement level: 
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This cost will be used to compute the user cost of energy which the firms and households 
use in their decision process regarding energy inputs. For the variables 

~
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corresponding values Cp s
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,  and ABIp i s, ,  are evaluated analogously. 

Including the expenditure for abatement in the computation of intermediate demand one 
obtains the following input-output coefficients ~
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where α i s,  is the I-O coefficient without environmental policy impacts. 

If an environmental policy is linked to taxes or permits, there are not only costs for 
emission reduction but for the actual emission caused as well: 

 ( ) ( ) ( )C c a a EM c a a ef Xp s
ef

p s
ef

p s p s p s
pot

p s
ef

p s p s p i s i s i s s
i

, , , , , , , , , , , ,( ) ( )= ⋅ − ⋅ = ⋅ − ⋅ ⋅ ⋅ ⋅∑1 1 µ α , 

The unit cost of an actual emitted unit of a pollutant ( )c ap s
ef

p s, ,  depends on ap s,  and the type 
of policy instrument imposed. While an emission standard gives no extra cost to the remaining 
emissions ( ( )c ap s

ef
p s, , = 0), emission taxes and permits lead to a ( )c ap s

ef
p s, ,  greater than zero. 
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The total costs of emission of pollutant p emitted by sector s are thus 

 C C Cp s
em

p s
ab

p s
ef

, , ,= +  

The end-of-pipe abatement costs of households are specified in the same way except that 
for each durable a separate abatement cost function is specified. The cost prices of the inputs 
are the prices of the deliveries to household (by consumption categories) instead of the input 
prices of the firms. Using a matrix to transform abatement expenditure of households into 
consumption demand by goods of production closes the loop induced by the modelling of 
explicit abatement measures. 

4.1.5. User cost of energy 

In the model emissions are generated by energy consumption only. Hence, the user cost 
becomes a function of the price of the energy input and of the additional costs per unit of 
energy linked to emission or the energy content, i.e. the tax a firm has to pay for its actual 
emissions (and/or the energy) and the costs of abatement depending on the rate of abatement 
and the baseline emissions (and/or energy) coefficient. Introducing a new variable for the user 
cost, PFUi s, , its equations is, for each branch s  and each energy input i ,  

( ) ( ) ( ) ( )( ), , , , , , , , , , ,1 1en ef ab
i s i s i s i i s p s p s p s p s p s p i s i s

p

PFU t PY c ec a c a c a ef = + ⋅ + ⋅ ⋅χ + − ⋅ + ⋅ ⋅µ ∑ , 

where 

 cs
en : tax on energy, 

 eci  : coefficient for energy content of energy input i (equal across sectors), 

 χ i s,  : share of energy related use of input i  in sector s . 

This user cost of the energy product influences the choice between the energy products and 
between aggregate inputs (as it is used in the price-function of the energy aggregate Fs ). 

The price of the energy aggregate PFs  is then  

 PF PFUs i s i s
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where 

 δ i :  distribution parameter of energy component l 

 σ F :  elasticity of substitution 

 PFU PFU
g ti

i

i

= ( ) : price-diminishing technical progress. 

The input price of electricity is affected only because of the energy tax: 

 ( )PEL PELU t PY c ecs s El s El s
en

El El s= = + ⋅ + ⋅ ⋅1 , ,χ . 

Electricity and the fuels aggregate are components of the unit cost function PDs . Hence, a 
more restrictive environmental policy, which increases PFUi s,  and PFs  or PELs , will cause an 
increase in the unit cost and consequently, in the deflator of total demand, PYs.  
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The price ( )1+ ⋅t PYi s i,  remains the delivery price of energy by the energy branches, for the 
valuation of Fi s, . This implies that the emission generating branch pays the environmental tax 
receipts, if there are any, to the government and not the branch delivering the energy product, 
as is the case for the other production taxes. The environmental taxes are clearly attributed to 
the branch generating the pollution. 

In the case of the households, in the absence of any environmental constraint, the user cost 
price of durable good (pdurj

) is specified similarly as follows: 

 ( )( )p p r t r pdur j j j
prop

l j l j
l

j
= + + ⋅ ⋅ + + ⋅∑δ ϑ1 , ,

~ , 

where  

 r  :  interest rate, 

 δ j  :  depreciation rate of durable good j , 

 t j
prop :  property taxes for durable j , 

 ϑ l j, :  minimum consumption of non-durable l  that is linked to the use of durablej  

 ~
,pl j :  price of linked non-durable good l  including value added tax. 

If emission costs for households are imposed, the user cost-price of the durable goods is 
increased by the costs of abatement as well as by the costs for the actual emissions: 

 ( ) ( ) ( )[ ]( )~
, , , , , , , , , ,p p c ec a c a a c a efl j l

en
l p j p j

ef
p j p j p j

ab
p j p l j l j

p

= + ⋅ + − ⋅ + ⋅ ⋅ ⋅∑ 1 µ . 

4.1.6. Abatement decision 

Based on the above specification, the profit maximising firms decide whether to abate or 
pay taxes, where the profit function takes the following form: 

 G PX X VCs s s s= ⋅ −  

where VCs  as the variable cost function. 

To ease the notation we define an input pricePYi
act  that includes emission and/or energy-

taxes as well as indirect taxes. 

 ( ) ( ) ( ) ( )( ), , , , , , , , ,1 1act en ab ef
i i i s i i s p i s i s p s p s p s p s p s

p

PY t PY c ec ef c a c a a = + ⋅ + ⋅ ⋅χ + ⋅µ ⋅ + ⋅ −
 ∑  

The variable cost function VCs  is then given by 

 VC v PYs i i
act

i

n

= ⋅
=

+

∑
1

2

, 

where 

 vi s, : intermediate demand of input i  by sector s . 

As the indices n + 1 and n + 2 denote labour and capital, PYn
act
+1  is equal to PL  and PYn

act
+2  

is equal toPKpost . The notification of intervals in the following equations is suppressed. 
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The first order conditions of the profit maximizing firm serve to determine supply and the 
degree of abatement. For the description of the environmental module only the latter is of 
interest. As the abatement costs are not distinguished by inputs, the formula for the optimal 
degree of abatement of pollutant p  can be reduced to the following expression: 
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Hence, given an exogenous emission tax rate of t p s
env
,  (c tp s

ef
p s
env

, ,=  and mcp s
ef
, = 0 ) the (cost 

minimising) degree of abatement ap s,  can be derived (numerically) by the following implicit 

equation:  
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G
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The abatement decision of households can be derived similarly. To reduce the complexity 
of the analytical solution, it is assumed that only the fixed part of the linked non-durable 
demand is affected by the end-of-pipe emission reduction measures. Hence, the degree of 
abatement is independent of the prices and quantities of the linked consumption.  

The derivation of the cost minimising degree of abatement can be reduced according to the 
following expressions: 
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Under an exogenous emission tax tp j
env
,  (c tp j

ef
p j
env

, ,=  and mcp j
ef

, = 0), the optimal degree of 

abatement ap j,  is given by the following implicit equation: 
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4.1.7. The ‘State of the Environment’ module 

The ‘state of the environment’ module computes the emissions, their transportation over 
different EU countries and the monetary evaluation of the damages caused by the emissions 
and depositions. The analysis is conducted on a marginal basis, i.e. it assesses the incremental 
effects and costs compared to a reference situation. It proceeds in three consecutive steps : 

1. the computation of emissions of air pollutants from the different economic activities, 
through the use of emission factors specific to these activities; 

2. the determination of pollutants’ transformation and transportation between countries, i.e. 
the trans-boundary effect of emissions;  

3. the assessment of the value of the environmental damages caused by the incremental 
pollution compared to a reference situation in monetary terms. 

ad 1. Emission calculations start from the potential emission EMp s
pot
,  a sector s produces before 

end-of-pipe measures have been undertaken. These emissions are linked to the endogenous 
output, the price-dependent (endogenous) input coefficient, the exogenous emission factor and 
the share of the energetic use of the input demand. 

 EM ef Xp s
pot

p i s i s i s s
i

, , , , ,= ⋅ ⋅ ⋅∑ µ α  i I∈ , 

where 

 efp i s, , : emission factor for pollutant p using input i  in the production of sector s , 

  efp i s, , = 0 for i ≠emission causing energy input,  

 µ i s,  : share of energetic use of demand of input i  in sector s , 

 α i s sX, ⋅ : intermediate demand of input i  for output Xs  in sector s , 

 I  : set of inputs. 

For the households we write analogously: 

 EMH ef zp j
pot

p i j
h

i j
h

i j j
fix

i
, , , , ,= ⋅ ⋅ ⋅∑ µ ϑ i I j∈ , 

where 

efp i j
h
, ,  : emission factor for pollutant p using linked non-durable good i  to operate 

durable good j , efp i j
h
, , = 0  for i ≠  emission causing energy input, 

µ i j
h
,  : share of energetic use of demand of linked non-durable good i  to operate durable 

good j , 

ϑ i j j
fixz, ⋅ : fixed part of the demand for linked non-durable good i  induced by use of 

durable good j . 

i I j∈  : set of non-durable goods linked to the use of durable good j . 

Installing abatement technologies reduces total emissions. With respect to the degree of 
abatement specified above one obtains the abated emissions EMp s

ab
,  or EMHp j

ab
, .  

 EM a EMp s
ab

p s p s
pot

, , ,= ⋅  
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 EMH a EMHp j
ab

p j
h

p j
pot

, , ,= ⋅ . 

The remaining actual emissions (EMp s
ef
,  or EMHp j

ef
, ) are then given as residual: 

( )EM EM EM a EMp s
ef

p s
pot

p s
ab

p s p s
pot

, , , , ,= − = − ⋅1  

( )EMH EMH EMH a EMHp j
ef

p j
pot

p j
ab

p j p j
pot

, , , , ,= − = − ⋅1  

The actual emissions of primary pollutants are thus related to the use of energy sources, the 
rate of abatement, the share of energy use of the demand of input i  and the baseline emission 
coefficient of a pollutant. Hence, for every pollutant, sector and fuel, a reference baseline 
emission factor is needed, relating the baseline emissions before abatement to the energy use. 
The emission coefficient must be related to the energy consumption in monetary term. A 
conversion factor (from energy unit to monetary unit) is derived from the base price of energy. 
Moreover, at the aggregation level of GEM-E3, energy consumption by branch includes both 
energy causing and not causing emissions, therefore a parameter reflecting the fraction the 
energy used in its own production (parameter µ) is also computed in the data calibration.  

ad 2. This step establishes the link between a change in emissions and the resulting change in 
concentration levels of primary and secondary pollutants. The model accounts for the transport 
of SO2, NOx, VOC and particulates emissions between countries (or grids). In the case of 
tropospheric ozone (a secondary pollutant), besides the trans-boundary aspect, the relation 
between VOC and NOx emissions, the two ozone precursors, and the level of ozone 
concentration has also to be considered. 

The concentration/deposition (IM) at time t of a pollutant ip in a grid g is, in theory, a 
function of the total anthropogenic emissions before time t, some background concentration 
(BIM) in every country, and other parameters such as meteorological conditions, as derived in 
models of atmospheric dispersion and of chemical reactions of pollutants: 

 IM (t) im ( EM (t t), BIM (t),..  p, c) ,ip,g ip,g p,c ip,g≡ ′ ≤ ∀  

For the model, the equations are made static and the problem is made linear by transfer 
coefficients TPC. They reflect the effect the emitted pollutants in the different countries have 
on the deposition/concentration of a pollutant ip in a specific grid, such as to measure the 
incremental deposition/concentration, compared to a reference situation: 

 ∆ ∆IM = TPC EMip,g
p c

p,ip p,c[ ]  ,g,c∑∑ ⋅  

where TPC[g,c] is an element of the transport matrix TPC with dimension GxC. In the models 
the grids considered are the countries and deposition/concentration levels are national 
averages. 

As far as global warming is concerned, the global atmospheric concentration matters only, 
which is only a function of the total anthropogenic emission of greenhouse gases: 

 ∆ ∆ ∆CC (t)= CC (t)= cc ( TAEM (t t).. p) .ip,g ip ip p ′ ≤ ∀  
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and then, the concentration of GHG's (greenhouse gases) must be translated into radiative 
forcing R and global temperature increase ∆T, 

R(t)= f ( CC (t)  ip) ,

T(t)= f (R(t)) .

1 ip

2

∆

∆

∀
 

ad 3. The approach followed in damage evaluation is entirely based on the framework and data 
derived in the ExternE project, though at a much more aggregated level. Following the 
‘damage or dose-response function approach’, the incremental physical damage DAM per 
country is given as a function of the change in deposition/concentration, 

 ACID,d
c

ACID,d
c

ip,cDAM (t) dam ( IM (t),..  ip) ,∆ ∆= ∀  

In the case of global warming, damage is a function of the temperature rise, 

 GLOBWAR,d
c

GLOBWAR,d
cDAM (t) dam ( T(t),.. )  .∆ ∆=  

The damages categories considered in the model are  

• damage to public health (acute morbidity and mortality, chronic morbidity, but no 
occupational health effect) 

• global warming 

• damage to the territorial ecosystem (agriculture and forests) and to materials. 

For the monetary valuation of the physical damage, a valuation function VAL is used: 

 o
c

o
c

o,d
cVAL (t) val ( DAM (t),.. d) .= ∀∆  

The economic valuation of the damage should be based on the willingness-to-pay or 
willingness to accept concept. For market-goods, the valuation can be performed using the 
market price. When impacts occur in non-market goods, three broad approaches have been 
developed to value the damages. The first one, the contingent valuation approach, involves 
asking people open- or closed-ended questions for their willingness-to-pay in response to 
hypothetical scenarios. The second one, the hedonic price method, is an indirect approach, 
which seeks to uncover values for the non-marketed goods by examining market or other types 
of behaviour that are related to the environment as substitutes or complements. The last one, the 
travel cost method, particularly useful for valuing recreational impacts, determine the WTP 
through the expenditure on e.g. the recreational impacts.  

4.1.8. Instruments and policy design 

While standards can be imposed on emissions or energy use, taxes and permits can be 
based on emissions, energy content, depositions, and damage. There is a wide range of tax 
proposals concerning the tax base to be used. This includes pure energy taxes, pure emission 
taxes, and mixtures of both with varying weights of the two. 

The permit designs suggested by environmental economists reach from undifferentiated 
emission permits to regionally differentiated emission permits. GEM-E3 is able to analyse 
undifferentiated emission permits and ambient discharge permits. The latter consider the 
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source and the sink of an emission geographically (on a country level). It is also intended to 
analyse permit systems that are based on the damage caused in the countries. This application 
could give a rough estimation of the economic effects and the financial transfers due to an EU-
wide implementation of the polluter-pays-principle. 

Using market-based policy instrument requires a range of information about how these 
instruments should be implemented in practice. This includes e.g. the purpose of tax receipts or 
the principle how permits should be allocated initially. 

Principally there are many ways of refunding the receipts raised by emission and/or energy 
taxes. Not all of them are reasonable and only a few are in the current political discussion. In 
GEM-E3 the following refunding mechanisms were introduced and tested: 

• government keeps the tax receipts and reduces public deficit (e.g. in order to fulfil the 
Maastricht criteria) 

• government uses receipts for public consumption and investment (e.g. expecting to 
reduce unemployment) 

• lump sum transfer to households 

• tax reform 1: social security rates are reduced according to the tax receipts (double divi-
dend analysis) 

• tax reform 2: taxes on firms and capital income are lowered according to the tax receipts. 

For the permit markets a variety of designs is possible. The initial allocation of permits can 
be based on the grandfathering principle or on auctioneering. In a grandfathered allocation per-
mits are given free of charge to the polluters according to their actual emissions or a compa-
rable rule. If permits are sold by auction, an additional income for the government is raised, for 
which again an appropriate refunding mechanism has to be chosen (not interesting at this level 
of analysis because it is equivalent to a tax). Other aspects, like the duration of permits (limited 
or unlimited) etc., are supported by the current version of the model. 

GEM-E3 supports the simulation of market-based instruments (permits and taxes) on a 
national and/or on the multinational level. The multinational level can cover a selection of 
some countries only or the entire EU-15. This feature can be used for permit markets as well. 
They can be installed on a national and/or a multinational level where permits are traded 
between sectors and countries. All kinds of exemptions can be simulated, i.e. taxes and permits 
can be introduced for some sectors or the households only. 

The GEM-E3 model’s environmental module has been implemented in a single country 
model developed for Hungary (see Revesz, T.- Zalai, E. – Pataki, A. [1999] ). In this model 
(called HUGE i.e. HUngarian General Equilibrium model) we developed a generalized 
(nested-CES-type) welfare function was used, in which environmental quality enters also as a 
third component, besides the consumption and leisure. In this model it is also possible to select 
from among several closure options depending on the possible environmental policy concern, 
e.g. endogenous emission tax rates, several mechanisms for recycling environmental tax 
revenues. 
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4.2. Multiple households 

Rising inequality, deprivation, and poverty are direct concern of the economic policy. In 
addition, policy goals are influenced by indirect effects of differential development of the 
individual social groups. Since the savings rate and consumption pattern of the strata are quite 
different, demand for the products and hence employment of the individual industries depend 
very much on the within-household sector income distribution.  Similarly, shifts within the 
household sector influence other macroeconomic aggregates too, like import or investment.  

Representing multiple households and their relationships with the labour market and 
income distribution is a common practice in CGE models. Several applied modelling 
experiences can be found in the literature, in particular within the stream of CGE models used 
for policy analysis in the World Bank (see, for example, Harrison et al [2002], Kalb [2000], 
Shoven, J. B. and J. Whalley [1998]). Among the project participants, P. Capros, D. Van 
Regemorter and Zalai and Révész have also conducted, separately and collectively, several 
successful CGE modelling exercises with multiple households in the past. 

However, including more than one representative household into a CGE-model arises 
various conceptual and technical problems. 

In the models of multiple households each class of them receive labour and capital income 
from each sector according to specific distribution schemes. Household classes also receive 
government transfers, pay income taxes. Their savings can be represented either as a fixed 
proportion of their after-tax income, or determined together with their consumption of goods 
and services based on the usual assumption of utility maximization subject to their budget 
constraints, each of the household classes having its own preferences.  

The construction of the household accounts usually proceeds as follows. First a wage and 
salary distribution matrix is created by combining industry-occupation data with average 
salaries, and then mapping the earnings by individuals according to their occupations to 
households. Capital-related income by industry is aggregated into an economy-wide enterprise 
account and then mapped to household classes according to data derived from individual 
income tax returns and/or household budget surveys (HBS)11. The statistical data on individual 
income tax returns forms the basis also for calibrating household related income taxes and 
government transfers. Personal consumption is disaggregated according to various household 
classes using data from the Consumer Expenditure Survey. Household savings can be 
determined as the residual income (income-expenditure) or its estimate can be based on the 
data of specific sociological surveys on savings behaviour and its amount.12 

The consumption behaviour of each household class can be modelled by using the same 
type of expenditure system as in the standard single household GEM-E3 models, but their 
coefficients will of course differ from one household class to another, reflecting differences in 
tastes and habits. As a matter of fact, empirical research shows that preferences differ across 

                                                 
11 In some countries this aggregation method can be rather problematic when certain household types (e.g. farmers) capital 
endowments concentrate on specific sectors (agriculture) 
12 The training document MultHh-Hu05.doc provides an example how HBS data can be used to disgregate the household 
related data of the GEM-E3 model. 
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household classes according to differences in income levels, occupational, educational 
positions and urban/rural residence of the classes. The time series of the EU Consumer 
Expenditure Surveys provide adequate information basis for the disaggregated representation 
of consumer expenditure systems in the model. 

The choice of the household classes to represent in the model is a practical issue that 
depends first of all on available statistical data. The choice can be based on the cross section 
between three sets of statistical information: the consumer expenditure surveys, the industry-
occupation data and the income tax return statistics. Pure income classes are not desirable, 
because empirical research shows that income is not the only, not even the dominant factor in 
explaining the differences in the consumer expenditure systems of various household groups. A 
more common factor that explains these differences is the occupational-educational position of 
the family head. On that basis, cross mappings with labour skills and tax income categories is 
also easier to define. The occupational-educational distribution of households is strongly 
correlated with income distribution. Unfortunately, in some countries - because of the poor 
availability of statistical data - it is not possible to differentiate classes according to urban-rural 
criteria. 

An advantage of using the occupational-educational dimension for definition of various 
household classes is that it makes it possible to represent societal and demographic evolutions 
in the long term scenarios prepared for the model. As a matter of fact, a multitude of factors 
that are not necessarily resulting from changes in the economic indicators simulated with the 
model may explain the evolution in the future of the number of households per class as defined 
according to the occupational-educational dimension. There have been attempts in the 
literature to link such an evolution with the projections of economic growth, income and the 
labour market, however, there is poor evidence about their direct causal (functional) 
relationships that would allow the modellers to include such a mechanism in the model. 

Therefore, it is advisable that in the forecast of the number of households per class be 
exogenous in the model, and be quantified as part of the construction of the exogenous 
assumptions of scenarios. Evidently, to build such a scenario, one should implicitly relate the 
evolution of classes with other exogenous assumptions, such as population growth and regional 
welfare convergence trends. Of course, one may vary these assumptions across scenarios. 

While the number of households per class is exogenously determined in the model, all 
other changes related to their behaviour shall be endogenously determined. For example, 
linkages between consumer choices per class, income per class in relation to the labour 
markets, tax-income policy and industry-occupational levels per class will all be endogenous 
variables in the model. 

Expenditures and labour supply in each class of households should be modelled separately, 
using the type of nested linear expenditure system typically applied in the GEM-E3 models. 
Labour per class and capital can be assumed to be perfectly mobile across sectors, but 
imperfectly mobile across countries. Within each country the labour market must clear 
according to an imperfect competition mechanism (see for example the labour market clearing 
in the Worldscan model which is inspired from the research work of G. Pissarides), through a 
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nested scheme involving clearing for labour demand, supply and salaries at each class level and 
globally at each country's economy. 

4.3.  Illustrative programs 

The special programs accompanying this training material contain illustrations for 
household disaggregation possibilities and socio-economic group-formation criteria. The 
MultHhMod-MENG.doc file describes the MULTHH.GMS program, a CGE model calibrated 
for Hungarian data for 1998 distinguishing 3 sectors and 10 household groups. The 
accumulation capacity of the various household groups differ much are more than their 
consumption levels and patterns, therefore only dynamic models can illustrate properly the 
different impacts of economic policy measures on the prospects of the individual social groups. 
To render this possible we introduced into our model group specific human capital (which also 
can be accumulated by the “productive” part of the personal consumption), capital incomes 
(imputed rent income and net interest) and group specific financial wealth. Consumption of 
foreign tourists is also treated separately in our model, since it does not belong to any resident 
household groups. To make the model more flexible and realistic we also introduced a CET-
labour supply function, and alternative closures rules. 
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5. Statistical background of the GEM-E3 model 

5.1. The primary data requirements of the model  

To calibrate the parameters13 of the GEM-E3 model, one has to get benchmark year data on 
the production technology (incl. emission of air pollutants), consumer preferences (patterns), 
prices, income distribution, savings and final demands. Concretely, these data can be derived 
from the following datasets, which list shows the primary data requirements of the model:  

1.  ‘Symmetric’ I-O table at basic prices and supplementary tables (import matrix if in the 
original table import and domestic flows are not added together, matrix of indirect taxes and 
subsidies, e.g. of the import duties) 

2.  Import duty matrix (import duties by commodity groups and supplier countries). It is 
not always necessary (the vector break-down by commodity groups suffices), since it is 
assumed that all duties are imposed on the imports from the ROW (within the EU there are no 
such duties), but when some countries joined the EU since the benchmark year (see the 
accession countries in 2004 and 2007) it can be very useful to separate out those duties which 
were applied to the trade with them (and then it has to be decided whether the model is to be 
run so as if these countries had been already members in the benchmark year). 

3. Foreign trade matrices (exports and imports by commodity groups and partner 
countries). Usually the rows represent the commodity groups and columns the countries (or 
group of countries). For the model each of the 27 EU-countries (although Belgium and 
Luxembourg need not be split) have to be treated separately, while the other countries need not 
be broken down, so they will form the "Rest of the World" in the model. The bilateral import 
matrix is similar but by definition it refers to the import flows. 

4.  Consumption transformation matrix (consumption by categories and branch of origin, 
the last row and column show the VAT and consumption taxes by category and branch 
respectively). Therefore the consumption matrix translates the demand per consumer categories 
into deliveries by branch. 

 5.  Investment transformation matrices by institutional sectors (for each institutional sector 
the matrix shows the investment by branch of origin and by investing /destination/ branch). 
Investment Matrix. Thefore the investment matrix translates the demand of investment goods 
by branches into deliveries by branches. The matrix, which has been constructed to portray the 
investment transactions between sectors of the United Kingdom Economy, is showed in 
Appendix 5. 

6.  Income distribution (national accounts) data, more specifically: 

6/a: by branches: output, value added and its primary distribution /wages, social security, 
production taxes, production subsidies, operating surlus (preferably the amortization too)  

6/b: by institutional sectors: income-expenditure balance sheets (incl. saving and invest-
ment). 

                                                 
13 The list and meaning of these parameters can be found in the Para-dyn.prn file. 
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7. Environmental data. The environmental data needed for GEM-E3 cover four types of 
data: 

7/a: emission coefficient per type of activity for the pollutants in the model, CO2, SO2, 
NOx, VOC and PM (suspended particulates) 

7/b: marginal abatement cost functions (including the parameters for the input structures) 
for the pollutants SO2, NOx, VOC and PM 

7/c: pollutants’ transformation and transportation between countries coefficients to arrive at 
air concentration and deposition 

7/d: damage per pollutant and its monetary valuation  

Since there are no end-of-pipe-technologies for reducing greenhouse gases at reasonable 
costs, the end-of-pipe abatement technologies considered in GEM-E3 are limited to the 
primary pollutants SO2, NOx, VOC and particulates. 

In GEM-E3 we distinguish twenty emission relevant sectors (firms) or uses (households): 
the 18 branches, the heating systems of households and private traffic. A distinction has been 
made between emissions linked to production and emission linked to energy consumption with 
the same specification of the cost function. 

8.  Auxiliary data (factor endowment data, interest rates, inflation rate in the base year, 
demographic data, foreign tourists’ domestic consumption expenditure by supplier branches 
and the related VAT and consumption tax, energy balance sheets, energy taxes, stocks of 
energy consuming durable goods, share of gasoline and gas-oil within motor-fuel demand, 
share of non-energetic use of the energy carriers, etc.) 

9. Data for special extensions of the model (multiple households, financial module, 
imperfect competition, etc.) 

The GEM-E3 model needs the above data in the following break-downs: 

The GEM-E3 model identifies the following products/sectors: 

  

NO. Sector Name NACE-CLIO R25 aggregation  

(see the names in Appendix 1) 

1 Agriculture 010 Agriculture, forestry and fishery 
products 

2 Coal of 060: 
031 Coal and coal briquettes 
033 Lignite and lignite briquettes 
050 Products of coking 

3 Crude oil and refined oil products of 060: 
071 Crude petroleum 
073 Refined petroleum products 

4 Natural gas of 060: 
075 Natural gas 
098 Manufactured gases 
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5 Electric Power of 060: 
097 Electric Power 
110 Nuclear fuels 
099 Steam, hot water, compressed air 

6 Ferrous and non-ferrous ore and metals 130 

7 Chemical products 170 

8 Other energy intensive industries 150 Non-metallic mineral products 

190 Metal products except machinery & 
transp  

470 Paper and printing products 

9 Electrical goods 250 

10 Transport equipment 280 

11 Other equipment goods 210 Agricultural and industrial machinery 

230 Office and data processing machines, 
etc. 

12 Consumer goods industries 360 Food, beverages, tobacco 

420 Textile & clothing, leather, footwear 

480 Other manufacturing products 

490 Rubber & plastic products 

13 Building & construction 530 

14 Telecommunication services 670 

15 Transport 610 Inland transport services 

630 Maritime & air transport services 

650 Auxiliary transport services 

16 Credit & insurance 690 

17 Other market services 560 Recovery, repair services, wholesale & 
retail trade 

590 Lodging and catering services 

740 Other market services 

18 Non-market services 860 

 

The classification of the consumption of households by purpose (‘wants’ or categories) is 
listed in the table bellow (ND stands for non durables and D for durables): 
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N
o  

Purpose Name  Status EUROSTAT code 

1
  

Food, Beverages and Tobacco  N
D  

1  

2
  

Clothing and Footwear  N
D  

2  

3
  

Housing and Water  N
D  

31  

4
  

Fuels and Power  N
D  

32  

5
  

Housing Furniture and Operation  N
D  

41+42+44+45
+46  

6
  

Heating and Cooking Appliances  D  43  

7
  

Medical Care and Health Expenses  N
D  

5  

8
  

Transport Equipment  D  61  

9
  

Operation of Transport Equipment  N
D  

62  

1
0  

Purchased Transport  N
D  

63  

1
1  

Telecommunication services  N
D  

64  

1
2  

Recreation, Entertainment, Culture, 
etc.  

N
D  

7  

1
3  

Other Services  N
D  

8  

 

It should be added that the above list shows the ideal situation. When some of the above 
datasets or details are missing, one has to apply certain (proportionality, etc.) assumptions. In 
case of inconsistencies certain balancing methods (e.g. RAS) can be applied. In case of 
different classifications one has to apply certain transformation techniques. 

5.2. Sources of the primary data 

The sources of the above listed primary data categories are the following:  
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• I-O tables (usually at basic prices) and in many countries the import matrices too (at c.i.f. 
prices) are published by the CSOs (Central Statistical Office of the given country) or by the 
Eurostat (for the EU15). 

 • Indirect tax and subsidy matrices are either supplied (as supplementary tables) by the CSO or 
have to be estimated (e.g. by RAS) from margins obtained from the CSO and the Budget 
Reports (see the Hungarian example later). If an import duty matrix is to be estimated, one can 
use the www.wto.com web-site’s useful material for the the effective duty rates by countries 
and commodities.  

• Trade Data of bilateral trade flows: for the EU15 they can be found in the COMEXT. For 
other countries, reference data for estimating trade flows can be found in the GTAP data base 
(which we obtained for 1995 and 1997). For example, the GTAP project’s published 
(simplified) export and import matrices for 1997 show the trade flows by 56 commodity-
groups and for 57 countries or regions.  

Alternatively, one can use the annual Yearbook for Foreign Trade Statistics publications or 
electronic trade databases of the individual countries. In the foreign balance of payments 
several trade related data can be found (including for the service trade) buti n many cases they 
are somewhat different (due to methodological and practical reasons) from the NA data. 

• Consumption transformation matrix is estimated by using available information on the 
structures in the national accounts and consumption statistics. When consumption statistics is 
not available or its break-down by categories is not suitable for the margin of the consumption 
matrix, data (in fact for 2000) can be found in the OECD/Eurostat’s Purchasing Power Parity 
project’s background worksheets.  

• Tourist expenditures: There are country specific surveys for some years, or NA consistent 
“satellite accounts”. However, their commodity break-down is seldom satisfactory or reliable. 
Since indirect tax content (especially by branch break-down) is usually not published, one has 
to estimate them. The commodity structure of the tourist consumption has to be estimated only 
if the national consumption pattern has to be estimated, or when only HBS data (which 
correspond to the national consumption concept) are available for the estimation of the 
domestic consumption structure. However, in the GEM-E3 model, for the time being the 
domestic consumptions are dealt with, so it is not a present problem. 

• Investment transformation matrix is estimated by using available information on the 
structures in the investment statistics, and the national accounts and I-O tables. 

• National accounts by sector and by branch (for the EU15 from Cronos of Eurostat), that - 
after aggregation and supplemented by the Income distribution data (State Budget Reports, 
National Accounts, Foreign Balance of Payments) - can be used to complete the income 
distribution part of the Social Accounting Matrix by country. 



 

 

- 143 - 

• Emission statistics for the atmospheric pollutants represented in the model can be found in 
the RIVM (EDGAR)14, IPCC, UN15 and other sources. The Greenhouse gas emission data 
can be found in the http://cdr.eionet.europa.eu/ro/eu/ghgmm/envrayfoa web-pages. 

• The estimation of the abatement cost functions is based on the RAINS data computed for the 
CAFE project.  

• Auxiliary macroeconomic data: 

• Factor endowment data (capital, labour, employment, stocks, etc.): these are usually found in 
the CSO (employment) and ILO publications (e.g. labour costs including those which are 
regarded to be production taxes or intermediate costs).  

• Demographic data: Total and active population data were collected from the ENERDATA 
database but they also can be found in the national statistical yearbooks and labour surveys. 

• Interest rates, inflation rate in the base year, etc.: CSO, NB (National Banks) 

• Energy balance sheets (by Eurostat methods): IEA/OECD or Eurostat (if not available for 
they are not public, one can estimate it from national publications as in the case of Hungary).  

• Energy taxes and energy consuming durable goods: Data can be found in the national energy 
authorities’ publications or in the OECD databases. Many useful (including special) data 
(e.g. the share of the gasoline within the motor fuel use) can be found on the World Resource 
Institue’s16 http://earthtrends.wri.org/searchable_db web-site. 

• Data for extension modules can be found in specific sources. Of these we just mention the 
case of the multiple household version of the model, which is under development for the 
GEM-E3 model, but which can be found in many CGE models: 

• Data for household groups: The main sources are the Household Budget Surveys (or in some 
cases separate Income and Expenditure Surveys) the census (for the stock of durable goods) 
and Tax Returns (mainly for individuals). For the other household group specific data 
sources it is worth mentioning for example, the Hungarian Central Statistical Office 
conducted and published surveys for the Inter-household transfers (see KSH [2004]). 

                                                 
14 The Netherlands National Institute for Public Health and the Environment/The Netherlands Environmental Assessment 
Agency (RIVM/MNP) and the Netherlands Organization for Applied Scientific Research (TNO). 2005 and 2001. The 
Emission Database for Global Atmospheric Research (EDGAR) 3.2 Fast Track 2000 and 3.2. Acidifying gases: SO2 (Sulfur 
Dioxide): Extended Emissions 2000 and Aggregated Emissions 1990/1995. The Netherlands: RIVM. Electronic database 
available online at: http://www.mnp.nl/edgar/. 
15 Mainly the country specific National Inventory Report prepared for submission in accordance with the UN Framework 
Convention on Climate Change (UNFCCC) [including electronic Excel spreadsheet files containing Common Reporting 
Format (CRF) data] 
16 Climate Analysis Indicators Tool (CAIT) version 3.0. (Washington, DC: World Resources Institute, 2005). Available at 
http://cait.wri.org. WRI calculates carbon dioxide emissions from 3 sources: 
EIA. 2004. International Energy Annual 2002. Available online at: http://www.eia.doe.gov/iea/carbon.html. 
IEA. 2004. CO2 Emissions from Fuel Combustion (2004 edition). Available online at: 
http://data.iea.org/ieastore/co2_main.asp. 
Marland, G., T.A. Boden, and R. J. Andres. 2005. Global, Regional, and National Fossil Fuel CO2 Emissions. in Trends: A 
Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 
U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. Available online at: 
http://cdiac.esd.ornl.gov/trends/emis/meth_reg.htm.  
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5.3. Data availability and problems 

� I-O tables: For some countries the I-O tables were not available for the selected base year 
(1995). In this case the I-O table had to be compiled from the MAKE and USE matrices (see 
the example of Greece in Revesz-Zalai (2003)).  

The first usual problem is that the break-down of the I-O tables (and the nace 2-digit level 
break-down of the national accounts data for branches) are not sufficiently detailed in the case 
of the energy sectors. It can be seen from the branch classification table in section 5.1. 

The second frequent problem of the I-O tables is that they are not consistent with the 
National Accounts. The NA data figures differ from the I-O table data mostly in the case of the 
foreign trade flows, but to a less extent it is so in the case of the gross outputs, wages, and 
stock accumulation. In the case of the foreign trade, the national accounts contain certain 
double accounting of the value of the materials to be processed, or of the goods to be repaired 
or reexported. Although in the I-O table (and output indicator) only the processing fee is 
accounted as export, in some of the I-O tables such reexport-like figures can be found, which is 
rather difficult to explain within the standard CGE modelling theoretical framework, so it is 
difficult to decide what to do with them (e.g. netting out, which however, for certain years may 
result in negative net export values due to the time lag between the import and export of such 
goods). This problem will be further discussed below, when we present the other problems of 
foreign trade data too. 

The NA also showed some phenomena, which is difficult to take into account in CGE 
models. For example, in some of the national accounts the foreign sector had wage income 
(Hungary, Austria) (from which industry?) and SSC income, while it paid indirect taxes and 
received indirect subsidies (estimated tax content of the expenditures of the inbound tourists?). 

Different I-O tables may account the imputed output of bank services (FISIM) differently. 
Ideally they have to be allocated to actual users (estimating the interest margins by clients 
using reference interest rates for the domestic and foreign currencies), but this can not be done 
accurately using just the figures of the I-O table. Note, that in some countries (e.g. in Bulgaria) 
the Statistical Office just eliminated the FISIM by treating it as the own-consumption of the 
financial sector. However, it has certain problems, mainly the resulting apparent negative value 
added and the implicit assumption that the user-structure of the indirect services (interest 
margin) is the same as the users of the directly charged banking services. 

In the GEM-E3 model the NPISHs are aggregated with the household sector (while in the 
I-O table they have separate columns in the final consumption). So in the model we had to treat 
the NPISHs as part of the household sector too. However, several coutries do not provide 
enough data for the NPISHs (Jellema et al [2004] ) so the missing data have to be estimated. 

� Foreign Trade Data: Apart from the above mentioned problem of value of the double-
accounting of materials to be processed (or repaired or the like), the most common problem is 
the apparent inconsistency of the bilateral foreign trade data of the partner countries, which 
arises partly from the different valuation of the trade flows (the import is at c.i.f. parity while 
the exports are valuated at f.o.b. parity, so a so-called c.i.f.-f.o.b. correction is needed), but 
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also from different accounting methodology, classification and missing or false reporting. To 
see the resulting differences usually mirror-checks (i.e. one country’s reported import from an 
other country is the same as the other country’s reported export to the first country) are made 
by commodity groups (branches) and partner countries. 

An other notable problem of these trade statistics, is that they usually contain the 
merchandise trade, but they do not include the services (for which data are rather unreliable 
and may be based on the foreign balance of payment statistics or specific surveys). A further 
general problem is that exports and imports with 'custom-free-zones' are not allocated to 
countries of origin or destination.  

In the case of the printed publication of foreign trade statistics an additional special 
fundamental problem is that it contains only the large trade flows, which means that it is 
almost impossible to reconstruct the structure of the export and the import with small countries 
like Danemark or Portugal. The national account data for exports and imports by branch (in the 
new Cronos database) are too bad to be used (Eurostat is currently modifying them). 

� Consumption related data: The macrostatistical data for personal consumption by 
categories show the domestic consumption, while HBS data by definition contain the national 
consumption. Therefore, one has to estimate the tourists’ consumption by categories too. 

� Investment data: From the New Cronos database it was feasible to extract information 
regarding to gross fixed capital formation by branch, changes in inventories and acquisitions 
less disposals of valuables. In addition information on investments by product was available 
through the main aggregates of EUROSTAT. Combining this information with the investment 
structure derived from the projected tables the final investment by product transaction could 
be obtained.  

The distinction of investments between the institutional sectors (Households, Firms, 
Government) was made by incorporating the information realised from the investment matrices 
as well as from the respective structure of Greece and United Kingdom.  

� Environmental data: Emission of air pollutants can be estimated quite accurately from the 
energy consumption data. However, in some cases uniform emission coefficients – derived 
from the EU15 practice - may result in rather unrealistic emission estimates. For example, in 
Hungary the extracted ‘coal’ is barely more than lignite, so its (per Joule or per ton) emission 
coefficients are far higher than those of any coal products within the EU15. Similarly the 
modellers have to bear in mind that in the Baltic countries fossil energy extraction practically 
means only pet and oil shale which are not typical product neither of the coal nor the oil 
industry.  

� Auxiliary data: When missing, the capital stocks have to be estimated from the capital 
incomes or amortization data (e.g in the case of Austria using exogenous type or industry-
specific amortization rates)  

� Data for household groups: Inter-household transfers do not appear in the national 
accounts since by definition their aggregate value is zero. Therefore we can not adjust 
proportionately the HBS data for the macroeconomic total because it would set each inter-
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household transfer figures to zero. Hence one has to find another way how to assess the 
representativity of the HBS’s figures for the inter-household transfers. 

The usual problems in the HBSs are the need for reclassifying the special categories to 
scientific (national accounts) categories, the uneven representativity of the various income and 
expenditure categories, the underrepresentation of the poor, the rich, the overloaded, and the 
mobile (moving, commuting, immigrant, etc.) households, the annualization of the data 
(covering usually a period of one month or less), the matching of household incomes (and 
consumption) with members, the imputation of missing data (in-kind benefits, various capital 
incomes). 

Apart these general data problems in chapter 8 we present the Hungarian example, showing 
how to cope with the missing data. 
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5.4. Data processing methods 

Most of the primary data of the GEM-E3 model can be filled into a SAM (Social 
Accounting Matrix) scheme by which one can check the consistency of the data and their 
plausibility (by computing proportions and comparing them with data of other countries. 
Therefore, the construction of the SAM is the starting point of the model building work.  

Figure 5.1: GEM-E3 SAM according to ESA 95 methodology. 

 Industries Labour Capital Consumption Firms Investment.
Ch. in 

Stocks 

Exports 

(F.O.B) 
Total 

 1………...18   
House-

holds 

Govern-

ment. 
 

. . . 
   

Products              

1 

. 

. 

18 

Intermediate 

consumption 

at producer’s 

prices. 

- - 

Demand of household 

and government. 

consumption. (incl. 

NPIHS) 

- 

Demand for 

investment 

goods 

 

Demand 

for 

exports 

Total 

demand 

for goods 

Wages and 

Salaries 
Primary 

factors’ 

income. 

- - - - 

Income 

transfers 

from 

foreign. 

Total 

factor 

revenues 

Social Security 

Contribution 

Operating 

Surplus 

Households - Factor payments 

to agents according 

ownership. 

Domestic income transfers 

between agents. 
- - 

Income 

transfers 

from/to 

abroad. 

Total 

income of 

agents. 

Firms - 

Government 

Gov. Firms 

Gov. Foreign 

- 

Direct Tax 

Subsidy 

VAT 

Duty 

Social 

Security 

Indirect Tax 

G. Transfers - 

  - -   Imports  

Savings - 

Total 
Total supply 

of goods 

Total payments 

of factors 
Total spending of agents  



 

 

- 148 - 

A SAM is a square matrix of monetary flows that describes all transactions taking place 
between the economic agents of an economy for a determined year. The number of actors 
constitutes the dimension of the square matrix. By convention, columns represent expenditures 
while rows represent receipts. A schematic representation of the GEM-E3 SAM is shown in 
Figure 5.1. 

The balance is conceived as the tautological equality (guarranteed by displaying the 
savings as a component of the ’expenditures’) between the sum by row and the sum by column. 
In addition, a SAM ensures the fulfillment of the Walras law in the base year, since by 
construction the algebraic sum of surplus or deficits of agents is equal to zero. The GEM-E3 
SAM represents flows between production sectors, production factors and economic agents. 
The production sectors produce an equal number of distinct goods (or services), as in the Input-
Output table.  

Production factors include, in the SAM, only primary factors, namely labor and capital. 
The economic agents, namely households, firms, government and the foreign sector, are 
owners of primary factors, so they receive income from labor and capital rewarding.  

In addition, there exist transactions between the agents, in the form of taxes, subsidies and 
transfers. The agents distribute their income between consumption and investment, and form 
final domestic demand. The foreign sector also makes transactions separately with each sector. 
These transactions represent imports (as a row) and exports (as a column) of goods and 
services. The difference between income and spending (on consumption and investment) by an 
economic agent determines his surplus or deficit. 

5.4.1. Processing the Input-Output table 

As can be seen the I-O table occupies the upper and left section of the SAM table. So the 
first task is to obtain the I-O table data. However, for many countries such table is not available 
for the selected benchmark year, or only the Supply and Use tables are available. The method 
of the compilation of the I-O tables from these tables is described in the SNA 1968 volume17. 
A schematic method (using Hungarian data) of this in Excel-worksheet can be found in the 
MakeUse.XLS file. This shows how the branch by branch (square) matrix can be obtained and 
the import matrix separated of the matrix of domestic flows. However, the method does not 
deal with the conversion of the basic prices to users prices (as it is sometimes needed, when the 
use matrix is available only at users’ prices). An other shortcoming of the method used in the 
MakeUse.Xls file is that, as one can observe, that although the method takes into account that 
exports and government consumption do not contain any imports, the inevitable assumption of 
uniform import shares across the rest of the users resulted in too low (machine) import for 
investment while too high imports for the other uses. Naturally, the schematic method can be 
refined, as needed by the user. Note that for many countries the import matrix is published (e.g. 
Austria, Hungary), so the reclassification can be done separately for the domestic and import 
‘Use’ matrices. 

                                                 
17 A shortened version of this can be found in the Appendix. 
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For many other countries, which publish I-O and National Accounts data only in the 2-digit 
nace code break-down, nace sectors 11 (Crude petroleum and natural gas; services incidental to 
oil and gas extraction excluding surveying), 23 (Coke, refined petroleum products and nuclear 
fuels ) and 40 ( Electrical energy, gas, steam and hot water ) have to be split first, before 
aggregating. 

In order to do that, one has to obtain data for the output, value added, etc. their components 
(industry statistics, more detailed SUT, etc.). Splitting can be done then by using 
proportionality assumptions (like the 'industry-technology assumption' in the construction of 
symmetric I-O tables from the Supply and Use tables). In some countries, however, some of 
the components are just missing, and 'row-wise' the crude oil can be separated from the natural 
gas quite easily, since it is used exclusively by the refinery industry, so the rest of the elements 
of the row must be just natural gas. Also, 'gas' in sector 40 means only manufactured gas 
(which has ceased in most of the countries) and the gas distribution. The question is how the 
natural gas is accounted for in the I-O tables: either directly at the users or routed through 
sector 40. Usually in the case of those big gas users which get the natural gas via their specific 
pipelines from their foreign supplier, this gas consumption is accounted as direct import, while 
in the case of small users and the retail trade the indirect accounting is the common treatment.  

When the I-O table is not available for the benchmark year, stock accumulation data can be 
estimated from the data of the CSOs’ specific inventory survey, or in the case of energy 
carriers, from the energy balance sheets. 

The aggregation of the data to 18 sectors can be done by the following procedure: 

The aggregation starts from a G aggregator matrix (N rows, n columns, where N is the 
number of the original sectors, while n is the number of the aggregated sectors - in our case 
25). This G matrix has to be filled so that if P proportion of the i-th original sector (output, 
consumption, investment, export, whatever category is just to be aggregated) will go to the j-th 
aggregate then it should be P (in most cases in each row there will be a 1 while the other 
elements of G will be 0). If the aggregation is pure aggregation (i.e. P = 1 or P = 0) then the 
filling procedure can be simplified by designing a V column vector in which the i-th element's 
value is just j. Then G is computed from V the automatically so that G(i,j) = 1 if V(i) = j, 
otherwise G(i,j) = 0. 

Then the aggregate of the A (NxN) matrix can be obtained by the G*AG matrix product, 
where G* is the transpose of G (so multiply A from the left by G* while by G from the right). 
Matrices which has to be aggregated only from one side has to be multiplied by G or G*. More 
precisely if the rows have to be aggregated, then G*A has to be used, and if the columns, then 
the AG matrix product gives the result. 

The advantage of this approach is that it can be done easily ina n Excel worksheet and if 
you change your mind of the aggregation scheme (or if some original sectors even has to be 
split or actually disagregated) you have just to modify V, and then the Excel formulas do all 
the necessary changes in an instant.  



 

 

- 150 - 

For example for the Excel file which contains the aggregation scheme from the 21 sectors 
of the Hungarian I-O table for 1995 to the model’s 18 sectors is in the ’dom’ worksheet of the 
akm95d.xls file. In this sheet V is in the E7:E27 cells (yellow), in which the elements 
corresponding to the sectors to be split are zeros. The G matrix is in the E7:W27 range. The 
rows of the sectors which are not to be split in matrix G are computed automatically (although 
in a little bit tricky way by using the ROUND function and a big exponent to replace the time 
consuming IF-s by a proxy characteristic function).  

Note that for those sectors which have to be split, then ideally separate matrices have to be 
used for the domestic and the import, in which the respective shares are used for the splitting of 
the domestic and import flows. However, for the time being we use only one aggregation 
scheme in which for a given commodity the same shares are assumed for the domestic and 
import sources. 

5.4.2. The compilation of the other blocks of the GEM-E3 SAM. 

Combining the Input-Output data, adapted to market prices and to the national product 
concept (instead of the domestic product concept), and the data of the National Accounts by 
sector allows building the Social Accounting Matrix for each country.  

TREATMENT OF THE SEPARATE ACCOUNTS. 

The allocation of the adapted Input-Output totals to the different sectors, household, 
government, firms and rest of the world is rather straightforward using National Accounts data, 
and can be summarized as follows: 

• The total labor value added is allocated to the households except for the part going to the 
Rest of the World 

• The capital income is distributed between household, firms and government as in the 
National Accounts 

• The social security contributions are paid by households to the government and to the firms 

• Households and firms pay the direct taxes to the government. 

In the SAM it is assumed by construction that all subsidies are paid by the government to 
the branches (firms). In fact a part of the subsidies is paid by the foreign sector. In order to take 
into account this issue an imputed flow was created in the SAM representing the difference 
between the subsidies received by the branches and the actual subsidies paid by the 
government (this difference is attributed to the foreign sector).  

Since the government does not receive the sum of the taxes on product paid by the 
branches (a part goes to the foreign sector) a similar treatment to the one applied on subsidies 
has been established. 

(i) Social security contribution: 

The employers’ contribution had to be displayed in a branch break-down in the intersection 
of row ’Social Security’ and columns of activities (branches). In the case of Hungary, this 
component of the labour income is transferred to the households’ account, who in turn pay it to 
the government along with the employees’ contribution (in the intersection of row 
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’Government: Social Security Revenue’ and column ’Households’). As an alternative solution, 
this component can be displayed in the intersection of ‘Social Security’ and ‘Labour’, in order 
to arrive at the value of the total compensation of employees. 

 (ii) Interest payments: 

In the GEM-E3 model interest does not appear explicitly as a separate item. Therefore, in 
the SAM they were included in the row of (‘before-interest’-) ’Savings’, which also included 
the balance of the net interest payments (as if these payments were automatically used as 
savings).  

 (iii) Capital and investment transfers: 

They were treated in a manner similar to interest payments (i.e. as if they belonged to the 
use side of the savings). 

 (iv) Dividends: 

Dividends paid on foreign direct investment had to be displayed in the row of 
’Expenditures abroad’.  

 (v) Retained profits: 

With the exception of government institutions retained profits have not been explicitly 
taken into account. Savings statistics, as a rule, does not include retained profits, so they do not 
affect the row of ’Savings’. The foreign balance of payments, for example, shows only the 
dividends (distributed profits) and the resulting balance is regarded to be the saving of the 
foreign sector. Similarly, the state budget deficit is computed only by taking into account the 
dividends of the state-owned companies, and the government saving is the net sum of the 
deficit (-), government investment and interest payments, and the government investment and 
capital transfers. 

The retained earning of government institutions is displayed in the intersection of row 
’Gov. firms’ and column ’Capital’. 

 (vi) In-kind benefits: 

The government financed part of them must be included in the ‘government consumption’ 
while the NPISHs provided part must be aggregated with the households consumption 
expenditures. This standard procedure may be modified only if in the analysis the personal-
social (collective) consumption is preferred to the private-government consumption distinction. 
In this case the government provided in-kind benefits (education, health care, etc.) should be 
included in the cell ’Households income from government’ along with other (cash) benefits. 
The use of this income item shows up in the corresponding elements of the column of the 
‘Household consumption’. This allows one to separate the in-kind benefits out of the total 
benefits. 
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 (vii) Other transfers: 

Social (cash and in-kind) benefits, non-labour income of the households received from the 
firms, foreign aid, gambling income, penalties, rents (that were not accounted as imputed 
output and capital income) belong to this category. 

Statistical information, in most cases, do not reveal who pays to whom these transfers (only 
the net amount is known), therefore one is free to select an agent (e.g. ’firms’), who is assumed 
to collect and distribute these transfers.  

 (viii) FISIM (financial services) 

In the data set of the GEM-E3 model FISIM is distributed among branches in proportions 
to their ex ante operating surplus (i.e. one calculated without the cost paid for financial 
services). By subtracting the cost of financial services, as calculated above, one arrives at the 
value of the estimated (ex post) operating surplus that represents capital income. This amount 
should be, in principle, positive. If it is not, special subsidies are introduced to correct for the 
negative number.  

 (ix) Direct taxes: 

Apart from personal and corporate income taxes, one has to account here for the property 
taxes, domestic (stamp, etc.) duties, local taxes and so on. Although they are not directly 
proportionate with income, they correlate to income to a considerable degree, especially at the 
aggregate level. 

 (x) Indirect taxes and Subsidies: 

For the GEM-E3 model the ‘Subsidies’ row of the SAM contains all subsidies, 
independently from the fact that they are related to products or to domestic production alone. 
In the case of Hungary, for example, we accounted here the production taxes (e.g. rents on 
mineral extraction) as well, since they change in proportion with the level of domestic 
production. 

Similarly, ‘Indirect taxes’ account for all (non-VAT) taxes on products (e.g. fuel excise 
tax). 

The row ‘VAT’ contains all the VAT paid, irrespectively from the area of use 
(intermediate, household and tourist consumption, investment, etc.). As a consequence, the 
intermediate consumption has to be computed at user prices in the SAM too. 

The foreign trade statistical data have to be reclassified to Input-Output table sectors and 
adjusted to them so that the I-O export column should be equal with the sum of the countries 
(columns) of the bilateral export matrix. This adjustment is needed partly for the mentioned 
methodological reasons. 

As long as no investment matrix exists in the national statistics, its column totals (demand 
of investment goods by branch) are taken from the National Accounts by branches (Gross fixed 
capital formation, by ownership branch), while the row-totals (total deliveries by branch) are 
taken from the corresponding column of the Input-Output table. Finally appropiate 
assumptions have to be made for every country individually to fill the matrix. We usually use 
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the RAS-method, for which (initial) reference investment matrices can be found in the OECD 
Input Output Database. These data were available for the following regions: Australia, Japan 
and United States. For the compilation of investment matrices for non-EU countries, other 
countries’ already compiled investment matrices can be used as reference.  

In Appendix 5 the UK matrix is given as example. This example shows that the deliveries 
were basically made by the branches of Other Energy Intensive Industries (number 08), 
Electrical Goods (number 09), the Transport Equipment (number 10), Other Equipment Goods 
Industries (number 11), Building & Construction (number 13) among industrial sectors and to 
a lesser extent the branch which represents the market related services (number 17). 

Investment matrices were available only for Greece and UK. For the computation of the 
rest of the matrices the information available was the investment by branch and by product. 
Since there was insufficient information on the transformation matrix a RAS procedure was 
adopted. The initial tables for the RAS procedure were based on the Greek and UK investment 
matrix modified appropriately in order to serve the specific investment structure of each 
country. 

For countries where a consumption transformation matrix exists, they are usually expressed 
in consumer’s prices, i.e. they include the VAT and the margins are included in the price of the 
delivery and not considered as a separate delivery by a service branch. For the use in the 
model, the matrix has to be in producer’s prices and with explicit delivery by service branches. 
Therefore, the following corrections have to be made: 

• given VAT rates for the different consumer categories, a consumption matrix without 
VAT is computed, 

• the margins included in the deliveries by branch are evaluated as the difference between 
the consumption matrix deliveries (without VAT) and the IO deliveries. 

• these margins are allocated between the services branches based on exogenous parameter 
compatible with the Input-Output deliveries of these branches. 

For the countries, where such matrix was not available, the matrix was computed using the 
following procedure: 

• ��the consumption per consumer category is taken from the National Accounts (final 
consumption of households on the economic territory, by purpose) and corrected for the 
consumption by tourist. 

• given VAT rates for the different consumer categories, the total per category without 
VAT is computed 

• ��the total deliveries are taken from the Input-Output tables and appropriate 
assumptions were made to allocate the total per categories to the delivery branch. 

If the the row margin (column totals) of the consumption transformation matrix shows the 
consumption by the usual 12 COICOP categories break-down, then 3 such categories have to 
be broken further down (to be able to compute the consumption by the 13 GEM-E3 
consumption categories) according to the following: 
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category 4 (Housing, water, electricity, gas and other fuels) has to be split to water and 
energy 

category 5 (Furnising, household equipment and routine maintenance of the house) has to 
be split to heating and cooking appliances and the rest 

category 7 (Transport) has to be broken down to its trasport equipment, operation of 
transport equipment and purchased transport components 

For the GEM-E3 model, several assumptions have been made to allocate the EUROSTAT 
energy balance sheet values to the branches and products of the IO table: 

1. energy consumption by energy branches : combustion of solid fuels are allocated to 
branch '2'. Combustion of liquid fuels is allocated to branch '3'. Combustion of natural gas is 
allocated to branch '4'. 

2. energy consumption by tertiary sector : the total energy inputs are allocated to the 
tertiary branches on the basis of ratios derived from the IO tables. 

3. transportation : only LPG, gasoline and diesel oil are used for road transport. The total 
road transportation input figures are allocated to the different branches and households on the 
basis of ratios observed or estimated for Belgium18. For the computation of the emission 
coefficient, product '3' is explicitly split into a fraction used for road transport purposes and a 
fraction used for other purposes. The energy inputs for non-road transport are allocated to the 
branch transportation services. 

4. manufactured gases: since the GEM-E3 IO-table do not include transfers between 
branches, the manufactured gases have to be handled as a delivery of solid fuels '2'. Total blast 
furnace gas consumption is allocated as a delivery of product '2' to branch iron and steel. A 
correction is made for the demand of electricity of this branch (efficiency = 0.4). Coke oven 
gas used for 'power generation' and 'own consumption' is allocated as a delivery of product '2' 
to branch '2'. A correction is made for the demand for electricity '5' of the branch '2' (efficiency 
= 0.4). Coke oven gas used by 'I&S' is allocated as a delivery of product '2' to branch iron and 
steel. 

5. non-energy use: the bunkers are allocated as a delivery of product '3' to branch 
transportation services. The transformation input are allocated to their respective branch, with 
the exception of blast furnace gas which is already handled as relevant energy use. For the non-
energetic final input, the chem goes to branch chemical and the other is allocated to the other 
branches on the basis of 1980 ratios which are extrapolated to 1985. 

With these computations, one obtains, for GEM-E3, one sheet with the relevant deliveries 
of the energy branches to all branches and one sheet with total deliveries. This allows for the 
computation of the relevant fraction of total input, i.e. the m parameter in GEM-E3, which is 
needed to compute emissions in GEM-E3. 

                                                 
18 Note that for example the Hungarian Energy Statistical Yearbook contains in the Appendix the so-called EU-conform 
balance sheets which shows the motor-fuel consumption by industries too. 
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5.4.3. The baseline emission coefficients 

� CO2 emission coefficients 

The CO2 emission coefficients are those used by EUROSTAT, in ‘Environment Statistics’, 
if no country specific information available. 

� NOx and SO2 emission coefficients 

These emission coefficients have been computed based on the RAINS baseline scenario. 
The SO2 emission coefficients are computed taking into account the sulphur content in the 
fuel, the fraction of sulphur retained and the net heating value of the fuel. The NOx emission 
coefficients are those computed by Coherence in the HECTOR model (1993). The NOx 
coefficients are fixed on the basis of technological assumptions. Some corrections were made 
when more complete information was available. 

� VOC emission coefficients 

Emission coefficients for VOC were added to the database and were considered equal 
across countries but specific to the fuel used. Their source is the following: Part 3, Default 
Emission Factors Handbook, CORINAIR Inventory, 1992 

� PM10 emission coefficients 

These emission coefficients have been computed based on the RAINS baseline scenario. 
Information about the contribution of each sector to the emission of PM10 is coming from 
ExternE project (stationary sources), VIA, RWTH (1995) and TRENEN project (mobile 
sources). ExternE distinguishes the main sources of PM10 for each activity within the fuel 
cycle (mining, transport, electricity generation, etc.), however given the structure of GEM-E3 
and PRIMES models, only the data for electricity generation (coal, lignite, oil and gas) was 
considered. We assumed the same emission coefficient for the industry sector. For the 
conversion from g/MWh to ton/PJ (stationary sources), we used the efficiency of the power 
plant considered and the conversion factor 3600KJ/kWh. As for VOC, the emission 
coefficients are assumed to be equal across countries. 

The parameters of the abatement functions have been estimated from the RAINS database.  

Based on some further information, the following deliveries of abatement expenditures are 
used throughout all sectors and pollutants. 

Table 5.1: Break down of deliveries of abatement technologies (in % of total costs) 

cost type % assignment to GEM-E3 classification 

investment costs 77 equipment goods industries 

labour costs 3 labour 

waste costs and 
other variable costs 

12 services 

fuel costs 8 main energetic input of the sector 
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Matrices of Pollutant Transport and Transformation Coefficients (Units: % of total 
emissions, Columns: Emitters, Rows: Receivers) for NOx and SO2 are derived from the EMEP 
model. 

Auxuliary data: when missing, the capital stocks have to be estimated from the capital 
incomes or amortization data (e.g in the case of Austria using exogenous type or industry-
specific amortization rates). 

5.5. Techniques for estimating the missing data 

5.5.1. Using proxies: 

For example, temporarily lacking better information, we assumed that all stock 
accumulation takes place in the sectors of origin (i.e. the producers has to store them ). 

5.5.2. Computing as residual: 

This can be done either from stock-flow and source-use balances. One has to be carefult 
not to select a relatively small item as residual, since even the relative small statistical errors in 
the larger items may result in extremely large relative estimating errors in this small residual 
item. 

5.5.3. Routing through 

When we can not tell who pays to whom we can use collecting accounts through which 
these payments are routed through. This collecting account can be even the account of a 
standard agent of the model (e.g. the transfer payments are routed through the government). 

5.5.4. ‘Rooking’ 

The „rooking” method is well-known in the operational research. It is applied when certain 
elements of the matrix have to be modified so that the row-totals and column totals remain 
unchanged. Usually a rectangle is selected and when we modify one of its corners by shifting a 
certain amount to (or from) an adjacent corner, simultaneously we shift the same amount but in 
the opposite direction between the other two corners of the rectangle. An application of this 
method is described in section 6 describing the estimation of the Hungarian consumption 
transformation matrix. 

5.5.5. Miniature programming methods 

In some cases during the estimating process a small-scale or partial programming model is 
solved. An example for this also can be found in section 6 when describing the estimation of 
the Hungarian custom duty matrix, where in the first round commodity group specific standard 
duty rates were estimated by minimizing the squared error of the actual and estimated duty 
costs of the individual users. 
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5.6. Techniques for the reconciliation (adjustment techniques) of inconsistent data  

5.6.1. The RAS-method 

The RAS-method is generally applied for the adjustment of a reference matrix to given 
margins (see Lecomber [1975], Polenske [1977], Robinson et al [2001]). The RAS-method can 
be regarded as a bi-proportional adjustment, since it tries to maintain the original proportions 
of the column and row structures. An Excel-representation of the RAS-method can be found in 
the RAS72x61.XLS file, which can adjust an initial matrix up to 109 rows and 68 columns 
(shown in the C5:BR113 range). The procedure is programmed so that first the row-wise 
proportional adjustment takes place in the BW5:EL113 range, then the column-wise 
adjustment is done in the C118:BR226 range. Finally, by an Excel macro (which can be run by 
pressing the Ctr-i buttons) the values of this range are copied back to the initial C5:BR113 
range, so that the BW5:EL113 and C118:BR226 ranges now show the adjustments of this new 
reference matrix. This iterative procedure can be repeated infinitely (by pressing the Ctr-r 
buttons 10 such iteration steps are done) and usually converges to a matrix which (as it can be 
proven) is equivalent to the solution of a hyperbolic programming problem (where the 
objective function is the sum of certain ‘relative errors’). However, in certain circumstances the 
algorithm does not work properly: for example, when the (subset) of row totals are not 
consistent with the (subset) of column totals, the iterations lead nowhere (usually the some 
elements of the matrix oscillate). This happens mainly in ‘rare’ matrices like the investment 
transformation matrix where only several rows and the main diagonal elements are different 
form zeros19.  

Negative element may also cause problems of the sonvergence of the RAS-iterations. In 
some cases (mainly when in the column of the I-O table’s stock accumulation there are both 
large negative and positive elements while the total is a small number) they turn the sign of the 
whole vector causing further inversions of the sign of the row- and column totals.  

An advanced version of the RAS-method is the so-called bounded RAS-method20.  

Of course, there are many more sophisticated matrix balancing methods, which are 
generally called entropy method (see a comparison of several such methods in Schneider, M. 
H. – Zenios, S. A. [1990] ). However, most of these methods (incl. the RAS itself) retains the 
zero values even if we have information on its positive value (e.g. technology development 
leads to the use of new materials and services). An ad-hoc treatment of this problem is either 
the exogenous setting of this element or (if we do not know its magnitude precisely) imputing 
an initial positive value into the corresponding (hitherto zero) element of the reference matrix. 

                                                 
19 The most extreme case is when in a selected row and column there is only one non-zero element, i.e. their intersection. In 
this case, if the prescribed totals of this row and column differ, this single element tries to satisfy both, resulting in 
oscillating between them. 
20 RAS-problems with exogenous elements can be traced back to standard RAS-problems by setting to zero the 
corresponding  element of from the reference matrix and by subtracting its value from the corresponding row- and column 
totals (see e.g. the RAS2004.XLS file which updates the 2000 Hungarian I-O table for 2004). 
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5.6.2. The ‘additive’ RAS-method 

When some of the elements of the row- or column margins (totals) are zero, the RAS 
method is not applicable since it would turn all elements of the corresponding row or column 
to zero even if these data should be different from zero. For example, when the Household 
Budget Survey based income and expenditure data (where the savings are treated as part of the 
‘expenditures’) are arranged in such a format that each columns represent the incomes and the 
expenditures of a given group so that the incomes are displayed by positive numbers while the 
expenditures by negative ones, the column totals should be zeros by definition. To solve this 
problem (without setting exogenously the total income or expenditure of the individual groups) 
I developed a so called „additive” RAS method. Since expenditures are displayed as negative 
numbers in the matrix of the household budgets (where a rows represent the items, and 
columns represent the groups) the column-totals - by definition - add up to zero. This makes 
the RAS method inappropriate. Instead, the modified iteration method is the following: 

i, j i, j j k, j i, j
k

 = H + H0 HTOT 0 SHH
 − − 
 

∑  

where  Hi,j is the new cell-value, HOi,j is the previous cell-value, HTOTj is the desired 
column-total (in our case 0), and   SHi,j is the original absolute value share.  This method 
adjusts the individual cells proportionately to their absolute value, but the direction of the 
change depends not on the sign of the cell, but rather on the sign of the total discrepancy, 
which has to be eliminated. By this method one can estimate the change in the income 
inequality (shares of the individual groups within the total) too. For example, when we applied 
this additive RAS-adjustment to the 1991-1994 period in Hungary we found that relative 
income position of the rural and larger households (i.e. those with children) deteriorated. 

A GAMS version of the additive RAS-algorithm (applied to the updating of the income and 
expenditure data of the household groups) can be found in the Rasadd01.gms file, which uses 
the RAS98.PRN as input (reference matrix, prescribed new margins) and which puts the results 
into the RESULTS.RAS file. 

The source code of a (Borland) C++ version of the additive RAS-method can be found in 
the addras.cpp file, while its executable version is the addras.exe file. The DOS-command 
line for the running of this program is the following: 

addras.exe <input_txt_file_name> [/it <number_of_iterations >] 

where the typing of the parameters in the [],<> brackets are optional. The output is generated 
on the output.txt file. An example is the following: 

Original matrix Column 1 Column 2 Desired row-totals 

Row 1 11 34 67 

Row 2 13 14 38 

Row 3 -24 -48 -85 

Desired column-totals 20 0 20 
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 The results of the additive-RAS procedure is shown by the following table: 

Resulting matrix Column 1 Column 2 Desired row-totals 

Row 1 19.778 47.222 67 

Row 2 20.746 17.254 38 

Row 3 -20.523 -64.476 -85 

Desired column-totals 20 0 20 

 

It can be seen clearly, that the zero column total for Column 2 is achieved so that the 
structural information of the column is retained. 

5.7. Summary 

First the 8 main statistical datasets needed by the GEM-E3 model were listed and their 
meaning was explained. Then conversion tables were introduced to show how the original 
classification of these datasets can be converted to the break-downs needed by the GEM-E3 
model. After discussing the usual data sources and availability problems a general guideline 
was given how to process the rough data and how to arrange the processed data into the 
standard data table forms of the GEM-E3 model. Since in newly accessed EU-countries have 
few modellers experienced in such data processing methods, we devoted a section for the 
discussion of techniques for estimating the missing data and for the reconciliation (adjustment 
techniques) of inconsistent data. Here several methods and softwares developed by ourselves 
were presented, e.g. the “additive-RAS” technique for the bi-proportional adjustment 
(balancing) of matrices with zero margins or the method for flexible and automatic aggregation 
and disaggregation (implemented in Excel programs). 
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6. Compilation of the database for the GEM-E3 model: the example of 
Hungary 

 

To help the prospective modellers of the newly accessed EU-countries this section contains 
a detailed case study which we present the whole process for compiling the Hungarian data for 
the GEM-E3 model. Here we highlight several country and year (in our case 1995) specific 
statistical problems and the original way how we solved them. This is intended to show that 
although in the newly accessed countries there are many similar novelties, but still there are 
many common approaches and techniques in their solution. 

6.1. Domestic output and imports  

We started the work by transforming the 21 sector I-O data for 1995 to the desired 18 
sector breakdown of the project. We transformed the import matrix and the matrix of the 
domestic flows separately. The following re-classification scheme shows that to which new 
branch (represented by their serial number) the original branches were put. More than one 
values in one line indicate that the original branch had to be split, and the individual parts of it 
were put to different new branches. 

 

 Name of Original Branch NEW 
BRANCH NO. 

Agriculture, hunting and fishing  1 

Forestry 1 

Mining and quarrying 2,4,6 

Food and tobacco industry 12 

Light industry 8,12 

Manufacture of chemicals 3,7,12 

Manufacture of other non-metallic mineral products 8 

Manufacture of basic metals and metal products 8 

Machine industry 9,10,11 

Manufacture of products not mentioned above 12,17 

Electricity, gas, steam and water supply 4,5 

Construction 13 

Wholesale and retail trade and repair 17 
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Hotels and restaurants 17 

Transport, storage 15 

Post and telecommunications 14 

Financial intermediation 16 

Real estate, renting and business services 17 

Public administration and other service activities 17,18 

Education 18 

Health and social work 18 

 

The name of the new GEM-E3 branches and their content was already presented earlier. 
The splitting of the rows and columns of the I-O table belonging to the above branches was 
done proportionately to the output (or in the case of the import matrix proportionately to the 
total import) share of its components. In doing this all but one output figures could be found in 
the national accounts. In the case of the gas production and distribution sector (which is rather 
important for the model) most of the output of this sector is not published separately in the 
national accounts. Instead, it is dispersed in the ’oil&gas extraction’ and ’refinery’ sectors 
(which is the main activity of the large MOL company which, however, deals with gas-
extraction too). Therefore, we only could estimate the output of the gas sector as the sum of the 
outputs of the gas distribution and oil&gas extraction industries. In this way one part of the 
gas-extraction output is overestimated, while the other part of it is underestimated. Although 
these errors more or less cancel out each other, the future operation of the model may indicate 
that the estimate has to be revised (refined). 

Of course, in general this proportionality assumption may have to be refined in the future. 
In the case of the import, for example, it may prove to be necessary when by linking the 
country-models, differences between the data of ’EU import from Hungary’ and ’Hungarian 
export to EU’ will be observed. 

As far as the latter is concerned, from the import vector obtained by the outlined 
reclassification procedure, we separated out the EU trade by using the merchandise trade 
statistics. Note, that for the service trade we did not have EU and non-EU breakdown, thus we 
had to use plausible assumptions about the share of the EU in our import of services. 

6.2. Indirect taxes 

In the next step, by a mathematical programming procedure (by minimizing the squared 
errors of the estimate) we determined the import duty matrix from the standard duty rates and 
the duties paid by users. The resulting duty matrix can be found in rows 81-100 of the ‘IMP’ 
worksheet of the akm95d.xls file (table 7 of the Data95pap.doc paper). Since the I-O tables 
account the import matrix only at c.i.f. prices, the duty matrix was necessary to convert the 
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imports to domestic basic prices which is the unit of measurement for quantities (volumes) in 
the model. 

However, this principle was not upheld in the case of the domestic indirect taxes. Although 
they are rather branch-specific (mainly due to the lack of VAT-refund apparatus for the 
budgetary institutions, households housing investment, small enterprises and agriculture) the 
guideline required the accounting of these taxes also in the rows of the branches. Since the 
Hungarian I-O table is compiled at net (basic) prices, the indirect taxes are accounted by users 
in a separate row of the table. Therefore the total indirect taxes had to be split to related inputs 
(by branch affiliation) and added to the matrix of the intermediate demand. Since the category 
of net indirect taxes is rather mixed (e.g. the local sales taxes are paid not after the inputs but 
after the output), we separated its main components and distributed them among branches 
according to their own characteristics (e.g. the fuel tax was added obviously to the row of the 
„OIL” branch). The resulting intermediate indirect tax an subsidy matrices can be found in 
rows 116-161 of the ‘DOM’ worksheet of the AKM95D.XLS file. 

6.3. Investment transformation matrix 

In the next step we compiled the simplified investment matrix, i.e. investment by 18 sectors 
of origin and by institutional sectors or agents. The procedure can be seen in the ’IMP’ 
worksheet of the file AKM95D.XLS, in rows 102-153. The two margins were available in the 
I-O table and the NA respectively. During the process the main problems were the 
identification of the own-account investment and design costs, and the transformation of the 14 
investment destination branches to the 3 agents. Here we also had to use certain homogeneity 
and proportionality assumptions. Concretely, we assumed that investments in the same industry 
has the same investment good structure whatever agent is concerned. Note, that the households 
investment is published together with the non profit institutions (NPIS) investment, but 
fortunately the latter is not significant (less than 1 percent of the sum of the two).  

6.4. Consumption transformation matrix 

The compilation of the consumption transformation matrix was based on a similar table for 
1994 which we obtained from the HCSO. We had to overcome several difficulties arising from 
the different classifications, and different treatments of indirect taxes. The procedure can be 
seen in details (incl. the formulas) in the file LF95.XLS. In the following concise description 
we refer to the corresponding rows of the last worksheet of this file in parenthesis. 

First of all, we had to modify the original data for 1994 so that it be a proper reference 
matrix for the RAS updating procedure. First, the trade margins had to be separated out of the 
expenditures (see the ’tax94separ’ sheet of the file). In the next step, we aggregated the 34 
categories (wants) to the required 13 categories break-down. Here the only serious problem 
was with the last of the 34 original consumption category. The problem is that this „Correction 
for the welfare services provided by the branches” is an artificial category which is difficult to 
incorporate into the standard aggregation scheme. Fortunately, this item is not significant or 
important in the model either, so we simply omitted this column and left for the RAS method 
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to do the necessary adjustments. The resulting consumption transformation matrix at 
consumer’s prices can be found in rows 47-67 of the last (’basic’) sheet of the file LF95.XLS.  

By the RAS algorithm we updated the 1994 matrix to 1995 using the consumption statistics 
and I-O data as prescribed margins. However, to get consistent margins we had to convert the 
I-O figures to consumers prices by adding the estimated net indirect taxes by sectors (first in 
the original 21 sector break-down, then converted to the 18 branches of the model). These 
indirect taxes were estimated in the following way: First we computed the rates for 1994 and 
then we proportionately adjusted them to the 1995 total as given by the 1995 I-O table. 
Because of the proportional adjustment, the tax on telecommunication services was exempted, 
being the only service for which the tax could be computed directly. This could be done by 
taking advantage of the fact, that this is the only sector which has a match among the ’wants’, 
so the tax could be computed as the difference between the figures in the consumption statistics 
(at consumer prices) and the I-O table (at basic prices). 

From the resulting domestic consumption matrix (updated to 1995 by the RAS method, see 
rows 73-93.) we separated out the domestic and import components and reclassified the matrix 
from 21 branches to 18 using similar proportionality assumptions as before (see rows 99-116. 
and 122-139.). Then, by computing branch specific custom duty rates for the consumption 
(based on the duty matrix), we could determine the consumption-duty matrix and the 
consumption matrix at ’uniform’ prices, i.e. consumer prices net of the domestic indirect taxes 
(’VAT’). By subtracting the margins of this matrix from the total indirect taxes one can 
determine the domestic indirect taxes by category and by branch as well (ranges C165:O165 
and Q145:Q162). In the consumption matrix at ’uniform’ prices we had to do some corrections 
since the proportionality assumption (applied to the chemical industry) allocated too much fuel 
to the „medical expenses” category and on the other hand too much medicines too the 
„operation of transport equipment” category. We made the correction by the „rooking” method 
well-known from the operational research (i.e. the delivery of the ’oil’ sector was shifted from 
the housing and medical services to the want of transportation and equal large delivery of the 
’chemical’ products from the want of transportation to the housing and medical services). 
Although the resulting matrix (see rows 145-162, where the corrected cells are in bold 
characters) is not perfect yet for statisticians, for the model in question it can be used without 
any problem. 

Finally from the so computed domestic consumption matrix we had to estimate the matrix 
of national consumption (rows 169-186.). This we did by the proportionately adjustment of 
each rows to the new row-totals, which we took from the consumption column of the SAM, but 
which in turn was determined by modifying the vector of the domestic consumption by the 
balance of the inbound and outbound tourist’s consumption (by the 18 branches). The next 
section tells how the tourist consumptions were estimated. 

6.5. Accounting for tourism  

Tourist exports and imports had to be added to the enterprise export and import. This was 
to be done in the SAM and the model does not distinguish between the two types of foreign 
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trade. The estimated VAT content of the tourist export was allocated to the row of ’indirect 
taxes’.  

Branch breakdown of tourism expenditures and revenues does not exist in the official 
statistics. We could, however, rely on various surveys and studies (HCSO Survey on Inbound 
Tourists 1994, Horvath (1999), WTTC (2000)). In this respect the problem is not only the 
registration of the expenditure pattern of the inbound and outbound tourists, but also we have 
to get to know where they got the currency from, and whether the goods they bought were 
registered in the already existing (production, consumption, etc.) statistics. Only by this one 
could account the tourism consistently. For the time being we could only distribute the 
spending of officially exchanged amounts (as shown by the I-O table or the balance of payment 
statistics) to branches.  

6.6. The Social Accounting Matrix (SAM) 

Finally, we filled the SAM form partly by the above mentioned data, partly by the income 
distribution data of the national accounts (NA), balance of payments statistics (BP) and the 
Government Budget Reports (BR). Here some minor methodological problems about the 
necessary content of certain cells and the placement of several unusual categories still remain. 
For example, the export subsidies could not be put into the column of the branches since the 
original (I-O table) figures of the exports already contain them. The related statistical problem 
is that the Budget Reports (BR) and the NA show different figures for the aggregate export 
subsidy (perhaps it is only due to the fact that the BR usually publish cash-flows, while the NA 
follows the „due payment” or accrual approach). Neither source publish any break-down of 
this subsidy (from the 1998 BR we know that in that year 77 % went to the food industry and 
23 % to the agriculture). As a solution, we accounted the export subsidies as a direct transfer 
from the government to the foreign sector (as a consequence its direct relationship with the 
export is not visible). Also there are further minor inconsistencies between the data. For 
example, it is worth mentioning the inconsistency between the ’dividend to the foreign sector’ 
figures in the National Accounts and the Balance of Payments statistics. Also for the 
government net interest expenditure and (theoretically meaningful) deficit we could derive 
somewhat different figures from the BR and the NA. 

The greatest problem was the unclear content of various budget transfer payments and their 
relationship with the NA categories. It was very difficult to make sure that double accounting 
is not made. Fortunately, we did not have to deal seriously with the capital and investment 
transfers, since the model will not deal with these explicitly. Interest payments are not 
explicitly taken into account either. Therefore, the official figures for savings had to be 
modified only by them to get the current (or primary or operational) savings. 
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Table 6.1: The content of the income distribution of the 1995 Hungarian SAM 

(SAM18HU3.XLS file’s SAM18 worksheet) 

 

Cell name Category 

Content (in Million HUF) and source  

(NA=National Accounts, BR=Budget Report) 

AA31 Households' other transfer payments 361326 (NA) other transfer outlays (routed through firms) 

AA33 Households tax and duty payments 411965 (NA) (of which 383744 was income tax) 

AA34 Households social security contribution 

894523 (NA)=698879+31007 employer (incl. imputed) 

+140478 employee+24159 other 

AA47 Saving of households net of interest income NA, 598640 saving-138790 net interest income 

AB30 

Households' cash and in-kind benefits (routed 

through gov.!) NA: 910459 cash benefits+763186 in-kind benefits 

AB31 

Non-export subsidies not accounted as 

production subsidies 

=BR (1500+7302 rehabil.+433 defunct+5580 guarrantee 

+20384 extrabudg.funds) -29629 (NA) +42428 balancing 

AB45 Net foreign transfers of the government BoP: 13*125,69 

AB47 

Primary saving of government (incl. 

inv.transf. by LG,EBF too) 

=-361100 Flow of funds data by NBH+AJ23 (investment) 

+(200100+138790-170450+AC23) net interest (residually) 

+(79247-37546)+12066+(28679-14141) inv. transfers 

-2500 coal correction-17649 balancing 

AD30 

Households transfer and property income 

without interest NA:485354 transfers+(196726-138790) property income 

AD33 Firms' income tax, dividend to state 

NA: 92301+22206 income tax of enterprises & banks 

+10912 dividend 

AD45 

Dividends,other transfers +discrepancy 

between the BoP and SAM for. trade acc. 

24200+(6700-3500+1500)-(143300+218500-130000 

-301400-23300+25400)+(AG24+AG36-AB46-V46) 

AD47 

Saving of firms & banks, net of interest 

(incl.reinvested profit) 

370196+97547+(99572+26900) reinvested-(AC23-170450) 

+2500 correction of coal sector’s saving 

AE47 

Saving of the foreign sector net of interest 

income =296500 current account deficit -200100 net interest 

AF36 

Zero (by GEM-E3 model’s assumption. 

Alternatively: Tourist export's VAT content) may be estimated only 

Y30 Households non-labor income of production 279533+720149 (NA), operating surplus+mixed income 

Y31 

Firms' capital income (enterprises, NPIS, 

banks respectively) 

908765+2015+153609 (NA) op.surplus-16921 net other 

taxes (rent on mining) (BR)+2500 corr. in coal sector  

Y39 Government capital income 248182 (NA), operating surplus of government institutions 
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The following comments have to be made for the SAM cells presented in Table 6.1: 

AA31: An unpublished background worksheet of the HCSO showed that of the NA 
accounted 361326 million HUF transfers paid by the household 83 per cent (299942 Million 
HUF) were ‘transfer expenditures in foreign currency’. The rest were insurance (43685) and 
gambling (8186). Similarly, in 

AD30 of the 485354 received transfers of the households 90 per cent (436627) was 
‘transfer income in foreign currency’. The rest were insurance (40541) and gambling (8186, 
apparently accounted as income received from other households). 

 AA34: the ‘other’ SSC consists of  SSC of the self-employed, the voluntary SSC and SSC 
after people on unemployment benefit, child care leave and sick leave. 

AB47: Non-households investment transfers were not published in the NA before 2002. 
Hence the data are estimated from the Budget Reports. 

AD30: Household other property income consisted of dividend (35432), insurance (15132) 
and (land) rent income (7372). 

AD45: Data for the net dividend income of the RoW are rather different in the NA (58535-
3665=54870) and in the BoP (24200=‘direct investment income’, where reinvested profits 
were not included here yet at that time). 

AD47: Since in the NA savings are accounted after subtracting reinvested profits, here we 
had to add them back (since in the transfer cells of the SAM we did not account them for). For 
the coal correction see Y31. 

AE47: In contrary, in the BoP the current account deficit (i.e. the mirror image of the 
savings of the RoW) was accounted without computing the reinvested profits. Therefore we 
did not have to add it back to the BoP figure for the savings of the RoW. 

AF36: If the SAM displays the domestic consumption, then no VAT should appear here. 
Even if the SAM displays the residents consumption, and hence the exports include the 
consumption of inbound tourists, the GEM-E3 model assumes does not distinguishes between 
the 2 types of the exports (enterprise and tourist), so it assumes that all VAT is accounted for in 
the column of household consumption. If the SAM’s export data are at user’s prices (as in the 
NA), VAT on foreign tourists’ consumption remain unseparated by definition. However, if I-O 
table data are used, which usually at basic prices, the difference between users process and 
basic prices (incl. export taxes and subsidies) have to be accounted for somewhere in the 
accounts of the RoW. In any case, in our SAM these differences (6504 tax-54712 subsidy=-
48208 net tax, i.e. negative net tax) are added to the basic prices. It however means that exports 
are not really at uniform (users) prices, since foreign consumers will have to pay the foreign 
VAT and other consumer taxes when purchasing the products exported by Hungary. 

Y31 and AB47 and AD47: The capital income of the coal sector seemed negative in the 
Hungarian statistics. However, it is impossible that the real cost of capital was negative. 
Therefore we had to find in the Budget Report that yet unaccounted government transfer which 
helped the survival of the coal sector. However, note that these bailing out transfers usually 
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take rather hidden forms, ranging from write-offs and preferential interest rates to equity lift-
offs. 

After filling the above block of the SAM without the residual corrections (indicated by the 
bold letters in Table 6.1), total savings and total accumulation did not match exactly, but the 
difference was surprisingly small (at least relative to what one would expect after learning the 
above mentioned methodological inconsistencies and coverage problems). We concluded that 
the remaining error certainly must be in the accounts of the government. It is not only because 
of the above mentioned uncertainty in the interest expenditures, capital transfers and savings, 
but also because of the incomplete or not guarranteedly correct accounting of certain transfers 
between the firms and the government. For example, the (although small amount of) transfers 
of the „non-profit institutions” are not necessarily properly accounted for, since their account 
in the SNA is also incomplete and the government budget data do not separate them out. 

However, by determining some cells as residual (see the residual corrections in Table 6.1 in 
bold letters), the SAM could be balanced easily. Table 6.2 shows the aggregate balanced SAM. 
Table 6.3 shows the aggregate balanced SAM converted to Euros and after eliminating the 
FISIM (as mentioned in section 5.3. and 5.4.1.) We think the resulting SAM can be used by the 
model well, but if any further corrections should prove to be necessary, the elaborated 
framework will make it easy to do. 

6.7. Bilateral trade matrix  

As we have seen in section 6.1 for Hungary import matrices in 21 sectors break-down were 
officially published for 1995 as a supplement for the I-O table. 

Bilateral (country by country) trade matrices had to be compiled for the export and import 
turnover to and from the European Union (EU 15), the other ECE countries and the ‘rest of the 
world’ (inclusive tourist expenditures).  

In Hungary, the main problem with the available mentioned published data (Foreign Trade 
Statistical Yearbook) was that in the case of bilateral trade it contained only the largest 
shipments, so in many cases the structure of trade with smaller EU- and accession countries 
could only be estimated. In addition, the published data by country was available only for the 
20 main categories (sections) of the HS nomenclature (for custom free zones the country 
break-down was not available at all). Therefore, we had to split Section 2, 5, 15 and 16 to get 
the break-down by our 18 industries. A minor problem is that within Section 1-3 there are 
intermediate goods too, while we assign them to “Consumer goods” exclusively. Similar 
problems can be mentioned in connection with other sections too. 

Trade matrices for merchandise exports and imports have been compiled by converting the 
foreign trade data given in HS classification into NACE classification, and aggregated into the 
sector format of the GEM-E3 model. 
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Table 6.2: The aggregate balanced Hungarian SAM for 1995 

(in million Forints, 1 Euro=125,69 HUF) 

USERS--> Branches       

Consumpt

ion     Firms Exports Tourist Total 

Investmen

ts       Change in Total 

Branches TOTAL Labour Capital Total 

Househol

ds Govern. Banks     export Export 

Househ.+

NPIS Private Govern. Total Stocks   

TOTAL of branches 5748257 0 0 0 3723955 617700 219248 0 1849552 223495 2073047 281848 678717 164824 1125389 218346 13725942 

SSC 729886     0         0         729886 

Wages (withoutSSC) 1905116     0      0   0         1905116 

Capital 2297832     0         0         2297832 

Total Value Added 4932834 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4932834 

Actual Output-Subs 10681091     0             0           10681091 

HHS 0 2635002 999682 3634684  1673645 0 543290 0 0 0      5851619 

FIRMS 0  1049968 1049968 361326 47998 0    0      1459292 

Indirect Taxes (net) 134653   0       0      134653 

Direct Taxes 0   0 411965  0 125419 0  0      537384 

Social Security 0   0 894523    0  0      894523 

Subsidies&mine rent -63883   0     0  0      -63883 

VAT taxes 580257   0 0    0 0 0      580257 

Duties 249430   0       0      249430 

Gov. Foreign 0   0       0      0 

Gov. firms 0  248182 248182       0      248182 

Total Taxes 900457 0 248182 248182 1306488 0 0 125419 0 0 0 0 0 0 0 0 2580546 

Distr. Output 0   0       0      0 

EC 1249273   0       0      1249273 

NON-EC 762810   0       0      762810 

Total Imports 2012083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2012083 

Expend.abroad 132312   0  1634 0 23418   0      157364 

Total Imports 2144395 0   0 0 1634 0 23418 0 0 0 0 0 0 0 0 2169447 

Savings 0     0 459850 239568 0 547917 96400   96400           1343735 

Total Resources 13725943 2635002 2297832 4932834 5851619 2580545 219248 1240044 1945952 223495 2169447 281848 678717 164824 1125389 218346 32063416 
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Table 6.3: The aggregate balanced Hungarian SAM for 1995 (in Millions of Euro) 

 

        Total Consumption     Total 
Exports 

Investments Total Change in 
Stocks 

Total 
  Total Labour Capital Total Househ. Govern. FIRMS Exports Househ. Private Govern. Investm. 

Total 36 701 0 0 0 22 896 3 798 0 12 745 12 745 1 733 4 173 1 013 6 919 1 342 84 402 
Wages 11 713 0 0 0 0 0 0 0   0 0 0 0 0 11 713 
SSC 4 487 0 0 0 0 0 0 0   0 0 0 0 0 4 487 
Capital 12 779 0 0 0 0 0 0 0   0 0 0 0 0 12 779 

Total Value 
Added 28 980                           28 980 

Actual Output 65 681                           65 681 
HHS 0 16 200 6 146 22 347 0 10 290 3 340 0   0 0 0 0 0 35 977 
FIRMS 0 0 6 455 6 455 2 222 295 0 0   0 0 0 0 0 8 972 

Indirect Taxes 828 0 0 0 0 0 0 0   0 0 0 0 0 828 
Direct Taxes 0 0 0 0 2 533 0 771 0   0 0 0 0 0 3 304 
Social Security 0 0 0 0 5 510 0 0 0   0 0 0 0 0 5 510 
Subsidies -393 0 0 0 0 0 0 0   0 0 0 0 0 -393 
VAT taxes 3 568 0 0 0 0 0 0 0   0 0 0 0 0 3 568 
Duties 1 535 0 0 0 0 0 0 0   0 0 0 0 0 1 535 
Gov. Foreign 0 0 0 0 0 0 0 0   0 0 0 0 0 0 

Gov. firms 0 0 1 526 1 526 0 0 0 0   0 0 0 0 0 1 526 

Total Taxes 5 537 0 1 526 1 526 8 043 0 771 0 0 0 0 0 0 0 15 877 

Distr. Output 65 681     0                     65 681 
Imports 13 184 0 0 0 0 10 144 0             13 338 

Total Imports 13 184 0 0 0 0 10 144 0 0           13 338 

SAVINGS 0 0 0 0 2 827 1 473 3 369 593   0 0 0 0 0 7 669 

Total Resources 84 403 16 200 14 127 30 328 35 987 15 866 7 624 13 338 12 745 1 733 4 173 1 013 6 919 1 342   

 



 

 

- 170 - 

It is worth mentioning, that in spite of these problems, the resulting data (see in the file 
Trade95.xls) are fairly consistent with what we could have got, provided we had access to 
the more detailed (electronic) trade statistics (like the Polish partners had) in time. Later 
obtained data (in 2 and 4 digit code breakdown of the HS nomenclature and in branch and 
sub-sector breakdown of the origin of the products) converted to the GEM-E3 model’s 18 
sectors break-down (see the TradAgAc.Xls, TradSzag.Xls files for the exports to the 
accession countries, the TrSzagEU.Xls file for Hungary’s trade with the EU15, and the 
EU15’s exports to Hungary as registered in the Comext database and shown in the 
Tradenis.xls file) show a satisfactory coincidence with what we estimated from incomplete 
(in the case of small countries fragmentary) data. The exceptions are Hungary’s export to 
Austria, Greece, Great Britain and Spain, and Hungary’s import from Austria, Denmark, 
Finland, and Sweden, where in at least 3 branches the ratio of the two corresponding data 
(coming from the different estimations) is close to or above 2. On the aggregate level (which 
means that in quite a few countries) we observe that trade data in branch of origin break-
down resulted in significantly lower estimates for the GEM-E3 sectors of Agriculture, Coal, 
Metal products, and Electrical goods than estimates based on the HS-code commodity break-
down dataset. On the other hand, Chemical industry, Energy intensive industries and 
Equipments the former method’s estimates were lower than those of the latter. 

In any case, in the following step we had to adjust the trade data (already in the 18 sector 
break-down) to the I-O table’s (also already aggregated to the 18 sector break-down) 
corresponding (export or import) trade figures. However, since the value of exports in the 
national accounts and the input-output tables include export subsidies as well (they are at 
basic prices), while the trade statistics data are essentially at users prices (contract prices, 
usually on fob parity), they had to be separated from the I/O table figures and displayed 
among the subsidies. Export is measured at f.o.b. prices, whereas import at c.i.f. prices21.  

The adjustment eliminated not only the above mentioned (mainly aggregation) errors, but 
also eliminated those discrepancies which were due to the different methodology of the I-O 
table and the trade statistics (as discussed earlier, in relation with the processed materials and 
the like). However, in the SAM tourist exports are also added to the total exports, although 
we do not have any information of its country break-down. In this case we can assume that 
the country-structure of the tourist spending is the same as that of the company conducted 
foreign trade. If this again causes assymmetricity in the estimated trade flows between 
countries, it can be eliminated either pair-wise or only at the aggregate level of the EU or the 
world market. 

Data for foreign trade of services (as found in the I-O table) is usually not available in 
country break-down either, and even its industry break-down information is not very reliable 
(usually they are rather different from the Foreign Balance of Payments statistics, which, by 
the way, has a different break-down of the service trade). In any case, the GEM-E3 model has 
a subroutine which deals with the balancing of this service trade on the aggregate EU- and 
world market level. 

                                                 
21 Note the calibration module of the GEM-E3 estimates the difference between the export and import prices as linked 
export of transportation and other services. 
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To estimate the custom duty data, one could use various sources on foreign trade data and 
official tariff rates. Based on the above information duty matrices have been estimated, 
making use of proportionality assumptions (within the blocks of the EU and ECE countries, 
as well as commodity groups). For Slovenia there was more detailed information available so 
that it produced more differentiated duty rates than the other countries. It is interesting to note 
that the Hungarian custom policy treated Poland and Slovenia almost the same way as the EU 
countries. 

6.8. Energy balance sheets 

The GEM-E3 model requires rather detailed and EU-comfort data on emission. For the 
EU countries these are computed from appropriately designed (based on the Eurostat 
methodology) energy-balance-sheets. Some sorts of energy balance sheets are available in the 
accession candidate countries, as well, their format is, however, usually different from both 
the OECD and the EUROSTAT energy balance formats. The estimation of EU-comfort 
energy balance sheets required reclassifications (energy types, types of plants, activities or 
purposes of energy final demand, etc.), imputations (blast furnace gas, coke-oven), 
standardizations (statistical and distributional losses, auxiliary use of transformation, etc.), 
and proportional adjustments, which meant much time and effort. 

When the energy matrix is compiled directly from national energy statistics, the following 
questions have to be asked: 

Brown and hard coal are separated? 

What types of power plants are distinguished? 

Heat and electricity generation are separated (input and outputs)? 

How the coke-oven and blast furnace inputs and outputs treated (conversion!)? 

Within the uses: technology, transportation, material (feedstock), conversion (heat 
generation) uses are separated? 

How the own consumption, auxiliary consumption, distribution losses are treated? 

Are there any fictive (statistical) losses accounted in the electricity data? 

Is the industry classification in conformity with the GEM-E3? 

Although we managed to get a copy of the official 1995 Energy balance Sheet, its format 
was different from both the OECD and The Eurostat energy balance formats. The necessary 
reclassifications, standardizations and proportional adjustments required much time and 
effort. A notable problem was the aggregate accounting of lignite and (brown and hard) coals, 
although their separation would have been necessary for a reasonable estimate of 
environmental (air) pollution. The resulting energy balance sheet can be found in the 
Enbal_hu.xls file. Further details can be seen in the cell-comments of this file. 

6.9. Emission data 

We could not identify any estimates related to emission in the format and detail required 
by the model. Therefore we had to use an indirect method (using energy consumption 
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specific emission coefficients) to estimate them based on the energy balances. The method 
(which is executed by a specific GAMS program which was developed for that purpose) is 
described in detail in the GEM-E3 manual (Capros et al.(1997)).  

In the case of Hungary we could obtain an emission matrix prepared for 1994, which had 
a 25 branches break-down. To transform the data into the required 18 branches break-down 
one had to split some of the branches. This turned out to be a rather sensitive operation, 
which resulted in some places in odd coefficients (see the results in the hunemi95.xls file). 
Nevertheless that made it possible to estimate emission coefficients in two ways for Hungary. 
That made it possible to test the results of the above mentioned GAMS estimates.  

It was found that the emission coefficients estimated by the two different methods are, in 
many respects, sufficiently close to each other. (Although, apparently mainly due to the 
aggregated accounting of different types of coal, the GAMS estimate – which was based on 
average EU coefficients for SO2 – resulted in only one third of the expected figure.) 
Comparing the results obtained for the three countries and Austria (as a reference EU 
country) gave us enough confidence in the reliability of the applied method. 

For many countries direct estimate of the emission matrix can be based on the the 
Greenhouse Gas (GHG) inventory information published by the so-called National 
Communications. These documents are regularly published by countries that joined the UN 
FCCC (Unites Nations’ Framework Convention on Climate Change). The Communications 
contains the GHG inventories in a unified format, and the emissions are calculated uniformly 
by the methodology developed by the IPCC (Intergovernmental Panel on Climate Change). 
All the EU countries has already joined the UN FCCC, therefore our spreadsheet model can 
be used in each EU-member country. This seems to be more expedient than to use different 
data sources and/or different methods to develop the emission module of the GEM-E3.  

The ‘SAM18HUN.xls’ file illustrates this process for 2005 for Hungary (see also in the 
Emission-Hu05.doc report). Its ‘Emission’ sheet contains a spreadsheet model, which in turn 
is based on another spreadsheet model, which was developed for gathering all the necessary 
energy data (see the ‘Energy’ sheet and the Energy-Hu05.doc report). Both the energy and 
the emission data are gathered and processed in the respective worksheets of the 
‘SAM18HUN.xls’ file. 
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7. Implementation of the GEM-E3 model 

Since the GAMS software is not well-known in Central-Eastern Europe and since the 
GEM-E3 model uses only part of it, in this section we summarized the structure of the 
GAMS program of such CGE models, the main characteristics of their solver modules and a 
list of the most important syntactic rules. To make all this information more practical an 
example program is given with explanatory comments. Finally the GAMS-Excel interface is 
presented, which shows how one can read in data from Excel format and how one can put the 
results into an Excel sheet. This is also illustrated by an example, which is elaborated for a 
price-model for Austria. 

7.1. The GAMS software 

The www.gams.com website contains the documentation and the system files of the 
GAMS package. The GAMS is a rather efficient and model-builder friendly software to 
handle and solve large nonlinear models with ’well-behaving’ (twice differentiable, etc.) 
functions in its equations. The latest version of the GEM-E3 model is involves a system of 
about 60,000 non-linear equations per time period. The GEM-E3 model has been successfully 
transformed as a mixed complementarity model and solved in GAMS using the PATH solver. 
Previous attempts to solve the model in other solution algorithms (as with MINOS and 
CONOPT) have been unsuccessful mainly due to the model’s large size and complexity.  

The PATH solver on the other hand, has been successful in solving very large scale 
models and through the complemenetarity approach that it uses, enables the expansion of 
GEM-E3 to include inequalities and a separate optimisation energy sub-module. 

The general structure of the GAMS programs are the following (following the logic of 
mathematitians): 

Inputs Outputs 

-    Sets (SET) 
-   Data   (Parameters, Tables, Scalar ) 
-    Variables 
-   Assignment of bounds and/or initial values  (optional) 
-    Equations 
-   Model and Solve statements 
-   Algorithm selection (for NLP: MINOS, CONOPT, 
for system of equations: PATH) 

-  Display statement (optional) 

-   Echo Print 
-   Reference Maps 
-   Equation Listings 
-   Status Reports 
-   Results 
 

 

An example for GAMS programs (transportation problem): 

 Sets 

  i canning plants / seattle, san-diego / 

  j markets / new-york, chicago, topeka / ; 

 Parameters 

  a(i) capacity of plant i in cases 
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    / seattle 350 

        san-diego 600 / 

  b(j) demand at market j in cases 

    / new-york 325 

      chicago 300 

      topeka 275 / ; 

 Table d(i,j) distance in thousands of miles 

    new-york chicago topeka 

  seattle       2.5     1.7    1.8 

  san-diego     2.5     1.8    1.4 ; 

 Scalar f freight in dollars per case per thousand miles /90/ ; 

 Parameter c(i,j) transport cost in thousands of do llars per case ; 

      c(i,j) = f * d(i,j) / 1000 ; 

 Variables 

  x(i,j)  shipment quantities in cases 

  z  total transportation costs in thousands of dol lars ; 

 Equations 

  cost  define objective function 

  supply(i)  observe supply limit at plant i 

  demand(j)  satisfy demand at market j ; 

 cost ..  z =e= sum((i,j), c(i,j)*x(i,j)) ; 

 supply(i) ..  sum(j, x(i,j)) =l= a(i) ; 

 demand(j) ..  sum(i, x(i,j)) =g= b(j) ; 

 Model transport /all/ ; 

 Solve transport using lp minimizing z ; 

 Display x.l, x.m ; 

 

The most important syntactic rules of the GAMS are the following: 
 
Notation Meaning 
$include filename The text of ’filename’ file is inserted there 
$(….) Conditional statement, executed only if the 

statement in the bracket is true (or if the 
value of the expression is positive) 

LOOP Beginning a loop cycle 
.. Declaration of an equation (instead of the ’:’ 

notation) 
sum(i Summation over the set i 
ord(i) (serial) Index of the elemenst of the set i 
=e= Required equality (in equation definitions) 
=l= Required less than equal relationship 
=g= Required greater than equal relationship 
Display x.l Writes the value of variable x to the list 

(*.lst) file 
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Solve transport using lp minimizing z  Solves the model (set of equations listed 
within /   /  brackets in the declaration of the 
model) called ’transport’ by minimizing the 
value of the variable z using the selected (or 
default) LP solver 

 

The next section and the referred files contain further comments on specific features (syntax) 
of the GAMS language. 
 

7.2. Reading in the data from CSV files and Excel tables 

7.2.1. Import data from Excel to GAMS 

Overview 

Usually databases are given in Microsoft Excel spreadsheet. A tool what convert 
spreadsheet data from Excel to GAMS could be very useful. The GAMS software has a small 
add-on for this job, it is called XLS2GMS. 

When running the executable XLS2GMS.EXE without command line parameters the tool 
will run interactively with a built-in GUI interface. Alternatively XLS2GMS can be run in 
batch mode which is useful when calling it directly from a GAMS model using the $call 
command. 

The process is very simple. First of all, XLS2GMS reads data from the spreadsheet as a 
text. Than the text is exported to a GAMS include file (*.inc). Which can be read by GAMS 
using the $include command.  

Pros: 

- Easily Import data from Excel to GAMS. GUI and batch mode. 
- When some changes occur in the database, it’s not necessary to rewrite the GMAS 

code; it’s enough to reload the Excel file. 
Cons: 

- Sometime it is needed to edit the Excel file before using XLS2GMS.  
- Row vectors can’t be imported directly, it’s necessary to make some modifications. 

(See below). 
-  
Interactive use 

When the tool is called without command line parameters, it will startup interactively. 
Using it this way, one can specify the spreadsheet file (.XLS file), the range and the final 
destination file (a GAMS include file) using the built-in interactive environment.  

Input file (*.XLS). This is the combo box to specify the input file.  

Range. The range can be a single cell (e.g. A1), a block (e.g. B2:J23), or a region within a 
sheet (e.g. Sheet1!A1:C10). The range can also be a name if the spreadsheet contains named 
ranges.  
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Output GAMS Include file (*.INC). This is the combo box to specify the location of the 
input file. 

If the OK button is pressed the query will be executed and an include file will be 
generated. 

Pressing the batch button will give information on how the current extract command can 
be executed directly from GAMS in a batch environment. The batch call will be displayed 
and can be copied onto the clipboard.  

 

 

 

Command line 

When calling XLS2GMS directly from GAMS we want to specify all command and 
options directly from the command line or from a command file. 

This is the general batch call for xls2gmas:  

 

Where s=”,” means that comma will be the separator character and b means that strings 
that have blanks in them will be quoted.  

Let’s see an example. Our task is to import this table above from an Excel spreadsheet to 
a GAMS model. 

 

$call =xls2gms r=<range> s=”,” i=<input_file_neve> 
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The location of the input file is:  C:\excel\test.xls 

According to the GAMS programming structure, we need to declare a SET for the Users 
(Household and Public) and one for the Sectors (Industry and Other). The table name will be 
Table1. 

 

This process is too slow if we want to import more than a few data set. Every time 
xls2gms will be executed and the excel file will be opened and closed. We can use a 
command file to make this faster. 

In the first part, we create a simple text file using the echo command. After it we can use 
a command line to run xls2gms with specified parameters.  

 

Comments and tips 

XLS2GMS has some limits. If the table - to which we want to import - has a label in the 
upper-left corner, GAMS will not recognize it, so we need to delete it or create another table 
with clear upper-left corner. 
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When we want to import a row vector data set (as a Parameter) which is stored like this: 

 

 

 

We cannot do it by one simple command. We need to insert a column to our spreadsheet 
and supplement the data set to a table. 

 

Than we can import it to GAMS as a table, and convert it into parameters, like this: 

 

7.2.2. Export data from GAMS to Excel 

Overview 

After a GAMS model was successfully solved, sometimes it is necessary to put the results 
(back) to the Excel spreadsheet. Exporting data to an Excel file could be also useful if there is 
a better option in Excel to reach our goals than we have it in GAMS.  

For example, during the GAMS process we need to invert a matrix. We can simply export 
the matrix to a spreadsheet (which, of course has the necessary functions). And at the next 
line, we can import the results from the Excel file by using xls2gms. 

Manual 

The first step is to unload data from GAMS to an exchange file (*.gdx: Gams Data 
eXchange file). After that, we can put them into the Excel spreadsheet: 

 

Where execute_unload and execute are GAMS commands. Price is the name of the 
variable (L=Level, see GAMS section for details).  O=Output file name, var means variable 
(if we want to export a parameter or a table, we should write par=… or table=…). Rng is for 
the Excel range. 
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Exercise 1 - Austria 

Based on a 5-sectors ‘B-type’ (i.e. in which the import is displayed separately as the n+1. 
commodity) Input-Output table for Austria, such price system and rate of return to capital has 
to be determined, which satisfies the following macroeconomic criteria: 

• The price system is a so-called ‘production’-price-system , i.e. in which the surplus is 
generated proportionately to the capital. 

• The domestic currency is devaluated by 2 per cent in real terms (the basket of the foreign 
currencies appreciate 2 per cent relative to the consumer price index). 

• Real-wages fall by 5 %. 

• The revaluation rate for the fixed capital and the amortization lags behind the investment 
price index by 10 percentage points. 

• The consumer price index is unchanged (CPI = 1). 

 The basic price model 

First of all we need to build a formal comprehensive price model: 

Sectoral basic price index: ph = phA + pm⋅am + pc⋅cw+ pk⋅ca + cπ 

Consumption price index: pc = phch + pm⋅cm
 

Import price index: pm = phsz + pm⋅cre
 

Investment price index: pb = phbh + pm⋅bm
 

Capital price index:   pk = pb 

Return to Capital: cπ = π⋅pk⋅k 

Price normalization rule: pc = 1 

where : ph, cπ are vector variables,  pc, pm, pb, pk  and π are scalar variables, and the rest of 
the letter notations refer to various parameters (e.g., k is the vector of sectoral capital/output 
ratios). 

The final price model 

To solve the given problem we need to expand our previous model.  

• The cost of the import depends on the real exchange rate, which will be denoted by α (In 
the base α = 1). It is defined as the ratio of the import price index and the domestic price 
index of the export basket (assuming the foreign trade prices in foreign currency do not 
change) 

• The cost of the sectoral wages depends on the real wages. We denote the real wage index 
by β. (In the base β = 1) 

• The price index of the capital was pegged to the price index of the investments, but there 
can be a difference between these two indexes. Their ratio will be denoted by γ. (In the 
base γ = 1) 
So, our final model will be this: 

Sectoral basic price index:    ph = phA + α⋅pm⋅am + β⋅pc⋅cw+ pk⋅ca + cπ 

Domestic price index of the export basket: pm = phsz + pm⋅cre  
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Consumption price index:     pc = phch + α⋅pm⋅cm
 

Investment price index:  pb = phbh + α⋅pm⋅bm
 

Capital price index:   pk = γ⋅pb 

Unit Return to Capital (per unit of output): cπ = π⋅pk⋅k 

Price normalization rule (‘numeraire’):  pc = 1 

According to the macroeconomic scenario: 

•  The real exchange rate of the foreign currency increases by 2 %  =>  α = 1,02 

• The real wages were decreased by 5 %      => β = 0,95 

• Revaluation rate of the capital lags behind the investment price index by 10 per cent 
              =>  γ = 0,9 

Model Summary for GAMS programing 

Parameters (Exogenous Variables): 

A: I/O Coefficients  Matrix 

am: Import Structure  Row Vector 

cw: Wage Coefficients  Row Vector 

ca: Amortization Coefficients  Row Vector   

sz: Export Structure  Column Vector   

cre:
 Re-export  Scalar    

ch: Structure of the Household Consumption  Column  Vector 

cm: Import intensity of Household demand Scalar 

bh: Domestic Coefficients of Investment  Column Vector   

bm: Import intensity of Investment  Scalar 

k: Capital/Output Ratios  Row Vector   

Endogenous Variables: 

ph: Sectoral basic price index   Row Vector 5 

π: Rate of return  Scalar  1 

pk: Capital price index  Scalar  1 

pb: Investment price index  Scalar  1 

pc: Consumption price index  Scalar  1 

pm: Import (Export) price index  Scalar  1 

cπ: Return to capital  Row Vector 5 

                                             _______________________ 

  Total:  15 variables 
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Equations: 

Equation for Sectoral basic price index  5  

Equation for Export price index   1 

Equation for Consumption price index  1 

Equation for Capital price index  1 

Equation for Investment price index:   1 

Equation for Unit Return to capital   5 

Equation for Price normalization   1 

 

Total:   15 equations 

Solve the Model – GAMS 

By using XLS2GMS we import data from the Excel spreadsheet (data.xls). After the 
necessary declarations, we include the imported⋅.inc files to the GAMS program. According 
to the Model Summary section, we can build our model in GAMS. It is not a typical Non- 
Linear Problem (NLP), but we can simply convert it to an NLP. We need to add a fictious 
variable and a fictious equation to minimize: 

Fictious equation:  diff  =  ( ph – (phA + α⋅pm⋅am + β⋅pc⋅cw+ pk⋅ca + cπ) )2 

 The minimum value for diff  must be 0. Now we can solve our model by using GAMS’ 
NLP solver. 

The GAMS results: 

----    130 VARIABLE Ph.L   

            Basic industry            1.037 

            Processing industry       0.947 

            Agriculture and forestry  0.759 

            Other material industries 1.466 

            Services                  0.906 

----    130 VARIABLE pm.L      =      1.026   

            VARIABLE pb.L      =      1.015   

            VARIABLE pc.L      =      1.000   

            VARIABLE pi.L      =      0.283   

            VARIABLE diff.L    =      0.000   

One can see that the resulting rate of return (pi.L) is 28.3 %. It is reasonable, since for the 
labour we did not prescribe any rate of returns, which could cover the employers’ social 
security contribution (not accounted in the gross wages). For other countries, in the next 
section the results are presented also in Excel format. 
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Exercise 2 – All EU Countries 

Our task is the same as it was in Exercise 1. The only difference is that now, we need to 
answer the question for all countries. The Capital Coefficients, the changes of the real 
exchange rate (α) and the real wages (β), and the revaluation rate (γ) can be modified by 
editing the Excel file. 

For the solution see data2.xls! It is an example Excel file, that runs the GAMS program 
by VBA macro and after the GAMS program executed successfully, it exports the results to 
the Excel file. The country can be chosen from the combo box. 

 

Yo u can also see the results for all countries in the data.xls file: 
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APPENDIX  1: THE I-O  TABLE IN GEM-E3 NOMENCLATURE  

The aggregation of Nace-Clio R59 has been used for the initial Input-Output table. For 
some of the countries where this aggregation was not available, the Nace-Clio R25 
aggregation was used instead. The procedure that has been followed to convert the table of 59 
branches into the specific one of 18 branches for the GEM-E3 model, is showed in the 
following structure: 

A1. Table: Codes and names of the Nace-Clio R59 branches  

010 Agricultural, forestry & fishery products  

031 Coal & coal Briquettes 

033 Lignite & lignite briquettes 

050 Products of coking 

071 Crude petroleum 

073 Refined petroleum products 

075 Natural gas 

095 Water (collection, purification, distribution) 

097 Electric power 

098 Manufactured gases 

099 Steam, hot water, compressed air 

110 Nuclear fuels 

135 Iron ore & ECSC iron & steel products 

136 Non-ECSC iron & steel products 

137 Non-ferrous metal ores,non-ferrous metals 

151 Cement, lime, plaster 

153 Glass 

155 Earthenware & ceramic products 

157 Other minerals & derived products 

170 Chemical products 

190 Metal products 

210 Agricultural & industrial machinery 

230 Office machines 

250 Electrical goods 

270 Motor vehicles & engines 

290 Other transport equipment 
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310 Meat & meat products 

330 Milk & dairy products 

350 Other food products 

370 Beverages 

390 Tobacco products 

410 Textiles & clothing 

430 Leather & footwear 

450 Timber & wooden furniture 

471 Pulp, paper, board 

473 Paper goods, products of printing 

490 Rubber & plastic products 

510 Other manufacturing products 

530 Building & civil engineering works 

550 Recovery & repair services 

570 Wholesale & retail trade 

590 Lodging & catering services 

611 Railway transport services 

613 Road & transport services 

617 Inland waterway services 

631 Maritime & coastal transport services 

633 Air transport services 

650 Auxiliary transport services 

670 Communications 

690 Credit & insurance 

710 Business services provided to enterprises 

730 Renting of immovable goods 

750 Market services of education & research 

770 Market services of health 

790 Market services n.e.c. 

810 General public services 

850 Non-market services of education & research 

890 Non-market services of health 

930 Non-market services n.e.c. 
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APPENDIX  2: CORRESPONDENCE BETWEEN NACE AND 
EXTERNAL TRADE PRODUCT CODE  

GEM 
code 

NACE code  External Trade code 

1 01 Agriculture, forestry and fishery products Section 1: life animals & animal products 
Section 2: Vegetable products, chapters: 6+7+8+9+10 

 06 Fuel and Power Products Section 5: Mineral products, chapter 27 
2 Lignite, coal & coke 2701+2702+2704+2708 
3 Oil products 2709+2710+2712+2714+?271119 
4 Gas 2711-?271119 
5 Electricity  
6 13 Ferrous & non ferrous ores & metals Section 5, chapter 26 

Section15,  
Chapters 72+73+74+75+76+78+79+80+81 

7 17 Chemical products Section 6 
8 15 Non metallic mineral products Section 5, chapter 25 

Section 13 
 47 Paper and printing products Section 10 
 19 Metal products exc. machines & transp Section15, chapters 82+83 

9 25 Electrical goods Section 16, chapter 85 
10 28 Transport equipment Section 17 
11 21 Agricultural & industrial machinery Section 16, chapter 84 (minus the one in23) 

 23 Office & data processing machines Chapter 84 (8451+8452+8453+8454+8455) 
12 36 Food, beverages, tobacco 

Section 2, chapters 11+12+13+14 

Section  3, Section 4 
 42 Textile & clothing Section 8, Section 11,  

Section 12 chapter 64+65 
 48 Other manufacturing prod Section 9,  

Section 12 chapter 66+67, section 14 
Section 18, Section 19, Section 20, Section 21 

 49 Rubber & plastics Section 7 
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APPENDIX  3: THE DERIVATION OF SYMMETRIC I-O  TABLES 
For GEM-E3 the construction of a symmetric input-output table is required. The 

symmetric IO table is a product-by-product or industry-by-industry matrix describing the 
domestic production processes and the transactions in products of the national economy in 
detail. In the following, we follow the methodology from Holub and Schnabl (1994) to 
construct a symmetric input-output table. 

The conversion of the make and use matrices into the square input-output matrix hinges 
on two types of technology assumptions: 

1. industry technology, assuming that all products in a product group produced in a 
branch are produced with the same input structure; 

2. product technology, assuming that all products in a product group have the same input 
structure, whichever industry produces them. 

Given the IO matrix: 

 commodities activities final demand sum 

commodities  

use matrix 

U 

final demand 
matrix 

Y use (q) 

Activities 

make matrix 

V   
production profits 

(g) 

imports 

imports 

M    

value added  

value added 
matrix 

W   

Sum 

 

costs 

(q´) 

costs of the 
production 

(g´)   

 

We define three matrices : 
1* −><= gUB  Matrix of the IO coefficients with dimension commodities x industries. The 

use matrix is divided by the column sum. 
1´* −><= gVC  Product-mix matrix with dimension goods x industries. It shows the shares 

of the particular commodity on the overall output for each industries. The 
column sum is accordingly equal to 1.  
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1)(* −>−<= mqVD Market-shares-matrix with dimension industries x commodities. It 

shows the production share (market share) for each good of the particular 
industry from domestic production. The sum of the column items is equal to 
1.  

Activity technology: All commodities (characteristic as well as non-characteristic) 
produced from one industry are being produced with the same input structure i.e. each 
activity uses a particular technology independent from which commodities are being 
produced. IO coefficients are given as weighted averages of all intermediate structures, which 
produce the respective commodities. The market shares are used as weights.  

The square input output matrices in the commodity x commodity or industry x industry 
dimension are given by the following formulas. 

11
,

11
,

**)(**

)(****
−−

−−

><>−<==

>−<><==

gUmqVBDA

mqVgUDBA

AxAI

CxCI
 

The process is illustrated by the MakeUse5.xls file. 
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APPENDIX  4: THE CONSUMPTION MATRIX OF GREECE (IN M . ECU 1995) 
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Total 

Product 

Agriculture 
2

194 
0 0 60 0 0 0 0 0 0 0 0 0 2254 

Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Oil 0 0 0 627 0 0 0 0 
134

9 
0 0 0 0 1976 

Natural Gas 0 0 0 60 0 0 0 0 0 0 0 0 0 60 

Electricity 0 0 211 952 0 0 0 0 0 0 0 0 0 1162 

Ferrous & Non-Ferrous 
Metals 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chemical Products 0 0 42 0 379 0 376 0 0 0 0 192 680 1669 

Other Energy-Intensive 
Industries 

0 0 0 0 585 35 0 0 0 0 0 577 259 1457 

Electrical Goods 0 0 3 0 10 78 0 0 0 0 0 196 0 287 

Transport Equipment 0 0 0 0 0 0 3 
8

77 
0 0 0 18 0 898 

Other Equipment Goods 
Industries 

0 0 0 0 2 
30

1 
34 0 0 0 0 94 0 431 

Consumer Goods 
Industries 

9

657 

449

9 
44 0 

148

8 
0 0 0 40 0 0 166 341 16235 

Building and Construction 0 0 387 0 0 0 0 0 0 0 0 0 0 387 

Telecommunication 
Services 

0 0 0 0 0 0 0 0 0 0 
9

80 
0 0 980 

Transports 0 0 0 0 0 0 0 0 0 
184

7 
0 0 114 1961 

Services Of Credit And 
Insurance 

0 0 0 0 0 0 0 0 189 0 0 0 521 710 

Other Market Services 0 0 9976 0 351 19 364 0 114 100 0 307 17150 35638 

                                                 

  Source: GEM-E3 Database. 
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6 5 5 5 

Non-Market Services 0 0 0 0 0 0 0 0 0 0 0 0 335 335 

Total 
1

1851 

449

9 
10663 

169

9 

281

6 

61

0 

405

7 

8

77 

272

3 

194

7 

9

80 

431

8 
19401 66441 

APPENDIX  5: THE UNITED K INGDOM INVESTMENT MATRIX (IN M . ECU 1995) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total 

 Agriculture 498 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 

 Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Oil 
0 0 

117

9 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1310 

 Natural Gas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Electricity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Ferrous & Non- 
Ferrous Metals 50 54 

102

9 122 463 43 78 

23

9 67 

46

9 75 

11

2 519 

11

6 263 607 530 511 5346 

 Chemical Products 0 0 0 0 0 0 12 0 0 0 0 0 4 0 0 0 0 0 16 

 Other Energy-
Intensive Industries 0 0 0 0 0 0 0 

22

7 0 0 0 0 381 0 0 0 5 0 613 

 Electrical Goods 
26 13 56 226 

158

1 239 

77

0 

44

1 

99

7 

51

2 

40

1 

31

2 52 

44

75 659 

346

1 

184

9 

310

4 

1917

4 

 Transport 
Equipment 388 60 158 112 80 123 

11

9 

10

2 56 26 

10

9 

14

2 399 

35

1 2989 

440

3 987 324 

1092

8 

 Other Equipment 
Goods Industries 706 

18

6 339 219 836 714 

79

5 

12

96 

63

2 

93

9 1307 1491 899 

21

2 776 

174

7 

305

8 

159

8 

1775

1 

 Consumer Goods 
Industries 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Building and 
Construction 795 

12

5 

228

6 702 

159

4 188 

39

2 

32

9 

50

3 

27

5 

54

5 

56

5 29710 

46

6 2886 

421

8 

477

1 

976

0 

6011

1 

Telecommunication 
Services 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165 165 

 Transports 21 1 661 73 0 4 2 6 2 14 4 5 8 13 10 53 69 33 979 

 Services Of Credit 
And Insurance 151 48 727 104 104 138 

25

6 

54

9 

22

9 

15

9 

40

4 

56

7 

430

4 

21

5 256 

196

5 661 

128

2 

1211

9 

 Other Market 
Services 263 56 233 116 552 222 

34

6 

45

2 

34

3 

37

2 

39

0 

42

3 372 

92

6 555 

145

0 

118

4 

103

5 9289 

 Non-Market 
Services 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 483 0 

161

7 2099 
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Total 

289

7 

54

2 

666

9 

180

5 

520

9 

167

0 2771 3642 2830 2766 3234 3617 36648 

67

74 8394 

183

88 

131

14 

194

29 

1403

98 

Source: GEM-E3 Database. 
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APPENDIX  6: Models of Optimal Resource Allocation 

Introduction 

 

The following models are illustrated by the MULTHH-OPT-SCEN.GMS program with 
1998 data, in 3 sectors and 10 household groups. A further unusual generalization of the 
resource allocation problem is in these models that gross fixed capital formation is also broken 
down to 3 sectors.  

Formal description of the models 

 

We deal with the static version (1 period). Simpler models are formulated in a more general 
framework, so that the GAMS can treat them as special cases. Simpler formulas can be 
obtained as special cases of the more sophisticated ones. Parameters and non-parametrized 
functions are denoted by small letters, while endogenous variables are denoted by capital 
letters. Those categories which may appear in certain models as endogenous variables are 
declared variables. (the GAMS does not allow the redefinition of PARAMETERS as 
VARIABLES and vice versa). Exogenous variables are not distinguished from. Since the 
GAMS does not allow the optimization of an objective function formula, a separate variable is 
defined to measure the value of the objective function. 

 

The NLP2 (primal optimal resource allocation) model 

 

Sets:  

 

G : household groups (general element is referred by index g , dimension: Ng),  

I: branches (general element is referred by index i or j, dimension: Ni)(the set is also 
denoted by J) 

 

Functions: 

 

ei ( Zi )  Export price-volume function, 

fi ( Mi , XDi ) Import-domestic substitution function, 

gi ( RLi , RKi ) Capital-Labour substitution function, 

hg ( CVg,i ) Consumer welfare function by groups, 
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ti ( Zi , XDi ) Export-domestic transformation function 

 

Variables:   

CESi , CESLKi , INVSi, Xi , XDi , Mi , Zi , RLi , RKi , PEi , CVg,i , CLg , BTR, IL, IK, IG, OBJ  

(altogether 10·Ni  + Ng ·Ni + Ng +5 variables, which in the case of Ng =10 and Ni =3 yields 75) 

Conditions: 

(precisely inequalities, in the form of inputs ≥outputs, source ≥ use and use ≥ presribed value): 

Name Shadow 
price 

Formula 

Definition

s: 

  

ECESLKi ( µi ) gi ( RLi,RKi ) ≥ CESLKi 

ECESi ( λi ) fi ( Mi,XDi ) ≥ CESi  

EPA2i ( PAi ) Xi  ≥ ti ( Zi ,XDi )  

EV2 ( V ) ∑i ( PEi · Zi – pwmi ·M i ) ≥ BTR  

EW2 ( W ) IL · tl  ≥ ∑i ( RLi · X i )  

ER2 ( R ) IK · tk  ≥ ∑i ( RKi · X i )  

EOBJ ( φ ) BTR  ≥ OBJ 

Behavioral and technnological equations, balance identities: 

EPEi ( εi ) ei ( Zi ) ≥ PEi  

ECLg ( γg ) hg ( CVg,i ) ≥ CLg 

EPR2i ( PRi ) CESLKi ≥ 1 

EPHM2i ( PHMi ) CESi ≥ ∑j ( ahmi,j · X j + bhmi,j · INVSj ) +∑g ( cfg,i  + CV g,i ) 

+ gbi · IG +stacci + texpi 

EIL ( α ) ile  ≥ IL 

EIK ( δ ) ike  ≥ IK 

EIG ( PG ) IG ≥ ige 
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ECPISg CPISg  CLg ≥ tcg 

EINVSi PINVSi INVSi ≥ ibe i · invs0i 

(altogether 7·Ni  + 2 ·Ng + 7 conditions, which in the case of  Ng =10 and Ni =3 yields 48, so if 

the constraints are binding then the degree fo freedom is 3·Ni  + Ng ·(Ni - 1) -2, which in the 

case of Ng =10 and Ni =3 yields 27) 

Task: 

OBJ -> max 

Note, that introducing OBJ as a separate variable is due to the fact that the GAMS program 

can maximize only the value of a single variable, so a formula can not be maximized directly. 

The NLP3 model (first order conditions of the NLP2 model) 

If the above inequalities hold in the form of strict equalities (which can be proved to 

happen in the optimum in the case of continously substitutable, differentiable functions), then 

the optimal solution can be derived by using the Lagrange-multiplier method.  

The Lagrangian (with some reordering to get common summations) is the following: 

£ := OBJ + ∑i  { µi · ( gi ( RLi,RKi ) - CESLKi ) + λi · (  fi ( Mi,XDi ) - CESi ) + PAi · ( Xi  - ti ( 

Zi ,XDi ) ) +PHMi · ( CESi - [ ∑j ( ahmi,j · X j + bhmi,j · INVSj ) +∑g ( cfg,i  + CV g,i ) + gbi · IG 

+stacci + texpi ]  ) +PINVSi · ( INVSi - ibe i · invs0i ) + εi · ( ei ( Zi ) - PEi ) + PRi · ( CESLKi – 1 

)}+V  · ( ∑i ( PEi · Zi – pwmi ·M i ) - BTR ) +W · ( IL · tl - ∑i ( RLi · X i ) ) +R · ( IK · tk - ∑i ( RKi · 

X i ) ) +φ · ( BTR – OBJ ) +∑g { γg · ( hg ( CVg,i ) - CLg ) + CPISg · ( CLg - tcg ) } + α · ( ile – IL ) 

+δ · ( ike – IK ) + PG · ( IG – ige ) 

The first order conditions of the optimum are obtained by setting the partial derivatives of 

the Lagrangian to zero. Concretely, setting the partial derivatives of the Lagrangian according 

to the shadow prices to zero bring back the original conditions (in the form of equations), while 

setting the partial derivatives of the Lagrangian according to the primary (quantity) variables to 

zero we get the well-known marginality conditions. These are the following: 

δ£ /δX i ≡ PAi - W · RLi -R ·  RKi -∑j PHMj · ahmj,i  = 0  (1) 

δ£ /δZi ≡ -PAi · δ ti /δZi  +V ·  PEi  + εi · δei /δZi  = 0  (2) 

δ£ /δXD i ≡ -PAi · δ ti /δXD i  + λi · δfi /δXD i  = 0  (3) 

δ£ /δM i ≡  λi · δfi /δM i -V ·  pwmi  = 0  (4) 

δ£ /δRLi ≡  µi · δgi /δRLi -W ·  Xi  = 0  (5) 

δ£ /δRKi ≡  µi · δgi /δRKi -R ·  Xi  = 0  (6) 



 

- 202 -  

δ£ /δCVg,i ≡ - PHMi + γg · δhg /δCVg,i  = 0  (7) 

δ£ /δBTR ≡  -V + φ  = 0  (8) 

δ£ /δCESi ≡ -λi +PHMi  = 0  (9) 

δ£ /δCESLKi ≡ - µi +PRi  = 0  (10) 

δ£ /δPEi ≡  V ·  Zi - εi  = 0  (11) 

δ£ /δCLg ≡ - γg +CPISg  = 0  (12) 

δ£ /δIG ≡ -∑i PHMi · gbi + PG  = 0  (13) 

δ£ /δINVSj ≡ -∑i PHMi · bhmi,j + PINVSj = 0  (14) 

δ£ /δIL ≡ -α +W·tl  = 0  (15) 

δ£ /δIK ≡ -δ +R·tk  = 0  (16) 

δ£ /δOBJ ≡  1 - φ  = 0  (17) 

By counting the number of equations and variables one can see that the equation system is 

regular. Majority of the variables are irrelevant or can be computed recursively after solving 

the simultaneous block. Therefore only the simultaneous block has to be dealt with. 

The process of the solution can be e.g. the following: 

From (17)  φ = 1, which substituted into (8) can be omitted together with its equation. 

Similarly from (10) µi =PRi , which substituted into (5) can be omitted together with (10). 

Similarly from (9) λi =PHMi , which substituted into (3) and (4) can be omitted together 

with (9). 

Similarly from (12) γg =CPISg , which substituted into (7) can be omitted together with 

(12). 

Similarly from (11)  εi =V ·  Zi , which substituted into (2) can be omitted together with 

(11). 

Finally, since from equations (13)-(16) one can express PG =∑i PHMi · gbi , PINVSj =∑i 

PHMi · bhmi,j ,  α = W·tl  and δ = R·tk variables, which do not appear anywhere else, these can 

be regarded to be part of the epilogue. Therefore the simultaneous block just consists of 

equations (1)-(8) and the primal conditions23. Naturally, the variables with Greek letters are 

substituted by their latin letter equivalents. 

                                                 
23 Although the number of the primary equations and variables also can be reduced, since IL, IK, IG, CLg, INVSi, CESLKi 
are exogenously given and OBJ can be substituted by BTR. 
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This block consists of 6·Ni  + Ni ·Ng + 1 equation. By adding the number of the primary 

equations, the total number of equations is 13·Ni  + 2 ·Ng + Ni ·Ng + 8 . The number of the 

effective variables is the same, since to the 10·Ni  + Ng + Ni ·Ng + 5 primary variables only 3·Ni  

+ Ng +3 dual variables have to be added (PAi, PRi, PHMi, CPISGg, V, W és R). Therefore this 

reduced equation system is regular, which is in practice the sufficient condition of the existence 

and unicity of the solution. 

The NLP3 model in the GAMS program only differs from this in that respect, that (for the 

sake of future generalization) instead of R (through RSi and PINVS i) and W stand PKi and PLi 

respectively, although not differentiated by sectors if we set the parameter values appropriately 

(see in the GAMS program24). The NLP3 model has an additional ’epilogue’ block of 5 

equations, which determine the investment by products (investment goods), the investment 

price indices and the sectoral breakdown of the capital and labour25. 

Naturally, the ei , fi , gi , hg and ti functions appear in the GAMS program in concrete a 
parametrized functional form. Concretely, , fi , gi and hg by CES-functions, ti –s are represented 
by CET-function and the PEi = ei (Zi ) export price-volume functions (see the definitional 
equation EPEi among the primary conditions) are specified as 

PEi = ei (Zi ) = τi· Zi
ω(i) 

i.e. as an ’isoelastic’ function. If we denote δ ei/δ Zi by e’(Zi ) , then we can get the  

e’ (Zi ) = τi·ω(i)·Zi
ω(i)-1 = ω(i)· ei (Zi)/Zi 

relationship.  

If we substitute this into (2) (or into that form of (2) in which εi is already replaced by V·Z i 

– as seen in (11) ) and if we define PZi (the unit revenue of export at local currency) as  

PZi = V·(1+ω(i))·PEi  

then we get 

PAi · t’ (Zi ) = V·PEi  + εi · e’(Zi ) = V·PEi  + V·ω(i)· ei (Zi) = V·(1+ ω(i))·PEi  =  PZi    (2’) 

where δ ti /δZi was also denoted by t’(Zi ). 

Further NLP model variants (NLPKT, NLPGE) are a somewhat modified and further 

generalized form of this system of equations, by introducing further auxiliary variables and by 

using the Euler-theorem and other relationships (see the alternative equivalent conditions of the 

optimum). 

                                                 
24 For example, when computing the optimum, the GAMS program sets the BHM(I,J) parameter of the PINVS(J,Y) =E= 
SUM(I, PHM(I,Y)*BHM(I,J,Y)) equation so, that it be uniform accross investing sectors:  
BHM(I,J,Y)=SUM(JJ, BHM(I,JJ,Y)*INVS0(JJ))/SUM((II,JJ), BHM(II,JJ,Y)*INVS0(JJ))  
25 See equations EB,EPINV,EK, EKS,EL in the GAMS-program (note, that for capital both demand and supply in 
determined at sectoral level, although in these models this is irrelevant, capital is assumed to be perfectly mobile). 
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The NLPKT model (modified version of the first order conditions) 

Of the „further NLP model variants” the first one is the so-called NLPKT model, which is 

obtained so, that we introduce the  

EPM(I,Y)..  PM(I,Y) =E= TXM(I,Y)*V(Y)*PWM(I,Y); 

EPZ(I,Y)..  PZ(I,Y)=E=TXZ(I,Y)*V(Y)*PE(I,Y); 

EPD(I,Y).. PD(I,Y)=E=(PA(I,Y)*X(I,Y)-PZ(I,Y)*Z(I,Y) ) / XD(I,Y); 

EC(G,I,Y)..  C(G,I,Y)=E=CF(G,I,Y)+CV(G,I,Y);     {here it is only epilogue or statistics} 

definitional equations, and in which (3) and (4) (which are called DXD and DM in the 

GAMS program) are replaced by EPHMKT(I,Y) and EMKT(I,Y), while (5) and (6) (which are 

called DRL and DRK in the GAMS program) are replaced by ERLKT(J,Y) and ERKKT(J,Y).  

The above equations are defined as follows:  

EPHMKT(I,Y).. PHM(I,Y)=E=(XD(I,Y)*PD(I,Y)+PM(I,Y)*M (I,Y)) / CES(I,Y);  

EMKT(I,Y)..   M(I,Y)=E=MH(I,Y)*(PD(I,Y)/PM(I,Y))**M EL(I,Y)*XD(I,Y); 

ERLKT(J,Y).. RL(J,Y)=E=RL0(J,Y)**(1-REL(J,Y))*(AL(J,Y)*PR(J,Y)/PL(J,Y))**REL(J,Y); 

ERKKT(J,Y).. RK(J,Y)=E=RK0(J,Y)**(1.-

REL(J,Y))*(AK(J,Y)*PR(J,Y)/PK(J,Y))**REL(J,Y); 

where CESLK(J,Y) was replaced by 1 (see equation EPR2). 

It is not straitforward to prove that these replacements are equivalent. Here only we can 

outline how to prove this statement. 

For example, to prove that (3),(4) => EPHMKT,EMKT  we have to multiply (2’),(3) and 

(4) by Zi, XDi and Mi respectively, then we have to add them pairwise (i.e. form the (2’)+(3) 

and (3)+(4) equations) to get equations (5) and (6) respectively. Then in equation (6) we have 

to apply the CESi = f ’(XD i)·XD i+ f ’(M i)·M i Euler-theorem. Then we have to derive equation 

(11) by subtracting equation (5) from (6). By observing that due to (3) the PAi· t’(XD i)- PHMi· 

f ’(XD i) component in (11) is 0, and by using the definition of PDi, and by dividing the 

equation by CESi we get the EPHMKT equation.  

Then by subtracting PZi·Zi from equation (5) and by using the definition of PDi again and 

finally by dividing by XDi we get the 

 PDi = PHMi · f ’(XD i )    (8) 

relationship. 

Then le tus define mhi as  
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mhi = (ami /adi)
1/mel(i)  

and let us start from the  

mhi · (PDi / PMi)
1/mel(i) formula. Here by using (8),(4), the defintion of PM i and the fact that 

since f is a CES-function so f ’(XD i ) = (CESi/XD i)
 1/mel(i) , we can arrive at the Mi/XD i ratio. 

Note that by this we proved the relationship in EMKT, which was our goal. 

To prove the statement from the opposite direction, i.e. that  EPHMKT,EMKT => (3),(4)  

one may do the following steps: 

We start from EPHMKT, into which we replace PDi by its definition, and by using the 

Euler-theorem twice again we replace Xi by t’(XD i)·XD i+ t’(Z i)·Zi and CESi by f ’(XD i)·XD i+ f 

’(M i)·M i. Then we observe that due to (2’) the  PAi · t’ (Zi ) · Zi - PZi · Zi component is 0, we get 

an equation (11) which is just the sum of (3) and (4).  

Then from EMKT (using again that f ’(XD i ) = (CESi/XD i)
 1/mel(i) and f ’(M i ) = (CESi/M i)

 

1/mel(i) ) we get that 

f ’(M i) = f ’(XD i)· PMi / PDi    (12) 

Substituting this into (11) for f ’(M i) and (9) for PDi w eget the following relationship: 

PHMi ·f ’(XD i) ·( XDi + Mi · PMi / PDi) = PDi ·( XDi + Mi · PMi / PDi ) (13) 

By dividing the equation by the formula in the parenthesis we directly get (8). 

Then, multiplying the Xi = t’(XD i)·XD i+ t’(Z i)·Zi Euler-theorem by PAi and by using the 

definitions of PZi and PDi and dividing the equation by XDi we get the  

PDi = PAi · t’ (XD i )    (9) 

relationship. 

Now, if we compare the 2 different formulas for PDi (i.e. (8) and (9)), we can conclude that 

the other (right hand) sides should also be equal, i.e. 

PHMi · f ’(XD i ) = PAi · t’ (XD i ) 

which is just equation (3) which we had to prove. Finally, if we subtract this from (11) (i.e 

from (3)+(4) ) we get equation (4) too. 

To prove the (5),(6) � ERLKT,ERKKT  equivalency is much simpler, so we will leave it 

for the reader. 
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The NLPGE model (slightly modified NLPKT) 

It differs from NLPKT only in that respect, that the EPR2 composite factor-utility setting 
(to unity) is replaced by the EPR explicit definition of the shadow-price formula. Naturally, the 
two formulas are equivalent. 

The CGE and CGECLO models (toward a general equilibrium model) 

First, in these models the ECL composite consumption-utility definition is replaced by the 
ECPIS equation, which computes the shadow-price at the optimum (as the ratio of the total 
expenditure and utility). Naturally, as in the case of the production function, the two formulas 
are equivalent. 

The ‘CGE’ model contains a simplified income-distribution block (including transfers and 
savings), which, however, is irrelevant given the NLP-type of closure. If we set the parameter 
values appropriately, then its solution is identical to that of the above NLP-models. 

The MultHH-opt-scen.GMS program therefore runs this model twice: first before doing 
these optimal parameter-settings, then after the NLP-model runs, when the parameters are 
already set so. The latter run demonstrates that this model is also equivalent to the NLP- 
models. 

This sequence of runs is explained by the fact that it is easy to make omelette from eggs but 
not vice versa: i.e. after setting the parameters optimally it is difficult to recalibrate them so 
that they fit the benchmark data 8as usual in the static CGE models). 

The ‘CGECLO’ model demonstrates that by changing the macroeconomic closure of the 
model, one can get a solution different from that of the above NLP-models. Concretely, the 
fixing the group-specific consumption levels (equation ECPIS2) are replaced by the fixing of 
the consumption/wage ratio (equation ESAVRAT), which is a proxy for the savings rate (since 
the model’s income distribution block is not sufficiently elaborated the real savings rate can 
not be determined straitforwardly).  

Of course, if both (CGE and CGECLO) models are calibrated to the benchmark data, they 
reproduce the benchmark both. This is shown in columns E an F of the ‘Results’ sheet of the 
MultiHHOutput.xls file. However, when running a counterfactual simulation (in our case the 
government consumption was reduced by 20%, while the consumption tax rates wre increased 
by 10 percentage points uniformly across goods), the two models yield different results. This is 
demonstrated in columns G and H. As can be seen, in the CGECLO model (i.e. in which the 
savings rates are fixed) consumption levels decrease (due to the higher taxes) and the 
difference is pushed to the export markets, which, however, can be reached by the incentive of 
real devaluation of the local exchange rate (note that since the nominal exchange rate is kept 
fixed, this implies the drop of the domestic prices). 

Comparing these columns with columns E or F one can see, that in the optimal solution the 
balance of trade (see in row 66) is higher than in the CGE-models with non-uniform factor 
prices, markups, indirect taxes and similar ‘distortions’. Not surprisingly, in the counterfactual 
scenario the NLP models retain their trade balance edge over the CGE-models. In fact, it is 



 

- 207 -  

more revealing to compare the changes caused by the the same ‘shocks’ in different models. 
Therefore, the comparison of the difference of H-G may be compared with that of  I-J, to see 
how sensitive the results are to the model specification. This comparison we leave to the 
reader. 

In columns J,K and L the equivalence of the NLP2, NLPKT and CGE models are 
empirically demonstrated. 

Finally, note that in the GAMS version of the model the categories have a time dimension 
(Y) (and some intertemporal factor accumulation relationships too) which makes it easier to 
develop them further into a dynamic model. Such a dynamic model is presented in section 
4.2.1.  
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APPENDIX  7: FLOW CHART OF THE HUNGARIAN CGE MODEL  

Notes: 

1. CPI=1 is the numeraire, so it is not displayed 

2. Several insignificant effects are not displayed (e.g. transfers depending on V, income 
tax depending on L,K) 

3. Several intermediate variables (e.g. RS,PR,PHMUC,CL,B) are not displayed (as if we 
had substituted them out) 

4. Irrelevant variables (mostly belonging to the environmen-leisure-consumption 
optimization) are not displayed 
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5. If behaviour is optimal shadow-prices depend only on components 

6. Radiuses (axis crossing the origo) represent a type of category or a step in the income 
distribution (e.g. we can start from the left horizontal – i.e. 180o radius, which represent 
the factor returns or supply) 

 

Legend: 

Circle: Price category 

Rectangle: Quantity category 

Romboid: Value category (cost, income) 

--� : Direction of direct effect 

 

Notations: (Y refers to the year, I and J for the sector, G for the household group) 

 VARIABLES: 

B(I,Y) total investment by goods 

BTR(Y) balance of trade 

C(G,I,Y) total personal consumptions of commodity i 

CG(Y) government consumption level index  

CL(G,Y) level of the variable consumption 

CV(G,I,Y) variable consumption 

INVS(J,Y) investment level index  

K(J,Y) capital stock 

KS(J,Y) sectoral capital 

L(J,Y) employment 

M(I,Y) import 

NTRF(Y) net transfers of the foreign sector 

NTRG(Y) net transfers of the government 

NTRH(G,Y) net transfers of the household groups 

NTRS(J,Y) net transfers of the sectors 

OBJ objective function average: average total consumption 

PA(I,Y) average sales price 

PD(I,Y) price for domestic sales 
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PE(I,Y) export fob price in base years exhange rate  

PHM(I,Y) composite good price 

PINV(Y) investment price index  

PINVS(J,Y) price of investment  

PK(I,Y) calculative capital costs 

PL(I,Y) calculative labour costs 

PM(I,Y) import user price 

PR(I,Y) composite cost of labour and capital per unit output in sector i 

PZ(I,Y) unit revenue of export sales 

R(Y) adjustment factor for the net rate of return on capital 

RK(I,Y) unit capital 

RL(I,Y) unit employment 

RS(J,Y) rate of return to capital by sectors  

SF(Y)  saving of the foreign sector 

SG(Y) saving of the government 

SH(G,Y) saving of the household groups 

SS(J,Y) saving of the sectors 

V(Y) foreign exchange rate 

W(Y) standard wage index 

X(I,Y) output 

XD(I,Y) domestic sold output 

Z(I,Y) exports 

 

 


