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Abstract

We use a theoretical framework to compare production-in-advance type and produc-
tion-to-order type environments. Carrying out our analysis in the framework of a
symmetric capacity-constrained Bertrand-Edgeworth duopoly game, we prove that
the equilibrium profits are the same in case of production in advance and production
to order. In addition, advance production results in higher prices than production
to order if both games have an equilibrium in nondegenerated mixed strategies.
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1 Introduction

Shubik (1955) proposed that in a duopolistic context price-quantity games
have to be considered besides price-setting games. He investigated price games
in which each firm sets its price and the maximum quantity it is willing to
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supply. In addition he discussed, but did not solve, the price-quantity game
with both firms simultaneously choosing prices and quantities. Shubik (p. 430)
conjectured that the value of the price-quantity game lies below that of the
price game because of the risk of being left with inventory in the price-quantity
game.

From now on, following Maskin’s (1986) terminology, we will refer to the
Shubik-type price game as a production-to-order game and to the Shubik-type
price-quantity game as a production-in-advance game. Production in advance
requires that production takes place before sales are realized. Markets of per-
ishable goods are usually mentioned as examples of advance production in a
market. In contrast, in case of production to order, sales are determined before
production takes place. This mechanism is, for instance, typical in the market
for ships or planes. Phillips et al. (2001) emphasized that there are also goods
that can be traded both in a production-in-advance and in a production-to-
order environment. To see this, we have to think about production-in-advance
markets as a kind of spot market while production-to-order markets are a
kind of forward market. Thus, for example, coal and electricity are sold in
both types of environments. A comparison of these two different types of en-
vironments has been carried out in an experimental context by Mestelman
et al. (1987) and Phillips et al. (2001). Assuming strictly increasing marginal
cost functions, Mestelman et al. reports that in posted offer markets the firms’
profits are lower in case of advance production, which is consistent with Shu-
bik’s conjecture. In an experimental auction market Phillips et al. found that
prices and profits are higher while quantities and consumer surplus are lower
in case of advance production.

We will compare production in advance with production to order in a theoret-
ical framework. In order to keep our analysis tractable we will carry out the
comparison in the framework of a homogeneous goods Bertrand-Edgeworth
duopoly with capacity constraints. In the Bertrand-Edgeworth game quan-
tities and prices are both decision variables. It is well known that in general
this game does not have an equilibrium in pure strategies. The mixed-strategy
equilibrium was computed, under different conditions imposed on the demand
function and the capacity limits, by Beckmann (1965), Davidson and De-
neckere (1986) as well as Allen and Hellwig (1993) for proportional rationing,
and by Levitan and Shubik (1972), Kreps and Scheinkman (1983), Osborne
and Pitchik (1986) and Vives (1986) for efficient rationing. Maskin demon-
strated the existence of mixed-strategy equilibrium under very weak assump-
tions.

The above-mentioned works have determined mixed-strategy equilibrium cor-
responding to the case of production to order; that is, the production decisions
of the firms follow the choices of their prices. Assuming unlimited capacities,
Levitan and Shubik (1978) computed the mixed-strategy equilibrium for the
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case of production in advance (i.e., firms choose prices and production quanti-
ties simultaneously). However, if the firms are capacity constrained, then only
the existence of a mixed-strategy equilibrium is known (see Maskin, Theorem
1). We are not aware of further theoretical results in the literature concerning
the mixed-strategy equilibrium for the case of production in advance.

In this paper we consider the symmetric case in which both firms have equal
capacities and the same constant unit costs up to their capacity constraints.
We suppose that the unit costs are positive. This implies that in the two dif-
ferent cases, production to order and production in advance, the equilibrium
in mixed strategies may differ. In particular, it seems possible that higher
prices firms will not always produce up to their capacity constraints because
they cannot sell their entire production with positive probability in a mixed-
strategy equilibrium. We will establish that in a symmetric equilibrium the
firms’ profits are equal in both versions of the price-setting game (Theorem 1).
This means that Shubik’s conjecture does not hold true for the case of iden-
tical and constant unit costs up to the same capacity constraint. In addition,
if both games’ equilibrium are in nondegenerated symmetric mixed strate-
gies, then the equilibrium price distribution of the production-in-advance case
stochastically dominates (in the sense of first-order stochastic dominance) the
equilibrium price distribution of the production-to-order case (Theorem 1).

The rest of this paper is organized as follows. Section 2 presents the framework
of our analysis. Sections 3, 4 and 5 contain the comparison of the production-
in-advance game with the production-to-order game for the case of small ca-
pacities, large capacities and intermediate capacities respectively. Finally, in
Section 6 we make some concluding remarks.

2 The model

We impose the following assumptions on the demand curve D : R+ → R+.

Assumption 1 D is strictly decreasing on [0, b], identically zero on [b,∞),
continuous at b, twice continuously differentiable on (0, b) and concave on [0, b].

Note that a monopolist facing a demand curve satisfying Assumption 1, con-
stant unit cost c and positive capacity constraint k has a unique positive profit
maximizing price pm = arg maxp∈[0,b] (p− c) min {D (p) , k}. We shall denote
by a the horizontal intercept of D; D (0) = a.

In our model two firms set their prices and quantities. Regarding the duopolists
we make the following assumptions:
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Assumption 2 The two firms, labelled 1 and 2, have identical positive unit
costs c ∈ (0, b) up to the same positive capacity constraint k. Each of them
sets its price (p1, p2 ∈ [0, b]) and quantity (q1, q2 ∈ [0, k]).

The quantity decisions q1 and q2 shall be interpreted differently in case of
production in advance and in case of production to order. In the first case qi
stands for the actual production of firm i, while in the second case qi denotes
the maximum amount firm i is willing to supply. Throughout the paper i and
j will be used to refer to the two firms; in particular, i, j ∈ {1, 2} and i 6= j.

In order to enable the demand faced by the firms to be determined, we have to
specify a rationing rule. We assume efficient rationing by the low-price firm,
which occurs in a market if the consumers can costlessly resell the good to each
other or if the consumers have heterogeneous unit demands and the consumers
having higher reservation prices are served first (for more details we refer to
Davidson and Deneckere, 1986 and Tirole, 1988).

Assumption 3 The demand faced by firm i is given by

∆i (p1, q1, p2, q2) =


D (pi) , if pi < pj
qi

qi+qj
D (pi) , if pi = pj

(D (pi)− qj)+ , if pi > pj.

In Assumption 3 three cases are considered. First, if firm i is the low-price
firm, then it faces the entire demand. Second, if they set the same price, then
the demand is split in proportion of the firms’ quantity decisions. 1 Third, if
firm i sets the higher price, then it will face a so-called residual demand, which
equals the demand minus the quantity produced by the low-price firm.

To specify the two games, we have to define the firms’ profit functions. In case
of production in advance, firm i’s sales are constrained by its production qi
or by its demand ∆i (p1, q1, p2, q2). Moreover, setting quantity qi means that
actual production equals qi, which results in cqi cost. Thus, firm i’s profit is
given by

πi ((p1, q1) , (p2, q2)) = pi min {∆i (p1, q1, p2, q2) , qi} − cqi

in case of advance production. However, in case of production to order firm i
will never produce more than the demand it faces. Hence, its profit equals its

1 It is worth noting that for the results obtained in this paper many other splitting
rules can be allowed. The essential property of the rule employed here is that firm
i’s demand is strictly increasing in firm i’s own quantity.
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gains per unit times its sales; that is,

πi ((p1, q1) , (p2, q2)) = (pi − c) min {∆i (p1, q1, p2, q2) , qi} .

In this case it is optimal for firm i to set quantity qi = k whenever pi ≥ c
and quantity qi = 0 whenever pi < c because of Assumption 2. Thus, the
production-to-order game reduces to a simple price-setting game.

Observe that if a firm sets its price lower than c, then it will produce nothing.
However, if a firm does not produce anything, it can set its price arbitrarily,
and the price it sets is irrelevant. Furthermore, it can be easily checked that
any price above pm is dominated. Therefore, we may assume in the following
without loss of generality that the set of prices equals [c, pm].

Two special prices play a major role in the analysis. We define p∗ to be the
price that clears the firms’ aggregate capacity from the market if such a price
exists, and zero otherwise. That is,

p∗ =

D
−1 (2k) , if D (0) > 2k

0, if D (0) ≤ 2k.

The function
πr (p) = (p− c) (D (p)− k)

equals a firm’s residual profit whenever its opponent sells k and D (p) ≥ k.
Let p = arg maxp∈[c,pm] π

r (p). Clearly, p∗ and p are well defined whenever
Assumptions 1 and 2 are satisfied.

In the Introduction we mentioned that the production-to-order game has al-
ready been solved in the literature. Kreps and Scheinkman established the
uniqueness of equilibrium profits. From Osborne and Pitchik we even know
that the production-to-order game has a unique solution. We shall denote the
equilibrium profit of the production-to-order game by π. The following result
is due to Levitan and Shubik (1972), Osborne and Pitchik (1986) and Vives
(1986):

Proposition 1 Under Assumptions 1, 2 and 3, the production-to-order game
has a unique symmetric equilibrium. In particular, the following three cases
emerge:

(1) If p∗ ≥ p, then we have an equilibrium in pure strategies with both firms
setting prices equal to the market clearing price (i.e., pi = p∗).

(2) If p > max {p∗, c}, then there is only an equilibrium in nondegenerated
mixed strategies with distribution function

F (p) =
(p− c) k − π

(p− c) (2k −D (p))
(1)
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for any p ∈
[
p, p

]
, where p = c+ π/k.

(3) If D (c) ≤ k, then we have an equilibrium in pure strategies with both
firms setting prices equal to unit cost (i.e., pi = c).

Case 1 in Proposition 1 occurs if the firms are capacity constrained, while case
3 occurs if each firm can serve at any price the entire demand. For this reason
we will refer to the first case as the small-capacity case and to the third case as
the large-capacity case. Case 2 can be called the case of intermediate capacities
in which there is only an equilibrium in nondegenerated mixed strategies. We
will divide our analysis of the production-in-advance game into these three
cases, where we will treat each case in a separate section.

3 The case of small capacities

First, we start with the case of small capacities, which is the only case with
an equilibrium in pure strategies.

Proposition 2 Let Assumptions 1, 2 and 3 be fulfilled. Then if the produc-
tion-in-advance version of the Bertrand-Edgeworth duopoly game has a Nash
equilibrium in pure strategies, it is given by pi = p∗ and qi = k (i ∈ {1, 2}).
Furthermore, a Nash equilibrium in pure strategies exists if and only if p∗ ≥ p.

Proof. No equilibrium can exist with c ≤ pi < pj because in this case, if
D(pi) > k or pi = c, firm i will increase its price; and if D(pi) ≤ k and pi > c,
firm i produces qi = D(pi) and therefore firm j will reduce its price below pi.
Thus, in a pure-strategy equilibrium both firms must set the same price p.
Observe that none of the firms will set a price lower than p∗. There cannot
be an equilibrium with pi = pj > max {p∗, c} because in this case at least one
firm can benefit from unilaterally undercutting its opponent price. If p∗ < c,
then pi = pj = c cannot be an equilibrium since in this case we must have
qi + qj ≤ D (c) in an equilibrium; therefore at least one firm can earn positive
profit by unilaterally setting a price above c.

Finally, if p∗ ≥ c, we have to determine those conditions under which pi = p∗

and qi = k is an equilibrium profile. Note that p∗ ≥ c implies p > c. Now if
p∗ ≥ c, then condition

dπr

dp
(p∗) = (p∗ − c)D′(p∗) +D(p∗)− k ≤ 0 ⇔ p∗ ≥ p

is necessary and sufficient for pi = p∗ and qi = k being an equilibrium profile
because of Assumptions 1 and 2. 2
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By comparing Proposition 1 with Proposition 2, we can observe that the re-
spective equilibrium prices and profits of the production-in-advance game and
of the production-to-order game coincide whenever a pure-strategy equilib-
rium does exist in the production-in-advance game. In addition, Proposition 2
points out a difference between the production-in-advance and the production-
to-order versions of the Bertrand-Edgeworth game since in the latter version
an equilibrium in pure strategies also exists when capacities are sufficiently
large. Assuming proportional rationing, Boyer and Moreaux (1987, Proposi-
tion 1) obtained a result in the same direction as Proposition 2 in that they
showed the nonexistence of equilibrium in pure strategies for a price-setting
production-in-advance game in case of unlimited capacities.

4 The case of large capacities

In the previous section we have considered the case in which an equilibrium
in pure strategies exists. Now we turn to the cases corresponding to cases 2
and 3 appearing in Proposition 1 in which by Proposition 2 the production-
in-advance game has only an equilibrium in nondegenerated mixed strategies.
In particular, in this section we solve the case of large capacities while in the
next section we will solve the case of intermediate capacities.

From Maskin (Theorem 1) we know that the production in advance game
possesses an equilibrium in mixed strategies. In the following, a mixed strategy
is a probability measure defined on the σ-algebra of Borel measurable sets on
S = [c, pm]× [0, k]. A mixed-strategy equilibrium (µ∗1, µ

∗
2) is determined by the

following two conditions:

π1 ((p1, q1) , µ
∗
2) ≤ π∗1, π2 (µ∗1, (p2, q2)) ≤ π∗2 (2)

holds true for all (p1, q1) , (p2, q2) ∈ S, and

π1 ((p∗1, q
∗
1) , µ∗2) = π∗1, π2 (µ∗1, (p

∗
2, q
∗
2)) = π∗2 (3)

holds true µ∗1-almost everywhere and µ∗2-almost everywhere, where π∗1, π
∗
2 stand

for the equilibrium profits corresponding to (µ∗1, µ
∗
2). The calculation of a

mixed-strategy equilibrium in a closed form through conditions (2) and (3)
is a very difficult and, perhaps, even impossible task. Therefore, we restrict
ourselves to comparing the equilibrium of the production-to-order game with
the equilibrium of the production-in-advance game. In addition, we will only
consider symmetric mixed-strategy equilibrium, which simplifies the analysis
and can be justified by the symmetric setting of the game. The existence of
a symmetric equilibrium in mixed strategies can be established by applying
Theorem 6∗ in Dasgupta and Maskin (1986a). In fact, Maskin showed that
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π1 + π2 is upper semi-continuous in case of advance production and Prop-
erty (α∗) can be established similarly to the case of production to order (see
Dasgupta and Maskin, 1986b).

Before we can proceed, we need some further notations. Let µ be a symmet-
ric mixed-strategy equilibrium of the production-in-advance game. We shall
denote the equilibrium profit of the production-in-advance game by π̃µ. We
define the support of a symmetric equilibrium strategy µ in the following way:

supp(µ) = {(p, q) ∈ S | π1 ((p, q), µ) = π̃µ} .

For any price p ∈ [c, pm] we denote by sµ (p) ⊆ [0, k] the set of those quan-
tities q ∈ [0, k] for which (p, q) ∈ supp (µ). The correspondence sµ may be
called the supply correspondence. Let µp stand for the projection of proba-
bility measure µ to the set of prices; that is, µp (B) = µ (B × [0, k]) for any
Borel set B ⊆ [c, pm]. We write p̃µ and p̂µ for sup {p ∈ [c, pm] | µp ([c, p)) = 0}
and inf {p ∈ [c, pm] | µp ((p, pm]) = 0} respectively. Thus, µp ([p̃µ, p̂µ]) = 1. In
what follows we will omit the subscripts µ when it is clear which symmetric
equilibrium strategy is meant, and we will write simply π̃, s, p̃ and p̂ instead
of π̃µ, sµ, p̃µ and p̂µ respectively.

From now on we will restrict ourselves in the analysis of the production-in-
advance version of the game to those cases in which the equilibrium is in
nondegenerated mixed strategies; that is, p∗ < p by Proposition 2. Clearly,
π̃µ ≥ 0 holds true since each firm can assure zero profit by zero production.
Hence, π̃µ = 0 if p̃µ = c. The following two lemmas investigate the case of
p̃µ > c.

Lemma 1 If (µ, µ) is a symmetric mixed-strategy equilibrium of the produc-
tion-in-advance game, then under Assumptions 1, 2, 3, p∗ < p and p̃µ > c, we
have sµ (p̃µ) = {min {k,D (p̃µ)}} and µp ({p̃µ}) = 0.

Proof. Let (µ, µ) be an arbitrary symmetric mixed-strategy equilibrium of
the production-in-advance game. Suppose that s (p̃) = ∅. Clearly, there exists
a sequence pn and qn such that pn ≥ p̃, (pn, qn) ∈ supp (µ) and limn→∞ pn = p̃.
For this sequence we have π̃ =

lim
n→∞

π1 ((pn, qn) , µ) ≤ lim
n→∞

(pn − c) min {k,D (pn)} = (p̃− c) min {k,D (p̃)} .

Thus, π̃ = π1 ((p̃,min {k,D (p̃)}) , µ), which is in contradiction with s (p̃) = ∅.
Hence, s (p̃) 6= ∅. If there exists a q ∈ s (p̃) such that q < min {k,D (p̃)}, then
there exists an ε > 0 for which

π1 ((p̃, q) , µ) ≤ (p̃− c) q < (p̃− ε− c) min {k,D (p̃− ε)} ,
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and thus, (µ, µ) cannot be a mixed-strategy equilibrium. This means that
s (p̃) = {min {k,D (p̃)}}.

If µp has an atom at price p̃, then it can be checked that the firms have to share
the demand with positive probability whenever they play their pure strategy
(p̃,min {k,D (p̃)}) ∈ supp (µ), but then each firm can increase its profit by
switching unilaterally to pure strategy (p̃− ε,min {k,D (p̃− ε)}), where ε is
a sufficiently small positive value. However, this cannot be the case because
(µ, µ) is a mixed-strategy equilibrium, and thus, there is no atom at price
p̃. 2

From Lemma 1 we see that π̃µ = (p̃µ − c) min {k,D (p̃µ)}. Lemma 2 and
Lemma 4 extend the results of Lemma 1 to the bottom part of the support of
equilibrium prices. Lemma 2 considers the case in which the lowest possible
price p̃µ is high enough so that the firms are demand constrained rather than
capacity constrained; that is, sµ (p̃µ) = {D (p̃µ)}.

Lemma 2 If (µ, µ) is a symmetric mixed-strategy equilibrium of the produc-
tion-in-advance game, then under Assumptions 1, 2, 3, p∗ < p, p̃µ > c and
sµ (p̃µ) = {D (p̃µ)}, there exists a price p′ ∈ (p̃µ, p

m] such that s (p) = {D (p)}
and µp ({p}) = 0 for all p ∈ [p̃, p′].

Proof. Let (µ, µ) be an arbitrary symmetric mixed-strategy equilibrium of the
production-in-advance game. First, observe that D (pm) < k must hold, since
otherwise, D (pm) = k, which in turn implies pm ≤ p̃ < p̂ by s (p̃) = {D (p̃)}, a
contradiction. Note that we must have p̃ < pm, because otherwise, p̃ = pm = p̂
follows, which cannot be the case because of µp ({p̃}) = 0. These observations
will be useful in the remaining part of the proof.

Firm 1’s profit, given that firm 2 plays its own equilibrium strategy µ, equals

π1 ((p, q) , µ) = p
∫
[p̃,p)×[0,k]

min
{

(D (p)− q2)+ , q
}
dµ (p2, q2) +

p
∫
{p}×[0,k]

min

{
q

q + q2
D (p) , q

}
dµ (p2, q2) + (4)

pqµp ((p, p̂])− cq,

where (p, q) ∈ supp (µ). Note that (p, q) ∈ supp (µ) implies q ≤ D (p). Clearly,
the two integrals in the above expression are both increasing in q. Therefore,
pµp ((p, p̂]) − c > 0 implies that π1 is strictly increasing in q whenever p and
µ are fixed. Hence, by p̃ < pm and Lemma 1 there exists a p′ ∈ (p̃, pm] such
that s (p′) = {D (p′)}, and s (p) = {D (p)} or s (p) = ∅ for all p ∈ [p̃, p′).

9



By Lemma 1 µp does not have an atom at p̃. Suppose that µp has an atom at
price p ∈ (p̃, p′]. Since µp has at most countably many atoms, we can select a
sufficiently small ε > 0 such that p− ε > p̃, µp ({p− ε}) = 0 and

π1 ((p− ε,D (p− ε)) , µ) = (p− ε)D (p− ε)µp ((p− ε, p̂])− cD (p− ε)
≥ (p− ε)D (p− ε)µp ([p, p̂])− cD (p− ε)

>p
1

2
D (p)µp ({p}) + pD (p)µp ((p, p̂])− cD (p)

= π1 ((p,D (p)) , µ) .

Hence, (p,D (p)) /∈ supp (µ). However this is in contradiction with our as-
sumption that µp has an atom at price p.

We establish that s (p) = {D (p)} for all p ∈ [p̃, p′]. Suppose that the interval
[α, β] ⊂ (p̃, p′), where α ≤ β, is a ‘price gap’ so that, for all p ∈ [α, β] we
have s (p) = ∅ and we can take sequences pn and p?n of prices such that
pn ∈ [p̃, α), s (pn) = {D (pn)}, limn→∞ pn = α, p?n ∈ (β, p′], s (p?n) = {D (p?n)}
and limn→∞ p

?
n = β. Then we must have

π1 ((α,D (α)) , µ) = lim
n→∞

π1 ((pn, D (pn)) , µ) = π̃ and

π1 ((β,D (β)) , µ) = lim
n→∞

π1 ((p?n, D (p?n)) , µ) = π̃

since µp is atomless on [p̃, p′]. However this implies that s (α) = {D (α)}
and s (β) = {D (β)}, a contradiction. In an analogous way one can establish
that ‘price gaps’ of type [α, β) ⊂ (p̃, p′) and (α, β] ⊂ (p̃, p′) cannot occur.
Finally, suppose that the interval (α, β) ⊆ (p̃, p′) is a ‘price gap’; that is,
s (α) = {D (α)}, s (β) = {D (β)} and s (p) = ∅ for all p ∈ (α, β). Then
π1 ((γ,D (γ)) , µ) = γD (γ)µp ([β, p̂]) − cD (γ) is strictly increasing in γ on
(α, β) because of β ≤ pm and Assumption 1, but this cannot happen because
limγ→α+0 π1 ((γ,D (γ)) , µ) = π1 ((α,D (α)) , µ) = π̃ since µp is atomless on
[p̃, p′]. 2

Suppose that (µ, µ) is a symmetric mixed-strategy equilibrium. In the follow-
ing let pk =

sup {p′ ∈ [p̃, pm] | ∀p ∈ [p̃, p′) : s (p) = {min {k,D (p)}} and µp ({p}) = 0} .

Lemma 2 assures that pk > p̃ if Assumptions 1, 2, 3, p∗ < p, p̃ > c and
s (p̃) = {D (p̃)} are fulfilled.

Lemma 3 If (µ, µ) is a symmetric mixed-strategy equilibrium of the produc-
tion-in-advance game, then under Assumptions 1, 2, 3, p∗ < p and sµ (p̃µ) =
{D (p̃µ)} we have π̃µ = 0.
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Proof. Take an arbitrary symmetric mixed-strategy equilibrium (µ, µ) of the
production-in-advance game. Clearly, Lemma 3 holds true if p̃ = c; therefore,
in what follows we will assume that p̃ > c. If s

(
pk
)

= ∅, then µp is atomless

on
[
p̃, pk

]
and thus, π1

((
pk, D

(
pk
))
, µ
)

= limp→pk−0 π1 ((p,D (p)) , µ) = π̃, a

contradiction. Hence, s
(
pk
)
6= ∅. By the definition of pk and Lemma 2, we

must have pµp ((p, p̂])− c ≥ 0 for all p ∈
[
p̃, pk

)
. Thus,

pkµp
([
pk, p̂

])
− c = lim

p→pk−0
pµp ((p, p̂])− c ≥ 0. (5)

Let H (q) = pkqµp
([
pk, p̂

])
− cq. Obviously, π1

((
pk, q

)
, µ
)
≤ H (q) for all

q ∈ [0, k]. We have π̃ = π1 ((p,D (p)) , µ) for all p ∈
[
p̃, pk

)
by the definition

of pk and Lemma 2. By applying the first part of (5), it can be verified that

π̃ = lim
p→pk−0

π1 ((p,D (p)) , µ) = H
(
D
(
pk
))
. (6)

Regarding (5) we consider two cases. First, we assume that pkµp
([
pk, p̂

])
−c =

0. Then 0 = H (q) = H
(
D
(
pk
))

= π̃ for all q ∈
[
0, D

(
pk
)]

by (6). Thus, we
have obtained a contradiction with p̃ > c, and therefore it follows that p̃ = c,
which in turn implies π̃ = 0.

Second, we assume that pkµp
([
pk, p̂

])
− c > 0. Then µp

([
pk, p̂

])
> 0 and π̃ =

H
(
D
(
pk
))

> H (q) ≥ π1
((
pk, q

)
, µ
)

for all q ∈
[
0, D

(
pk
))

. Thus, s
(
pk
)

={
D
(
pk
)}

. It can be verified that the definition of pk and pkµp
([
pk, p̂

])
−c > 0

implies µp
({
pk
})

> 0. Hence,

π1
((
pk, D

(
pk
))
, µ
)
< π1

((
pk − ε,D

(
pk − ε

))
, µ
)

= π̃

for a sufficiently small ε > 0, which is in contradiction with s
(
pk
)

=
{
D
(
pk
)}

.
Therefore, the second case cannot occur. 2

Lemmas 1, 2 and 3 are valid for any case in which a pure-strategy equilibrium
does not exist, that is, for large capacities as well as intermediate capacities. In
fact, Lemmas 1 and 3 will be also applied in Section 5 where we will investigate
the case of intermediate capacities. Now we separate our analysis into two
parts: the case of D (c) ≤ k (large capacities) and the case of p > max {p∗, c}
(intermediate capacities). Proposition 2 already covers the case of p∗ ≥ p. The
following proposition contains our result for the case of D (c) ≤ k.

Proposition 3 If (µ, µ) is a symmetric mixed-strategy equilibrium of the pro-
duction-in-advance game, then under Assumptions 1, 2, 3 and D (c) ≤ k, we
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have π̃µ = π = 0.

Proof. From Proposition 1 we already know that the production-to-order
game has an equilibrium in pure strategies with π = 0 and both firms setting
their prices equal to their marginal costs c.

Now, we turn to the production-in-advance game. Of course, if p̃ = c, then
π̃ = 0, and we are finished. If p̃ > c, then we can apply Lemma 1. Note that
D (c) ≤ k implies s (p̃) = {D (p̃)}. Therefore, we can apply Lemma 3 and
obtain π̃ = 0. 2

We can also observe that under the assumptions of Proposition 3 the produc-
tion-in-advance prices dominate, in the sense of first-order stochastic domi-
nance, the production-to-order prices, since in the production-in-advance game
the firms never set prices below c and in the production-to-order game the
firms set prices equal to c. In addition, Proposition 3 is consistent with Lev-
itan and Shubik (1978), since they also obtained that the firms make zero
profits in case of advance production. However, they assumed the presence of
unlimited capacities.

5 The case of intermediate capacities

In this Section we will consider the remaining case, that is, the case of p >
max {p∗, c}. We start with the observation that in this case each firm can
guarantee itself π > 0 profits in the production-in-advance version of the
game by setting its price to p and its quantity to D (p)−k. Thus, π ≤ π̃. This
observation also implies that p̃ ≥ p > max {p∗, c} ≥ c.

Before stating our result concerning the case of p > max {p∗, c}, we need
another lemma, which is analogous to Lemma 2 in that it extends the result of
Lemma 1 to the bottom part of the symmetric equilibrium price distribution.

Lemma 4 If (µ, µ) is a symmetric mixed-strategy equilibrium of the produc-
tion-in-advance game, then under Assumptions 1, 2, 3 and p > max {p∗, c}
we have k < D (p̃µ) and there exists a price p′ ∈ (p̃µ, p

m] such that s (p) = {k}
and µp ({p}) = 0 for all p ∈ [p̃µ, p

′].

Proof. Let (µ, µ) be an arbitrary symmetric mixed-strategy equilibrium of
the production-in-advance game. First, observe that we must have k < D (p̃)
and s (p̃) = {k} because s (p̃) = {D (p̃)} would imply by Lemma 3 that π̃ = 0,
which cannot be the case since 0 < π ≤ π̃.
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The two integrals in (4) are both increasing in q. Hence, pµp ((p, p̂]) − c > 0
implies that π1 is strictly increasing in q whenever p and µ are fixed. Then it
can be checked that by Lemma 1 there exists a price p′ ∈ (p̃, pm] such that
s (p′) = {k}, and s (p) = {k} or s (p) = ∅ for all p ∈ [p̃, p′].

We already know by Lemma 1 that µp does not have an atom at p̃. Suppose
that µp has an atom at price p ∈ (p̃, p′]. Then it follows that

kµp ({p}) > 1

2
D (p)µp ({p}) . (7)

Since µp has at most countably many atoms we can select a sufficiently small
ε > 0 such that p− ε > p̃, µp ({p− ε}) = 0 and

π1 ((p− ε, k) , µ) = (p− ε) min
{

(D (p− ε)− k)+ , k
}
µp ([p̃, p− ε)) +

(p− ε) kµp ((p− ε, p̂])− ck
≥ (p− ε) min

{
(D (p)− k)+ , k

}
µp ([p̃, p− ε)) +

(p− ε) kµp ([p− ε, p)) + (p− ε) kµp ({p}) +

(p− ε) kµp ((p, p̂])− ck
≥ (p− ε) min

{
(D (p)− k)+ , k

}
µp ([p̃, p)) +

(p− ε) kµp ({p}) + (p− ε) kµp ((p, p̂])− ck
> pmin

{
(D (p)− k)+ , k

}
µp ([p̃, p)) +

p
1

2
D (p)µp ({p}) + pkµp ((p, p̂])− ck

= π1 ((p, k) , µ) ,

where in the last inequality we applied (7). Hence, (p, k) /∈ supp (µ), a contra-
diction.

Finally, we show that s (p) = {k} for all p ∈ [p̃, p′]. This holds true for p̃ by
Lemma 1. Suppose that the interval [α, β] ⊂ (p̃, p′), where α ≤ β, is a ‘price
gap’; that is, for all p ∈ [α, β] we have s (p) = ∅ and we can take sequences
pn and p?n of prices such that pn ∈ [p̃, α), s (pn) = {k}, limn→∞ pn = α,
p?n ∈ (β, p′), s (p?n) = {k} and limn→∞ p

?
n = β. Then we must have

π1 ((α, k) , µ) = lim
n→∞

π1 ((pn, k) , µ) = π̃ and

π1 ((β, k) , µ) = lim
n→∞

π1 ((p?n, k) , µ) = π̃

since µp is atomless on [p̃, p′], but this implies that s (α) = {k} and s (β) = {k},
a contradiction. In an analogous way one can establish that gaps of type
[α, β) ⊂ (p̃, p′) and (α, β] ⊂ (p̃, p′) cannot occur. Now suppose that the inter-
val (α, β) ⊆ (p̃, p′) is a ‘price gap’; that is, s (α) = {k}, s (β) = {k} and s (p) =

13



∅ for all p ∈ (α, β). Clearly, limγ→α+0 π1 ((γ, k) , µ) = π1 ((α, k) , µ) since
µp ({α}) = 0, and limγ→β−0 π1 ((γ, k) , µ) = π1 ((β, k) , µ) since µp ({β}) = 0.
We must have µp ([p̃, α]) > 0 by the definition of p̃. Hence, it can be verified
that µp ([p̃, α]) > 0, implying that π1 ((γ, k) , µ) is strictly concave on [α, β] in γ
because of Assumption 1 and therefore, π1 ((γ, k) , µ) has a unique maximizer
in [α, β]. We conclude that s (α) = ∅ or s (β) = ∅, a contradiction. 2

Lemma 4 guarantees that pk > p̃ if p > max {p∗, c}, Assumptions 1, 2 and 3
are satisfied.

Now, we state our result on symmetric mixed-strategy equilibrium for the case
of p > max {p∗, c}:

Proposition 4 Let Assumptions 1, 2 and 3 be satisfied. If p > max {p∗, c},
then for any symmetric mixed-strategy equilibrium (µ, µ) of the production-in-
advance game, we have p̃µ = p, pk = p, π̃µ = π and

µp
([
p, p

))
= µ

([
p, p

)
, {k}

)
=

(p− c) k − π
p (2k −D (p))

(8)

for any p ∈
[
p, p

]
.

Proof. Take an arbitrary symmetric mixed-strategy equilibrium (µ, µ) of the

production-in-advance game. If s
(
pk
)

= ∅, then µp is atomless on
[
p̃, pk

]
and

therefore,

π1
((
pk,min

{
k,D

(
pk
)})

, µ
)

= lim
p→pk−0

π1 ((p,min {k,D (p)}) , µ) = π̃,

a contradiction. Hence, s
(
pk
)
6= ∅. By the definition of pk and Lemma 4 we

must have pµp ((p, p̂])− c ≥ 0 for all p ∈
[
p̃, pk

)
. Let

G (q) = pkqµp
([
pk, p̂

])
+ pk

(
D
(
pk
)
− k

)+
µp
([
p̃, pk

))
− cq.

Obviously, π1
((
pk, q

)
, µ
)
≤ G (q) for all q ∈

[
0,min

{
k,D

(
pk
)}]

. We have

π̃ = π1 ((p,min {k,D (p)}) , µ) for all p ∈
[
p̃, pk

)
by Lemma 4. In addition, by

applying the first part of (5) it can be verified that

π̃ = lim
p→pk−0

π1 ((p,min {k,D (p)}) , µ) = G
(
min

{
k,D

(
pk
)})

. (9)

In order to prove that pk = p we split (5) into two separate cases. First, we

suppose that pkµp
([
pk, p̂

])
− c = 0. Then G (q) = G

(
min

{
k,D

(
pk
)})

= π̃
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for all q ∈
[
0,min

{
k,D

(
pk
)}]

by (9). Specially, if k < D
(
pk
)
, then π̃ =

G
(
D
(
pk
)
− k

)
= π1

((
pk, D

(
pk
)
− k

)
, µ
)
≤ π, which implies π̃ = π, p̃ = p

and pk = p. If k ≥ D
(
pk
)
, then π̃ = G (0) = 0. Thus, k ≥ D

(
pk
)

cannot be

the case since p > max {p∗, c} implies π̃ > 0.

Second, we suppose that pkµp
([
pk, p̂

])
− c > 0. Then

π̃ = G
(
min

{
k,D

(
pk
)})

> G (q) ≥ π1
((
pk, q

)
, µ
)

for all q ∈
[
0,min

{
k,D

(
pk
)})

. Thus, s
(
pk
)

=
{

min
{
k,D

(
pk
)}}

. Clearly,

µp
([
pk, p̂

])
> 0. It can be verified that the definition of pk and pkµp

([
pk, p̂

])
−

c > 0 implies µp
({
pk
})

> 0. Hence, we obtain

π1
((
pk,min

{
k,D

(
pk
)})

, µ
)
< G

(
min

{
k,D

(
pk
)})

= π̃

by (9), which is in contradiction with s
(
pk
)

=
{

min
{
k,D

(
pk
)}}

. Therefore,
the second case cannot occur.

Now from Lemma 4 firm 1’s profit, given that firm 2 plays its own equilibrium
strategy µ, equals

π1 ((p, k) , µ) = pkµp ((p, p̂]) + p (D (p)− k)µp ([p̃, p))− ck (10)

if p ∈
[
p̃, pk

)
. Rearranging (10) yields (8) since we have already established

p̃ = p and pk = p. 2

Proposition 4 states that both the production-in-advance version and the
production-to-order version of the capacity-constrained Bertrand-Edgeworth
duopoly game have identical profits in a symmetric equilibrium. Furthermore,
by comparing (1) with (8), we see that any symmetric equilibrium price dis-
tribution of the production-in-advance game stochastically dominates (in the
sense of first-order stochastic dominance) the equilibrium price distribution
of the production-to-order game. Thus, the payoff equivalence is even more
surprising, since higher prices in case of production in advance result exactly
in the same profits as in case of production to order. From Proposition 4 we
conclude that under the assumptions of Proposition 4 the consumers’ surplus
in the production-in-advance game is smaller than in the production-to-order
game, and therefore, the production-in-advance game leads to less welfare.
This means that in the current setting from a social point of view production
to order shall be preferred to advance production.

Propositions 2, 3 and 4 demonstrate the payoff equivalence of the production-
in-advance game and the production-to-order game for any symmetric equilib-
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rium in case of symmetric capacities and identical unit costs. In addition, we
found that the production-in-advance equilibrium prices stochastically domi-
nate the production-to-order equilibrium prices. We state these results, which
are our main results, in a theorem:

Theorem 1 Under Assumptions 1, 2 and 3, the production-in-advance prof-
its and the production-to-order profits are the same, and the production-in-
advance equilibrium prices dominate the production-to-order equilibrium prices
if we restrict ourselves to symmetric equilibrium.

6 Concluding remarks

Our main result (Theorem 1) stating the equivalence of payoffs in case of
production in advance and production to order differs from the experimental
results by Mestelman et al. (1987) and Phillips et al. (2001). Mestelman et
al. reported that advance production results in less profits than production
to order, while Phillips et al. reported the opposite relationship. In addition,
regarding the equilibrium price distributions, our Proposition 4 is consistent
with Phillips et al. in that production in advance results in higher prices than
production to order. In contrast Mestelman et al. observed lower prices in case
of production in advance. Of course, this does not contradict our theoretical
result because, among other reasons, the cited experimental works assumed in-
creasing marginal costs, four sellers and four buyers in the market. It would be
nice to carry out the comparison of payoffs for the case of increasing marginal
costs in the theoretical framework, but this seems to be a very difficult task.

From Proposition 2 we know that the production-in-advance version of the
capacity-constrained Bertrand-Edgeworth duopoly with identical capacity con-
straints and identical positive unit costs only possesses a Nash equilibrium in
pure strategies if the firms’ capacities are small. This disproves the statement
that for small and large capacities the Bertrand-Edgeworth game has an equi-
librium in pure strategies, while for an intermediate range of capacities there
exists only an equilibrium in nondegenerated mixed strategies, which is usually
associated with Bertrand-Edgeworth games.
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