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Abstract

The paper reviews some axioms of additivity concerning ranking methods used
for generalized tournaments with possible missing values and multiple comparisons.
It is shown that one of the most natural properties, called consistency, has strong
links to independence of irrelevant comparisons, an axiom judged unfavourable when
players have different opponents. Therefore some directions of weakening consistency
are suggested, and several ranking methods, the score, generalized row sum and
least squares as well as fair bets and its two variants (one of them entirely new)
are analysed whether they satisfy the properties discussed. It turns out that least
squares and generalized row sum with an appropriate parameter choice preserve
the relative ranking of two objects if the ranking problems added have the same
comparison structure.
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1 Introduction
Paired-comparison based ranking emerges in many fields such as social choice theory
(Chebotarev and Shamis, 1998), sports (Landau, 1895, 1914; Zermelo, 1929), or psychology
(Thurstone, 1927). Here the most general version of the problem, allowing for different
preference intensities (including ties) as well as incomplete and multiple comparisons
among the objects, is addressed.
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The paper contributes to this field by the investigation of additivity: how the ranking
changes by adding two independent tournaments. We get a certain impossibility theorem,
either total additivity or independence of irrelevant comparisons should be sacrificed
in order to get a meaningful ranking method. Therefore some directions of weakening
additivity are studied.

Due to the investigation of the performance of ranking methods with respect to the
additive properties, the current paper can also be regarded as a supplement to the findings
of Chebotarev and Shamis (1998) and González-Dı́az et al. (2014) by analysing new
methods and axioms.

Throughout the paper, we concentrate on the scoring procedures listed below:

∙ Score: a natural method for binary tournaments (for characterizations on
restricted domains, see Young (1974); Hansson and Sahlquist (1976); Rubinstein
(1980); Nitzan and Rubinstein (1981); Bouyssou (1992)).

∙ Least squares: a well-known procedure in statistics and psychology (see
Thurstone (1927); Gulliksen (1956); Kaiser and Serlin (1978)).

∙ Generalized row sum: a parametric family of ranking methods resulting in
the score and least squares as limits (see Chebotarev (1989, 1994)).

∙ Fair bets: an extensively studied method in social choice theory as well as a
procedure for ranking the nodes of directed graphs (see Daniels (1969); Moon
and Pullman (1970); Slutzki and Volij (2005, 2006); Slikker et al. (2012)).

∙ Dual fair bets: a scoring procedure obtained from fair bets by ’reversing’ an
axiom in its characterization (see Slutzki and Volij (2005)).

∙ Copeland fair bets: a novel method introduced in this paper by applying the
idea of Herings et al. (2005) for fair bets.

A main, somewhat unexpected result is that one natural axiom of additivity, consistency
– which requires the relative ranking of two objects to remain the same if it agrees in
both ranking problems – seems to be a surprisingly severe condition. First, among the
procedures analysed, only the trivial score method satisfies it. Second, together with two
basic properties, it implies a kind of independence of irrelevant comparisons. However, the
latter is a property one would rather not have in this general framework, since it means
that the performance of the opponents (objects compared with a given one) does not
count.

Therefore some directions of weakening additivity are studied. One of them turns out
to be fruitful, at least in the case of some ranking procedures, which preserve the relative
ranking when the ranking problems added have the same comparison structure. This
axiom is worth to consider as a watershed, application of procedures without it remains
dubious.

Another way to avoid the impossibility result is to restrict the domain, since inde-
pendence of irrelevant comparisons does not cause problems in the case of round-robin
tournaments. It will be revealed that fair bets, dual fair bets and Copeland fair bets show
a strange behaviour even on this narrow subset.

The axiomatic approach followed offers some guidelines for the choice of the appropriate
ranking procedure as well as it contributes to a better understanding of them. It is
important because, despite the extended literature (for reviews, see Laslier (1997) and
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Chebotarev and Shamis (1998)), characterizations of scoring methods (which provide a
ranking by associating scores for the objects such that a higher value corresponds to a
better position in the ranking) on this wide domain are limited, they exist only for fair
bets (Slutzki and Volij, 2005) and invariant methods (Slutzki and Volij, 2006).

The paper is structured as follows. Section 2 presents the setting of the problem, the
definitions of ranking methods examined, and some invariance properties known from the
literature. In Section 3, four axioms linked to additivity of ranking problems are reviewed.
Section 4 proves that the strongest additive property has unfavourable implications on the
general domain used. Finally, Section 5 concludes the results, summarizes them visually
in a table, while the connections of the axioms are displayed in a graph.

2 Preliminaries
The following part of the paper discusses the representation of ranking problems, defines
the scoring procedures investigated later, and presents some structural invariance axioms
used in the literature.

2.1 Notations
Let 𝑁 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, 𝑛 ∈ N be the set of objects and 𝑇 = (𝑡𝑖𝑗) ∈ R𝑛×𝑛 be the
tournament matrix such that 𝑡𝑖𝑗 + 𝑡𝑗𝑖 ∈ N. 𝑡𝑖𝑗 represents the aggregate score of object 𝑋𝑖

against 𝑋𝑗 , 𝑡𝑖𝑗/(𝑡𝑖𝑗 + 𝑡𝑗𝑖) may be interpreted as the likelihood that object 𝑋𝑖 is better than
object 𝑋𝑗 . 𝑡𝑖𝑖 = 0 is assumed for all 𝑖 = 1, 2, . . . , 𝑛.A possible derivation of the tournament
matrix can be found in González-Dı́az et al. (2014) and Csató (2015).

The pair (𝑁, 𝑇 ) is called a ranking problem. The set of ranking problems is denoted
by ℛ. A scoring procedure 𝑓 is an ℛ → R𝑛 function, giving a rating for each object. It
immediately determines a ranking (a transitive and complete weak order on the set 𝑁 ×𝑁)
⪰ such that 𝑓𝑖 ≥ 𝑓𝑗 means that 𝑋𝑖 is ranked weakly above 𝑋𝑗, denoted by 𝑋𝑖 ⪰ 𝑋𝑗.
Ratings provide cardinal while rankings provide ordinal information about the objects.
Remark 1. Every scoring method can be considered as a ranking method. This paper
discusses only ranking methods derived from scoring procedures, the two notions will be
used analogously.

A ranking problem (𝑁, 𝑇 ) has the results matrix 𝐴 = 𝑇 − 𝑇 ⊤ = (𝑎𝑖𝑗) ∈ R𝑛×𝑛 and
the matches matrix 𝑀 = 𝑇 + 𝑇 ⊤ = (𝑚𝑖𝑗) ∈ N𝑛×𝑛 such that 𝑚𝑖𝑗 is the number of the
comparisons between 𝑋𝑖 and 𝑋𝑗, whose outcome is given by 𝑎𝑖𝑗. Matrices 𝐴 and 𝑀 also
define the tournament matrix by 𝑇 = (𝐴 + 𝑀)/2.
Remark 2. Note that any ranking problem (𝑁, 𝑇 ) ∈ ℛ can be denoted analogously as
(𝑁, 𝐴, 𝑀) with the restriction |𝑎𝑖𝑗| ≤ 𝑚𝑖𝑗 for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , that is, the outcome of any
paired comparison between two objects cannot ’exceed’ their number of matches. Despite
it is not parsimonious, usually the second notation will be used in the following because it
helps to define certain ranking methods and axioms.

A ranking problem is called round-robin if 𝑚𝑖𝑗 = 𝑚 for all 𝑋𝑖 ≠ 𝑋𝑗. The set of
round-robin ranking problems is denoted by ℛ𝑅. 𝑑𝑖 = ∑︀𝑛

𝑗=1 𝑚𝑖𝑗 is the total number of
comparisons of object 𝑋𝑖. 𝑚 = max𝑋𝑖,𝑋𝑗∈𝑁 𝑚𝑖𝑗 is the maximal number of comparisons in
the ranking problem.

Matrix 𝑀 can be represented by an undirected multigraph 𝐺 := (𝑉, 𝐸), where vertex
set 𝑉 corresponds to the object set 𝑁 , and the number of edges between objects 𝑋𝑖 and 𝑋𝑗
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is equal to 𝑚𝑖𝑗. Then the degree of node 𝑋𝑖 is 𝑑𝑖. Graph 𝐺 is the comparison multigraph
associated with the ranking problem (𝑁, 𝐴, 𝑀), however, it is independent of the results
matrix 𝐴. The Laplacian matrix 𝐿 = (ℓ𝑖𝑗) ∈ R𝑛×𝑛 of graph 𝐺 is given by ℓ𝑖𝑗 = −𝑚𝑖𝑗 for
all 𝑋𝑖 ̸= 𝑋𝑗 and ℓ𝑖𝑖 = 𝑑𝑖 for all 𝑋𝑖 ∈ 𝑁 .

A path from 𝑋𝑘1 to 𝑋𝑘𝑠 is a sequence of objects 𝑋𝑘1 , 𝑋𝑘2 , . . . , 𝑋𝑘𝑠 such that 𝑚𝑘ℓ𝑘ℓ+1 > 0
for all ℓ = 1, 2, . . . , 𝑠 − 1. Two objects are connected if there exists a path between
them. Ranking problem (𝑁, 𝐴, 𝑀) ∈ ℛ is said to be connected if every pair of objects is
connected. The set of connected ranking problems is denoted by ℛ𝐶 .

A directed path from 𝑋𝑘1 to 𝑋𝑘𝑠 is a sequence of objects 𝑋𝑘1 , 𝑋𝑘2 , . . . , 𝑋𝑘𝑠 such that
𝑡𝑘ℓ𝑘ℓ+1 > 0 for all ℓ = 1, 2, . . . , 𝑠 − 1. Ranking problem (𝑁, 𝑇 ) ∈ ℛ is called irreducible
if there exists a directed path from 𝑋𝑖 to 𝑋𝑗 for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 . The set of irreducible
ranking problems is denoted by ℛ𝐼 .

Let e ∈ R𝑛 denote the column vector with 𝑒𝑖 = 1 for all 𝑖 = 1, 2, . . . , 𝑛. Let 𝐼 ∈ R𝑛×𝑛

be the identity matrix, 𝑂 ∈ R𝑛×𝑛 be the zero matrix.

2.2 Ranking methods
Tournament ranking involves three main challenges. The first one is the possible appearance
of circular triads, when object 𝑋𝑖 is better than 𝑋𝑗 (that is, 𝑎𝑖𝑗 > 𝑎𝑗𝑖), 𝑋𝑗 is better than
𝑋𝑘, but 𝑋𝑘 is better than 𝑋𝑖. If preference intensities also count as in the model above,
other triplets (𝑋𝑖, 𝑋𝑗, 𝑋𝑘) may produce problems, too. The second problem is that
the performance of objects compared with 𝑋𝑖 strongly influences the observable paired
comparison outcomes 𝑎𝑖𝑗. For example, if 𝑋𝑖 was compared only with 𝑋𝑗, then its rating
may depend on other results of 𝑋𝑗 . The third difficulty is given by the different number of
comparisons of the objects, 𝑑𝑖 ̸= 𝑑𝑗 . It must be realized that there is no entirely satisfactory
way of ranking if the number of replications of each object varies appreciably (David, 1987,
p. 1). However, the current paper does not deal with the question whether a given dataset
may be globally ranked in a meaningful way or the data are inherently inconsistent, an
issue investigated for example by Jiang et al. (2011). Since each problem occur just if
𝑛 ≥ 3, the case of two objects becomes trivial.

Now some scoring procedures are presented. They will be used only for ranking purposes,
so they will be called ranking methods. The first one does not take the comparison structure
into account.

Definition 1. Score: s(𝑁, 𝐴, 𝑀) = 𝐴e.

The following parametric procedure was constructed axiomatically by Chebotarev
(1989) and thoroughly analysed in Chebotarev (1994).

Definition 2. Generalized row sum: it is the unique solution x(𝜀)(𝑁, 𝐴, 𝑀) of the system
of linear equations (𝐼 + 𝜀𝐿)x(𝜀)(𝑁, 𝐴, 𝑀) = (1 + 𝜀𝑚𝑛)s, where 𝜀 > 0 is a parameter.

Generalized row sum adjusts the standard score 𝑠𝑖 by accounting for the performance
of objects compared with 𝑋𝑖, and adds an infinite depth to this argument: scores of all
objects available on a path appear in the calculation. 𝜀 indicates the importance attributed
to this correction. Generalized row sum results in score if 𝜀 → 0.

Lemma 1. lim𝜀→0 x(𝜀)(𝑁, 𝐴, 𝑀) = s(𝑁, 𝐴, 𝑀).

Proof. It follows from Definitions 1 and 2.
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Based on some reasonableness condition, Chebotarev (1994) identifies a possible upper
bound for 𝜀.

Definition 3. Reasonable choice of 𝜀 (Chebotarev, 1994, Proposition 5.1): The reasonable
upper bound of 𝜀 is 1/ [𝑚(𝑛 − 2)].

The reasonable choice is not well-defined in the trivial case of 𝑛 = 2, thus 𝑛 ≥ 3 is
implicitly assumed in the following.

Proposition 1. If 𝜀 is within the reasonable interval (0, 1/ [𝑚(𝑛 − 2)]], then −𝑚(𝑛−1) ≤
𝑥𝑖(𝜀)(𝑁, 𝐴, 𝑀) ≤ 𝑚(𝑛 − 1) for all 𝑋𝑖 ∈ 𝑁 .

Proof. See Chebotarev (1994, Property 13).

Note that in a round-robin ranking problem −𝑚(𝑛 − 1) ≤ 𝑠𝑖(𝑁, 𝐴, 𝑀) ≤ 𝑚(𝑛 − 1)
holds for all 𝑋𝑖 ∈ 𝑁 .

Both the score and generalized row sum rankings are well-defined and easily computable
from a system of linear equations for all ranking problems (𝑁, 𝐴, 𝑀) ∈ ℛ.

The least squares method was suggested by Thurstone (1927) and Horst (1932).

Definition 4. Least squares: it is the solution q(𝑁, 𝐴, 𝑀) of the system of linear equations
𝐿q(𝑁, 𝐴, 𝑀) = s(𝑁, 𝐴, 𝑀) and e⊤q(𝑁, 𝐴, 𝑀) = 0.

Generalized row sum results in least squares if 𝜀 → ∞.

Lemma 2. lim𝜀→∞ x(𝜀)(𝑁, 𝐴, 𝑀) = 𝑚𝑛q(𝑁, 𝐴, 𝑀).

Proof. It follows from Definitions 2 and 4.

Proposition 2. The least squares ranking is unique if and only if the comparison multi-
graph 𝐺 of the ranking problem (𝑁, 𝐴, 𝑀) ∈ ℛ is connected.

Proof. See Bozóki et al. (2015). Chebotarev and Shamis (1999, p. 220) mention this fact
without further discussion.

An extensive analysis and a graph interpretation, and further references can be found
in Csató (2015).

Several scoring procedures build upon the idea of rewarding wins without punishing
losses. Two early contributions in this field are Wei (1952) and Kendall (1955). They have
been studied in social choice and game theory by Borm et al. (2002); Herings et al. (2005);
Slikker et al. (2012); Slutzki and Volij (2005, 2006), among others.

One of the most widely used methods within this framework is the fair bets method,
originally suggested by Daniels (1969) and Moon and Pullman (1970). This procedure
was axiomatically characterized by Slutzki and Volij (2005) and Slutzki and Volij (2006).
Its properties have been investigated by González-Dı́az et al. (2014).

Fair bets is defined with the notation (𝑁, 𝑇 ) for the sake of simplicity. Let 𝐹 =
diag(𝑇 ⊤e), an 𝑛 × 𝑛 diagonal matrix showing the number of losses for each object.

Definition 5. Fair bets: it is the solution fb(𝑁, 𝑇 ) of the system of linear equations
𝐹 −1𝑇 fb(𝑁, 𝑇 ) = fb(𝑁, 𝑇 ) and e⊤fb(𝑁, 𝑇 ) = 1.

Proposition 3. The fair bets ranking is unique if and only if the ranking problem (𝑁, 𝑇 ) ∈
ℛ is irreducible.
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Proof. See Moon and Pullman (1970).

In the case of reducible ranking problems, Perron-Frobenius theorem does not guarantee
that the eigenvector corresponding to the dominant eigenvalue is strictly positive.

Fair bets judges wins against better objects to be more important than losses against
worse objects. One may argue for the opposite, which implies the dual fair bets method
(Slutzki and Volij, 2005) using the transposed tournament matrix 𝑇 ⊤, but in this case a
lower value is better.

Definition 6. Dual fair bets: it is dfb(𝑁, 𝑇 ) = −dfb*(𝑁, 𝑇 ), where dfb*(𝑁, 𝑇 ) is the
solution of the system of linear equations [diag(𝑇e)]−1 𝑇 ⊤dfb*(𝑁, 𝑇 ) = dfb*(𝑁, 𝑇 ) and
e⊤dfb*(𝑁, 𝑇 ) = 1.

The transformation dfb(𝑁, 𝑇 ) = −dfb*(𝑁, 𝑇 ) is necessary in order to ensure that
𝑋𝑖 ⪰ 𝑋𝑗 ⇔ 𝑑𝑓𝑏𝑖(𝑁, 𝑇 ) ≥ 𝑑𝑓𝑏𝑗(𝑁, 𝑇 ) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

The axiomatization of fair bets also characterizes the dual fair bets by changing only
one property, negative responsiveness to losses with positive responsiveness to wins (Slutzki
and Volij, 2005, Remark 1). These two approaches can be seen in the case of positional
power, too, by the definition of positional power and positional weakness (Herings et al.,
2005). Similarly to the their Copeland positional value, Copeland fair bets method is
introduced as the sum of the fair bets and dual fair bets ratings.

Definition 7. Copeland fair bets: Cfb(𝑁, 𝑇 ) = fb(𝑁, 𝑇 ) + dfb(𝑁, 𝑇 ).

Now 𝑋𝑖 ⪰ 𝑋𝑗 ⇔ 𝐶𝑓𝑏𝑖(𝑁, 𝑇 ) ≥ 𝐶𝑓𝑏𝑗(𝑁, 𝑇 ) as earlier.
The six scoring procedures (Definitions 1-2 and 4-7) are discussed with respect to their

axiomatic properties. González-Dı́az et al. (2014) have analysed the least squares and fair
bets methods, as well as generalized row sum with the parameter 𝜀 = 1/ [𝑚(𝑛 − 2)]. They
use a different version of the score, 𝑠𝑖/𝑑𝑖 for all 𝑋𝑖 ∈ 𝑁 .

Ranking problem (𝑁, 𝐴, 𝑀) ∈ ℛ can be represented by a graph such that the nodes
are the objects, 𝑘 times (𝑋𝑖, 𝑋𝑗) ∈ 𝑁 × 𝑁 undirected edge means 𝑎𝑖𝑗(= 𝑎𝑗𝑖) = 0, 𝑚𝑖𝑗 = 𝑘,
and 𝑘 times (𝑋𝑖, 𝑋𝑗) ∈ 𝑁 × 𝑁 directed edge means 𝑘 comparison with maximal intensity,
that is, 𝑎𝑖𝑗 = 𝑘 (𝑎𝑗𝑖 = −𝑘), 𝑚𝑖𝑗 = 𝑘. We think it helps in understanding the examples.

Figure 1: Ranking problem of Example 1

𝑋1 𝑋2

𝑋3

𝑋4

𝑋5

Example 1. (Chebotarev, 1994, Example 2) Let (𝑁, 𝐴, 𝑀) ∈ ℛ be the ranking problem
in Figure 1 with the set of objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5}.
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The corresponding tournament, results and matches matrices are as follows

𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0.5 0 0
0 0.5 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 0 0
0 0 0 1 −1
0 0 −1 0 1

−1 0 1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 1 0 0
0 1 0 1 1
0 0 1 0 1
1 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Table 1: Generalized row sum vectors x(𝜀) of Example 1

𝜀 0 1/100 1/4 1/3 1 5 → ∞

𝑋1 1.0000 1.0296 1.7165 2.2649 2.4242 3.4369 4.0000
𝑋2 0.0000 −0.0001 −0.0613 −0.1917 −0.2424 −0.6819 −1.0000
𝑋3 0.0000 −0.0099 −0.2452 −0.4314 −0.4848 −0.8183 −1.0000
𝑋4 0.0000 −0.0100 −0.2759 −0.4878 −0.5455 −0.8609 −1.0000
𝑋5 −1.0000 −1.0096 −1.1341 −1.1540 −1.1515 −1.0757 −1.0000

The solutions with generalized row sum for various values of 𝜀 are given in Table 1.
Here 𝑚 = 1 and 𝑛 = 5, thus 𝜀 = 1/3 is the reasonable upper bound by Definition 3. The
ranking of the objects is 𝑋1 ≻ 𝑋2 ≻ 𝑋3 ≻ 𝑋4 ≻ 𝑋5 for all positive parameters since 𝑋1
dominates 𝑋5, which effects 𝑋3 and 𝑋4 through the circular triad (𝑋3, 𝑋4, 𝑋5). However,
𝑋3 has a draw against 𝑋2. Note that 𝑋2 ∼ 𝑋3 ∼ 𝑋4 for the score (𝜀 → 0) and least
squares methods (𝜀 → ∞), referring to a kind of neglect of the comparison between 𝑋2
and 𝑋3.

Example 1 is an irreducible ranking problem, so fair bets rating is not unique. Never-
theless, a ranking can be obtained by the application of its extension according to Slutzki
and Volij (2005): 𝑋1 is the best object as no other has any chance to defeat it, and the
remaining four form an irreducible component. It results in 𝑋1 ≻ (𝑋2 ∼ 𝑋3 ∼ 𝑋4 ∼ 𝑋5),
which coincides with the one from least squares. Similarly, both dual fair bets and Copeland
fair bets give 𝑋1 ≻ (𝑋2 ∼ 𝑋3 ∼ 𝑋4 ∼ 𝑋5).

Because of Propositions 2 and 3, we restrict our analysis to the class of connected
ranking problems ℛ𝐶 , and to the set of irreducible ranking problems ℛ𝐼 in the case of fair
bets. In ranking problems without a connected comparison multigraph, the rating of all
objects on a common scale seems to be arbitrary.

2.3 Structural invariance properties
The main discussion requires the knowledge of some basic axioms already introduced.

Definition 8. Neutrality (𝑁𝐸𝑈) (Young, 1974): Let (𝑁, 𝐴, 𝑀) ∈ ℛ be a ranking problem
and 𝜎 : 𝑁 → 𝑁 be a permutation on the set of objects. Let 𝜎(𝑁, 𝐴, 𝑀) ∈ ℛ be the ranking
problem obtained from (𝑁, 𝐴, 𝑀) by this permutation. Scoring method 𝑓 : ℛ → R𝑛 is
neutral if 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀) ⇔ 𝑓𝜎𝑖 [𝜎(𝑁, 𝐴, 𝑀)] ≥ 𝑓𝜎𝑗 [𝜎(𝑁, 𝐴, 𝑀)] holds for all
𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Neutrality is a simple independence of labelling of the objects, and was called anonymity
in Bouyssou (1992); Slutzki and Volij (2005); González-Dı́az et al. (2014). It is equivalent
to the requirement that the permutation of two objects do not affect the ranking.
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Remark 3. Let 𝑓 : ℛ → R𝑛 be a neutral scoring procedure. If for the objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 ,
𝑚𝑖𝑗 = 0, and 𝑎𝑖𝑘 = 𝑎𝑗𝑘, 𝑚𝑖𝑘 = 𝑚𝑗𝑘 hold for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}, then 𝑓𝑖(𝑁, 𝐴, 𝑀) =
𝑓𝑗(𝑁, 𝐴, 𝑀) (Bouyssou, 1992, p. 62).

Remark 3 claims that two indistinguishable objects have the same rank.

Lemma 3. All methods presented above satisfy 𝑁𝐸𝑈 .

Proof. It follows from their definitions.

Definition 9. Symmetry (𝑆𝑌 𝑀) (González-Dı́az et al., 2014): Let (𝑁, 𝐴, 𝑀) ∈ ℛ be
a ranking problem such that 𝐴 = 𝑂. Scoring method 𝑓 : ℛ → R𝑛 is symmetric if
𝑓𝑖(𝑁, 𝐴, 𝑀) = 𝑓𝑗(𝑁, 𝐴, 𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Symmetry does not require that objects 𝑋𝑖 and 𝑋𝑗 have the same number of comparisons
(𝑑𝑖 = 𝑑𝑗). Young (1974) and Nitzan and Rubinstein (1981, Axiom 4) have introduced the
property cancellation for round-robin ranking problems, which coincides with symmetry
on this set.

Lemma 4. All methods presented above satisfy 𝑆𝑌 𝑀 .

Proof. It follows from their definitions.

Definition 10. Inversion (𝐼𝑁𝑉 ) (Chebotarev and Shamis, 1998): Let (𝑁, 𝐴, 𝑀) ∈ ℛ
be a ranking problem. Scoring method 𝑓 : ℛ → R𝑛 is invertible if 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥
𝑓𝑗(𝑁, 𝐴, 𝑀) ⇔ 𝑓𝑖(𝑁, −𝐴, 𝑀) ≤ 𝑓𝑗(𝑁, −𝐴, 𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

Inversion means that taking the opposite of all results changes the ranking accordingly.
It establishes a uniform treatment of victories and defeats.
Remark 4. Let 𝑓 : ℛ → R𝑛 be a scoring procedure satisfying 𝐼𝑁𝑉 . Then 𝑓𝑖(𝑁, 𝐴, 𝑀) >
𝑓𝑗(𝑁, 𝐴, 𝑀) ⇔ 𝑓𝑖(𝑁, −𝐴, 𝑀) < 𝑓𝑗(𝑁, −𝐴, 𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

The following result was mentioned by González-Dı́az et al. (2014, p. 150).

Corollary 1. 𝐼𝑁𝑉 implies 𝑆𝑌 𝑀 .

Lemma 5. The score, generalized row sum and least squares methods satisfy 𝐼𝑁𝑉 .

Proof. It is an immediate consequence of s(𝑁, −𝐴, 𝑀) = −s(𝑁, 𝐴, 𝑀).

Lemma 6. Fair bets and dual fair bets methods do not satisfy 𝐼𝑁𝑉 even on the set ℛ𝑅.

Proof. See González-Dı́az et al. (2014, Example 4.4) for fair bets. The same counterexample
with a transposed tournament matrix proves the statement for dual fair bets.

Fair bets and dual fair bets violate inversion because of the different treatment of
victories and losses. The potential problem can be seen still on the most simple domain
of round-robin ranking problems. However, their appropriate aggregation eliminates this
strange feature, the major weakness of fair bets according to González-Dı́az et al. (2014,
p. 164).

Lemma 7. Copeland fair bets satisfies 𝐼𝑁𝑉 .

Proof. Consider the ranking problems (𝑁, 𝑇 ) and (𝑁, 𝑇 ⊤). Cfb(𝑁, 𝑇 ) = fb(𝑁, 𝑇 ) +
dfb(𝑁, 𝑇 ) = −dfb(𝑁, 𝑇 ⊤) − fb(𝑁, 𝑇 ⊤) = −Cfb(𝑁, 𝑇 ⊤).
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3 Axioms of additivity
This section reviews axioms of additivity, that is, the implications of summing two ranking
problems for the ranking. Two new properties will be introduced in the wake of two known
requirements. The restricted domain of round-robin ranking problems will be investigated,
too.

3.1 Properties already introduced
As a first step some results of the existing literature is collected and refined.

Definition 11. Consistency (𝐶𝑆) (Young, 1974): Let (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) ∈ ℛ be
two ranking problems and 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 be two objects. Let 𝑓 : ℛ → R𝑛 be a scoring
procedure such that 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀) and 𝑓𝑖(𝑁, 𝐴′, 𝑀 ′) ≥ 𝑓𝑗(𝑁, 𝐴′, 𝑀 ′). 𝑓 is
called consistent if 𝑓𝑖(𝑁, 𝐴+𝐴′, 𝑀 +𝑀 ′) ≥ 𝑓𝑗(𝑁, 𝐴+𝐴′, 𝑀 +𝑀 ′), furthermore, 𝑓𝑖(𝑁, 𝐴+
𝐴′, 𝑀 + 𝑀 ′) > 𝑓𝑗(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′) if 𝑓𝑖(𝑁, 𝐴, 𝑀) > 𝑓𝑗(𝑁, 𝐴, 𝑀) or 𝑓𝑖(𝑁, 𝐴′, 𝑀 ′) >
𝑓𝑗(𝑁, 𝐴′, 𝑀 ′).

𝐶𝑆 is the most general and intuitive version of additivity: if 𝑋𝑖 is not worse than 𝑋𝑗

in both ranking problems, this should not change after adding them up. Young (1974)
used it only in the case of round-robin tournaments.

Lemma 8. The score method satisfies 𝐶𝑆.

Proof. It follows from Definition 1.

Proposition 4. The generalized row sum and least squares methods violate 𝐶𝑆.

González-Dı́az et al. (2014, Example 4.2) have shown the violation of a weaker
property called order preservation for the least squares and generalized row sum with
𝜀 = 1/ [𝑚(𝑛 − 2)].1

Figure 2: Ranking problems of Example 2

(a) Ranking problem (𝑁, 𝐴, 𝑀)

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁, 𝐴′, 𝑀 ′)

𝑋1

𝑋2

𝑋3

𝑋4

Proof.
1 Order preservation contains the further requirement of 𝑑𝑖/𝑑𝑗 = 𝑑′

𝑖/𝑑′
𝑗 for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , that is, the

ratio of the matches is equal in the ranking problems added.
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Example 2. Let (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) ∈ ℛ be the ranking problems in Figure 2 with
the set of objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4} and tournament matrices

𝑇 =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
1 1 0 0
1 1 0 0

⎞⎟⎟⎟⎠ and 𝑇 ′ =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 1
1 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠ .

Let (𝑁, 𝐴′′, 𝑀 ′′) = (𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′) ∈ ℛ be the sum of these two ranking problems.
Let x(𝜀)(𝑁, 𝐴, 𝑀) = x(𝜀), x(𝜀)(𝑁, 𝐴′, 𝑀 ′) = x(𝜀)′, x(𝜀)(𝑁, 𝐴′′, 𝑀 ′′) = x(𝜀)′′ and

q(𝑁, 𝐴, 𝑀) = q, q(𝑁, 𝐴′, 𝑀 ′) = q′, q(𝑁, 𝐴′′, 𝑀 ′′) = q′′. Now 𝑛 = 4, 𝑚 = 2, 𝑚′ = 1, and
𝑚′′ = 3. Therefore

𝑥1(𝜀) = 𝑥2(𝜀) = −1 + 14𝜀 + 56𝜀2 + 64𝜀3

1 + 12𝜀 + 44𝜀2 + 48𝜀3 , and

𝑥1(𝜀)′ = 𝑥2(𝜀)′ = −1, but

𝑥1(𝜀)′′ − 𝑥2(𝜀)′′ = − 2𝜀 + 44𝜀2 + 240𝜀3

1 + 22𝜀 + 154𝜀2 + 340𝜀3 < 0.

It implies that 𝑋1 ∼x(𝜀)
(𝑁,𝐴,𝑀) 𝑋2 and 𝑋1 ∼x(𝜀)

(𝑁,𝐴′,𝑀 ′) 𝑋2, however, 𝑋1 ≺x(𝜀)
(𝑁,𝐴′′,𝑀 ′′) 𝑋2. Gener-

alized row sum is not consistent for any 𝜀.
For the least squares method on the basis of Lemma 2:

𝑞1 = lim𝜀→∞ 𝑥1(𝜀)
𝑚𝑛

= −64
48 · 1

2 · 4 = −1
6 = lim𝜀→∞ 𝑥2(𝜀)

𝑚𝑛
= 𝑞2, and

𝑞′
1 = lim𝜀→∞ 𝑥1(𝜀)′

𝑚′𝑛
= −1

4 = lim𝜀→∞ 𝑥2(𝜀)′

𝑚′𝑛
= 𝑞′

2, but

𝑞′′
1 − 𝑞′′

2 = lim𝜀→∞ [𝑥1(𝜀)′′ − 𝑥2(𝜀)′′]
𝑚′′𝑛

= −240
340 · 1

3 · 4 = − 1
17 < 0.

Hence 𝑋1 ∼q
(𝑁,𝐴,𝑀) 𝑋2 and 𝑋1 ∼q

(𝑁,𝐴′,𝑀 ′) 𝑋2, but 𝑋1 ≺q
(𝑁,𝐴′′,𝑀 ′′) 𝑋2.

We will return later to the examination of fair bets and connected methods.
González-Dı́az et al. (2014) also discusses the following, strongly restricted version of

additivity.

Definition 12. Flatness preservation (𝐹𝑃 ) (Slutzki and Volij, 2005): Let (𝑁, 𝐴, 𝑀),
(𝑁, 𝐴′, 𝑀 ′) ∈ ℛ be two ranking problems. Let 𝑓 : ℛ → R𝑛 be a scoring procedure such
that 𝑓𝑖(𝑁, 𝐴, 𝑀) = 𝑓𝑗(𝑁, 𝐴, 𝑀) and 𝑓𝑖(𝑁, 𝐴′, 𝑀 ′) = 𝑓𝑗(𝑁, 𝐴′, 𝑀 ′) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 . 𝑓
preserves flatness if 𝑓𝑖(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′) = 𝑓𝑗(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 .

𝐹𝑃 demands additivity only for problems where all objects are ranked uniformly. It is
used by Slutzki and Volij (2005) for the characterization of fair bets.

Corollary 2. 𝐶𝑆 implies 𝐹𝑃 .

Proof. It follows from Definitions 11 and 12.

Lemma 9. The score, generalized row sum and least squares methods satisfy 𝐹𝑃 .

It had been shown in González-Dı́az et al. (2014, Corollary 4.3) for the least squares,
and in González-Dı́az et al. (2014, Proposition 4.2) for generalized row sum with 𝜀 =
1/ [𝑚(𝑛 − 2)].
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Proof. The score method preserves flatness due to Lemma 8 and Corollary 2.
If 𝑥𝑖(𝜀)(𝑁, 𝐴, 𝑀) = 𝑥𝑗(𝜀)(𝑁, 𝐴, 𝑀) for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 , then x(𝜀)(𝑁, 𝐴, 𝑀) = 0. We

prove that s(𝑁, 𝐴, 𝑀) = 0 ⇔ x(𝜀)(𝑁, 𝐴, 𝑀) = 0. 𝑠𝑖(𝑁, 𝐴, 𝑀) = 𝑠𝑗(𝑁, 𝐴, 𝑀) for all
𝑋𝑖, 𝑋𝑗 ∈ 𝑁 implies s(𝑁, 𝐴, 𝑀) = 0, therefore x(𝜀)(𝑁, 𝐴, 𝑀) = 0. On the other hand,
x(𝜀)(𝑁, 𝐴, 𝑀) = 0 implies (1 + 𝜀𝑚𝑛)s(𝑁, 𝐴, 𝑀) = 0, so s(𝑁, 𝐴, 𝑀) = 0.

The same argument can be applied in the case of least squares.

Lemma 10. Fair bets, dual fair bets and Copeland fair bets methods satisfy 𝐹𝑃 .

Proof. See Slutzki and Volij (2005, Theorem 1) for the fair bets. According to Slutzki and
Volij (2005, Remark 1), it is true for dual fair bets, too. It implies that Copeland fair bets
also preserves flatness.

To conclude, among the ranking procedures discussed, only the score method satisfies
the strongest possible version of additivity (it will be shown later that fair bets and its
peers breaak consistency). However, all of them meets an almost trivial property called
flatness preservation. It remains to be seen how they behave between these extremities.

3.2 Two new requirements
All objects ranked uniformly seems to be a tough condition in 𝐹𝑃 , therefore it makes
sense to require additivity on a larger set. An obvious choice can be that only the objects
involved are ranked equally.

Definition 13. Equality preservation (𝐸𝑃 ): Let (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) ∈ ℛ be two
ranking problems and 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 be two objects. Let 𝑓 : ℛ → R𝑛 be a scoring procedure
such that 𝑓𝑖(𝑁, 𝐴, 𝑀) = 𝑓𝑗(𝑁, 𝐴, 𝑀) and 𝑓𝑖(𝑁, 𝐴′, 𝑀 ′) = 𝑓𝑗(𝑁, 𝐴′, 𝑀 ′). 𝑓 preserves
equality if 𝑓𝑖(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′) = 𝑓𝑗(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀 ′).

Corollary 3. 𝐶𝑆 implies 𝐸𝑃 .
𝐸𝑃 implies 𝐹𝑃 .

Proof. It follows from Definitions 11 and 13, and Definitions 12 and 13, respectively.

Lemma 11. The score method satisfies 𝐸𝑃 .

Proof. It comes from Lemma 8 and Corollary 3.

Lemma 12. The generalized row sum and least squares methods violate 𝐸𝑃 .

Proof. In Example 2, 𝑋1 ∼x(𝜀)
(𝑁,𝐴,𝑀) 𝑋2 and 𝑋1 ∼q

(𝑁,𝐴,𝑀) 𝑋2 as well as 𝑋1 ∼x(𝜀)
(𝑁,𝐴′,𝑀 ′) 𝑋2

and 𝑋1 ∼q
(𝑁,𝐴′,𝑀 ′) 𝑋2, but 𝑋1 ≺x(𝜀

(𝑁,𝐴′′,𝑀 ′′) 𝑋2 and 𝑋1 ≺q
(𝑁,𝐴′′,𝑀 ′′) 𝑋2.

Proposition 5. Fair bets, dual fair bets and Copeland fair bets methods violate 𝐸𝑃 .

Proof.
Example 3. Let (𝑁, 𝑇 ), (𝑁, 𝑇 ′) ∈ ℛ be the ranking problems in Figure 3 with the set of
objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4} and tournament matrices

𝑇 =

⎛⎜⎜⎜⎝
0 0.5 0.5 0.5

0.5 0 1 0.5
0.5 0 0 0.5
0.5 0.5 0.5 0

⎞⎟⎟⎟⎠ and 𝑇 ′ =

⎛⎜⎜⎜⎝
0 1 0.5 0.5
0 0 0.5 0.5

0.5 0.5 0 0
0.5 0.5 1 0

⎞⎟⎟⎟⎠ .

11



Figure 3: Ranking problems of Example 3

(a) Ranking problem (𝑁, 𝑇 )

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁, 𝑇 ′)

𝑋1

𝑋2

𝑋3

𝑋4

Table 2: Fair bets and associated rating vectors of Example 3

fb(𝑇 ) dfb(𝑇 ) Cfb(𝑇 ) fb(𝑇 ′) dfb(𝑇 ′) Cfb(𝑇 ′) fb(𝑇 ′′) dfb(𝑇 ′′) Cfb(𝑇 ′′)

𝑋1 1/4 −1/4 0 3/8 −1/8 1/4 163/512 −101/512 31/256
𝑋2 3/8 −1/8 1/4 1/8 −3/8 −1/4 117/512 −115/512 1/256
𝑋3 1/8 −3/8 −1/4 1/8 −3/8 −1/4 75/512 −205/512 −65/256
𝑋4 1/4 −1/4 0 3/8 −1/8 1/4 157/512 −91/512 33/256

Let (𝑁, 𝑇 ′′) = (𝑁, 𝑇 + 𝑇 ′) ∈ ℛ be the sum of these two ranking problems.
The rating vectors are given in Table 2: 𝑋1 ∼(𝑁,𝑇 ) 𝑋4 and 𝑋1 ∼(𝑁,𝑇 ′) 𝑋4 for the three

methods, but 𝑋1 ≻fb
(𝑁,𝑇 ′′) 𝑋4, 𝑋1 ≺dfb

(𝑁,𝑇 ′′) 𝑋4, and 𝑋1 ≺Cfb
(𝑁,𝑇 ′′) 𝑋4.

Lemma 13. Fair bets, dual fair bets and Copeland fair bets methods violate 𝐶𝑆.

Proof. It comes from Proposition 5 and Corollary 3.

Another obvious restriction on 𝐶𝑆 can be to allow only for the combination of ranking
problems with the same matches matrix, when the interaction of different comparison
multigraphs is eliminated.

Definition 14. Result consistency (𝑅𝐶𝑆): Let (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀) ∈ ℛ be two ranking
problems and 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 be two objects. Let 𝑓 : ℛ → R𝑛 be a scoring procedure such that
𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀) and 𝑓𝑖(𝑁, 𝐴′, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴′, 𝑀). 𝑓 is called result consistent if
𝑓𝑖(𝑁, 𝐴+𝐴′, 2𝑀) ≥ 𝑓𝑗(𝑁, 𝐴+𝐴′, 2𝑀), furthermore, 𝑓𝑖(𝑁, 𝐴+𝐴′, 2𝑀) > 𝑓𝑗(𝑁, 𝐴+𝐴′, 2𝑀)
if 𝑓𝑖(𝑁, 𝐴, 𝑀) > 𝑓𝑗(𝑁, 𝐴, 𝑀) or 𝑓𝑖(𝑁, 𝐴′, 𝑀) > 𝑓𝑗(𝑁, 𝐴′, 𝑀).

Corollary 4. 𝐶𝑆 implies 𝑅𝐶𝑆.

Proof. It follows from Definitions 11 and 14.

Proposition 6. 𝑅𝐶𝑆 and 𝑆𝑌 𝑀 imply 𝐼𝑁𝑉 .

Proof. Consider a ranking problem (𝑁, 𝐴, 𝑀) ∈ ℛ with 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀) for
objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 . If 𝑓𝑖(𝑁, −𝐴, 𝑀) > 𝑓𝑗(𝑁, −𝐴, 𝑀), then 𝑓𝑖(𝑁, 𝑂, 2𝑀) > 𝑓𝑗(𝑁, 𝑂, 2𝑀)
due to 𝑅𝐶𝑆, which contradicts to 𝑆𝑌 𝑀 . Therefore 𝑓𝑖(𝑁, −𝐴, 𝑀) ≤ 𝑓𝑗(𝑁, −𝐴, 𝑀).

Corollary 5. 𝐶𝑆 and 𝑆𝑌 𝑀 imply 𝐼𝑁𝑉 .

Proof. It follows from Proposition 6 and Corolllary 4.
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Corollary 5 was proved by Nitzan and Rubinstein (1981, Lemma 1) in the case of
round-robin ranking problems (on the set ℛ𝑅), when 𝐶𝑆 is equivalent to 𝑅𝐶𝑆 and 𝑆𝑌 𝑀
is an almost trivial condition.

Lemma 14. The score method satisfies 𝑅𝐶𝑆.

Proof. It can be derived from Lemma 8 and Corollary 4.

Proposition 7. The least squares method satisfies 𝑅𝐶𝑆.

Proof. Let q(𝑁, 𝐴, 𝑀) = q, q(𝑁, 𝐴′, 𝑀) = q′ and q(𝑁, 𝐴+𝐴′, 𝑀 +𝑀) = q′′. It is shown
that 2q′′ = q + q′. The Laplacian matrix of the comparison multigraph associated with
matches matrix 2𝑀 is 2𝐿, so

2𝐿q′′ = s(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀) = s(𝑁, 𝐴, 𝑀) + s(𝑁, 𝐴′, 𝑀) = 𝐿 (q + q′)

as well as e⊤q′′ = e⊤ [(1/2)q + (1/2)q′] = 0.

Regarding the generalized row sum, two cases should be distinguished by the parameter
choice.

Proposition 8. The generalized row sum method with a fixed 𝜀 may violate 𝑅𝐶𝑆.

Figure 4: Ranking problem of Example 4

𝑋1

𝑋2𝑋3

Proof.
Example 4. Let (𝑁, 𝐴, 𝑀) ∈ ℛ be the ranking problem in Figure 4 with the set of
objects 𝑁 = {𝑋1, 𝑋2, 𝑋3} and tournament matrix

𝑇 =

⎛⎜⎝ 0 1.5 0.5
0.5 0 3
0.5 0 0

⎞⎟⎠ .

Here 𝑚 = 3 and 𝑛 = 3, therefore the reasonable upper bound of 𝜀 is 1/3. Let choose it
as a fixed parameter:

x(1/3)(𝑁, 𝐴, 𝑀) = [2.0000; 2.0000; −4.0000]⊤ , and

x(1/3)(𝑁, 2𝐴, 2𝑀) = [4.5352; 3.9437; −8.4789]⊤ ,

implying 𝑋1 ∼x(1/3)
(𝑁,𝐴,𝑀) 𝑋2 but 𝑋1 ≻x(1/3)

(𝑁,2𝐴,2𝑀) 𝑋2.

Now allow 𝜀 to depend on the matches matrix 𝑀 .
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Proposition 9. The generalized row sum method satisfies 𝑅𝐶𝑆 if 𝜀 is inversely propor-
tional to the number of added ranking problems.

Proof. Let x(𝜀)(𝑁, 𝐴, 𝑀) = x(𝜀), x(𝜀)(𝑁, 𝐴′, 𝑀) = x(𝜀)′ and x(𝜀)(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀) =
x(𝜀)′′. It yields from some basic calculations:

x(𝜀/2)′′ = (1 + 𝜀𝑚𝑛)(𝐼 + 𝜀𝐿)−1s(𝑁, 𝐴 + 𝐴′, 𝑀 + 𝑀) =
= (1 + 𝜀𝑚𝑛)(𝐼 + 𝜀𝐿)−1 [s(𝑁, 𝐴, 𝑀) + s(𝑁, 𝐴′, 𝑀)] = x(𝜀) + x(𝜀)′.

Proposition 9 suggests that generalized row sum should be applied with a parameter
somewhat inversely proportional to the number of comparisons.
Remark 5. Generalized row sum with 𝜀 at the reasonable upper bound of 1/ [𝑚(𝑛 − 2)]
satisfies 𝑅𝐶𝑆.

Lemma 15. Fair bets and dual fair bets methods violate 𝑅𝐶𝑆.

Proof. It is a consequence of Lemmata 4 and 6 together with Proposition 6: since they
meet 𝑆𝑌 𝑀 but violate 𝐼𝑁𝑉 , they cannot satisfy 𝑅𝐶𝑆.

Proposition 10. Copeland fair bets method violates 𝑅𝐶𝑆.

Figure 5: Ranking problems of Example 5

(a) Ranking problem (𝑁, 𝑇 )

𝑋1

𝑋2𝑋3

(b) Ranking problem (𝑁, 𝑇 ′)

𝑋1

𝑋2𝑋3

Proof.
Example 5. Let (𝑁, 𝑇 ), (𝑁, 𝑇 ′) ∈ ℛ be the ranking problems in Figure 5 with the set of
objects 𝑁 = {𝑋1, 𝑋2, 𝑋3}, tournament and matches matrices

𝑇 =

⎛⎜⎝0 3 0
0 0 1
4 0 0

⎞⎟⎠ , 𝑇 ′ =

⎛⎜⎝0 1 2
2 0 0
2 1 0

⎞⎟⎠ and 𝑀 = 𝑀 ′ =

⎛⎜⎝0 3 4
3 0 1
4 1 0

⎞⎟⎠ .

Let (𝑁, 𝑇 ′′) = (𝑁, 𝑇 + 𝑇 ′) ∈ ℛ be the sum of these two ranking problems.
The rating vectors are given in Table 3: 𝑋1 ≺Cfb

(𝑁,𝑇 ) 𝑋2 and 𝑋1 ≺Cfb
(𝑁,𝑇 ′) 𝑋2, but

𝑋1 ≻Cfb
(𝑁,𝑇 ′′) 𝑋2.

Strengthening of flatness preservation in order to get 𝐸𝑃 seems to be futile. It is not
surprising since equal rating of two objects may occur accidentally. On the other side,
restricting consistency by filtering out the comparison structure proves to be fruitful, at
least in the case of least squares and generalized row sum with a proper parameter choice.
But it is not enough to achieve positive results even for Copeland fair bets, which violates
result consistency still in the most simple instance of three objects.
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Table 3: Fair bets and associated rating vectors of Example 5

fb(𝑇 ) dfb(𝑇 ) Cfb(𝑇 ) fb(𝑇 ′) dfb(𝑇 ′) Cfb(𝑇 ′) fb(𝑇 ′′) dfb(𝑇 ′′) Cfb(𝑇 ′′)

𝑋1 3/19 −1/3 −10/57 2/7 −6/15 −12/105 7/29 −2/6 −16/174
𝑋2 4/19 −1/3 −7/57 2/7 −5/15 −5/105 6/29 −3/6 −51/174
𝑋3 12/19 −1/3 17/57 3/7 −4/15 17/105 16/29 −1/6 67/174

3.3 The round-robin case
Another weakening of consistency is offered by restricting its domain to a properly chosen
subset of ranking problems. Now the special case of round-robin ranking problems is
analysed, when all pairs of objects have the same number of comparisons, therefore a
significant difficulty of paired-comparison based ranking is eliminated. Note that the set
ℛ𝑅 is closed under summation.

Lemma 16. The generalized row sum and least squares methods satisfy 𝐶𝑆 (therefore
𝐸𝑃 and 𝑅𝐶𝑆) on the set ℛ𝑅.

Proof. Due to axioms agreement (Chebotarev, 1994, Property 3) and score consistency
(González-Dı́az et al., 2014), both the generalized row sum and least squares methods
coincide with the score on this set of problems, so Lemma 8 holds.

Lemma 16 shows that lack of additivity in Example 2 is due to the different structure
of the comparison multigraphs.

Lemma 17. Fair bets, dual fair bets and Copeland fair bets methods violate 𝐸𝑃 even on
the set ℛ𝑅.

Proof. Both (𝑁, 𝑇 ) and (𝑁, 𝑇 ′) are round-robin ranking problems in Example 3.

Lemma 18. Fair bets and dual fair bets methods violate 𝑅𝐶𝑆 on the set ℛ𝑅.

Proof. The argument of Lemma 15 is valid because they violate 𝐼𝑁𝑉 on the set ℛ𝑅

according to Lemma 6.

Proposition 11. Copeland fair bets methods violate 𝑅𝐶𝑆 on the set ℛ𝑅.

Figure 6: Ranking problems of Example 6

(a) Ranking problem (𝑁, 𝐴)

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁, 𝐴′)

𝑋1

𝑋2

𝑋3

𝑋4

Proof.
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Example 6. Let (𝑁, 𝑇 ), (𝑁, 𝑇 ′) ∈ ℛ be the ranking problems in Figure 6 with the set of
objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, tournament and matches matrices

𝑇 =

⎛⎜⎜⎜⎝
0 0 1 0
1 0 1 0.5
0 0 0 1
1 0.5 0 0

⎞⎟⎟⎟⎠ , 𝑇 ′ =

⎛⎜⎜⎜⎝
0 0 0.5 0.5
1 0 0.5 1

0.5 0.5 0 0
0.5 0 1 0

⎞⎟⎟⎟⎠ and 𝑀 = 𝑀 ′ =

⎛⎜⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎟⎠ .

Let (𝑁, 𝑇 ′′) = (𝑁, 𝑇 + 𝑇 ′) ∈ ℛ𝑅 be the sum of these two ranking problems.

Table 4: Fair bets and associated rating vectors of Example 6

fb(𝑇 ) dfb(𝑇 ) Cfb(𝑇 ) fb(𝑇 ′) dfb(𝑇 ′) Cfb(𝑇 ′) fb(𝑇 ′′) dfb(𝑇 ′′) Cfb(𝑇 ′′)

𝑋1 1/17 −6/19 −83/323 5/64 −23/64 −9/32 17/236 −79/244 −906/3599
𝑋2 10/17 −1/19 173/323 39/64 −5/64 17/32 145/236 −15/244 1990/3599
𝑋3 2/17 −7/19 −81/323 11/64 −25/64 −7/32 31/236 −97/244 −958/3599
𝑋4 4/17 −5/19 −9/323 9/64 −11/64 −1/32 43/236 −53/244 −126/3599

The rating vectors are given in Table 4: 𝑋1 ≺Cfb
(𝑁,𝑇 ) 𝑋3 and 𝑋1 ≺Cfb

(𝑁,𝑇 ′) 𝑋3, but
𝑋1 ≻Cfb

(𝑁,𝑇 ′′) 𝑋3.

Lemma 19. Fair bets, dual fair bets and Copeland fair bets methods violate 𝐶𝑆 on the
set ℛ𝑅.

Proof. It comes from Lemma 18 and Proposition 11 together with Corollary 4.

In the case of round-robin ranking problems, generalized row sum and least squares
coincide with the score, so they have a ’perfect’ performance regarding additivity. Rankings
according to fair bets, dual fair bets and Copeland fair bets may be reversed by adding
two round-robin ranking problems even if there are only four objects, despite the latter
satisfies inversion.

4 Additivity and irrelevant comparisons
From the viewpoint of additivity, score method seems to be flawless. However, consistency
may have some unintended consequences, which are difficult to accept. This section deals
with the connection of additivity with other axioms.

4.1 Independence of irrelevant matches and results
Definition 15. Independence of irrelevant matches (𝐼𝐼𝑀): Let (𝑁, 𝑇 ) ∈ ℛ be a ranking
problem and 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋ℓ ∈ 𝑁 be four different objects. Let 𝑓 : ℛ → R𝑛 be a
scoring procedure such that 𝑓𝑖(𝑁, 𝑇 ) ≥ 𝑓𝑗(𝑁, 𝑇 ) and (𝑁, 𝑇 ′) ∈ ℛ be a ranking problem
identical to (𝑁, 𝑇 ) except for 𝑡′

𝑘ℓ ̸= 𝑡𝑘ℓ. 𝑓 is called independent of irrelevant matches if
𝑓𝑖(𝑁, 𝑇 ′) ≥ 𝑓𝑗(𝑁, 𝑇 ′).

Remark 6. Property 𝐼𝐼𝑀 has a meaning if 𝑛 ≥ 4.
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Sequential application of independence of irrelevant matches can lead to any ranking
problem (𝑁, 𝑇 ′) ∈ ℛ, for which 𝑡′

𝑔ℎ = 𝑡𝑔ℎ if {𝑋𝑔, 𝑋ℎ} ∩ {𝑋𝑖, 𝑋𝑗} ≠ ∅, but all other paired
comparisons are arbitrary. 𝐼𝐼𝑀 means that all comparisons not involving the two objects
chosen are irrelevant from the perspective of their relative ranking.

This property appears as independence in Rubinstein (1980, Axiom III) and Nitzan
and Rubinstein (1981, Axiom 5) in the case of round-robin ranking problems. The name
independence of irrelevant matches was introduced by González-Dı́az et al. (2014)., Altman
and Tennenholtz (2008, Definition 8.4) use a stronger axiom called Arrow’s independence
of irrelevant alternatives by permitting modifications of comparisons involving 𝑋𝑖 and 𝑋𝑗

if 𝑡𝑖ℎ − 𝑡′
𝑖ℎ = 𝑡𝑗ℎ − 𝑡′

𝑗ℎ holds for all 𝑋ℎ ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}.
Decomposition of the tournament matrix into the results matrix 𝐴 and matches matrix

𝑀 makes possible to weaken 𝐼𝐼𝑀 .

Definition 16. Independence of irrelevant results (𝐼𝐼𝑅): Let (𝑁, 𝐴, 𝑀) ∈ ℛ be a ranking
problem and 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋ℓ ∈ 𝑁 be four different objects. Let 𝑓 : ℛ → R𝑛 be a scoring
procedure such that 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀) and (𝑁, 𝐴′, 𝑀) ∈ ℛ be a ranking problem
identical to (𝑁, 𝐴, 𝑀) except for the result 𝑎′

𝑘ℓ ̸= 𝑎𝑘ℓ. 𝑓 is called independent of irrelevant
results if 𝑓𝑖(𝑁, 𝐴′, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴′, 𝑀).

Sequential application of independence of irrelevant matches can result in any ranking
problem (𝑁, 𝐴′, 𝑀) ∈ ℛ, for which 𝑎′

𝑔ℎ = 𝑎𝑔ℎ if {𝑋𝑔, 𝑋ℎ} ∩ {𝑋𝑖, 𝑋𝑗} ̸= ∅, but all other
paired comparisons are arbitrary. However, this axiom does not allow for a change in
the number of matches between two objects (in the case of 𝐼𝐼𝑀 , 𝑡′

𝑘ℓ ̸= 𝑡𝑘ℓ means that
𝑎′

𝑘ℓ ̸= 𝑎𝑘ℓ and 𝑚′
𝑘ℓ ̸= 𝑚𝑘ℓ may occur).

Note also that 𝐼𝐼𝑅 does not affect the connectedness of the ranking problem, however,
it may influence irreducibility.

Corollary 6. 𝐼𝐼𝑀 implies 𝐼𝐼𝑅.

Proof. It follows from Definitions 15 and 16.

Remark 7. 𝐼𝐼𝑀 and 𝐼𝐼𝑅 coincide on the set of round-robin ranking problems ℛ𝑅.

Lemma 20. The score method satisfies 𝐼𝐼𝑀 .

Proof. It follows from Definition 1.

Proposition 12. The generalized row sum, least squares, fair bets, dual fair bets and
Copeland fair bets methods violate 𝐼𝐼𝑅.

Proof.
Example 7. Let (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀) ∈ ℛ be the ranking problems in Figure 7 with set
of objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, tournament and matches matrices

𝑇 =

⎛⎜⎜⎜⎝
0 0.5 0 0.5

0.5 0 0.5 0
0 0.5 0 0

0.5 0 1 0

⎞⎟⎟⎟⎠ , 𝑇 ′ =

⎛⎜⎜⎜⎝
0 0.5 0 0.5

0.5 0 0.5 0
0 0.5 0 1

0.5 0 0 0

⎞⎟⎟⎟⎠ and 𝑀 = 𝑀 ′ =

⎛⎜⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 0 0

⎞⎟⎟⎟⎠ ,

where 𝑎′
34 ̸= 𝑎34 but 𝑚′

34 = 𝑚34.
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Figure 7: Ranking problems of Example 7

(a) Ranking problem (𝑁, 𝐴, 𝑀)

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁, 𝐴′, 𝑀)

𝑋1

𝑋2

𝑋3

𝑋4

𝐼𝐼𝑀 requires that 𝑓1(𝑁, 𝐴, 𝑀) ≥ 𝑓2(𝑁, 𝐴, 𝑀) ⇔ 𝑓1(𝑁, 𝐴′, 𝑀) ≥ 𝑓2(𝑁, 𝐴′, 𝑀). Let
x(𝜀)(𝑁, 𝐴, 𝑀) = x(𝜀), x(𝜀)(𝑁, 𝐴′, 𝑀 ′) = x(𝜀)′ and q(𝑁, 𝐴, 𝑀) = q, q(𝑁, 𝐴′, 𝑀 ′) = q′.
Here 𝑚 = 1 and 𝑛 = 4, therefore

𝑥1(𝜀) = 𝑥2(𝜀)′ = (1 + 𝜀𝑚𝑛) 𝜀

(1 + 2𝜀)(1 + 4𝜀) = 𝜀

1 + 2𝜀
and

𝑥1(𝜀)′ = 𝑥2(𝜀) = (1 + 𝜀𝑚𝑛) −𝜀

(1 + 2𝜀)(1 + 4𝜀) = −𝜀

1 + 2𝜀
,

that is, 𝑋1 ≻x(𝜀)
(𝑁,𝐴,𝑀) 𝑋2 but 𝑋1 ≺x(𝜀)

(𝑁,𝐴′,𝑀) 𝑋2.
For the least squares method, on the basis of Lemma 2:

𝑞1 = lim𝜀→∞ 𝑥1(𝜀)
𝑚𝑛

= 𝑞′
2 = lim𝜀→∞ 𝑥2(𝜀)′

𝑚𝑛
= 1

2 · 1
1 · 4 = 1

8 and

𝑞′
1 = lim𝜀→∞ 𝑥1(𝜀)′

𝑚𝑛
= 𝑞2 = lim𝜀→∞ 𝑥2(𝜀)

𝑚𝑛
= −1

2 · 1
1 · 4 = −1

8 .

Hence 𝑋1 ≻q
(𝑁,𝐴,𝑀) 𝑋2 but 𝑋1 ≺q

(𝑁,𝐴′,𝑀) 𝑋2.

Table 5: Fair bets and associated rating vectors of Example 7

fb(𝑁, 𝑇 ) dfb(𝑁, 𝑇 ) Cfb(𝑁, 𝑇 ) fb(𝑁, 𝑇 ′) dfb(𝑁, 𝑇 ′) Cfb(𝑁, 𝑇 ′)

𝑋1 5/16 −3/16 1/8 3/16 −5/16 −1/8
𝑋2 3/16 −5/16 −1/8 5/16 −3/16 1/8
𝑋3 1/16 −7/16 −3/8 7/16 −1/16 3/8
𝑋4 7/16 −1/16 3/8 1/16 −7/16 −3/8

The other three rating vectors are given in Table 5: 𝑋1 ≻(𝑁,𝑇 ) 𝑋2 and 𝑋1 ≺(𝑁,𝑇 ′) 𝑋2
for the three methods.

Remark 8. The two ranking problems of Example 7 coincide with the permutation
𝜎(𝑋1) = 𝑋2 and 𝜎(𝑋3) = 𝑋4. Then independence of irrelevant matches demands that
𝑓1(𝑁, 𝐴, 𝑀) = 𝑓2(𝑁, 𝐴, 𝑀), violated by all ranking methods discussed except for the score.

Lemma 21. The generalized row sum, least squares, fair bets, dual fair bets and Copeland
fair bets methods violate 𝐼𝐼𝑀 .
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Proof. It comes from Proposition 12 and Corollary 6.

Lemma 22. The generalized row sum and least squares methods satisfy 𝐼𝐼𝑀 on the set
ℛ𝑅.

Proof. Due to axioms agreement (Chebotarev, 1994, Property 3) and score consistency
(González-Dı́az et al., 2014), both the generalized row sum and least squares methods
coincide with the score on this set of problems, so Lemma 20 holds.

Proposition 13. Fair bets, dual fair bets and Copeland fair bets methods violate 𝐼𝐼𝑅
(𝐼𝐼𝑀) even on the set ℛ𝑅.

Figure 8: Ranking problems of Example 8

(a) Ranking problem (𝑁, 𝑇 )

𝑋1

𝑋2

𝑋3

𝑋4

(b) Ranking problem (𝑁, 𝑇 ′)

𝑋1

𝑋2

𝑋3

𝑋4

Proof.
Example 8. Let (𝑁, 𝑇 ), (𝑁, 𝑇 ′) ∈ ℛ𝑅 be the round-robin ranking problems in Figure 8
with the set of objects 𝑁 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, tournament and matches matrices

𝑇 =

⎛⎜⎜⎜⎝
0 1 0 0.5
0 0 0.5 1
1 0.5 0 0

0.5 0 1 0

⎞⎟⎟⎟⎠ , 𝑇 ′ =

⎛⎜⎜⎜⎝
0 1 0 0.5
0 0 0.5 1
1 0.5 0 1

0.5 0 0 0

⎞⎟⎟⎟⎠ and 𝑀 = 𝑀 ′ =

⎛⎜⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 1 1
1 1 1 0

⎞⎟⎟⎟⎠ ,

where 𝑎′
34 ̸= 𝑎34 but 𝑚′

34 ̸= 𝑚34.

Table 6: Fair bets and associated rating vectors of Example 8

fb(𝑁, 𝑇 ) dfb(𝑁, 𝑇 ) Cfb(𝑁, 𝑇 ) fb(𝑁, 𝑇 ′) dfb(𝑁, 𝑇 ′) Cfb(𝑁, 𝑇 ′)

𝑋1 1/4 −1/4 0 5/32 −7/32 −1/16
𝑋2 1/4 −1/4 0 7/32 −5/32 1/16
𝑋3 1/4 −1/4 0 19/32 −1/32 9/16
𝑋4 1/4 −1/4 0 1/32 −19/32 −9/16

𝐼𝐼𝑅 requires that 𝑓1(𝑁, 𝐴, 𝑀) ≥ 𝑓2(𝑁, 𝐴, 𝑀) ⇔ 𝑓1(𝑁, 𝐴′, 𝑀) ≥ 𝑓2(𝑁, 𝐴′, 𝑀). The
rating vectors are given in Table 6: 𝑋1 ⪰(𝑁,𝑇 ) 𝑋2 and 𝑋1 ≺(𝑁,𝑇 ′) 𝑋2 for the three
methods.

Hence, similarly to consistency, generalized row sum and least squares satisfy 𝐼𝐼𝑅 on
the set of round-robin ranking problems, while fair bets, dual fair bets and Copeland fair
bets break it even on this restricted domain.
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4.2 Connection to additivity
Take a look at Example 7 (Figure 7). It seems strange to require that objects 𝑋1 and
𝑋2 have the same rank in both problems, which is an implication of 𝐼𝐼𝑀 . Therefore,
González-Dı́az et al. (2014, p. 165) consider independence of irrelevant matches to be
a drawback of the score method because outside the subdomain of round-robin ranking
problems, it makes sense if the scoring procedure is responsive to the strength of the
opponents. However, it turns out that 𝐼𝐼𝑀 is closely linked to additivity.

Theorem 1. 𝑁𝐸𝑈 , 𝑆𝑌 𝑀 and 𝐶𝑆 imply 𝐼𝐼𝑀 .

Proof. For the round-robin case, see Nitzan and Rubinstein (1981, Lemma 3).
Assume to the contrary, and let (𝑁, 𝐴, 𝑀) ∈ ℛ be a ranking problem, 𝑋𝑖, 𝑋𝑗, 𝑋𝑘, 𝑋ℓ ∈

𝑁 be four different objects such that 𝑓𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑓𝑗(𝑁, 𝐴, 𝑀), and (𝑁, 𝐴′, 𝑀 ′) ∈ ℛ
is identical to (𝑁, 𝐴, 𝑀) except for the result 𝑎′

𝑘ℓ ̸= 𝑎𝑘ℓ and match 𝑚′
𝑘ℓ ̸= 𝑚𝑘ℓ such that

𝑓𝑖(𝑁, 𝐴′, 𝑀 ′) < 𝑓𝑗(𝑁, 𝐴′, 𝑀 ′).
Corollary 5 implies that a symmetric and consistent scoring procedure satisfies 𝐼𝑁𝑉 ,

hence 𝑓𝑖(𝑁, −𝐴, 𝑀) ≤ 𝑓𝑗(𝑁, −𝐴, 𝑀). Denote by 𝜎 : 𝑁 → 𝑁 the permutation 𝜎(𝑋𝑖) =
𝑋𝑗, 𝜎(𝑋𝑗) = 𝑋𝑖, and 𝜎(𝑋𝑘) = 𝑋𝑘 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}. Neutrality implies
𝑓𝑖 [𝜎(𝑁, 𝐴, 𝑀)] ≤ 𝑓𝑗 [𝜎(𝑁, 𝐴, 𝑀)], and 𝑓𝑖 [𝜎(𝑁, −𝐴′, 𝑀 ′)] < 𝑓𝑗 [𝜎(𝑁, −𝐴′, 𝑀 ′)] due to
inversion and Remark 4. With the definitions 𝐴′′ = 𝜎(𝐴) − 𝜎(𝐴′) − 𝐴 + 𝐴′ = 𝑂 and
𝑀 ′′ = 𝜎(𝑀) + 𝜎(𝑀 ′) + 𝑀 + 𝑀 ′,

(𝑁, 𝐴′′, 𝑀 ′′) = 𝜎(𝑁, 𝐴, 𝑀) + 𝜎(𝑁, −𝐴′, 𝑀 ′) − (𝑁, 𝐴, 𝑀) + (𝑁, 𝐴′, 𝑀 ′).

Symmetry implies 𝑓𝑖(𝑁, 𝐴′′, 𝑀 ′′) = 𝑓𝑗(𝑁, 𝐴′′, 𝑀 ′′) since 𝐴′′ = 0, but 𝑓𝑖(𝑁, 𝐴′′, 𝑀 ′′) <
𝑓𝑗(𝑁, 𝐴′′, 𝑀 ′′) from consistency, which is a contradiction.

Remark 9. 𝑁𝐸𝑈 , 𝑆𝑌 𝑀 and 𝑅𝐶𝑆 do not imply 𝐼𝐼𝑅 despite that the proof of The-
orem 1 can almost be followed. According to Proposition 6, a symmetric and result
consistent scoring procedure also satisfies 𝐼𝑁𝑉 , but result consistency does not provide
𝑓𝑖(𝑁, 𝐴′′, 𝑀 ′′) < 𝑓𝑗(𝑁, 𝐴′′, 𝑀 ′′) even if 𝑀 = 𝑀 ′ (guaranteed in the case of 𝐼𝐼𝑅) due to
𝑀 ̸= 𝜎(𝑀) in general.

Note that 𝑀 = 𝜎(𝑀) is equivalent to 𝑚𝑖𝑘 = 𝑚𝑗𝑘 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}. Then
𝑁𝐸𝑈 , 𝑆𝑌 𝑀 and 𝑅𝐶𝑆 still imply 𝐼𝐼𝑅, so generalized row sum and least squares should
satisfy independence of irrelevant results with respect to such objects 𝑋𝑖 and 𝑋𝑗. In
fact, according to the property homogeneous treatment of victories (González-Dı́az et al.,
2014), in this case they result in 𝑋𝑖 ⪰ 𝑋𝑗 if and only if 𝑠𝑖(𝑁, 𝐴, 𝑀) ≥ 𝑠𝑗(𝑁, 𝐴, 𝑀): when
two objects have the same number of comparisons against all the other objects, they are
ranked according to their scores.2 As 𝑚𝑖𝑘 = 𝑚𝑗𝑘 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗} holds for any
𝑋𝑖, 𝑋𝑗 ∈ 𝑁 in round-robin ranking problems, it highlights that generalized row sum and
least squares satisfy 𝐼𝐼𝑀 on the domain of ℛ𝑅.

Axioms 𝑁𝐸𝑈 and 𝑆𝑌 𝑀 are difficult to debate, therefore Theorem 1 implies 𝐶𝑆 is a
property one would rather not have in the general case. It reinforces the significance of
Section 3; weakening of consistency seems to be desirable in order to avoid independence
of irrelevant matches (results).
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Table 7: Axiomatic properties of ranking methods

Property Score† Generalized
row sum‡

Least squares Fair bets /
dual fair

bets*

Copeland
fair bets

(𝑁𝐸𝑈) (4) (4) (4) (4) 4

(𝑆𝑌 𝑀) (4) (4) (4) (4) 4

(𝐼𝑁𝑉 ) (4) (4) (4) (7) 4

(𝐶𝑆) (4) (7) (7) (7) 7

(𝐹𝑃 ) (4) (4) (4) (4) 4

𝐸𝑃 4 7 7 7 7

𝑅𝐶𝑆 4 47◇ 4 7 7

(𝐼𝐼𝑀) (4) (7) (7) (7) 7

𝐼𝐼𝑅 4 7 7 7 7

Axioms introduced in the literature and known results are in parenthesis (see the text for references);
others are our contribution

† González-Dı́az et al. (2014) define the score method differently; their findings are in parenthesis
‡ González-Dı́az et al. (2014) discuss generalized row sum only for 𝜀 = [1/𝑚(𝑛 − 2)]; their findings are

in parenthesis
* González-Dı́az et al. (2014) do not analyse dual fair bets; their findings are in parenthesis
◇ Depends on the choice of 𝜀; the answer is positive if the parameter is inversely proportional to the

number of added ranking problems

5 Conclusions
Our results concerning the connection of the axioms and ranking methods are summarized
in Table 7. Score satisfies all properties, however, 𝐼𝐼𝑀 is not favourable in the presence
of missing and multiple comparisons. The findings recommend to use generalized row
sum with a parameter somewhat proportional to the number of matches, for example, the
upper bound of reasonable choice 1/ [𝑚(𝑛 − 2)]. It is not surprising given the statistical
background of the method (Chebotarev, 1994). Then generalized row sum and least
squares cannot be distinguished with respect to the properties examined.3

A drawback of fair bets (and its dual) was eliminated by the introduction of Copeland
fair bets, but it does not affect other axioms. Chebotarev and Shamis (1999)’s analysis of
self-consistent monotonicity confirm that ’manipulation’ with win-loss combining scoring
procedures is not able to correct some inherent features of this class.

It has been investigated whether the ranking methods meet the properties on the
restricted domain of round-robin tournaments. Since generalized row sum and least
squares coincide with the score on this set, they perform perfectly – in this case it is
difficult to debate 𝐼𝐼𝑀 (𝐼𝐼𝑅). However, the behaviour of fair bets and its peers remain
unchanged even on this narrow subset, so a rank reversal may occur after adding two
simple round-robin ranking problems. It seems to be a strong argument against their
application.4

2 Formally, González-Dı́az et al. (2014) prove homogeneous treatment of victories only for generalized
row sum with 𝜀 = 1/ [𝑚(𝑛 − 2)], but it remains valid for any 𝜀 > 0.

3 Some of their differences are highlighted by González-Dı́az et al. (2014).
4 González-Dı́az et al. (2014) does not mention it as a drawback.

21



We have also aspired to give simple counterexamples, minimal with respect to the
number of objects and matches. It shows that the violation of these properties remains an
issue still in the case of relatively small problems.

Figure 9: Connections among the axioms
Arrows sign implication. In certain cases some axioms together determine another such as 𝑁𝐸𝑈 + 𝑆𝑌 𝑀 +
𝐶𝑆 ⇒ 𝐼𝐼𝑀 . Nodes with dashed, red lines are properties introduced by us; continuous, blue lines are our
results; dashed, green lines are trivial relationships.

𝑁𝐸𝑈

𝐶𝑆

𝐹𝑃

𝐸𝑃

𝑅𝐶𝑆

𝑆𝑌 𝑀 𝐼𝑁𝑉

𝐼𝐼𝑀

𝐼𝐼𝑅

Figure 9 gives a comprehensive picture about the axioms investigated. Three novel
properties were introduced. 𝐸𝑃 is between two extreme additivity requirements, the severe
𝐶𝑆 and the weak 𝐹𝑃 . However, our methods show the same behaviour against equality
preservation as against consistency. The other direction of mitigating 𝐶𝑆, result consistency
(𝑅𝐶𝑆) – made possible by the differentiation of results and matches matrices – yields
more success. The new setting is also responsible for the introductione of independence
of irrelevant results, a weak form of independence of irrelevant matches already defined.
Relationships among the axioms shed light on some discoveries of Table 7: the strong
connection of 𝐼𝐼𝑀 and 𝐶𝑆 justifies the violation of both properties, the violation of 𝐼𝑁𝑉
by fair bets implies that it does not satisfy 𝑅𝐶𝑆.

At least two main directions of future research emerge. The first is to extend the scope
of the analysis with other scoring procedures. For example, Slikker et al. (2012) define
a general framework for ranking the nodes of directed graphs, resulting in fair bets as a
limit. Positional power (Herings et al., 2005) is also worth to analyse since it is similar to
least squares from a graph-theoretic point of view (Csató, 2015). The second course is to
get some characterization results, an intended end goal of any axiomatic analysis.
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