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Abstract Social dilemmas, in particular the prisoners’ dilemma, are repre-
sented as congestion games, and within this framework soft correlated equilibria
as introduced by Forgé F. (2010, A generalization of correlated equilibrium: A
new protocol. Mathematical Social Sciences 60:186-190) is used to improve in-
ferior Nash payoffs that are characteristic of social dilemmas. These games can
be extended to several players in different ways preserving some important char-
acteristics of the original 2-person game. In one of the most frequently studied
models of the n-person prisoners’ dilemma game we measure the performance
of the soft correlated equilibrium by the mediation and enforcement values. For
general prisoners’ dilemma games the mediation value is oo, the enforcement
value is 2. This also holds for the class of separable prisoners’ dilemma games.
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1 Introduction

The prisoners’ dilemma has been one of the most intriguing subjects in game
theory ever since its early days in the middle of the last century. It has fascinated
many trades as far apart as psychology and physics. The strategic complexity
hidden behind its simplicity has made it a favorite subject for analysis, general-
izations, experiments and heated discussions. The basic issue is to predict the
outcome of a game situation where players can choose between cooperation and
defection when cooperation offers the best outcome if done collectively and de-
fection is tempting if done individually (or in small groups). The classic version
involves only two players but generalizations to many players have also emerged
throughout the years.

Numerous attempts have been made to embed the problem in a more com-
plex scenario (e.g. allowing repetition of the game and find a socially superior
equilibrium outcome in the extended game). In general games correlation, the
ingenious invention of Aumann (1974), may retain equilibrium in an extended
game yet Pareto-improve Nash outcomes. The prisoners’ dilemma, however,
is resistant against correlation: the only Nash outcome is the only correlated
outcome in the 2-person prisoners’ dilemma. The generalization of Aumann’s



correlation introduced by Moulin and Vial (1978) and termed "coarse correla-
tion" or alternatively "weak correlation" also falls short of providing equilibria
other than Nash’s for the simple reason that the prisoners’ dilemma is a binary
game, where weak correlation coincides with classical correlation. Another gen-
eralization of the classical correlation, "soft correlated equilibrium" introduced
by Forgé (2010), however, was shown to be able to Pareto-improve the Nash
outcome.

As it will be demonstrated in this paper, another area of game theory, simple
congestion games are in close relation with prisoners’ dilemma games. Thereby,
techniques successfully used in congestion games to measure the effectiveness
of different kinds of correlation can be brought to bear on prisoners’ dilemma
games. In particular, the mediation value and the enforcement value as de-
fined in Ashlagi et al. (2008) can be determined or estimated for some special
prisoners’s dilemma type games. We will show that the mediation value of the
soft correlated equilibrium for the linear n-person prisoners’ dilemma game (as
defined by Hamburger,1973) is oo which means that for any large number K
one can find an instance of the n-person prisoners’ dilemma game, where the
ratio of the social welfare achievable by soft correlation is more than K-times
the social welfare of the unique pure Nash equilibrium. The enforcement value
of soft correlation is 2, i.e. the absolute maximum of the social welfare cannot
be more than 2-times the social welfare that soft correlation can produce. We
get the same result for separable n-person games. Social welfare is defined as
the sum of the payoffs (utilities) of the players.

The paper is organized as follows. Section 2 includes the necessary prelimi-
naries and establishes the connection between social dilemma games and simple
congestion games. In Section 3 we determine the mediation and enforcement
value of soft correlated equilibrium for special classes of simple congestion games
and prisoners’ dilemma games. Section 4 concludes.

2 Congestion games, social dilemmas and correlation

Simple congestion games are models of situations where non-distinguishable
players choose from a finite set of facilities and payoffs depend only on how
many of them have chosen a particular facility. We will focus on the case of two
facilities. An n-player, 2-facility simple congestion game can be given by the
"congestion form": two nonnegative n-vectors a = (a1, ...,an), b = (b1,...,bn)
meaning that if j many players choose facility 1 (F'1), then each one gets utility
a; and if k£ many players choose facility 2 (F'2), then each one gets utility by.
The associated congestion game is defined by the player set IV, the strategy set
{F1, F2} for each player, briefly denoted by {1,2}, and the payoffs determined
by the utility vectors a and b. A strategy profile of the n players is (iy,...,%5)
where i; € {1,2}, j € N. For example, if n = 4, then (1,1,2,1) denotes the
situation when players 1,2, 4 choose F'1 and player 3 chooses F2.

A special class is when the utilities are determined by linear functions. A 2-
facility simple linear congestion game is defined by the utilities a; = jx+u,b; =
y+jz, j =1,...,n, where x,u,y, z are parameters. An important property of



congestion games (not only linear) is that they have at least one pure Nash
equilibrium point (PNE), see Rosenthal R W (1973).

Social dilemma games (SD) are symmetric 2-person binary games with
some strategic features of "dilemma" type: counterintuitive or problematic Nash
equilibria (NE). The most famous SD is the prisoners’ dilemma (PD). Other
SD’s are e.g. the battle of sexes, chicken, stag hunt. For a more detailed
discussion see Osborne and Rubinstein (1994). The following two propositions
state a close relationship between SD’s and 2-facility simple congestion games.,

Proposition 1 Every SD is a (linear) 2-facility simple congestion game.

Proof An SD is determined by four parameters a,b,c,d and is given as a
bimatrix game

A B
A a,a b,d .
B d,b cc
The associated congestion form is
F1 F2
No. of users A B (1)
1 b d -
2 a c

0.

Example: A PD is given by the parameters 0 < b < ¢ < a < d. In the
associated 2-facility simple congestion game A stands for "cooperate" (C'), B
stands for "defect" (D). It is a "mixed" congestion game: increasing for F'1 and
decreasing for F2.

The reverse of Proposition 1 is also true.

Proposition 2 Every 2-person 2-facility simple congestion game can be
represented as a symmetric 2-person binary game.

Proof If the congestion form is given as in (1), then each player has two
choices F'1 and F2 and the game is given by the payoff matrices

F1 F2
Fl1 a,a b,d.
F2 d,b cc

0.

The two most important properties of a PD from which many others can be
deduced (Hamburger, 1973) are the following:

P1 Each player has a dominant strategy (D),

P2 (D, D) is the only Nash equilibrium (NE).

There are many ways to generalize the PD to n players, see Carrol (1988).
The minimum requirement for the generalization is to preserve P1 and P2.



Following Hamburger (1973) we define the "cooperators’ function" C(k),k =
1,...,n which is interpreted as the payoff to a C-chooser provided there are k
of them and the "defectors’ function" D(k),k = 0,1,...,n — 1 which gives the
payoff a D-chooser gets provided there are k& C-choosers. C(0) and D(n) are
undefined. We assume that

Q1) Ck)<Dk—-1),k=1,...,n—1,

(Q2) C(n) > D(0).

Assumptions Q1, Q2 are meant to ensure that P1 and P2 carry over to the
n-person case. Q1 means that for a single player it is profitable to leave the
set of cooperators no matter how many of them there are. Q2 makes collective
cooperation preferable to collective defection.

Assuming linearity of the cooperators’ and defectors’ functions seems to be
a reasonable first step in the analysis of n-person PD’s. In this case the game
can be represented as a mixed simple linear 2-facility congestion game.

One might wonder whether linearity is too strong an assumption and covers
only irrelevant trivial cases. To dismiss this fear it is enough to recall that
compound games are linear. An n-person PD is said to be compound, if each
of n players simultaneously plays the same 2 x 2 PD game with all the other
players and each is required to make the same move in the n — 1 games she is
playing.

n-person PD games have extensively been studied in many contexts. A
good sample of references is Hamburger (1973), Carrol (1988), Szidarovszky
and Szilagyi (2002) and Szilagyi (2003). Since C'E cannot help increase SW,
no attention has been paid to correlation as a means of pulling PD out of the
trap of the bad NE. The case is different if we consider generalized correlation.

We confine ourselves to describe classical correlated equilibrium (CE) Au-
mann (1974), weak (coarse) correlated equilibrium (WCE) Moulin and Vial
(1978) and soft correlated equilibrium (SCE) Forgé (2010) by the pre-game
scenario they are based on. For each of the three kinds of equilibria the scenario
begins with a move of an umpire who randomly selects a strategy profile by
a commonly known probability distribution. In C'E he recommends for each
player to use her strategy without telling her or anybody else what his rec-
ommendation is for the others. Then each player, without any commitment,
chooses one of her strategies. The probability distribution is a C'E' if no player
can get a larger expected payoff by deviating from the recommendation pro-
vided everybody else plays the recommendation. WC'E demands the players to
commit themselves to follow the recommendation blindly. If they refuse to do
S0, then they can choose any strategy. Equilibrium is defined the same way as in
case of CE: no player benefits from not committing if everybody else commits.
SCFE is almost the same as WC'E except that when choosing non-commitment,
the player is not allowed to choose the strategy that would have been recom-
mended to her had she committed. Again, in equilibrium, unilateral deviation
is unprofitable in expected payoff.

As shown in Forgé (2010), WCE and SCE are generalizations of CE but
not of each other.

An important motivation of correlation and its generalizations is the desire



to improve social welfare (SW) while creating a situation where the players
pursuing their own goals wind up in a socially more preferable state than the one
achievable without it. Since we will be concerned with SC'E in the multiperson
PD and the corresponding mixed 2-facility simple congestion game, it is worth
to interpret the scenario of SCF in a different context as is done in Forgé (2014).

We may think of a "club" which has a library and a chess room with no
capacity limits. There are premium and regular members. Every week a lottery
is done according to a commonly known probability distribution assigning either
the library or the chess room to each player. Premium members must take the
room assigned to them, regular members must not, i.e. they have to take the
one not assigned to them by the lottery. Utilities are such that less people in
the library mean higher utility (privacy, less noise) whereas utility increases in
the chess room if there are more players (it is easier to find someone of similar
level to play with, tournaments can be organized). In an SCE everybody buys
premium membership, no player has an incentive to go regular provided that
all the others stay premium.

It is proved in Forgé (2010) that for binary games WCE = CE. Therefore
for SD games only SCFE can (if at all) improve SW. Using the idea of Ashlagi et
al (2008) we will measure the ability of a correlation scheme, in particular that
of SCFE, by how much the improvement compared to the SW of the best NF is
and how close to the absolute (unconditional) maximum of ST over some class
of games (in this case a class of n-person PD’s or mixed simple linear 2-facility
congestion games) we can get. For measurement we use the mediation value
(MV) and the enforcement value (EV).

Let G € T be a game from a class of finite games, P(G) the set of proba-
bility distributions over the strategy profiles of G, M (G) the set of probability
distributions generated by mixed Nash equilibria and S(G) the set of SCE’s.
Let SW(p) be the social welfare (sum of the expected utilities of the players) of
a probability distribution p. Define the mediation value of SCE in G, as

max,es(a) SW(p)
maXpe M(Q) SW(p)

MV (G) =
and the enforcement value as

max,cp(c) SW(p)
maxyes(a) SW(p) '

EV(G) =

Then the mediation value MV and the enforcement value EV of SCE over the
class of games I' are defined as

MV = sup MV (G), EV = sup EV(G).
Ger Ger
It is worth noticing that MV is a "best case", while EV is a "worst case"
indicator. For MV the best possible value is oo, for EV the best possible value
is 1.



In Forgé (2014) MV and EV of SCE for n-player, 2-facility simple non-
increasing linear congestion games was determined or estimated for certain cases.
They are summarized in the next table

Number of players MV — MVP EV
2 00 00 1
3 2 3 1
4 ? >4 1.007478...
n L= sy <3

The column of MV P stands for the case when in the definition of MV only pure
NE’s are considered. The research task naturally comes to mind: determine as
many values as possible in the above table for n-player, 2-facility mixed simple
linear congestion games, in particular for PD games.

3 Mediation and enforcement values of soft correlated equilibrium
for prisoners’ dilemma games

Consider the congestion form for an n-player, 2-facility simple mixed linear
congestion game

F1=C F2=D

CL1:0 b1:y+(n—1)z
as = bo=y+(n—2)z
az =2z b3=y+(n—-3)z"

an=(Mn—1)z by, =1y

with parameters x,y, z > 0. In terms of the cooperators’ and defectors’ functions
the above table takes the form

F1=C F2=0D

C(1)=0 Din—-1)=y+(n—-1)z

C(2)==x Dn—-2)=y+(n—2)z

C(3) =2z Dn—-3)=y+(n—3)z
Cn) = (n— 1)z D(0) =y

Since we will concentrate on PD games, the facilities have been given other
names C and D (cooperate and defect) as well. Cooperation is paying off more
and more as the number of cooperators increases and defection gets more and
more profitable as the number of defectors decreases. It is no infringement on
generality that the lowest utility is fixed at 0. Most of the ensuing analysis,
however, is valid not only for PD’s but also for 2-facility simple mixed linear
congestion games with the above congestion form. It should be remarked that



there are simple mixed linear congestion games where b,, < a; (e.g. the chicken
game for n = 2) but we will not consider those in this paper.

Let ¢ denote the number of players playing D, t = 0,1,...,n. Then, after
some rearrangement, the incentive constraint for SCE is (see Forg6 2014)

n—1
(—y+ (n—1)(x—2))g + Zty*tn*t(l'*z)Jr
t=1

S|

(n=)((n =t =1)(z - 2) = y))g + ygn > 0. (2)

This constraint is meant to make unprofitable, in terms expected payoffs, to
deny premium membership (in the interpretation given in the previous section).
Probabilities must be nonnegative and add up to 1

th = 17 (3)
@ > 0 t=01,..m

We want to maximize SW which is the sum of the players’ expected payoff

n—1

SW =n(n—ago+ Y _(Hy+(n—1)z)+(n—t=1)(n—t)e)g+nyg. . (4)
t=1

In order for this game to represent an n-person PD assumptions Q1 and (2
must be satisfied. If ¢ players play D, then n — ¢ play C. By Q1, a;41 < bp—¢
for t =1,...,n — 1 and thus the parameters should satisfy

y+tz>tx, t=1,...,n. (5)
All these inequalities are implied by the single inequality

y+(n—1z>n-1)z (6)

Taking assumption Q2 in account, we get C'(n) = (n — 1)z > D(0) =y. So, for
a 2-facility simple mixed linear congestion games to represent an n-person PD
it is necessary that the positive parameters x, y, z satisfy

1 1
O<—1y<x<—1y+21fn>2 (7)

Determining MV is quiet simple for any n > 2. It turns out that it is the best
possible.

Proposition 3 For the n-person PD the mediation value MV = co.



Proof Take the parameter values x = 1,y =€,z =1, ¢ > 0. Then ¢y = ¢, =
%7% =0,i=1,...,n—1is an SCFE that can easily be verified by substituting
into (2). Also, z,y, z satisfy (7) for all n > 2. The SW of the n-person PD
with these parameters is obtained by substituting into (4) and is found to be
in(n —1) 4+ ine. The only NE of the n-person PD is when all players defect

and its SW is ne. The MV ratio is then

in(n—1)+ 4ne

ne

which goes to oo if € — 0. [

Since every PD is a 2-facility simple mixed linear congestion game, it follows
from Proposition 5 that MV = oo for this wider class of games as well. Now
we turn to estimating the E'V for the class of 2-facility simple mixed linear
congestion games.

Proposition 4 For 2-facility simple mixed linear congestion games the en-
forcement value EV < 2.

Proof. Define for any real number ¢ € [0, n| the quadratic function W by

n
W(t) =Y (ty+(n—t)z)+n—t—1)(n—t)). (8)
t=0
The maximum W*of W (t) over [0,n] is an upper bound of the absolute maxi-
mum of SW which is attained at some integer point in [0, 7). The coefficient of
the quadratic term in (8) is z — z. Depending on the sign of z — z, we distinguish
two cases.
Case 1. > 2. In this case

W* = max{W(0), W(n)} =

ny ifx < nily
nin— Dz if A5y <z -

The set of probabilities ¢ = 0,t =0,1,...,n — 1,q, = 1 is always an SCFE
since y > 0, therefore we trivially have EV =1 if W* = ny. Consider now the
subcase when W* = n(n — 1)z. The set of probabilities o = ¢, = %, g =0,t#
0,n is easily seen to be an SC'E by substituting into (2) and getting

Sy (=1 —2) + 5y= (- 1w —2) 20

The SW of this SCE is

1 1
En(n -1z + 5™

Thus we get the estimation

BV < nin— 1z

in(n — 1)z + ny



Case 2. = < z. Assume first that n is even. An SCFE can be obtained by
setting the probabilities gz = 1,¢; = 0,7 # 3. This satisfies (2) because

n n n n n n
2y 22— 2) (- D) (=5 1)z —2)—y) = S(s—2) > 0. )
The SW belonging to this SCFE is

n n n n,n n n n

In this case the quadratic function W (t) attains its continuous absolute maxi-

mum at r = $EE=Cr=bT 1. 5 then just as in Case 1, we have EV = 1.

2(z—x)

If r < 0, then W(0) > W(t) for all ¢ € [0,n] and we have the estimation

W) n(n—1)x _4 (n—1)zx B
2y+Bz+2x—12) 2y+nz+(n—2)z

(n—1zx
2y+nz+ (n—2)x

which truly holds since z > x.

Consider now r € (0,n). We claim that the coefficient of every ¢; in (2) is
positive if % < t < n. To see this, observe that if ¢ is considered a continuous
variable, then the coefficient of ¢; is a concave quadratic function of ¢ since the
coefficient « — z of the quadratic term is negative. The coefficient y of ¢, is
positive by assumption, so is the coefficient of qz by (9). The positivity at the
endpoints of an interval implies positivity at all points by concavity establishing
our claim.

Thus if the continuous maximumpoint 7 of the function W falls in the interval
[5,7n],50 does the integer maximumpoint ¢*(being one of the neighboring integers
of r). The coefficient of ¢+ being positive, ¢+ = 1,¢q; = 0,t # t* is an SCE
and EV = 1. Then we have to consider only the case when 0 < r < %. The
continuous maximum can be bounded from above as

< 2.

2

W*=W(r)=nn—- Dz +r*(z—2) <nn-1z+ %(z—x)

because r < £ and z — x > 0. For the EV we have

w3

BV < W:; :nin—l)nx—i—"?j(z—x) :4(n71)x+n(zfx) <9
W(%) S+ sz+ 4 —x) 2y+nz+ (n—2)x

Now we turn to the case when n is odd, n > 3. We have already seen that
the coefficients of ¢; in inequality (2) are positive for %d <t < n and if the
integer maximumpoint t* of W falls in this interval, then EV = 1. Therefore



it is enough to deal with the case when 0 < r < "TH Consider the SCE =
qn_a = %,anﬂ = %,qi =0,1 # ”Tfl, ”TH The SW of this SCF is

1 n—1 1 n+1
W = §W( 5 )+§W( 5 )
1 n—1 n+1 n—1n+1 n+1 n—1 n—1n—3
5( 5 (y+ 5 2) + 5 5 T+ 5 (y+ 5 z) + 5 5 ).

Then we have the estimation

n(n— 1)z +7r%(z — x)

e - W EE)

£V

IN

n(n— 1)z + %(z—x)

FEy+ o550 + o 1 S 551 + L)

After multiplying the numerator and the denominator by 4 and deleting positive
terms from the denominator we get

V< dnn —Dz+ (n+1)2%(z — )

T (n—=Dn+1)z+ (n—1)2(n+1)x n (n,l)z(nfg)x.

We would like to prove that this ratio is no more than 2. This means that the
following inequality must hold
dnn—Dx+ (n+1)%2 - (n+1)%x <2(n* — 1)z +2(n— 1)

By rearranging we get

n=3)n+1l)z<(n—3)(n+1)z

which obviously holds by the assumption x < z. Thus we have that for 2-facility
simple mixed linear congestion games EV < 2.00

One might hope that for some important subclasses of PD games better
bounds can be gained for the FV. An important subclass is the class of PD’s
where x = z. For these games the reward of a player’s joining an already
existing group of cooperators increases at the same constant speed as the speed
at which the benefit of defection decreases. These games are called "separable"
and exhibit many interesting properties, see for example Hamburger (1973).

Proposition 5 For the n-person separable PD the enforcement value EV =

Proof In Proposition 4 we have already seen that for 2-facility simple mixed
linear congestion games EV < 2 if x > z (Case 1), in particular for z = z.

10



There is only one question to answer: is this bound tight? Consider the n-
person separable PD with parameters x = 1,y = ¢,z = 1. These parameters
satisfy (7) if € is small enough. By substituting into (2) and (3) we get the
following L P whose solution provides the SW maximizing SCFE :

n—1
maxn(n — 1)go + Z(ta + (n—1)(n—1t))q + neqn.
t=1
n—1
subject to ngo — Z(n —20)qt —ng, < 0,
=1

qo, 41, ---s4n Z 07Q0+Q1+7-"7+Qn:1~

Assume that n is even. Then gz = 1,¢; = 0,7 # 5 is a feasible solution, and
u=12(n—-1)—%v="2(n—1)+ Z¢ is a feasible solution to its dual with
the common objective value §(n — 1) + f¢. The absolute maximum of SW is
n(n — 1). Therefore the EV ratio is

n(n—1) _y n—1
Zn—1)+2%2 “n-1l+e¢

which goes to 2 if ¢ — 0.
The analysis for odd n is similar. In this case we have to consider the feasible

solution gno1 = %,anﬂ = %7qj =0,7 # —"517%"—1-5

Corollary 1 For 2-facility simple mixed linear congestion games the en-
forcement value FV = 2.

Corollary 2 For the n-person PD the enforcement value EV = 2.
Conclusion

It was shown how n-person prisoners’ dilemma games can be represented as
2-facility simple mixed linear congestion games. This representation is used to
measure the performance of soft correlated equilibrium in Pareto-improving the
Nash outcome. The mediation value was found oo , and the enforcement value
was proved to be 2 for any n. The enforcement value is also 2 for separable
n-person prisoners’ dilemma games. Other social dilemma games and their
generalizations for n players can also be studied by the methods used in this
analysis.

Acknowledgement The support of research grant OTKA 101224 is grate-
fully acknowledged.

References

11



Ashlagi, I, Monderer, D and Tennenholz M (2008) On the value of correla-
tion. Journal of Artificial Intelligence 33:575-6

Aumann, R J (1974) Subjectivity and correlation in randomized strategies.
Journal of Mathematical Economics 1:67-96

Carrol, J W (1988) Iterated N-player prisoners’ dilemma games, Philosoph-
ical Studies, 53: 411-415

Forgo, F (2010) A generalization of correlated equilibrium: A new protocol.
Mathematical Social Sciences 60:186-190

Forgs, F (2014) Measuring the power of soft correlated equilibrium in 2-
facility simple non-increasing linear congestion games, Central European Jour-
nal of Operations Research, 22 (1): 139-165

Hamburger, H (1973) N-person prisoners’ dilemma. Journal of Mathematical
Sociology, 3: 27-48

Moulin, H and Vial, J-P (1978) Strategically zero-sum games: the class of
games whose completely mixed equilibria cannot be improved upon. Interna-
tional Journal of Game Theory 7:201-221

Osborne, M J, Rubinstein, A (1996) A course in game theory. The MIT
Press, Cambridge MA

Rosenthal, R W (1973) A class of games possessing pure-strategy Nash equi-
libria. International Journal of Game Theory 2:65-67

Szilagyi, M N (2003) An investigation of N-person prisoners’ dilemma Com-
plex systems, 14:155-174

Szidarovszky, F and Szilagyi, M N (2002) An Analytical Study of the N-
Person Prisoners’ Dilemma, Southwest Journal of Pure and Applied Mathe-
matics (electronic only), 2:22-31

12





