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Abstract  

Following our earlier paper on the subject, we present a general closed formula to value the 

interest savings due to a multi-firm cash-pool system. Assuming normal distribution of the 

accounts the total savings can be expressed as the product of three independent factors 

representing the interest spread, the number and the correlation of the firms, and the time-

dependent distribution of the cash accounts. We derive analytic results for two special 

processes one characterizing the initial build-up period and the other describing the mature 

period. The value gained in the stationary system can be thought of as the interest, paid at the 

net interest spread rate on the standard deviation of the account. We show that pooling has 

substantial value already in the transient period. In order to increase the practical relevance of 

our analysis we discuss possible extensions of our model and we show how real option 

pricing technics can be applied here.  
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Introduction 

 

Cash-pool is a centralized cash management service offered by almost all commercial banks 

to corporate groups. In a cash-pool system accounts of different companies (even of different 

legal entities) are introduced into a single bank account structure settled in a mutual cash-pool 

agreement. It centralizes all balances of the subaccounts into a central master account. 

Amounts are consolidated and deposit and credit interest rates are automatically calculated 

and charged. The literature focuses on the technical solutions, the main characteristics and the 

corresponding risks, (Turtle et al. 1994; Dolfe and Koritz 1999; Hillman, 2011; Jansen and de 

Gruyter, 2011; Walter and Kenesei, 2015); and summarizes the costs and benefits of cash 

pooling systems in detail (Rebel, 2007). However, the explicit modeling and valuation of such 

products are still missing. 

 

In our previous paper (Berlinger et al. 2016) we valued a cash-pool of two firms with the help 

of a Monte Carlo simulation from the point of view of the firms. In this paper we derive a 

general formula for a cash-pool of n uniform firms and we investigate the special cases when 

the accounts are stationary or are following a Brown motion. Contrary to our previous paper, 

here the time is continuous and the benefit of the cash-pool comes exclusively from the 

savings on the interest rate spread. Otherwise, all other characteristics of the model remain the 

same.  

 

The paper is structured as follows. In Section 2 a general formula is derived, in Section 3 two 

special cases are analyzed, in Section 4 some possible extensions are discussed and finally in 

Section 5 conclusions are summarized. 

 

1. General formula 

 

The following notation will be used: 

t  time, in years 

d  yearly deposit rate 

c  yearly credit rate 

dcs     net interest spread 

σ  standard deviation of the net account position of the individual firms 

ρ  correlation between the net account positions of any two firms 

 tAi   cash account position of firm i at time t 

 tRi   incremental return on the account of firm i at time t 

 tA   cash account position of the pool at time t 

 tR   incremental return on the account of the pool at time t 

 tA   reduction in the account position due to the cash-pool at time t 

 tR   excess incremental return on the account due to the cash-pool at time t  
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TES  total expected saving per firm  

Let the cash account position of firm i on day t be  tAi . If the position is positive, the firm 

receives interest with yearly rate d from a deposit account. If the position is negative, the firm 

pays interest with yearly rate c to a credit account. Typically, c > d, both are fixed and are 

calculated on an annual basis. As the investigated time horizons are only a few years at 

maximum, and the cash account fluctuates widely, it makes sense to consider simple linear 

interest. For the same reasons, we will neglect discounting. We define the (positive) net 

interest spread as the difference between credit and deposit rates dcs  . The  tRi  

incremental return on the account during the small time interval dt can be written as 

 

       dttAstcAtR iii




 (1) 

 

where    xx ,0max


 is the positive part function. Now consider two firms that pool their 

cash accounts. The pool position will evolve as      tAtAtA 21   and the incremental return 

on the pool account becomes 

 

            dttAtAstAtActR


 2121  (2) 

 

We can express the excess return due to pooling        tRtRtRtR 21  , as  

 

               dttAsdttAtAtAtAstR 


2121  (3) 

 

where  tA  is the decrease in the aggregate position due to cash pooling which is also the 

decrease in the aggregate credit or in the aggregate deposit, by definition. It can be easily seen 

that both  tA  and  tR  are nonnegative. 

 

In all our subsequent analysis, the positions  tAi  will have a joined normal distribution, with 

zero mean, uniform time-dependent variance  t2 , and uniform time-independent correlation 

 . We derive the expression for the expectation E   tA  using these assumptions, as 

follows: 

 

         
2

21

t
tAEtAE






 

(4) 

 

       
 








12

2
21

t
tAtAE

 

(5) 

 



4 

 

  
 

  





 122
2

t
tAE

 

(6) 

Formula (6) was obtained for two firms pooling their cash accounts. It can readily be 

generalized for the case of n firms (still assuming variances and correlations be uniform 

across all the firms): 

 

  
 

   


11
2




 nnn
t

tAE

 

(7) 

 

To estimate the magnitude of the savings per firm due to cash pooling for a given time 

horizon T, we calculate the total expected saving per firm (TES): 

 

      

TT

dttA
n

s
tR

n
TES

00

1
 (8) 

 

Substituting our result for   tAE  , we obtain the general result: 

 

  
  




T

Amsdtt
n

nnn
sTES

02

11





 

(9) 

 

According to (9) TES is the product of three factors. The first factor s will be referred as the 

spread factor and is assumed to be constant. The second factor
  
n

nnn
m





2

11 
  will 

be called the multi-firm factor, since it shows the dependence on the number of firms n and on 

the correlation   And finally, the third factor  

T

dttA
0

 depends on the accounts’ 

stochastic process which is uniform for each firm, so we will call it the account factor.  

 

As expected, the multi-firm factor m is a decreasing function of correlation, indeed it vanishes 

at 1 , showing there is no pooling benefit for firms with perfectly correlated cash accounts. 

In the limit of many firms pooling their accounts, the factor converges to the finite value of 





2

1
. This shows that although the overall pooling benefit grows with the number of 

participants, the benefit per firm saturates.  

 

The account factor A is the time-integrated standard deviation of a single firm's position, 

therefore it depends on the stochastic processes the accounts follow. In the next section, we 

consider two important special cases for the account process and derive factor A and hence 

TES accordingly. 
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2. Special cases 

 

Two processes are examined in detail. In both cases the expected value of the accounts are 

assumed to be zero and we concentrate on the behavior of the standard deviation over time. 

First, in the stationary model the standard deviation is constant, whereas in the subsequent 

Brownian model it is an increasing function of time. 

 

The real world cash account of a firm can be best modeled by a mean reversion process, (e.g. 

Ornstein-Uhlenbeck) which can be interpreted as an “interpolation” of these two extremal 

models. At short time scales, in the initial stage it coincides with the diffuse Brownian 

motion, while in the long run it saturates to the stationary case.  

 

 

3.1 Stationary model 

 

In this model, we assume the individual firms' accounts have reached stationary normal 

distributions, all with the same time-independent standard deviation , and with uniform pair-

wise correlations  . Using the general result from the previous section, calculation of TES is 

straightforward, and we obtain that TA  , therefore 

 

  
TmsT

n

nnn
sTESstationary 








2

11

 

(10) 

 

As expected, within this stationary model, the savings due to pooling for each firm aggregate 

linearly throughout the period up to the time horizon. The value gained can be thought of as 

the interest, paid at rate s on an account with a fixed size of m . 
 

 

3.2 Brownian motion 

 

The previous model offers estimation on the benefit of pooling in a stationary situation, when 

the participants have already established the pooling of their accounts. In this analysis we 

consider firms whose cash accounts are zero at the beginning. For such firms, pooling does 

not offer any immediate benefit, yet it may still be advantageous in the future. 

 

We now model the individual account processes  tAi  as scaled Brownian Motions: 

 

   tWtA ii   (11) 
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Once again we assume a homogeneous model; the volatility of all account processes are , 

and the pair-wise correlation between any two Brownian motions is . Subsequently, the 

accounts at any given time t follow a joined normal distribution with uniform correlation 

 and with the same standard deviation 

 

  tt   (12) 

 

Using the general formula we get 2

3

3

2
TA   , therefore 

 

  
  TTmsT

n

nnn
sTESBrownian 




3

2

3

2

2

11
2

3





 

(13) 

 

The result is very similar to (10) obtained in the stationary case. In particular, the spread 

factor s and the multiform factor m are the same as before. However, in this case when a 

diffuse stochastic process, a Brownian motion was assumed, time-dependence became super-

linear ( 2

3

T ).  

 

When comparing our results for the stationary and the Brownian cases, formulas (10) and 

(13), we get the following relationship 

 

Brownianstationary TESTES 
3

2
 

(14) 

 

In the diffuse model standard deviation gradually grows from zero to  T . The benefit over 

this transitional period is comparable (two-thirds) of the benefit over the same period in a 

saturated system with constant  T . This shows that pooling can be highly beneficial for 

firms even when they all start with zero cash accounts and the key factor is the standard 

deviation. 

 

 

4. Possible extensions 

 

The two models were selected in the previous section because we could obtain simple, yet 

revealing analytic results. In practical applications, with semi-analytic solutions, many 

generalizations are possible. In this section we survey some of these possible extensions. 

 

(i) The time value of money, i.e. discounting of the savings, can easily be incorporated by 

integrating the present value of the expected savings. 
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If we generalize formula (3) to multiple firms, we get that the reduction in the exposure due to 

the cash-pool at time t, 
tA  can be expressed as  

 
 















 

n

i

i

t

n

i

i

tt AAA
11

 (15) 

It follows that 
tA  can be considered as a combination of European call options with an 

exercise date of t and an exercise price K=0. The positive terms in (15) are simple European 

type options, while the negative element is a basket option, because the underlying asset is the 

sum of the n processes. Hence, the present values can be calculated with the help of technics 

used for pricing real options according to the formula: 

 

   Basket

t

European

tt callcallnAPV   (16) 

 

where European

tcall  and Basket

tcall refer to the price (present value) of a European call option and 

a basket option, respectively. Thus, the value of the discounted savings can be calculated by 

time-integrating the corresponding option prices, hence (8) changes into 

 

   









T

Basket

t

European

t

T

tdiscounted dtcall
n

callsdtAPV
n

s
TES

00

1

 

(17) 

 

This approach is based on option pricing formulas which are available also for arithmetical 

Brown motion analyzed in the previous section; see for example Liu (2007) and Kolmar 

(2013). In most cases (17) can be calculated only in a semi-analytical way as even if closed 

formulas for the option prices are known, time- integration can only be done numerically. 

 

(ii) It may be interesting and useful to consider firms with different, nonzero initial cash 

account positions. Such treatment would allow distinguishing between cases when the initial 

positions are of different directions from cases when they are in the same direction. In the 

former case, pooling offers benefits right from the start, while in the latter case benefits are 

much reduced. Mathematically, the main complication arises from the fact that the joined 

normal distributions will have nonzero mean, therefore     tAi  and  




























n

i

i tA
1

 take 

more complicated forms. Once again, real option pricing formulae automatically handle these 

cases. 

 

(iii) Calculations in this paper were only focusing on the benefits of interest rate savings. 

Models can be easily complemented with other types of benefits due to the cash-pool that are 

related to the reduction of the firms’ exposure, for example the reduction in the counterparty 

risk the firms run when making a deposit in a bank, see (Berlinger et al. 2016). 
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5. Conclusions 

 

In this paper, we investigated the benefits of a multi-firm cash-pool within a theoretical 

framework. We concentrated on the netting advantage arising from a spread between credit 

rates and deposit rates. 

According to our general formula (9), the value of a cash-pool is the product of three 

independent factors representing the interest spread, the number and the correlation of the 

firms, and the time-dependent account variances. We derived analytic results for two special 

account process models, one that describes an initial Brownian diffusion period, and another 

representing mature pools with stationary account distributions.  

We find that in the stationary model the value of the cash-pool is linear in T while in the 

diffuse Brownian model it is superlinear (scales as 2

3

T ). Our results show that cash-pool 

benefits emerge fast even in the case when the initial cash accounts have zero balance. In the 

long run, the value gained by the participants can be thought of as the interest, paid at the net 

interest spread rate on the standard deviation of their cash account. 

In order to increase the practical relevance of our analysis we discussed three possible 

extensions of our model (discounting, non-zero initial accounts, and counterparty risk) and we 

show how real-option pricing technics can be applied here.  
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