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Preface

With the latest development in computer science, multivariate data analysis
methods became increasingly popular among economists. Pattern recog-
nition in complex economic data and empirical model construction can be
more straightforward with proper application of modern softwares. However,
despite the appealing simplicity of some popular software packages, the inter-
pretation of data analysis results requires strong theoretical knowledge. This
book aims at combining the development of both theoretical and application-
related data analysis knowledge. The text is designed for advanced level
studies and assumes acquaintance with elementary statistical terms. After
a brief introduction to selected mathematical concepts, the highlighting of
selected model features is followed by a practice-oriented introduction to the
interpretation of SPSS! outputs for the described data analysis methods.
Learning of data analysis is usually time-consuming and requires efforts, but
with tenacity the learning process can bring about a significant improvement
of individual data analysis skills.

ITBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk,
NY: IBM Corp.






1 Introduction to mathematics

1.1 Matrix calculations

Matrix calculations are often applied in data analysis. The number of rows
and columns of a matrix may differ. If the number of rows and columns
are equal, the matrix is called a square matrix. Square matrices are not
necessarily symmetric matrices (that are symmetric about the diagonall).
For a matrix M the transposed matrix is denoted by M?. The rows of the
transposed matrix M7 correspond to the columns of M (and the columns
of MT correspond to the rows of M). If M is a symmetric matrix, then
M= MT.

An identity matrix (of order n) is a square matrix with n rows and
columns having ones along the diagonal and zero values elsewhere. If the
identity matrix is denoted by I, then the relationship of a square matrix M
and the inverse of M (denoted by M™') is as follows (Sydsceter-Hammond
(2008), page 591):

MM ‘t'=M1'M=1 (1.1)

In some cases the determinant of a matrix should be interpreted in data
analysis. The determinant of a matrix is a number that can be calculated
based on the matrix elements. Determinant calculation is relatively simple
in case of a matrix that has two rows and columns. For example assume that
a matrix is defined as follows:

M= (mn m12> (1.2)
Mo1 M2

For the matrix M the determinant can be calculated according to Sydsceter-
Hammond (2008), (page 574):

In this case the diagonal of a square matrix with n columns is defined as containing
the elements in the intersection of the i-th row and i-th column of the matrix (i=1, ...,
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det(M) = M11M92 — M12M21 (13)

In this example the determinant occurs also in the calculation of the
inverse matrix. The inverse of matrix M in this example can be calculated
as follows (Sydseter-Hammond (2008), page 593):

Y (m22 _m”) (1.4)

det(M) \—m21  mn

M
If for example M; = ( ) then det(M;) =1 — 0.8 = 0.36. The

determinant of the identity matrix is equal to one. If all elements in a row
(or column) of a matrix are zero, then the determinant of the matrix is
zero. (Sydseeter-Hammond (2008), page 583) If the determinant of a square
matrix is equal to zero, then the matrix is said to be singular. A matrix has
an inverse if and only if it is nonsingular. (Sydseter-Hammond (2008), page
592)

The determinant can be interpreted in several ways, for example a ge-
ometric interpretation for det(M;) is illustrated by Figure 1.1, where the
absolute value of the determinant is equal to the area of the parallelogram.
(Sydsceter-Hammond (2008), page 575)
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Figure 1.1: Matrix determinant

In data analysis it is sometimes necessary to calculate the determinant
of a correlation matrix. If the variables in the analysis are (pairwise) un-
correlated, then the correlation matrix is the identity matrix, and in this
case the determinant of the correlation matrix is equal to one. If however



1.1. MATRIX CALCULATIONS 3

the variables in an analysis are “perfectly” correlated so that the (pairwise)
correlations are all equal to one, then the determinant of the correlation ma-
trix is equal to zero. In this case (if the determinant is equal to zero) the
correlation matrix is singular and does not have an inverse.

For a square matrix M a scalar A\ (called ,eigenvalue”) and a nonzero
vector z (called ,eigenvector”) can be found such that (Rencher-Christensen

(2012), page 43)

Mz =Mz (1.5)

If matrix M has n rows and n columns, then the number of eigenvalues is
n, but these eigenvalues are not necessarily nonzero. Eigenvectors are unique
only up to multiplication by a value (scalar). (Rencher-Chriszensen (2012),
page 42) The eigenvalues of a positive semidefinite matrix M are positive or
zero values, where the number of positive eigenvalues is equal to the rank of
the matrix M. (Rencher-Christensen (2012), page 44) The eigenvectors of
a symmetric matrix are mutually orthogonal. (Rencher-Christensen (2012),
page 44)

According to the spectral decomposition theorem for each symmetric ma-
trix M an orthonormal basis containing the eigenvectors of matrix M exists
so that in this basis M is diagonal:

D=B"MB (1.6)

where D is a diagonal matrix and the diagonal values are the eigenval-
ues of M (Medvegyev (2002), page 454). In case of this orthonormal basis
BT = B~! which means that the transpose matrix and the inverse matrix
are identical. (Medvegyev (2002), page 454) According to the spectral de-
composition theorem, the symmetric matrix M can be expressed in terms of
its eigenvalues and eigenvectors (Rencher-Christensen (2012), page 44):

M = BDB" (1.7)

Assume that the (real) matrix X has n rows and p columns and the rank
of matrix X is equal to k. In this case the singular value decomposition of
matrix X can be expressed as follows (Rencher-Christensen (2012), page 45):

X =UDV" (1.8)

where matrix U has n rows and k columns, the diagonal matrix D has
k rows and k columns and matrix V' has p rows and k columns. In this
case the diagonal elements of the (non-singular) diagonal matrix D are the
positive square roots of the nonzero eigenvalues of X7 X or of XX?. The
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diagonal elements of matrix D are called the singular values of matrix X.
The columns of matrix V' are the normalized eigenvectors of X7 X and the
columns of matrix U are the normalized eigenvectors of X X*. (Rencher-
Christensen (2012), page 45)

A positive semidefinite matrix M can be expressed also as follows ( Rencher-
Christensen (2012), page 38):

M =ATA (1.9)

where A is a nonsingular upper triangular matrix that can be calcu-
lated for example with Cholesky decomposition. Calculation details about
Cholesky decomposition can be found for example in Rencher-Christensen
(2012) (on pages 38-39).

1.2 Probability theory

Data analysis is usually based on (randomly selected) statistical samples.
Theoretically, statistical sampling may contribute to answer quantitative re-
search questions, since according to the Glivenko-Cantelli theorem, as the
number of independent and identically distributed sample observations in-
creases, the empirical distribution function (belonging to the sample) almost
surely converges to the theoretical (population) distribution function. (Med-
vegyev (2002), page 542). This theorem is one of the theoretical reasons why
data analysis is often related to probability theory. For instance, confidence
intervals and empirical significance levels (“p-values”) are usually calculated
with assuming (theoretically explainable) probability distributions in case of
certain variables.

The normal distribution is among the most frequently applied probability
distributions in data analysis. In the univariate case it has two parameters (u
and o, indicating the mean and the standard deviation, respectively). The
probability density function is:

flx) = Lot (1.10)

_a 2

for —oo < < 0o where —oo < 1 < 0o and ¢ > 0. (David et al. (2009),
page 465). This density function (for different standard deviations and with
the mean being equal to zero) is illustrated by Figure 1.2. The histogram on
Figure 1.2 belongs to a standard normal distribution (simulated data with a
sample size of 1000). On Figure 1.2, the blue lines indicate the theoretical
density functions belonging to the normal distributions with the standard



1.2. PROBABILITY THEORY )

deviation values 1, 1.25, 1.5, 1.75 and 2, respectively (and with a theoretical
mean which is equal to zero for each blue line on Figure 1.2).
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Figure 1.2: Normal distributions

Some probability distributions are related to the normal distribution. The
chi-squared distribution is the sum of n independent random variables that
are the squares of standard normally distributed random variables: if &;, &,
... &, are (independent) random variables with standard normal distribution,
then the distribution of the random variable is called y2-distribution with
n degrees of freedom. The mean of the y2-distribution with n degrees of
freedom is n, the variance is 2n. (Medvegyev (2002), pages 263-264) Figure 1.3
illustrates y2-distributions with different degrees of freedom. The histogram
on Figure 1.3 belongs to a x3 distribution (simulated data with a sample
size of 1000), and the blue lines indicate the theoretical density functions
belonging to x3, ..., x%, distributions. It can be observed on Figure 1.3,
that for higher degrees of freedom the density function of the y? distribution
becomes more symmetric.

Probability theory distinguishes univariate distributions from multivari-
ate distributions (that are defined for a vector of random variables. If for
example &1, ... &, are random variables, then the (&, ..., &,) variable
(the vector of the &, ... &, random variables) has a multivariate normal
distribution, if for each ¢; (i = 1,...,m) real numbers the distribution of the
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Figure 1.3: Chi-squared distributions

following random variable is a normal distribution (Medvegyev (2002), page
453):

S (1.11)
=1

A multivariate normal distribution has a mean vector (instead of only one
number as the mean of the distribution) and a covariance matrix (instead of
one number as the variance of the distribution). The covariance matrix of a
multivariate normal distribution is a positive semidefinite matrix (Medvegyev
(2002), page 453).

Assume in the following that the covariance matrix of a multivariate
normal distribution is denoted by C and also assume that matrix C' has m
rows and m columns. In that case if the rank of C is r, then matrix A
(that has m rows and r columns) exists so that C = AAT. This result is
a consequense of the spectral decomposition theorem. (Medvegyev (2002),
page 454)

According to the spectral decomposition theorem for each symmetric ma-
trix M an orthonormal basis containing the eigenvectors of matrix M exists
so that in this basis M is diagonal:
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(c) p=-0.9

Figure 1.4: Multivariate normal distributions

D=B"MB (1.12)

where D is a diagonal matrix and the diagonal values are the eigenvalues
of M (Medvegyev (2002), page 454). It is worth mentioning that in case of
this orthonormal basis BT = B!, which means that the transposed matrix
and the inverse matrix are identical. (Medvegyev (2002), page 454)

In case of a multivariate normal distribution the covariance matrix con-
tains information about the independence of the univariate random variables.
However it is worth emphasizing that the covariance (and thus correlation
coefficient) can not automatically be applied to test whether two random
variables are independent: uncorrelated random variables can only then be
considered as independent if the joint distribution of the variables is a mul-
tivariate normal distribution. (Medvegyev (2002), page 457)

Figure 1.4 illustrates density functions of multivariate normal distribu-
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(c) p=-0.9

Figure 1.5: Effect of correlation

tions with different theoretical correlations coefficient (indicated by p). It
can be observed on Figure 1.4 that as the absolute value of the theoreti-
cal correlation coefficient increases, the area on the density function graph,
where the density function value is not close to zero, becomes smaller. The
same phenomenon can be observed on Figure 1.5, which shows simulated
data on scatter plots that belong to the cases p = 0.8, p = 0 and p = —0.9,
respectively (with the assumption that the univariate distributions belonging
to the simulations are normal distributions). The effect of a change of sign
belonging to the theoretical correlation can also be observed on Figure 1.4
and Figure 1.5.



2 Cluster analysis

Cluster models are usually used to find groups (clusters) of similar records
based on the variables in the analysis, where the similarity between members
of the same group is high and the similarity between members of different
groups is low. With cluster analysis it may be possible to identify relatively
homogeneous groups (“clusters”) of observations. There are several cluster
analysis methods, in this chapter selected features of hierarchical, k-means
and two-step clustering are introduced.

2.1 Theoretical background

Hierarchical, k-means and two-step cluster analysis apply different algorithms
for creating clusters. The hierarchical cluster analysis procedure is usually
limited to smaller data files (for example in case of thousands of objects the
application of this analysis is usually related to significant computational
cost). The k-means cluster analysis procedure and two-step clustering can
be considered as more suitable to analyze large data files.

Theoretically, in case of hierarchical cluster analysis the aggregation from
individual points to the most high-level cluster (agglomerative approach,
bottom-up process) or the division from a top cluster to atomic data objects
(divisive hierarchical clustering, top-down approach) can also be solved from
a computational point of view. (Bouguettaya et al. (2015)) In the following
selected features of the agglomerative hierarchical clustering are introduced.
As opposed to hierarchical clustering, k-means cluster analysis is related to a
partitional clustering algorithm, which repeatedly assigns each object to its
closest cluster center and calculates the coordinates of new cluster centers
accordingly, until a predefined criterion is met. (Bouguettaya et al. (2015))
In case of two-step clustering procedure it may be possible to pre-cluster
the observations into many small subclusters in the first step and group the
subclusters into final clusters in the second step. (Steiner-Hudec (2007))

One of the differences between hierarchical and k-means clustering is that
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as long as all the variables are of the same type, the hierarchical cluster
analysis procedure can analyze both “scale” or “categorical” (for example
also binary) variables, but the k-means cluster analysis procedure is basically
limited to “scale” variables. In case of two-step clustering it may be possible
that “scale” and “categorical” variables can be combined. In cluster analysis,
usually the standardization of “scale” variables should be considered. Cluster
analysis is usually applied for grouping cases, but clustering of variables
(rather than cases) is also possible (in case of hierarchical cluster analysis).
(George—Mallery (2007), page 262)

The algorithm used in (agglomerative) hierarchical cluster analysis starts
by assuming that each case (or variable) can be considered as a separate
cluster, then the algorithm combines clusters until only one cluster is left. If
the number of cases is n, then the number of steps in the analysis is n — 1
(it means that after n — 1 steps all cases are in one cluster). The distance
or similarity measures used in the hierarchical cluster analysis should be
appropriate for the variables in the analysis. In case of “scale” variables (and
assuming that the value of the jth variable in case of the ¢th observation is
indicated by x;;), for example the following distance or similarity measures
can be used in the analysis (Kovdcs (2011), page 45):

Euclidean distance: /> (x;; — zx;)?

J

squared Euclidean distance: Y (z;; — xx;)?
J

2

Chebychev method for the calculation of distance: max|x;; — xy;
j

City-block (Manhattan): Y |@;; — xx]?
J

- ,customized”: (3 |z — xkj|p)%

J

- ete.

The cluster methods in a hierarchical cluster analysis (methods for ag-
glomeration in n — 1 steps) can also be chosen, available alternatives are for
example (Kovdces (2011), pages 47-48):

- nearest neighbor method (single linkage): the distance between two
clusters is equal to the smallest distance between any two members in
the two clusters
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- furthest neighbor method (complete linkage): the distance between two
clusters is equal to the largest distance between any two members in
the two clusters

- Ward’s method: clusters are created in such a way to keep the within-
cluster ,yariability” as small as possible

- within-groups linkage
- between-groups linkage
- centroid clustering

- median clustering.

One of the most important graphical outputs of a hierarchical cluster
analysis is the dendrogram that displays distance levels at which objects and
clusters have been combined.

The k-means cluster analysis is a non-hierarchical cluster analysis method
that attempts to identify relatively homogeneous groups of cases in case of a
specified number of clusters (this number of clusters is indicated by k). The
distances in this analysis are computed based on Euclidean distance. The k-
means cluster analysis applies iteration when cases are assigned to clusters.
[teration in this analysis starts with the selection of initial cluster centers
(number of cluster centers is equal to k). Iteration stops when a complete
iteration does not move any of the cluster centers by a distance of more than
a given value. (Kovdcs (2014), page 61)

Some important outputs of the k-means cluster analysis:

- final cluster centers
- distances between cluster centers
- ANOVA-table (the F tests are only descriptive in this table)

- number of cases in clusters.

The maximum number of clusters is sometimes calculated as \/g (where
n indicates the number of observations in the cluster analysis). (Kovdcs
(2014), page 62) There are several methods how to choose the number of
clusters in a cluster analysis. For example in addition to the studying of the
dendrogram (if it is possible) the “cluster elbow method” can also provide
information about the “optimal” number of clusters (Kovdcs (2014), page
62) The measurement of silhouette can also contribute to the selection of
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an ,appropriate” number of clusters (Rousseeuw (1987)). For each object it
is possible to define values (for example for the ith observation s(i)) with
an absolute value smaller or equal to one (in case of s(i) the minimum can
be minus one and the maximum can be one), so that a higher s(i) value
indicates a “better” clustering result. The “silhouette” of a cluster can be
defined as a plot of s(i) values (ranked in decreasing order). The average
of the s(7) values can be calculated and that number of cluster could be
considered as “appropriate”, for which the average of the s(i) values is the
largest. (Rousseeuw (1987))

2.2 Cluster analysis examples

In the following selected information society indicators (belonging to Eu-
ropean Union member countries, for the year 2015) are analyzed: data is
downloadable from the homepage of Eurostat! and it is also presented in the
Appendix. In the following cluster analysis examples are presented with the
application of the following three variables:

- “ord™ individuals using the internet for ordering goods or services

- “ord _EU”: individuals using the internet for ordering goods or services
from other EU countries

- “enterprise ord™ enterprises having received orders online.

Question 2.1. Conduct hierarchical cluster analyis (with squared Euclidean
distance and Ward’s method). Do Spain and Luzembourg belong to the same
cluster, if the number of clusters is equal to 27

Solution of the question.

In case of cluster analysis “scale” variables are usually standardized. Stan-
dardization of a variable can be considered as a (relatively) straightforward
procedure: the average value is subtracted from the value (for each case sep-
arately) and then this difference is divided by the standard deviation. As
a result of this calculation, the mean of a standardized variable is equal to
zero and the standard deviation is equal to one. Standardized variables can

!Data source: homepage of Eurostat (http://ec.europa.eu/eurostat/web/information-
society /data/main-tables)
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be created in SPSS by performing the following sequence (beginning with
selecting “Analyze” from the main menu):

Analyze — Descriptive Statistics = Descriptives...

In this example, in the appearing dialog box the variables “ord”, “ord EU”

R

and “enterprise ord” should be selected as “Variable(s):”, and the option
“Save standardized values as variables” should also be selected. After clicking
“OK” the standardized variables are created.

Dendrogram using Ward Linkage
Rescaled Distance Cluster Combine

10 15 20 25
1 I 1 1

)

U:m

ERE I

Ly &

[ 1 LI ITT ] L1 [ T 1]
-

Slovenia 24
Croatia 1"

Portugal 22

CzechRepublic 3|

Romania 23
Cyprus 13|
Latvia 14]

@
@
@

taly 12)

Hungary 17]

Poland '
-

Sweden 27|

Il
g

2
o

United Kingdom 28|
Matta 18]

| LT LI

Finland 26
France 10|
1

Estonia [

Slovakia 25—

Luxembourg 1

Figure 2.1: Dendrogram with Ward linkage

To conduct a hierarchical cluster analysis in SPSS perform the following
sequence (beginning with selecting “Analyze” from the main menu):

’ Analyze — Classify — Hierarchical Cluster... ‘

As a next step, in the appearing dialog box select the three standardized
variables as “Variable(s):”, and in case of “Method...” button select “Ward’s
method” as “Cluster Method:” and “Squared Euclidean distance” as “Mea-
sure”. The dendrogram is displayed as an output, if the “Dendrogram” option
is selected in case of “Plots...” button.
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The dendrogram is shown by Figure 2.1. It can be observed, that if the
number of clusters is equal to 2, then the number of countries in both clusters
is equal to 14, and it can also be observed that Spain and Luxembourg do
not belong to the same cluster.

Question 2.2. Conduct hierarchical cluster analyis (with Fuclidean distance
and nearest neighbor method). How many countries are in the clusters, if the
number of clusters is equal to 27

Solution of the question.

Dendrogram using Single Linkage
Rescaled Distance Cluster Combine
10 15 20 25
1 1 L 1

o

Slovenia 244
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Lithuania 15
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It

Hetherlands 19

Matta 18
e o I'i
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Figure 2.2: Dendrogram with single linkage

In case of the dialog box (belonging to hierarchical cluster analysis in
SPSS) similar options can be selected as for Question 2.1, the only difference
is in case of the “Method...” button: to solve Question 2.2 “Nearest neighbor”
should be selected as “Cluster method”, and “Euclidean distance” should be
selected as “Measure”.

Figure 2.2 shows the dendrogram (belonging to nearest neighbor method
and Euclidean distance). It can be observed on Figure 2.2 that if the number
of clusters is equal to 2, then in one of the clusters there is only one country
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(Luxembourg), thus (since the number of countries in the analysis is 28), the
number of countries in the clusters are 27 and 1, respectively.

Question 2.3. Conduct hierarchical cluster analyis (with Fuclidean distance
and nearest neighbor method). Which two countries belong to the first cluster
(in the process of agglomeration in hierarchical cluster analysis) that has at
least two elements?

Solution of the question.

Agglomeration Schedule

Cluster Combined Stage Cluster First Appears
Stage Cluster 1 Cluster 2 | Coefficients Cluster 1 Cluster 2 Next Stage

9 24 218 10
" 15 ,300 5
10 18 334 12

8 12 341 8
" 22 376 10
18 20 380 17
17 21 605 13

3 508 a
23 569 18
" 593 15
25 612 12
10 628 14
17 629 16
28 G665 15

9 714 20
14 749 19
26 786 26
27 796 0 21
1 809 18 20

(836 149 22

843 18 23

911 20 23

953 22 24
1,067 1) 25
1,081 24 26
1,109 28 27
2,248 26 0
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Table 2.1: Agglomeration schedule in hierarchical cluster analysis

In this case the same options should be selected in the dialog box (that
belongs to hierarchical cluster analysis in SPSS) as in case of Question 2.2.
One of the outputs is the “Agglomeration schedule” that summarizes infor-
mation about the process of agglomeration in hierarchical cluster analysis.
Table 2.1 shows this “Agglomeration schedule”. It is worth noting that this
“Agglomeration schedule” contains information about 27 steps in the process
of agglomeration (since the number of cases in the analysis is equal to 28).
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In the first row of this table it can be observed that the countries indicated
by “9” and “24” are in the first cluster that has two elements (before the
first step in the agglomeration process each case can be considered to be a
cluster that contains one element). Thus, in this example Spain (the country
indicated by “9”) and Slovenia (the country that is indicated by “24” in this
case) belong to the first cluster that has at least two elements.

Question 2.4. Conduct k-means cluster analyis with k=2. Which variables
should be omitted from the analysis?

Solution of the question.

To conduct a k-means cluster analysis in SPSS perform the following
sequence (beginning with selecting “Analyze” from the main menu):

’ Analyze — Classify = K-Means Cluster... ‘

As a next step, in the appearing dialog box select the three standardized
variables as “Variables:”. As “Number of Clusters:” 2 should be written (it is
also the default value) and in case of the “Options...” button select “ANOVA
table”.

Table 2.2 shows the ANOVA table that is one of the outputs of the k-
means cluster analysis. In the last column of this ANOVA table all values
can be considered as relatively small (smaller than 0.05, but in this case
these values can not be interpreted exactly in the same way as in case of a
“classical” hypothesis testing, since the results of the presented F tests should
only be applied for descriptive purposes). The conclusion is that no variables
should be omitted from the analysis in this example.

ANOVA
Cluster Errar
Mean Square df Mean Square df F Sig.
Zscore(ord) 18,903 1 273 26 72,918 oo
Zscore(ord_EU) 13,132 1 533 26 24,622 000
Zscore(enterprise_ord) 6,141 1 802 26 7,655 010

The F tests should be used only for descriptive purposes hecause the clusters have heen chosen to
maximize the differences among cases in different clusters. The ohserved significance levels are not
corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are
equal.

Table 2.2: ANOVA in k-means cluster analysis
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Question 2.5. Which can be considered as the optimal number of clusters
in k-means cluster analysis according to the “cluster elbow” method?

Solution of the question.

In the following, “cluster elbow” calculations are introduced based on
Kovdcs (2014) (page 62). Since the solution of Question 2.4 indicates that
none of the variables should be omitted from the analysis, these three (stan-
dardized) variables are applied in k-means cluster analyses (so that the clus-
ter membership variables are saved). The (standardized) variables and the
cluster membership variables are applied in one-way ANOVA (the results for
k = 2 are shown by Table 2.3).

To conduct one-way ANOVA in SPSS perform the following sequence
(beginning with selecting “Analyze” from the main menu):

’ Analyze = Compare Means = One-Way ANOVA... ‘

As a next step, in the appearing dialog box select the three standardized
variables in case of the “Dependent List:” and the saved cluster membership
variable as “Factor”.

The “cluster elbow” graph (demonstrated by Figure 2.3) plots certain
ratios against k values, for example the ratio (plotted on the “cluster elbow”

graph) for k£ = 2 can be calculated as follows (based on the values in Table
2.3):

19.903 + 13.132 + 6.141 _ 39.176
27 + 27 + 27 81

—0.48 (2.1)

ANOVA

Sum of
Squares df Mean Square F Sig.

Zscore(ord) Eetween Groups 19,903 1 19,903 72918 000
Within Groups 7,087 26 273
Total 27,000 27
Zscore(ord_ELN) Between Groups 13,132 1 13,132 24,622 000
Within Groups 13,868 26 533
Total 27,000 27
Zscore(enterprise_ord)  Between Groups 6,141 1 6,141 7,685 010
Within Groups 20,859 26 80z
Total 27,000 27

Table 2.3: ANOVA with cluster membership variable
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Figure 2.3 shows the “cluster elbow” graph. According to Kovdes (2014)
(page 62) the “optimal” number of cluster corresponds to that k value, where
(on the graph) the slope of the graph becomes smaller. In this example it
can not be considered as obvious which k corresponds to this requirement.
Both £ = 2 and k£ = 3 could be chosen (k = 4 should not be chosen, since

,/% < 4), thus it could depend on the other features of the analysis, which

k is considered as “optimal” (for example the number of cases in the clusters
could be compared for the solutions where k = 2 or k = 3).

08
0,7 _—
06 /
05 o
0,4
03
02
01

0 1 2 3 4 5 6

value of k

Figure 2.3: Cluster elbow method calculation results

Question 2.6. Conduct k-means cluster analysis with k=2. How can the
result about the final cluster centers be interpreted?

Solution of the question.

In this case the same options should be selected in the dialog box (that
belongs to hierarchical cluster analysis in SPSS) as in case of Question 2.4.

Table 2.4 contains information about the final cluster centers (in case of
k = 2). Since the analysis has been carried out with standardized variables
(when the average value of each variable is equal to zero), thus in Table 2.4
positive numbers can be interpreted as “above average” values (and negative
numbers refer to “below average” values). For example in case of Cluster 1
all values are above average, and thus the “name” of this cluster (if a “name”
should be given to the cluster) should refer to the names of the variables: in
this example the “name” Cluster 1 should somehow express that the use of
internet for “online ordering” is more widespread in the countries that belong
to this cluster (compared to the countries belonging to the other cluster).
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Final Cluster Centers

Cluster
1 2
Zscoreford) 0564 -, 78489
Zscore{ord_EL) 73564 - B3756
Zscoreienterprise_ord) 50307 - 43599

Table 2.4: Final cluster centers in k-means cluster analysis

Question 2.7. Which could be considered as an “appropriate” number of
clusters in two-step cluster analysis?

Solution of the question.

Model Summary

Algorithm TwoStep

Inputs 3

Clusters 2

Cluster Quality

Poor Fair Good

T T T
1.0 05 00 05 10
Silhouette measure of cohesion and separation

Figure 2.4: Results of two-step clustering

One of the advantages of two-step clustering is that it makes the combi-
nation of “scale” and “categorical” variables possible (“scale” and “categorical”
variables can be applied simultaneously in a two-step cluster analysis). An
other advantage of two-step cluster analysis is that it can “recommend” an
“ideal” number of clusters. (Pusztai (2007), pages 325-326) To conduct a
two-step cluster analysis in SPSS perform the following sequence (beginning



20 CHAPTER 2. CLUSTER ANALYSIS

with selecting “Analyze” from the main menu):

Analyze — Classify = TwoStep Cluster... ‘

As a next step, in the appearing dialog box select the three (standardized)
variables as “Continuous Variables:” and then click “OK”.

Figure 2.4 shows some results of the two-step cluster analysis, and ac-
cording to these results 2 can be considered as an “appropriate” number of
clusters. A silhouette measure is also calculated and Figure 2.4 shows that
this silhouette measure is higher than 0.5.



3 Factor analysis

As a dimension reduction method, factor analysis is widely applied in econo-
metric model building. (McNeil et al. (2005), page 103) Factor analysis
refers to a set of multivariate statistical methods aimed at exploring rela-
tionships between variables. The methods applied in factor analysis can be
grouped into two categories: exploratory factor analysis (aimed at creat-
ing new factors) and confirmatory factor analysis (applicable for testing an
existing model). (Sajtos-Mitev (2007), pages 245-247) In this chapter only
selected features of exploratory factor analysis are discussed.

3.1 Theoretical background

Factor analysis attempts to identify underlying variables (factors) that ex-
plain most of the variance of variables (X;, j =1,...,p). The factor analysis
model assumes that variables are determined by common factors and unique
factors (so that all unique factors are uncorrelated with each other and with
the common factors). The factor analysis model can be described as follows
(Kovdes (2011), page 95):

X=FL"+E (3.1)

where matrix X has n rows and p columns, matrix F' has n rows and k
columns (where the number of common factors is indicated by k& < p), matrix
L contains the factor loadings and matrix E denotes the “errors”. (Kowvdcs
(2011), page 95) It belongs to the assumptions of the factor analysis model
that (Kovdcs (2011), page 95):

- EE ZF = I, where I denotes the indentity matrix

-FTE=FE"F=0
- EZ—E is the covariance matrix of the ,errors” and it is assumed that this
matrix is diagonal.

21
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An important equation in factor analysis is related to the reproduction
of the correlation matrix (Kovdes (2011), page 95):

XTX FLT + EY'(FLT + E ETE
n n n

R (3.2)

In case of factor analysis (if # is known) usually the eigenvalue-eigenvector
decomposition of the reduced correlation matrix (LL”) is calculated. In prin-
cipal component analysis (that is one of the methods for factor extraction in
factor analysis) the variance values of the “errors” however usually have to be
estimated. In a factor analysis it is possible that the eigenvalues of matrix
LL" are negative values.

Correlation coefficients are important in the interpretation of factor anal-
ysis results:

- a (simple) linear correlation coefficient describes the linear relationship
between two variables (if the relationship is not linear, this correlation
coefficient is not an appropriate statistic for the measurement of the
strength of the relationship of variables).

- a partial correlation coefficient describes the linear relationship between
two variables while controlling for the effects of one or more additional
variables.

Correlation coefficients are used for example in the calculation of the
KMO (Kaiser-Meyer-Olkin) measure of sampling adequacy as follows (Kovdcs
(2011), page 95):

P
> 2T
i=1 j#i

YR Y

i=1 j#i i=1 j#i

(3.3)

where r;; indicates the (Pearson) correlation coeflicients (in case of the
variables in an analysis) and ¢;; denotes the partial correlation values. The
KMO value shows whether the partial correlations among variables (X
j = 1,...,p) are small “enough”, because relatively large partial correla-
tion coefficients are not advantageous in case of factor analysis. For example
if the KMO value is smaller than 0.5, then the data should not be analyzed
with factor analysis (George-Mallery (2007), page 256) If the KMO value is
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above 0.9, then sample data can be considered as excellent (from the point
of view of applicability in case of factor analysis). (Kovdcs (2014), page 156)

The Bartlett’s test of sphericity also can be used to assess adequacy of
data for factor analysis. Bartlett’s test of sphericity tests whether the corre-
lation matrix is an identity matrix (in that case the factor model is inappro-
priate). (Kovdcs (2014), page 157)

Data about partial correlation coefficients can also be found in the anti-
image correlation matrix. The off-diagonal elements of the anti-image cor-
relation matrix are the negatives of the partial correlation coefficients (in a
good factor model, the off-diagonal elements should be small), and on the
diagonal of the anti-image correlation matrix the measure of sampling ade-
quacy for a variable is displayed. (Kovdcs (2014), page 156)

There are numerous methods for factor extraction in a factor analysis,
for example (Kovdcs (2011), pages 106-107):

- Principal Component Analysis: uncorrelated linear combinations of the
variables in the analysis are calculated

- Unweighted Least-Squares Method: minimizes the sum of the squared
differences between the observed and reproduced correlation matrices
(when the diagonals are ignored)

- Principal Axis Factoring: extracts factors from the correlation matrix
(iterations continue until the changes in the communalities satisfy a
given convergence criterion)

- Maximum Likelihood method: it can be applied if the variables in the
analysis follow a multivariate normal distribution

- etc.

Exploratory factor analysis methods can be grouped into two categories:
common factor analysis and principal component analysis. (Sajtos-Mitev
(2007), page 249) In the following principal component analysis is discussed.

Assume that the (standardized) variables in the analysis are denoted by
Xi,...,X,, where p is the number of variables in the analysis. The matrix
where the columns correspond to the Xi,..., X, variables is denoted by
X in the following. In the principal component analysis the variables Y;

(1 = 1,...,p) should be calculated as linear combinations of the variables
Xl, Ce ,Xpi

Y = XA (3.4)
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It means that for example Y; is calculated as follows:

Y = Xa (3.5)

where (according to the assumptions) ala; = 1 (the sum of squares of

coefficients is equal to 1). (Kovdcs(2014), page 150)

The correlation matrix of X; (j = 1,...,p) variables is denoted by R.
In case of standardized X; (j = 1,...,p) variables the variance of the first
component is (as described for example in Kovdcs (2011), pages 90-93):

Var(Yy) = al Ra; = \ (3.6)

This result means that the variance of the first component depends also on
the values in vector a. The variance of the first component has its maximum
value if (by assuming that ala; = 1):

Ra1 == /\1@1 (37)

It means that the maximum value of Var(Y;) = af Ra; = A; can be
calculated based on the eigenvalue-eigenvector decomposition of the matrix
R. In this eigenvalue-eigenvector decomposition the \; (i = 1,...,p) values
are the eigenvalues and the a; (i = 1,...,p) vectors are the eigenvectors. In
case of the eigenvalue-eigenvector decomposition of the correlation matrix
R the sum of eigenvalues is equal to p (the number of X, variables). It is
worth emphasizing that the variance of the component is the eigenvalue: for
example al Ra; = A;. (Kovdcs (2014), pages 150-151)

The condition ala; = 1 means that the length of a; (i = 1,...,p) eigen-
vectors is equal to 1. Eigenvectors with length not equal to 1 also can be
calculated:

¢ = aiv/ N (3.8)

The elements of the vectors ¢; can be interpreted as correlation coefficients
between the j-th variable and the i-th component. (Kovdcs (2011), page
93) In the following assume that a matrix is created so that the columns
correspond to the ¢; vectors (assume that this matrix is denoted by C).
Matrix C' is not necessarily a symmetric matrix. The correlation matrix (R)
can be “reproduced” with the application of matrix C.

Matrix C' can be called “component matrix” and it is possible that in a
calculation output the component matrix shows only those components that
have been extracted in the analysis. Based on the component matrix, the
eigenvalues and communality values can also be calculated. The communal-
ity is that part of the variance of a variable X; (j = 1,...,p) that is explained
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by the (extracted) components. (Kovdcs (2014), page 157) If in a principal
component analysis all components are extracted, then the communality val-
ues are equal to one. However, in other factor analysis methods the maximum
value of communality can be smaller than one: for example in case of a factor
analysis with Principal Axis Factoring eigenvalue-eigenvector decomposition
is related to a “reduced” correlation matrix (and not the correlation matrix)
that is calculated so that the diagonal values of the correlation matrix (that
are equal to one) are replaced by estimated communality values. Thus, in
case of a factor analysis with Principal Axis Factoring the calculated eigen-
values (that belong to the “reduced” correlation matrix) theoretically may be
negative values. (Kovdcs (2014), pages 165-167)

As a result of principal component analysis, in some cases “names” can
be given to the components (based on the component matrix). Sometimes
rotation of the component matrix is needed in order to achieve a “simple
structure” (in absolute values high component loadings on one component
and low loadings on all other components, in an optimal case for all variables).
(George — Mallery (2007), page 248)

3.2 Factor analysis examples

In the following (similar to Chapter 2) selected information society indicators
(belonging to European Union member countries, for the year 2015) are
analyzed: data is downloadable from the homepage of Eurostat! and it is
also presented in the Appendix. Factor analysis examples are presented with
the application of the following five variables:

“ord”: individuals using the internet for ordering goods or services

- “ord _EU” individuals using the internet for ordering goods or services
from other EU countries

- “reg_int”: individuals regularly using the internet
- “never int”: individuals never having used the internet

- “enterprise ord™ enterprises having received orders online

Question 3.1. Conduct principal component analysis with the five variables
and calculate (and interpret) the KMO value.

Data source: homepage of Eurostat (http://ec.europa.eu/eurostat/web /information-
society /data/main-tables)
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Solution of the question.

To conduct principal component analysis in SPSS perform the following
sequence (beginning with selecting “Analyze” from the main menu):

’ Analyze — Dimension Reduction — Factor... ‘

As a next step, in the appearing dialog box select the variables “ord”; “ord EU”,
“reg_int”, “never int” and “enterprise ord” as “Variables:”, select the “De-
scriptives...” button, and then select the “KMO and Bartlett’s test of spheric-
ity” option. Table 3.1 shows the calculation results: the Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy is equal to 0.779.

KMO and Bartlett's Test
Kaiser-Meyer-Qlkin Measure of Sampling Adequacy. 779
Bartlett's Test of Approx. Chi-Square 170,568
Sphericity df 10
Sig. ,000

Table 3.1: KMO measure of sampling adequacy

This result can be interpreted so that data is suitable for principal com-
ponent analysis, since the KMO value is higher than 0.5. More precisely, the
suitability of data for principal component analysis can be assessed as “aver-
age”, since KMO measure is between 0.7 and 0.8. According to Kovdes (2014)
(pages 155-156) the suitability of data for principal component analysis can
be assessed as follows:

Table 3.2: Assessment of data suitability in principal component analyis

KMO value data suitability
smaller than 0.5 data not suitable
between 0.5 and 0.7 weak
between 0.7 and 0.8 average
between 0.8 and 0.9 good

higher than 0.9 excellent
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Question 3.2. Conduct principal component analysis with the five variables
and calculate (and interpret) the anti-image correlation matriz.

Solution of the question.
In this case the solution of Question 3.1 can be applied with the difference

that in case of the “Descriptives...” button the “Anti-image” option should
also be selected. Table 3.3 shows the anti-image correlation matrix.

Anti-image Matrices

enterprise_or
ord ord_EU reg_int never_int d

Anti-image Covariance  ord 082 oo -013 012 - 028
ord_EU 001 ,383 -,053 -042 13

reg_int -013 -,053 024 022 -010

never_int 012 -042 022 028 -002

enterprise_ord -028 AN -010 -,002 714

Anti-image Correlation  ord a40° 0oz -, 286 2449 -115
ord_EU .0a7 7208 -643 -,391 248

reg_int -,286 -543 7087 825 -,080

never_int 249 -39 825 7367 -013

enterprise_ord - 115 248 -,080 -013 Bag*

a. Measures of Sampling Adequacy(MSA)

Table 3.3: Anti-image correlation matrix

The elements in the main diagonal of the anti-image correlation matrix
correspond to the “individual” KMO values (calculated for each variable sep-
arately). The “individual” KMO for the ith variable can be calculated (based
on the r;; Pearson correlation coeffients and the g;; partial correlation coef-
ficients) as follows (Kovdcs (2014), page 156):

>y
i
Srh Y

J# J#i

(3.9)

If a KMO value in the main diagonal of the anti-image correlation ma-
trix is smaller than 0.5, then the given variable should be omitted from the
analysis (Kovdcs (2014), page 156). In this example none of the variables
should be omitted from the analysis as a consequence of low KMO values.
The off-diagonal elements of the anti-image correlation matrix correspond to
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the negatives of the partial correlations. In a good factor model the partial
correlations should be close to zero. (Kovdes (2014), page 156)

Question 3.3. Assume that principal component analysis is conducted with
the five variables. How many components are extracted?

Solution of the question.

In SPSS, the same options should be selected as in case of the solution
of Question 3.1. Tabel 3.4 contains information about the extracted compo-
nents: in this case only one component is extracted.

The default option in SPSS is to extract those components for which
the calculated eigenvalue (that belongs to the component) is at least one.
(Kovdcs (2014), page 157) It may be easier to understand this default option,
if it is emphasized that in this principal component analysis the eigenvalue-
eigenvector decomposition of the correlation matrix is analyzed. The corre-
lation matrix belonging to the unstandardized and standardized variables is
the same. The eigenvalues of the correlation matrix can be interpreted as
variance values (belonging to the components), and the variance of a stan-
dardized variable is one. Thus, the default option for extracting components
can be interpreted so that only those components are extracted, for which the
calculated variance (eigenvalue) is higher (or maybe equal) to the variance of
a standardized variable. In this case (with the extraction of one component)

3992 — 73.832% of total variance is explained.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings
Component Total % of Variance | Cumulative % Total % ofVariance | Cumulative %
1 3,682 73,832 73,832 3,682 73832 731832
2 \BEB 17,3149 91,151
3 372 7,448 98,5599
4 056 1,116 98,7145
5 014 285 100,000

Extraction Method: Principal Component Analysis.

Table 3.4: Total variance explained (5 variables)

Question 3.4. Assume that principal component analysis is conducted in
two cases: with the five variables and without the “enterprise_ord” variable
(with four variables). Compare the communality values in these two cases!
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Communalities Communalities
Initial Extraction Initial Extraction

ord 1,000 831 ard 1.000 g728
DI'd_FU 1,000 JG46 ord_EU 1,000 608
reg_int 1,000 66 req int 1000 973
never_int 1,000 ,941 e ) ; ;
enterprise_ord 1,000 307 never__lnt qu - 840
Extraction Method: Principal Component Extraction Method: Principal
Analysis. Component Analysis.

(a) 5 variables (b) 4 variables

Table 3.5: Comparison of communalities

Solution of the question.

To solve this question, the same options should be selected (in SPSS) as
in case of the solution of Question 3.1. Table 3.5 shows the communality
values in the two cases (for the principal component analysis with 5 and 4
variables). In the first case (the principal component analysis with 5 vari-
ables) the communality value belonging to the variable “enterprise ord” is
relatively low (compared to the other communality values): the communality
value belonging to “enterprise ord” is equal to 0.307. According to Kowvdcs
(2011) (page 99) it may be considered to omit variables with a communal-
ity value of less than 0.25 from the principal component analysis. Although
the variable “enterprise ord” could remain in the analysis, Table 3.5 shows
that if the variable “enterprise ord” is omitted from the principal compo-
nent analysis, then the lowest communality value is 0.608 (belonging to the
variable “ord EU”). It is also worth mentioning that the communality values
belonging to the four variables in the second principal component analysis
changed (compared to the first principal component analysis with five vari-
ables): for example the communality value belonging to the variable “ord” is
0.931 in the first principal component analysis (with 5 variables) and 0.928
in the second principal component analysis (with 4 variables).

Question 3.5. Assume that principal component analysis is conducted in
two cases: with the five variables and without the “enterprise_ ord” variable
(with four variables). Compare the component matrices in these two cases!

Solution of the question.

In case of this question the same options should be selected (in SPSS)
as in case of the solution of Question 3.1. Table 3.6 shows the two compo-
nent matrices that contain the correlation values between the variables in
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Component Matrix® Component Matrix®
Component Component
1 1
ord 65 ord G963
ord_EL 738 ord_EL 780
reg_int 983 req_int 986
never int 970 never_int -,969
it : Extraction Method:
EMErerSR 594 Principal Component

Extraction Method: Principal Analysis.

Component Analysis. a. 1 components

a. 1 components extracted. extracted.

(a) 5 variables (b) 4 variables

Table 3.6: Component matrices

the analysis and the components. The component matrix can contribute to
interprete the components (maybe to give a “name” to a component). It can
be observed that in the principal component analysis with 5 variables the
correlation between the variable “enterprise ord” and the first (extracted)
component is relatively low (in absolute value, compared to the other values
in the component matrix). This result is associated with the results of Ques-
tion 3.4: the communality value belonging to the variable “enterprise ord”
is relatively low (compared to the other communality values in the princi-
pal component analysis with 5 variables). After omitting the variable “en-
terprise _ord” from the principal component analysis it could be easier to
interpret the extracted component. Since the variables “ord”, “ord EU” and
“reg_int” are positively and the “never int” variable is negatively correlated
with the first component (and the absolute values of correlations in the com-
ponent matrix are relatively high), the extracted component (in case of the
principal component analysis with 4 variables) may be interpreted for ex-
ample as an indicator of the state of development of information society (of
course, other interpretations may also be possible).

Question 3.6. Conduct principal component analysis with the variables “ord”,
“ord_ EU”, “reg _int” and “never int”, and calculate the reproduced correla-
tion matrix. How can the diagonal values in the reproduced correlation matrix
be interpreted?
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Solution of the question.

In this case the solution of Question 3.1 can be applied with the difference
that in case of the “Descriptives...” button the “Reproduced” option should
also be selected. Table 3.7 shows the reproduced correlation matrix. The
diagonal values of the reproduced correlation matrix are the communality
values (for example 0.928 is the communality value belonging to the variable

“Ord”).

Reproduced Correlations

ard ard_EU reg_int never_int
Reproduced Correlation ord g2g® 781 950 -,934
ord_EL 751 G0g? 763 - 756
req_int 950 769 9737 -,056
never_int -,034 - 756 - 056 9407
Residual® ord 117 004 -018
ord_EU -7 -,069 129
reg_int 004 -,069 -,025
never_int -018 128 -0258

Extraction Method: Principal Component Analysis.
a. Reproduced communalities

h. Residuals are computed hetween obhserved and reproduced correlations. There are
3 (50,0%) nonredundant residuals with absolute values greaterthan 0.05.

Table 3.7: Reproduced correlation matrix

The communality values can also be calculated based on the component
matrix, for example the communality value belonging to the variable “ord”
can be calculated in this example as 0.963% = 0.928. The reproduced corre-
lation matrix can be calculated based on the component matrix as follows:

0.963

0.780

0.986
—0.969

0928 0.751  0.950 —0.934
0.751  0.608  0.769 —0.756
0.950 0.769 0973 —0.956
—0.934 —-0.756 —0.956 0.940

(0.963 0.780 0.986 —0.969) =

(3.10)

The eigenvalues may also be calculated based on the component matrix.
In this example (with one extracted component) the first (highest) eigenvalue
can be calculated as follows:
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0.963
(0.963 0.780 0.986 —0.969) 8'522 = 3.448 (3.11)

—0.969

It is also possible to display all columns of the component matrix (not
only the column that belongs to the extracted component). In this case the
solution of Question 3.1 can be applied with the difference that in case of
the “Extraction...” button the “Fixed number of factors” option should be
selected (instead of the “Based on Eigenvalue” option), with selecting 4 as the
number of factors to extract. The resulting component matrix has 4 columns,
and the eigenvalues (belonging to the components) can be calculated based
on the component matrix as follows:

0928 0.780  0.986 —0.969
—-0.189 0.626 —0.108 —0.206
0.191  0.007 —0.086 0.108
—0.004 —-0.011 0.090 0.078

0963 —0.189 0.191 —0.004

0.780  0.626  0.007 —0.0011

0.98 —0.108 —0.086  0.090 N (3.12)
—-0.969 0.206  0.108 0.078

3.448 0 0

The result of multiplying the transpose of the component matrix with
the component matrix is a diagonal matrix, in which the diagonal values
correspond to the eigenvalues (of the correlation matrix in this example).



4 Multidimensional scaling

Multidimensional scaling is a methodology that can be applied to reduce di-
mensionality using only the information about similarities or dissimilarities
of objects (for example similarities of cases in an analysis). With multidi-
mensional scaling (MDS) it may be possible to represent objects (for example
cases in an analysis) in a low dimensional space. (Bécavin et al. (2011) Mul-
tidimensional scaling methods can be grouped into two categories: classical
(metric) scaling and non-metric scaling. (Kovdcs (2011), page 142) Classical
scaling may be applied to embed a set of objects in the simplest space pos-
sible, with the constraint that the Euclidean distance between data points
is preserved. (Bécavin et al. (2011)) Non-metric multidimensional scaling
assumes that the proximities (used to assess similarities) represent ordinal
information about distances (Balloun-Oumlil (1988)), and it aims at produc-
ing a configuration of points in a (usually Euclidean) space of low dimension,
where each point represents an object (for example a case in the analysis).
(Coz-Ferry (1993))

4.1 Theoretical background

Distance measurement has a central role in multidimensional scaling. At the
beginning of the analysis the distances between pairs of items should be mea-
sured (these distances are indicated by ¢;; in the following). These distances
can be compared to other distance values between pairs of items (indicated
by for example d;;) that can be calculated in a low-dimensional coordinate
system. The original distances d,; may be “proximity” or “similarity” values,
but the distances d;; (that can be calculated in a low-dimensional coordinate
system) are usually Euclidean distances. (Rencher-Christensen (2012), page
421)

One of the most important outputs in multidimensional scaling is a plot
that shows how the items in the analysis relate to each other. Either vari-
ables or cases can be considered as “items” in multidimensional scaling. The

33
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“level of measurement” can be “interval” or “ratio” (in metric multidimen-
sional scaling) or “ordinal” (in nonmetric multidimensional scaling). (Kovdcs
(2011), pages 141- 142)

In metric multidimensional scaling (also known as the “classical solution”)
an important element in the calculation of the results is the spectral decom-
position of a symmetric matrix (indicated by M), that can be calculated
based on the originally calculated distance matrix (where the elements of
this distance matrix are indicated by ¢;;). If this symmetric matrix M is
positive semidefinite of rank ¢, then the number of positive eigenvalues is ¢
and the number of zero eigenvalues is n — ¢. In multidimensional scaling the
preferred dimension in the analysis (indicated by k) is often smaller than g,
and in this case the first k eigenvalues and the corresponding eigenvectors
can be applied to calculate “coordinates” for the n items in the analysis so
that the “interpoint” distances (indicated by d;;, in case of k dimensions) are
approximately equal to the corresponding d;; values. If the symmetric matrix
M is not positive semidefinite, but the first £ eigenvalues are positive and
relatively large, then these eigenvalues and the corresponding eigenvectors
may sometimes be applied to calculate “coordinates” for the n items in the
analysis. (Rencher-Christensen (2012), pages 421-422) It is worth mention-
ing that it is possible that principal component analysis and classical scaling
give the same results (Bécavin et al. (2011))

Instead of metric multidimensional scaling it is worth applying nonmetric
multidimensional scaling if the original distances d;; are only “proximity” or
“similarity” values. In this case in nonmetric multidimensional scaling only
the rank order among the “similarity” or “proximity” values are preserved
by the final spatial representation. (Rencher-Christensen (2012), page 421)
In nonmetric multidimensional scaling it is assumed that the original o;;
“dissimilarity” values can be ranked in order and the goal of the analysis
is to find a low-dimensional representation of the ,points” (related to the
items in the analysis) so that the rankings of the distances d;; match exactly
the ordering of the original §;; “dissimilarity” values. (Rencher-Christensen
(2012), page 425)

Results for nonmetric multidimensional scaling can be calculated with
an iteration process. With a given k£ value and an initial configuration the
d;; “interitem” distances and the corresponding d;j values (as a result of a
monotonic regression) can be calculated. The (5;j values can be estimated by
monotonic regression with the minimization of the following scaled sum of
squared differences (Rencher-Christensen (2012), page 426):
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Yo (dij — dij)?

S? =
>icy(dig)?

(4.1)

For a given dimension (k value) the minimum value of S? is called STRESS.
In the iteration process a new configuration of points (related to the “items”
in the analysis) should be calculated so that this S? value is minimized with
respect to the given d;j values and then for this new configuration (and the
corresponding new d;; “interitem” distance values) the corresponding new 5;7
values should be calculated with monotonic regression. This iterative process
should continue until STRESS value converges to a minimum. The d;-j values
are sometimes referred to as disparities. (Rencher-Christensen (2012), page
426) The Stress value may be applied to measure the “goodness” of the fit
of the model, depending on the value of S in the following equation (Kovdcs
(2011), page 146):

Zi<j(dij - d;j>2

5= > icy(dig)?

(4.2)

If for example S < 0.05, then the solution can be evaluated as good, while
for S > 0.2 the solution can be evaluated as weak. (Kovdcs (2011), page 146)

With an individual difference model (INDSCAL) it is possible to use
more than one “dissimilarity” matrix in one multidimensional scaling analysis
(George — Mallery (2007), page 236) In an individual difference model weights
can be calculated that show the importance of each dimension to the given
subjects. (George—Mallery (2007), page 243) In an INDSCAL analysis MDS
coordinates can be calculated in a “common” space and in “individual” spaces
so that the relationship between the “common” space and the “individual”
spaces is described by the individual weights. (Kovdcs (2011), pages 155-
156)

4.2 Multidimensional scaling examples

In the following (similar to Chapter 3) five variables (selected information
society indicators belonging to European Union member countries) are ana-
lyzed: data is downloadable from the homepage of Eurostat! and it is also

Data source: homepage of Eurostat (http://ec.europa.eu/eurostat/web /information-
society /data/main-tables)
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presented in the Appendix. For ALSCAL analysis data for 2015 is analyzed,
and INDSCAL analysis is carried out with data for both 2010 and 2015.
Multidimensional scaling examples are presented with the application of the
following five variables:

“ord”: individuals using the internet for ordering goods or services

- “ord _EU”: individuals using the internet for ordering goods or services
from other EU countries

- “reg_int”: individuals regularly using the internet
- “never_int”: individuals never having used the internet

- “enterprise ord”™: enterprises having received orders online

Question 4.1. Conduct multidimensional scaling (with ALSCAL method)
with the five (standardized) variables (in case of variables, level of measure-
ment: ordinal). How can the model fit be evaluated if the number of dimen-
sions is equal to 1 or 27

Solution of the question.

To conduct multidimensional scaling in SPSS perform the following se-
quence (beginning with selecting “Analyze” from the main menu):

Analyze — Scale = Multidimensional Scaling (ALSCAL)...

As a next step, in the appearing dialog box select the variables “ord”, “ord EU”,
“reg int”, “never int” and “enterprise ord” as “Variables:”. In the dialog box
the option “Create distances from data”, and then the “Measure...” button
should be selected. In the appearing dialog box in case of “Standardize:” the
“Z scores” option should be selected. After clicking on “Continue” the pre-
vious dialog box appears, and then the “Model” button should be selected.
After clicking on the “Model” button “Ordinal” should be selected in case of
the “Level of Measurement”, and in case of “Dimensions” the minimum value
should be 1 and the maximum value should be equal to 2.

Figure 4.1 shows the Stress value if the number of dimensions is equal to
2 (and it also shows the coordinates in the two-dimensional space). Since the
Stress value is lower than 0.05, the model fit can be evaluated as “good”. In
case of the one-dimensional solution the Stress value is equal to 0.05727, thus
the model fit in case of the one-dimensional solution can not be evaluated
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For matrix
Stress = 00000 RSQ = 1,00000

Configuration derived in 2 dimensions

Stimulus Coordinates
Dimension

Stimulus Stimulus 1 2
Number Name

ord ,9132  -,0039
ord_EU ,4713 ,8908
reg_int ,9517 ,0917
never_in -2,4279 L1642
enterpri ,0917 -1,1429

wosw N

Figure 4.1: Numerical MDS results (for variables)

Derived Stimulus Configuration Derived Stimulus Configuration
Euclidean distance model Euclidean distance model
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Dimension 1

uuuuuuuuuuu
o

never_nt

k 0
Dimension 1 One Dimensional Plot

(a) 2 dimensional solution (b) 1 dimensional solution

Figure 4.2: Graphical MDS results (for variables)

as “good” (although it can also not be evaluated as “weak”; since the Stress
value is not higher than 0.2). (Kovdcs (2011), page 146)

Figure 4.2 shows the multidimensional scaling results in the two-dimensional
and one-dimensional case. Since in this example the “objects” in the anal-
ysis are the variables, thus the points on Figure 4.2 represent the variables
(theoretically, the “objects” could also be the cases in an analysis). It can
be observed on Figure 4.2 that in case of the first axis the sign belonging to
the variable “never int” differs from the sign belonging to the other variables
(the sign of the variable “never int” is negative, while the sign of the other
variables is positive). This result is similar to the results of the principal
component analysis (about the component matrix, described in Chapter 3).

Question 4.2. Conduct multidimensional scaling (with ALSCAL method)
with the five (standardized) variables (for the cases in the analysis, level of
measurement: ordinal, number of dimensions: 2). How can the model fit be
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evaluated?

Solution of the question.

For matrix

stress = ,06113 RSQ = ,98426
Configuration derived in 2 dimensions
Stimulus Coordinates
Dimension

Stimulus Stimulus 1 2

Number Name
1 VAR , 5652 ,3996
2 VAR2 -2,2957 -,3299
3 VAR3 ,0915 ,9033
4 VAR4 2,0305 L3740
5 VARS , 9959 ,8949
6 VARG ,7592 —,3894
7 VART ,7483 11,2856
8 VARS -1,5985  -,4311
9 VARY -,2185 ,1421
10 VAR10 L6111 —, 0433
13 VAR11 -, 9867 ,5892
12 VAR12 b K < -,4109
13 VAR13 -1,0849 -,3009
14 vAR14 -,4873 -,4295
15 VAR1S -, 8774 ,3987
16 VAR16 2,2658 -1,9301
17 VAR17 —-,7819 -, 0767
18 VAR1S ,2033  -,7900
19 VAR19 1,3429 ,0189
20 VAR20 ,8063 -, 6829
21 VAR21 =y 3457 -,0104
22 VAR22 -1,019¢ ,4535
23 VAR23 =2, 4357 -,0696
24 VAR24 -,5456 ,0876
25 VAR25 -,1067 -,1578
26 VAR26 1,5271 =7 4126
27 VAR27 1,5149% , 6322
28 VAR28 1,5003 ,2854

Figure 4.3: Numerical MDS results (for cases)

In this case the solution of Question 4.1 can be applied with the difference
that after selecting the option “Create distances from data” (in the dialog box
belonging to the multidimensional scaling) the “Between cases” option should
be selected. Figure 4.3 shows the Stress value (and the two-dimensional
coordinates that belong to the cases in the analysis). Since the Stress value
is not smaller than 0.05 (the Stress value is equal to 0.06113), the model
fit should not be assessed as “good”. Figure 4.4 illustrates the results of
multidimensional scaling in this case.

Question 4.3. Assume that the values belonging to the five variables in the
analysis are available for both 2010 and 2015, and the data is organised in
such a way that the variable “year” can have two values (2010 and 2015),
thus indicating the year (2010 or 2015) that belongs to a given case. Conduct
multidimensional scaling (with INDSCAL method) with the five (standard-
ized) variables (for the cases in the analysis, level of measurement: ordinal,
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Derived Stimulus Configuration Scatterplot of Linear Fit
Euclidean distance model Euclidean distance model

°
o
o

#
ﬁé’

Dimension 1 Disparities

Distances

(a) 2 dimensional plot (b) disparities and distances

Figure 4.4: Graphical MDS results (for cases)

number of dimensions: 2), and assume that the groups in the analysis cor-
respond to the two categories of the variable “year”. Which dimension (the
first or the second dimension) can be considered as more important?

Solution of the question.

The solution of this question (related to INDSCAL) is similar to the
solution of Question 4.1: the solution of Question 4.1 may be applied with
the difference that in the dialog box (belonging to multidimensional scaling)
the variable “year” should be selected in case of “Individual Matrices for:”,
and after selecting the “Model...” button “Individual differences Euclidean
distance” should be selected as “Scaling Model”. Figure 4.5 shows some of
the results related to INDSCAL. According to Kovdcs (2011) (page 158)
the importance of the first dimension can be calculated as follows (in this
example):

0.9667% + 0.92762

. = 0.8974 (4.3)

The overall importance of the dimensions in the analysis can be calculated
based on the subject weights. Figure 4.5 indicates that in this example
the first dimension can be considered as more important than the second
dimension (0.8974>0.1026).

Based on the subject weights it may also be assessed, whether the weights
belonging to a given group can be considered as “proportional” with the
average weights. The weights (belonging to the groups in the INDSCAL
analysis) may be plotted in a space (that is two-dimensional in this example).
If the weights (belonging to a given group) are proportional with the average
weights, then (when the weights can be plotted in a two-dimensional graph,
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Subject Weights

Dimension

Subject Weird- 1 2
Number ness
1 ,1434 ,9667 ,2560
2 r12185 r9276 3736
Overall importance of
each dimension: 8974 ,1026
(a) subject weights: values (b) subject weights: graph

Figure 4.5: INDSCAL results

similar to the graph on Figure 4.5) the point (belonging to a given group) is
close to the 45° line. (Kovdcs (2011), page 158)



5 Correspondence analysis

Correspondence analysis is a method that can be applied to analyze contin-
gency tables. In this chapter “simple” (,classical”) correspondence analysis
is discussed. As opposed to “multiple” correspondence analysis (which is
related to the studying of more than two categorical variables) “simple” cor-
respondence analysis can be applied to explore the relationship of variable
categories in a two-way contingency table. (Beh (2004)) Similar to princi-
pal component analysis (that decomposes total variance into components),
mathematically “simple” correspondence analysis decomposes the Pearson x?
measure of association into components. (Hajdu (2003), page 136)

5.1 Theoretical background

Correspondence analysis can be applied to graphically analyze data in a
contingency table (for example data in a cross table analysis). Rows and
columns of a contingency table are usually interpreted in a low-dimensional
(usually two-dimensional) space. Relationship of different categories can be
explored with outputs of the correspondence analysis (for example based on
the graphical results).

The frequency values in a contingency table can be converted to relative
frequency values by dividing by the total number of cases (n) in the analysis,
and in this matrix (containing relative frequency values) the row sum values
and the column sum values are sometimes referred to as row mass values
and column mass values, respectively. (Rencher-Christensen (2012), page
431) The ith row profile is defined by dividing the ith row in the contingency
table by the sum of the row values. The jth column profile is defined similarly
(by dividing the elements in the jth column in the contingency table by the
sum of the column values). (Rencher-Christensen (2012), pages 431-432)

In the correspondence analysis a “point” is plotted for each row and each
column (in a contingency table) so that the relationship of the rows (or
columns) are preserved as good as possible. (Rencher-Christensen (2012),

41
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page 430) The coordinates belonging to the rows and the columns (of a
contingency table) can be calculated based on singular value decomposition.
It is important to emphasize that the singular values are calculated based
on a matrix that is not necessarily symmetric. (Rencher-Christensen (2012),
page 435)

Assume that matrix X has n rows and p columns. In case of singular
value decomposition, matrix X can be reproduced with matrices A and B so
that if AT - A = BT . B = I (the identity matrix) and matrix D is diagonal
(Rencher-Christensen (2012), page 435), then the following equation holds:

X=A-D-BT (5.1)

The diagonal elements of matrix D are the singular values. (Rencher-
Christensen (2012), page 435) In this case the following results indicate that
the (positive) square root values of the eigenvalues of matrix X7 - X are equal
to the singular values:

X'.X=B-D-(A"-A).D-B"=B-D-D-B" (5.2)

X-XT"=A.-D-D-A" (5.3)

One of the results of the correspondence analysis is a plot in which the
coordinates belonging to the rows and columns of a contingency table are
plotted. The amount of “information” belonging to the dimensions shown by
this plot is referred to as inertia. (Rencher-Christensen (2012), page 436)

Total inertia can be calculated based on the singular values that are calcu-
lated in a correspondence analysis. If the singular values in a correspondence
analysis are indicated by Aq,..., A\, then total inertia can be calculated as
follows (Rencher-Christensen (2012), page 436):

>Nz (54)

If » denotes the number of rows and ¢ refers to the number of columns
of the contingency table in the correspondence analysis, then the maximum
number required to graphically depict the association between the row and
column responses can be calculated as follows:

k =maz(r,c) — 1 (5.5)

However, usually only the first two dimensions are applied to construct
a graph that summarizes the results of the correspondence analysis (Beh
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(2004)). Based on the singular values, the contribution of the dimensions
of the plot (that can be created in a correspondence analysis) to the total
inertia can be measured. For example the contribution of the first dimension
to the total inertia can be calculated as follows (Rencher-Christensen (2012),
page 436):

A

k
2 A
i=1

(5.6)

In “simple” correspondence analysis, the decomposition of total inertia (for
example with singular value decomposition) can be applied to identify impor-
tant sources of information that contribute to describe association between
two categorical variables. (Beh (2004))

5.2 Correspondence analysis examples

The file datal.xlsx contains (simulated) data that can be imported into SPSS.
The following questions are related to this dataset, in which there are two
categorical variables (X; and X,) that are assumed to be measured on a
nominal level of measurement.

Question 5.1. Conduct correspondence analysis with the variables X7 and
Xy and calculate column mass values (assume that columns are related to the
categories of variable X3 ).

Solution of the question.

Before conducting correspondence analysis, first the relationship of the
two categorical variables is analyzed in the following. Frequency tables for
the variables can be calculated in SPSS by performing the following sequence
(beginning with selecting “Analyze” from the main menu):

’ Analyze — Descriptive Statistics = Frequencies...

In the appearing dialog box select both variables and click “OK”. The
frequency tables for X; and X, are shown in Table 5.1 and Table 5.2, re-
spectively. In this example, the number of observations is 5000, in case of
X; the number of categories is 18 and in case of X5 the number of categories
is 3 (the categories are indicated with integer numbers). The relationship of
these two variables can be analyzed with cross table analysis. In SPSS, cross
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table analysis results can be calculated if the following sequence is performed
(beginning with selecting “Analyze” from the main menu):

Table 5.1: Frequency table for X,

X1
Cumulative
Frequency Fercent | Valid Percent Fercent
Walid 1 114 23 23 23
2 91 18 18 41
3 126 25 25 6,6
4 183 37 37 10,3
L] 287 87 87 16,0
6 312 6,2 6,2 223
I 421 8.4 8.4 30,7
8 462 9.2 92 384
9 485 97 97 49 6
10 499 10,0 10,0 59,6
11 452 9,0 9.0 (=K
12 381 T8 7.8 76,5
13 390 7.8 7.8 843
14 252 50 5,0 89,3
15 181 38 38 931
186 135 27 27 958
17 97 1.9 19 978
18 112 2,2 2.2 100,0
Total 5000 100,0 100,0

Table 5.2: Frequency table for X,

X2
Cumulative
Frequency Percent | Valid Percent Fercent
Valid 1 787 157 157 157
2 1697 339 339 497
3 2516 50,3 50,3 100,0
Total 5000 100,0 100,0

Analyze — Descriptive Statistics = Crosstabs... ‘

In the appearing dialog box for example X; can be selected as “Row(s)”
and X5 can be selected as “Column(s)”. To calculate a chi-squared test
statistic value (associated with the null hypothesis that the two categorical
variables are independent) the “Chi-square” option can be selected in the
dialog box that appears after clicking on the “Statistics...” button.

Table 5.3 shows that the chi-squared test statistic value (related to the
null hypothesis that the two categorical variables are independent) is equal
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Table 5.3: Cross table analysis results

Chi-Square Tests

Asymp. Sig.
Walue df (2-sided)
Pearson Chi-Square BE01,9747 34 ,000
Likelihood Ratio 8636255 34 .oon
el 3817479 1 000
M of Valid Cases 5000

a. 0 cells (0,0%) have expectad countless than 5. The minimum
expected countis 14,32,

to 8601.974, and the related p-value (in the last column of Table 5.3) is
smaller than 0.05, thus the null hypothesis about the independence of the
two variables in the analysis can not be accepted on a 5% significance level.

To conduct a correspondence analysis in SPSS perform the following se-
quence (beginning with selecting “Analyze” from the main menu):

’ Analyze — Dimension Reduction — Correspondence Analysis... ‘

As a next step, in the appearing dialog box select X; as “Row” variable
and X, as “Column” variable. After clicking on “Define Range...” button in
case of X7 set the category range for row variable as follows: the minimum
value should be equal to 1 and the maximum value should be equal to 18
(and then click on the “Update” button). In case of X, follow similar steps:
click on the “Define Range...” button and as caategory range for column
variable set 1 as the minimum value and 3 as the maximum value (and then
click on the “Update” button). Table 5.4 shows the column mass values that
can be calculated based on the frequency values in Tabe 5.2: in this example

for example the first column mass value can be calculated as 0.157 = %.

Table 5.4: Column mass values

Overview Column Points®

Score in Dimension Contribution
Of Pointto Inertia of Dimension | Of Dimension to Inertia of Point
2 Mass 1 2 Inertia 1 2z 1 2 Total
1 157 1,830 1,280 741 549 293 a4 EX 1,000
2 1339 425 1,254 536 064 597 110 890 1,000
3 503 -,359 - 442 444 387 110 802 198 1,000
Active Total 1,000 1,720 1,000 1,000

a. Symmetrical normalization
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Question 5.2. Calculate the singular values belonging to the correspondence
analysis with the variables X1 and Xs.

Solution of the question.

In this example the maximum number of singular values that can be
calculated is max(18,3) — 1 = 2. These two singular values can be found in
Table 5.5: the singular values are 0.96 and 0.894.

Table 5.5: Singular values and inertia

Summary

Proportion of Inertia Confidence SingularValue

Singular Standard Correlation
Dimension Value Inertia Chi Square Sig Accounted for | Cumulative Deviation 2

1 960 822 536 536 002 897
2 884 799 464 1,000 006
Total 1,720 8601,874 ,000° 1,000 1,000

a. 34 degrees of freedom

Question 5.3. Calculate total inertia belonging to the correspondence anal-
ysis with the variables X, and X.

Solution of the question.

The total inertia in this correspondence analysis is equal to 1.72 (this
value that can be found in Table 5.5). This value can be calculated based on
the singular values in the correspondence analysis as follows:

0.96% + 0.894% = 1.72 (5.7)

Total inertia in this example can also be calculated based on the test
statistic value in the cross table analysis that is discussed in Question 5.1
(Beh (2004)):

8601.974
172 .
5000 ! (58)

Question 5.4. Calculate the contribution of the first dimension to the total
wertia in the correspondence analysis that is carried out with the variables
X, and X,.



5.2. CORRESPONDENCE ANALYSIS EXAMPLES 47

Solution of the question.

In this example the contribution of the first dimension to the total inertia
can be calculated as follows (this result is also shown in Table 5.5.):

0.962
1.72

= 0.536 (5.9)

Question 5.5. Create a two-dimensional plot that graphically illustrates the
results of the correspondence analysis with the variables X1 and X5. How
can this plot be interpreted?

Solution of the question.

In “simple” correspondence analysis it may be possible to create a two-
dimensional plot on which each “point” represents rows and columns of the
contingency table in the analysis. In this example Figure 5.1 illustrates the
relationship of the categories belonging to the two (categorical) variables in
the correspondence analysis.

Row and Column Points

Symmetrical Normalization

Ox1
i3

a7

0926

Dimension 2

o
131114
&
123

Dimension 1

Figure 5.1: Two-dimensional plot of the results

On Figure 5.1, it is possible to observe a certain type of relationship
between the variables X; and X5: for example it can be observed that the
category indicated by “2” in case of variable X, is (to some extent) related
to the categories indicated by “6”, “7”, “8” and “9” in case of variable X;.






6 Logistic regression

Logistic regression (sometimes also referred to as logit analysis) is similar
to ordinary linear regression with the difference that the regressand is not a
continuous variable but a state which may or may not hold. (Cramer (2003),
page 1) Logistic regression is thus a binary response model, in which the de-
pendent (response) variable can take on the values zero and one. (Wooldridge
(2010), page 561) The logit model may be applied for classification of cases
in an analysis.

6.1 Theoretical background

In logistic regression the dependent variable may have only two values, and
one of the results is the prediction of values that represent “probability”.
Predictor variables in a logistic regression may be “categorical” or “scale”
variables as well. (George-Mallery (2007), page 322) Assume that the depen-
dent variable in a logistic regression is indicated by Y and the two categories
of Y are indicated by 0 and 1, respectively. If p denotes the probability that
Y = 1, then “probability” values can be estimated in a logistic regression
with the predictor variables Xi,..., X, as follows (Kovdcs (2011), pages
162-165):

1
p= 1 + e~ (botb1X1+..4+bpXp)

(6.1)

Based on the estimated probability values the odds can also be calculated
(Kovdces (2011), page 165):

p — by b1 X1 bp Xp 62
T et e (6.2)

An important concept in logistic regression is the natural logarithm of
the odds, this value is called “logit” (George-Mallery (2007), page 323):

49
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Figure 6.1: Estimated probability functions
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(a) probability function (b) odds function

Figure 6.2: Probability and odds functions

b

l?’Ll = bo + lel + ...+ prp (63)

In logistic regression, “logit” is a linear function of the predictor variables.
In the following assume that only one predictor variable is applied in a logistic
regression model. In this case the relationship of the predictor variables and
the estimated probability values is nonlinear, as shown on Figure 6.1 (for
different b; parameter values).

Figure 6.1 illustrates estimated probability values as a function of a pre-
dictor variable. The examples for a positive b; are calculated with the equa-
tion p = m, while the examples for a negative b; are calculated

with the equation p = m, for 1, 1.5 and 2 as b; values. On Figure
6.1 it can be observed that if the sign of b; is positive, then an increase in X;
increases the estimated probability value, while for a b; value with negative
sign an increase in X; decreases the estimated probability value. Figure 6.2
illustrates the difference between estimated probability and odds functions
(with the equation p = m, for different b; values).

Coefficients in a logistic regression may be estimated with Maximum Like-

lihood method. (Kovdcs (2011), page 163) Hajdu (2004) emphasizes that
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some advantageous features of the Maximum Likelihood method (for exam-
ple minimum variance) occur asymptotically, in case of large samples. For
small samples the application of logistic regression may be associated with
some estimation problems. (Hajdu (2004)) The “separation” of cases (if there
is a value that separates the values in the two groups) in case of at least one
of the ,predictor” variables may also be problematic, since then it is possible
that a maximum likelihood estimate does not exist. (Hajdu (2004))

The interpretation of estimated coefficient values can be based on the odds
values. For example assume that in a logistic regression only one predictor
variable is entered into the analysis and the estimated coefficient belonging
to this predictor variable is equal to b;. In this case e®* shows the value by
which odds is multiplied if X increases by one unit. (Kowvdcs (2011), page
165)

One of the results in a logistic regression is the classification table that
compares the predicted values for the dependent variable with the actual
observed data. In the prediction of group membership the estimated proba-
bility values are compared to a “cut value” (this “cutoff” may be for example
0.5. (George-Mallery (2007), page 329)

The “goodness” of model fit may be evaluated based on several measures,
for example Hosmer-Lemeshow test or R-square measures (for example Cox
and Snell R-square value or Nagelkerke R-square value) may be applied to
evaluate the “goodness” of model fit in a logistic regression analysis. (Kovdcs
(2011), pages 166-171) Goodness-of-fit tests aim at measuring whether the
predicted values are an accurate representation of the observed values (for
example omitted predictor variables or a misspecified form of a predictor
variable can result in poor predictions). (Xie et al. (2008)) In case of the
Hosmer-Lemeshow test the individual cases (observations) are ordered into
groups by their estimated probability, and in each group the expected and
actual frequency of successes is compared (the expected frequency of suc-
cesses is the sum of the estimated probabilities). (Cramer (2003), page 63)
Fliszdr (2011) points out that the result of the Hosmer-Lemeshow test may
be sensitive to the number of groups in the test: if for example the number
of categories is “too low”, then it may be easier to conclude that the estima-
tion results in logistic regression are good. Hosmer-Lemeshow test results
indicate a good model fit if the p-value (belonging to the null hypothesis
of Hosmer-Lemeshow test) is relatively high (for example higher than 0.05),
while in case of the pseudo-R? values a value close to 0.5 may be considered
as an indicator of good model fit (Paefgen et al. (2014)) !

L Paefgen et al. (2014) assessed a Cox and Snell pseudo-R? value of approximately 0.38
as an indicator of good model fit.
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The value of the area under the ROC (Receiver Operating Characteris-
tics) curve may also be applied in the evaluation of the “goodness” of logistic
regression results. (Oravecz (2007)) In the following assume a classification
problem with two classes (“positive” and “negative”). If a case is positive
and it is classified as positive, then it is counted as a “true positive”, and if
the case is negative and it is classified as positive, then the case is counted
as a “false positive”. On a (two-dimensional) ROC graph the “true positive”
rate is plotted on the vertical axis and the “false positive” rate is plotted on
the horizontal axis. (Fawcett (2005)) The probability of a true positive is
referred to as sensitivity and the probability of a true negative is referred
to as specificity. If the classification of a case in an analysis depends on a
given threshold value (for example if a case is classified as belonging to one
of the classes if a diagnostic marker value is higher than a given threshold
value), then the theoretical ROC curve can be considered as a plot of sen-
sitivity versus (1-specificity) for all possible threshold values. The definition
of an optimal threshold value (sometimes referred to as “cutoft” value) may
depend on the individual classification problem, for example profit-based per-
formance measurement can contribute to calculate an optimal cutoff value.
(Verbraken et al. (2014)

On a ROC graph the diagonal line represents a strategy of randomly
guessing a class for the cases in the analysis. (Fawcett (2005)) If the area
under the ROC curve is closer to one, then it indicates a higher diagnostic
accuracy. (Faraggi-Reiser (2002)) Assume in the following that the diagnos-
tic test results are available for two classes in an analysis, then if the two
distributions (belonging to the test results in the two classes) are assumed
to be independent normal distributions, then the area under the ROC curve
(AUC) can be calculated as follows (Faraggi-Reiser (2002)):

AUC = @(%) (6.4)

with ux and py indicating the theoretical mean values and assuming that
ox and oy indicate the standard deviations of the two distributions.

Figure 6.3 illustrates density functions and ROC curve for two classes that
are relatively similar (the diagnostic test results are assumed to be similar).
In this case the ROC curve is close to the diagonal line in the two-dimensional
graph, and the area under the ROC curve (AUC) is relatively close to 0.5
(the standard deviations of the two distributions are assumed to be equal).

Figure 6.4 illustrates a classification problem with higher diagnostic ac-
curacy. On Figure 6.4 the density functions (belonging to the diagnostic test
results in the two classes) are relatively different (the standard deviations
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Figure 6.3: Density functions and ROC curve
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Figure 6.4: Density functions and ROC curve

are assumed to be equal). The higher diagnostic accuracy is also shown by
the AUC value that is higher than in case of Figure 6.3 (and the AUC is
relatively close to one).

6.2 Logistic regression examples

In the following 6 variables are analyzed: one of the variables has two cat-
egories (indicated by 0 and 1), and the other 5 variables are measured on a
“scale” level of measurement. The five “scale” variables can be considered as
possible “explanatory” variables, while the binary variable can be considered
as dependent variable (in a logistic regression). Data belonging to the five
“scale” variables (selected information society indicators of European Union
member countries, for the year 2015) is downloadable from the homepage of
Eurostat? and it is also presented in the Appendix. The values of the binary
variable (name of the variable: “after2000”) are associated with the European
Union entry date:

2Data source: homepage of Eurostat (http://ec.europa.eu/eurostat/web/information-
society /data/main-tables)
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1 if the EU entry date is after 2000

) (6.5)
0 otherwise

“after2000” = {

The five “scale” variables in the analysis are:

- “ord” individuals using the internet for ordering goods or services

13

- “ EU™ individuals using the internet for ordering goods or services
from other EU countries

- “reg_int”: individuals regularly using the internet
- “never int”: individuals never having used the internet

- “enterprise ord™ enterprises having received orders online

Question 6.1. Conduct logistic regression with the five variables (by applying
forward Wald method). How many variables are entered into the analysis?

Solution of the question.

To conduct logistic regression in SPSS perform the following sequence
(beginning with selecting “Analyze” from the main menu):

’ Analyze — Regression — Binary Logistic...

As a next step, in the appearing dialog box select the variables “ord”,
“ord EU”, “reg_int”, “never int” and “enterprise ord” as “Covariates:” and
“after2000” as “Dependent”.

Variables in the Equation

B SE. Wald df Sig. Exp(B)
Step1®  ord -0 031 6,946 1 RG] 923
Constant 3,648 1,471 6,148 1 013 38,388

a. Variahle(s) entered on step 1 ord.

Table 6.1: Estimated coefficients
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As “Method” “Forward: Wald” should be selected. After clicking on the
“Save...” button “Probabilities” should be selected. The Hosmer-Lemeshow
test results can be calculated by selecting “Hosmer-Lemeshow goodness-of-
fit” in case of the “Options...” button.

Table 6.1 shows that (by applying the forward Wald method for variable
selection) only one step has been performed, which means that only one
variable is entered into the analysis.

Question 6.2. Conduct logistic regression with the five variables (by applying
forward Wald method). How can the estimated coefficient(s) belonging to the
“explanatory” variables be interpreted?

Solution of the question.

According to the solution of Question 6.1 only one variable is entered
with the application of the forward Wald method, and the probability values
can be estimated with the following equation:

1
p= 1 + o (3.648-0.081-“ord")
(3. .

(6.6)

The estimated coefficient of the variable “ord” can be interpreted as fol-
lows: if the value of the variable “ord” increases by 1 unit, then the odds
(that the EU entry happened after 2000) is multiplied by =908 3

Question 6.3. Conduct logistic regression with the five variables (by applying
forward Wald method). How can the model fit be evaluated?

Solution of the question.

There are several methods how the goodness of model fit can be evaluated
in a logistic regression model, for example:

- pseudo R-square values (for example Nagelkerke R-square value)
- results of Hosmer-Lemeshow test

- the area under the ROC curve

3Tt is worth mentioning that this is only a calculation example that aims at contributing
to the learning of logistic regression. In practical applications, the binary variable that is
analyzed in logistic regression is often related to an economic event (for example to default
of a loan, etc.).
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Model Summary

-2 Log Cox & 3nellR Magelkerke R
Step likelihood Square Square
1 27 &o7? 322 430

a. Estimation terminated at iteration number 5 because
parameter estimates changed by less than ,001.

Table 6.2: Pseudo R-square values
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Figure 6.5: Comparison of predicted probability values in the two classes

Figure 6.5 shows that the predicted probability values do (relatively) differ
in the two classes, which can indicate a (relatively) good model fit. Table
6.3 shows the classification table (belonging to the cut value that is equal to
0.5). According to the results in Table 6.3 75% of all cases has been correctly
classified with a cutoff value equal to 0.5 (when all cases with a predicted
probability value of higher than 0.5 has been classified as belonging to the
class indicated by “17). The results in Table 6.3 also show that 7 (= 3 + 4)
cases (countries) could not be correctly classified in this example.

Classification Table®

Predicted
after2000 Percentage
Ohserved 0 1 Correct
Step 1 after2000 0 11 4 733
1 3 10 769
Overall Percentage 75,0

a. The cutvalue is 500

Table 6.3: Classification results
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Table 6.2 shows the calculated pseudo R-square values: the Cox and Snell
R-square value is equal to 0.322, while the Nagelkerke R-square value is equal
to 0.43. The null hypothesis belonging to the Hosmer-Lemeshow test can be
accepted (the p-value is equal to 0.447).

To create a ROC curve and calculate the area under the ROC curve in
SPSS perform the following sequence (beginning with selecting “Analyze”
from the main menu):

’ Analyze = ROC Curve... ‘

As a next step, in the appearing dialog box select the (previously saved)
“Predicted probability” as “Test Variable:”, and “after2000” as “State Vari-
able:” (the “Value of State Variable” should be equal to 1 in this example).
In this dialog box (in case of “Display:”) the following options should also be
selected: “ROC Curve”, “With diagonal reference line”, “Standard error and
confidence interval”.

Figure 6.6 shows the ROC curve, and in Table 6.4 the value of the area
under the ROC curve (0.818) is presented.

ROC Curve

1 - Specificity

Diaganal segments are produced by ties

Figure 6.6: ROC curve

According to Kovdes (2014) (page 146) the model fit in logistic regression
can be assessed as follows (based on the ROC AUC values): if the AUC value
is between 0.5 and 0.6, then the logistic regression model is not applicable
for classification, if AUC is between 0.6 and 0.7, then the model fit is weak, if
AUC is between 0.7 and 0.8, then the model fit can be considered as average,
if the AUC value is between 0.8 and 0.9, then the model fit is good, and if
the ROC AUC value is higher than 0.9, then the model fit of the logistic
regression model can be considered as excellent.
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Area Under the Curve
Test Result Variable(s): Predicted probability

Asymptotic Asymptotic 95% Confidence
Sig.b Interval
Area Std. Error? Lower Bound Upper Bound
818 082 004 656 980

The testresultvariable(s): Predicted prohability has at least one tie
hetween the positive actual state group and the negative actual state group.
Statistics may be hiased.

a. Underthe nonparametric assumption
b. Mull hypothesis: true area=0.5

Table 6.4: Area under the ROC curve

Based on the results, the model fit in case of the logistic regression model
in this example can be evaluated as good.



7 Discriminant analysis

Discriminant analysis is a method that can be applied for classification. One
of the differences between logistic regression and discriminant analysis is that
discriminant analysis can not only be applied in case of binary response (de-
pendent) variables. In the following linear discriminant analysis is discussed,
in which the classification can be solved by finding linear functions of the
“predictor” variables that best separate the groups. (Cramer (2003), page
89)

7.1 Theoretical background

Discriminant analysis describes group separation, in which linear functions of
the original (“independent”) variables are applied to describe the differences
between two or more groups. (Rencher-Christensen (2012), page 226) Results
of discriminant analysis may be applied to predict membership in groups
(indicated by categories of the “grouping” variable). (George-Mallery (2007),
page 280) The main assumptions in the discriminant analysis (Kovdcs (2011),
pages 115-123) are as follows:

- the original variables (“independent”, “predictor” variables) should have

a multivariate normal distribution

- within-group covariance matrices should be equal across groups (a test
for the equality of the group covariance matrices is based on Box’s M
value).

Lee-Wang (2015) points out that Fisher’s linear discriminant analysis can
be considered as optimal in minimizing the misclassification rate under the
normality and equal covariance assumptions. It may be possible to compare
logistic regression and discriminant analysis (for example if the number of
groups in an analysis is equal to two). Press- Wilson (1978) point out that (for
the discriminant analysis problem) discriminant analysis estimators may be

29
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preferred to logistic regression estimators in case of normal distribution with
identical covariance matrices. However, it has to be mentioned that under
nonnormality logistic regression model with maximum likelihood estimators
may be preferred for solving a classification problem. (Press- Wilson (1978))

Classification in discriminant analysis can be based on for example (Kovdcs
(2011), pages 127-128):

- distance in the “canonical space” a case is assigned to the group where
the distance between the group centroid and the case is the smallest in
the canonical space

- Fisher’s classification functions: for each group a classification function
is constructed and a case is assigned to that group for which the largest
classification function value can be calculated.

The mathematical background of discriminant analysis is based on the
eigenvalue-eigenvector decomposition of a matrix. In the following the num-
ber of cases in the analysis is indicated by n, the number of original (“inde-
pendent”, “predictor”) variables is p and the number of groups is indicated
by g. Let X denote the matrix of the original (“independent”, “predictor”)
centered variables (in that case when the average of each variable is zero).
Then X7 X can be considered as the sum of two matrices (Kovdcs (2011),

page 115):
X'X=K+B (7.1)
where B = "7 (n; —1)S;, n =7 n; and S; is the group covariance
matrix for group . (Kovdes (2011), pages 115-116) Discriminant functions

are linear combinations of the original (“independent”, “predictor”) variables
(Kovdcs (2011), page 116):

y=Xc (7.2)
where c¢’'c = 1. (Kowvdcs (2011), page 116) Based on the previous assump-
tions (Kovdcs (2011), pages 116):

yTy = (Xe)'(Xe) =" X" Xe=c"(K+B)e=c"Ke+c"Be  (7.3)

The coefficients (¢) should be calculated so that (Kovdcs (2011), page
116):
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'Ke
max

7.4
c CTBC ( )

The solution to this problem is (Kovdcs (2011), pages 116-117), where
refers to the identity matrix:

(B™'K — Al)c=0 (7.5)

It means that the eigenvectors and eigenvalues of the matrix B~' K should
be calculated in a discriminant analysis. (Kovdes (2011), pages 116-117)
The matrix B~'K is not symmetric, and it can be shown that the eigen-
values of the matrix B™'K are equal to the eigenvalues of the symmetric
matrix (U"HTKU™ if B = UTU is the Cholesky factorization of matrix
B. (Rencher-Christensen (2012), page 232) It can also be shown that if v is
an eigenvector of (U"H)TKU™!, then y = U~ v is an eigenvector of B~!K.
(Rencher-Christensen (2012), page 232)

In discriminant analysis the maximum number of discriminant functions
is (Kovdcs (2011), page 117):

min(g — 1, p) (7.6)

Let A\; (j = 1,...,k) denote the eigenvalues of the matrix B~'K, where
k =min(g —1,p). The \; (j =1,...,k) eigenvalues refer to the “goodness”
of classification based on the discriminant functions. A Wilks” Lambda value
can be calculated also for discriminant functions and this measure shows
how good the given discriminant functions together separate the groups in
the analysis (Kovdcs (2011), page 117):

L
11 (7.7)
R Y

In case of this Wilks’ Lambda a smaller value refers to a better separation
of the groups. (Kovdcs (2011), page 117) Beside the Wilks’ Lambda values
the canonical correlation values can also be calculated based on the eigenval-
ues of the matrix B~'K. The canonical correlation measures the association
between the discriminant scores and the groups (Kovdcs (2011), page 124):

Aj
1+

(7.8)
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Theoretically the value of the canonical correlation can be between 0 and
1, and a higher value refers to a better separation result.

7.2 Discriminant analysis examples

Similar to Chapter 6 (about logistic regression), six variables are analyzed in
the following: a binary variable (that has two categories, indicated by 0 and
1), and five “scale” variables. Data belonging to the five “scale” variables (se-
lected information society indicators of European Union member countries,
for the year 2015) is downloadable from the homepage of Eurostat! and it is
also presented in the Appendix. The values of the binary variable “after2000”
are associated with the European Union entry date:

1 if the EU entry date is after 2000

) (7.9)
0 otherwise

“after2000” = {

The five “scale” variables in the analysis are:

- “ord™ individuals using the internet for ordering goods or services

- “ord _EU”: individuals using the internet for ordering goods or services
from other EU countries

- “reg int”: individuals regularly using the internet
- “never int”: individuals never having used the internet

- “enterprise _ord”: enterprises having received orders online

Question 7.1. Conduct discriminant analysis (with stepwise method and se-
lecting “Use probability of F” option) with the 5 scale variables (as “indepen-
dent” variables) and “after2000” (as grouping variable). Can the covariance
matrices in the groups be considered as equal?

!Data source: homepage of Eurostat (http://ec.europa.eu/eurostat/web/information-
society /data/main-tables)
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Solution of the question.

To conduct discriminant analysis in SPSS perform the following sequence
(beginning with selecting “Analyze” from the main menu):

’ Analyze — Classify — Discriminant...

As a next step, in the appearing dialog box select the variables “ord”,

“ord EU” “reg int”, “never int” and “enterprise ord” as “Independents:”
and “after2000” as “Grouping Variable”. After selecting the “Define Range...”
button the “Minimum” should be equal to 0 and the “Maximum” should be
equal to 1 (because in this example the variable “after2000” has two cate-
gories, indicated by 0 and 1). In case of the “Statistics...” button the “Box’s
M” option should be selected.
In order to carry out a discriminant analysis with stepwise method (instead of
enter method) the “Use stepwise method” option should be selected. Details
belonging to the applied stepwise method can be selected after clicking on the
“Method...” button: as “Criteria” the “Use probability of F” option should
be selected. In case of discriminant analysis the multivariate normality of
the variables and the equality of covariance matrices in the groups belong
to the application assumptions. The equality of covariance matrices can be
examined based on the Box’s M value (and a related test statistic). Table
7.1 shows the p-value that belongs to the null hypothesis that the covari-
ance matrices are equal in the groups. Since this p-value is higher than 0.05
(0.266>0.05), the null hypothesis about the equality of covariance matrices
(in the groups) can be accepted.

Test Results
Box's M 1,285
E Approx. 1,237
il 1
df2 1996189
Sig. 266

Tests null hypothesis of
equal population covariance
matrices.

Table 7.1: Box’s M value
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Question 7.2. Conduct discriminant analysis (with stepwise method and
selecting “Use probability of F” option) with the 5 scale variables (as “in-
dependent” variables) and “after2000” (as grouping variable). How can the
model fit be evaluated?

Solution of the question.

In SPSS, the same options should be selected as in case of the solution
of Question 7.1. In this example only one variable is entered (“ord”), as also
shown by the structure matrix (Table 7.2). The elements of the structure
matrix are (pooled within-groups) correlations (between the variables and
the standardized canonical discriminant functions). Table 7.2 shows that
the correlation of the variable “ord” and the first (standardized) canonical
discriminant function is equal to 1 (which is related to that solution in the
discriminant analysis that only one variable is entered).

Structure Matrix
Function
1

ord 1,000
never_int® - 938
reg_int? 837
ord_EL? 536
enterprise_ord?® 366

Fooled within-groups
correlations between
discriminating variahles
and standardized canonical
discriminant functions
YVariables ordered by
ahsolute size of correlation
within function.

a. This variahle not used in
the analysis.

Table 7.2: Structure matrix

In a discriminant analysis, for example Wilks’ Lambda or canonical cor-
relation values may be applied to evaluate the model fit (and if the number
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of groups in the analysis is equal to two, then the area under the ROC curve
may also be appropriate to assess the “goodness” of the model fit). The
Wilks” Lambda and canonical correlation values can be calculated based on
the eigenvalues of the matrix B~'K. In this example the number of canonical
discriminant functions is min(p, g — 1) = min(1,2 — 1) = 1, thus the matrix
B7'K has only one eigenvalue (0.51).

Eigenvalues
Canonical
Function | Eigenvalue | % ofVariance [ Cumulative % Correlation
1 5107 100,0 100,0 581

a. First 1 canonical discriminant functions were used in the analysis.

Table 7.3: Canonical correlation

Wilks' Lambda
Wilks'
Test of Function(s) Lambda Chi-square df Sig.
1 662 10,510 1 001

Table 7.4: Wilks’ lambda value

Table 7.3 shows the canonical correlation, that can be calculated in this
example based on the eigenvalue of the matrix B~'K as follows:

[ 0.51
——— = (0.581 7.10
1+ 0.51 ( )

The canonical correlation can be interpreted in this case so that 58.1%
of the variability of the discriminating “scores” is explained by the grouping
of the cases in the analysis. (Kovdes (2011), page 124) The Wilks’ Lambda
(0.662) can also be calculated based on the eigenvalue of the matrix B~ K:

1

— = (.662 7.11
1+0.51 ( )

The Wilks’ Lambda value can be interpreted so that the heterogeneity
that is not explained by the discriminating function is 0.662. (Kovdcs (2011),
page 124) In case of a good model fit in discriminant analysis the Wilks’
Lambda value should be close to zero, thus in this example the model fit can
not be considered as good (this conclusion is also confirmed by the canonical
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correlation value). If the number of groups in a discriminant analysis is
equal to 2, then only one Wilks” Lambda and canonical correlation value can
be calculated based on the eigenvalue of the matrix B~'K. Since in this
example the variable “after2000” has only two categories, the Wilks’ Lambda
value can be calculated based on the canonical correlation:

0.662 = 1 — 0.581° (7.12)

Question 7.3. Conduct discriminant analysis (with enter method) based on
the variables “ord” and “enterprise_ord” (as “independent” variables) and
“after2000” (as grouping variable). How can the estimated canonical dis-
criminant function coefficients be interpreted?

Solution of the question.

In SPSS, the same options should be selected as in case of the solution of
Question 7.1, with the following differences:

- in the dialog box (belonging to discriminant analysis) the “Enter in-
dependents together” option should be selected (instead of the “Use
stepwise method” option)

- after clicking on the “Statistics” button the option “Unstandardized”
should be selected (in case of “Function Coefficients”).

As the solution of Question 7.1 indicates, with stepwise method only
one variable is entered into the analysis, thus in this calculation example
two (“independent”) variables are entered together, so that the discriminant
function can also be examined in a two-dimensional graph (in case of the
scatter plot belonging to the two “independent” variables).

Table 7.5 shows the canonical discriminant function coefficients. Based
on these results the coefficients of the linear line that best separates the
groups in the two-dimensional space (in this example on the scatter plot
that belongs to the two “independent” variables) can be calculated, since the
following equation holds in case of the linear line that best separates the
groups:

0.056 - “ord” + 0.027 - “enterprise_ord” —3.13 =0 (7.13)

Figure 7.1 shows the linear line that best separates the two groups (that
belong to the two categories of the variable “after2000”). The equation be-
longing to this linear line can be written as follows:
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Canonical Discriminant

Function Coefficients
Function
1

ord 056

enterprise_ord 027

(Constant) -3,130

Unstandardized

coefficients

Table 7.5: Canonical discriminant function coeflicients

“enterprise _ord" =115.9 — 2.07 - “ord" (7.14)

In this case the points on Figure 7.1 are not “perfectly” separated by the
linear line (this result is also indicated by the canonical correlation and Wilks’
Lambda values), but it can be observed on Figure 7.1 that most points, that
are located on the same side of the linear line, belong to the same class.

after2000
0o
o1

enterprise_ord
8
1

T
60 80 100

Figure 7.1: Separation of the two classes (in case of two entered variables)

In this example, the “canonical space” in the discriminant analysis is only
one-dimensional (min(p,g — 1) = min(2,2 — 1) = 1), and the zero point
in this dimension is associated with the linear line (that best separates the
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groups) on Figure 7.1. The centroids of the two classes in this example are
located on different sides of the linear (separating) line, thus in the canonical
space the signs of the centroids differ, as indicated by Table 7.6.

Functions at Group
Centroids

Function

after2000 1

i G650
1 - 780
nstandardized
canonical
discriminant
functions evaluated at
aroup means

Table 7.6: Function value at group centroids



8 Survival analysis

In survival modeling the focus of the analysis is on the estimation of certain
time distributions from observed data. This time distribution can be inter-
preted as “failure time distribution” and failure time random variables may
represent time to a certain event, for example time to insurance policy termi-
nation. (Robinson (2014), page 481) There are several survival models, this
chapter discusses the Kaplan-Meier model and the Cox regression model.

8.1 Theoretical background

The failure time random variable is defined on the non-negative real numbers
in survival analysis. (Robinson (2014), page 481) If ¢ indicates (failure) time
random variable values in the analysis, then S(¢) survival function indicates
that probability that a given case has still not yet quit the analysis until time
t. (Vékds (2011), page 176)

Assume in the following that ¢ indicates the time until a certain event
occurs and the distribution function belonging to ¢ is indicated by F'(t). The
survival function in this case can be calculated as S(t) = 1 — F(t) and the

density function is f(t) = %Et). The hazard rate can be defined as follows
(Vékds (2011), pages 180-181):
f@)
h(t) = 5~ 8.1
=50 (1)

where S(t) # 0.
The relationship between the survival function and the cumulative hazard
rate (denoted by H(t)) can be described as follows ( Vékds (2011), page 182):

S(t) = e H® (8.2)

The distribution of the (failure) time variable can be described with the
survival function, hazard function and the density function, which may the-
oretically be discrete, continuous or mixture. These functions (for example

69
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(a) survival function (b) hazard rate function

(¢) cumulative hazard rate function

Figure 8.1: Functions in survival analysis (an example)

the survival function) may also be parametric, nonparametric or mixture.
(Robinson (2014), page 481)

As an example, assume that the survival function is described by the
equation S(t) = e (with A > 0). Figure 8.1 shows that in this case the
hazard rate is constant and the cumulative hazard rate function is linear.

Data preparation is an important step in survival analysis. Assume that
in a database it is recorded whether and when a given case (for example a
given person) experiences a specific event. In a survival analysis the following
variables have a central role ( Vékds (2011), page 174):

- status variable: shows whether or not the event has occurred (usually
this variable has two categories: 0 indicates that the event has not yet
occurred and 1 indicates that the event has occurred)

- time variable: shows how long the given case has been “observed”.

In some respect, the observed values of the (failure) time random variable
are usually incomplete in a survival analysis, because for example at the end
of the observation period the event (studied in the survival analysis) has
not occurred in case of some of the observations. If the final value of the
(failure) time random variable is not observed by the end of the observation
period, then the observation is referred to as “right-censored”. (Robinson
(2014), page 482) In the following in this chapter only right-censored data



8.1. THEORETICAL BACKGROUND 71

is analyzed, thus “censoring” will be mentioned if data is “right-censored”.
In survival analysis, the value of state variable is zero for a censored case.
(Vékds (2011), page 173)

Depending on the features of variables in a survival analysis, several mod-
els can be applied to model the time to the given event. For example in case
of a Kaplan-Meier model “scale” ! variables can not be applied as “explana-
tory” variables (without transformation of the “scale” variable). In a Cox
regression “explanatory” variables may be measured on a scale, ordinal or
nominal level of measurement.

In a Kaplan-Meier model the survival function is estimated from the
sample, and it is possible to estimate the expected survival time. An other
concept in the Kaplan-Meier model is the median survival time which is the
time period after which half of the original cases (at the beginning of the
analysis) is expected to quit the analysis. (Vékds (2011), pages 178-179)

With the following tests it is possible to test whether the survival func-
tions belonging to different subsamples can be considered as equal in a
Kaplan-Meier model (Vékds (2011), page 179):

- log-rank test
- Breslow test

- Tarone-Ware test.

In some survival analysis models it is possible to apply “scale” variables
as explanatory variables. In a Cox regression analysis the hazard rate can be
estimated as a function of the explanatory variables in the analysis as follows
(Vékds (2011), page 182):

h(t) = ho(t)e" 150 (8.3)

where p indicates the number of “explanatory” variables in the model and
ho(t) is the baseline hazard rate. The Cox regression model is a proportional
hazards model, and it belongs to the testing of the proportional hazards
assumption to assess the constancy of the estimated coefficients over time.
(Robinson (2014), pages 497-499) The baseline hazard rate is a function of the
time in the Cox regression model. In case of “scale” explanatory variables
the estimated coefficients (belonging to the explanatory variables) can be
interpreted so that if the value of the j-th explanatory variable increases by
one unit (ceteris paribus) then the hazard rate is multiplied by €% for each
t. (Vékds (2011), page 183) Explanatory variables may also be “categorical”

I Scale” variables are considered to be measured on a scale level of measurement
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variables in a Cox regression model (for example Szepesvdry (2015) applies
“categorical” explanatory variables in a Cox regression model).

Maximum likelihood method may be applied in the estimation of co-
effients in a Cox regression model (Coz (1972), Vékds (2011), page 183) Sim-
ilar to the Kaplan-Meier model, it is possible to calculate mean and median
for survival time also in a Cox regression model.

There are several methods that may be applied to assess the adequacy
of model results. In case of the omnibus test the null hypothesis is that the-
oretically all coefficients (belonging to the explanatory variables) are equal
to zero. If this null hypothesis is accepted, then the given model should be
restructured (for example new variables should be entered into the model).
The Wald test (with the null hypothesis that theoretically the coefficient is
equal to zero) can be applied individually to each entered explanatory vari-
able, and if the null hypothesis is accepted then the given variable should not
be an explanatory variable in the Cox regression model. (Vékds (2011), pages
183-184) To test the proportional hazards assumption the partial residuals
(for each uncensored case and for each explanatory variable) can be calcu-
lated and plotted against time, and if on these plots no trend can be observed
then the proportional hazards assumption can be (approximately) accepted.
(Vékds (2011), pages 185-186)

8.2 Survival analysis examples

In the first data analysis example assume that a firm registers data about
customer churn: it is registered when the customer relationship began and
whether (and when) it ended. Figure 8.2 summarizes these assumed data.

On Figure 8.2 it is assumed that data for 10 months are available (on
the horizontal axis 10 is the highest number). According to the assumed
data the firm currently (10 months after the beginning of data collection)
has 3 customers. Data for other (previous) customers (for example the first
customer with a 1 month long customer relationship) can be referred to as
censored data. Data on Figure 8.2 is presented in Table 8.1 in a tabular form
(data for each customer corresponds to an observation in the analysis).

Based on the simple database in Table 8.1 a new dataset can be created
in SPSS. Assume that in SPSS the name of the status variable is “status”
and the name of the time variable is “time”. The following two questions are
related to this database.

Question 8.1. Estimate and plot data for the survival function with Kaplan-
Meier model.
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Figure 8.2: Survival data example

Solution of the question.

To conduct a survival analysis with Kaplan-Meier model in SPSS perform
the following sequence (beginning with selecting “Analyze” from the main
menu):

’ Analyze — Survival = Kaplan-Meier...

As a next step, in the appearing dialog box select “time” as “Time” variable
and “status” as “Status” variable. In case of the “status” variable select “Define
Event ...” button and set “Single value:” equal to one. After clicking on the
“Options” button the “Survival” plot should be selected in the dialog box.
The resulting estimated survival function is illustrated by Figure 8.3.

This estimated survival function is not a continuous function in this exam-
ple. When the time variable is equal to zero, then the survival function value
is equal to one. Other estimated values belonging to the survival function
are shown in Table 8.2, in the fourth column.

Table 8.3 illustrates how survival function values can be estimated in this
example (the presented calculations follow the calculation method described
in Vékds (2011), pages 176-179) In Table 8.3 the columns can be interpreted
as follows:

- quitting time: the quitting customers have quitted after 1,2 and 3
month, respectively

- “nr.of q.cust.”> the number of quitting customers, belonging to the
quitting times, for example there are 2 customers in the example who
quitted after 1 month
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Table 8.1: Sample data for Kaplan-Meier model

survival analysis variables

status variable time variable

1. observation 1 1
2. observation 1 2
3. observation 1 3
4. observation 1 1
5. observation 0 7
6. observation 1 3
7. observation 0 5
8. observation 0 1

Table 8.2: Survival table

Survival Table

Cumulative Proportion

Surviving atthe Time M of N of

Ci |ati Remaining
Time Status Estimate Std. Error Events Cases

1,000 1,00 ¢ ¢
1,000 1,00 750 1583
1,000 00 ¢ ¢
2,000 1,00 600 182
3,000 1,00 ¢ ¢
3,000 1,00 300 75
5,000 00
7,000 .00

@ @ e W =

Do = Wk R =
o o= oW R @

- “nr.of cust.” the number of customers who have stayed at least so long
as the given quitting time: for example all (8) customers in the example
stayed at least 1 month

- “probability”: the quitting probability: it can be calculated as a ratio
of the values in the previous two columns, for example in the first row
025 =2

8

Based on the values in Table 8.3, the survival function values can be

calculated as (1—1) =32, (3—(1—1) = 2 and (2 — (1—3) = +, respectively.

These estimated values are presented on Figure 8.3.

Question 8.2. Calculate mean and median for survival time.

Solution of the question.



8.2. SURVIVAL ANALYSIS EXAMPLES 5

Survival Function

~MSurvival Function
sored

Cum Survival

time

Figure 8.3: Estimated survival function

Table 8.3: Kaplan-Meier model calculations

“quitting time” nr.of q.cust. nr.of cust. probability

1 2 8 0.25
2 1 b} 0.2
3 2 4 0.5

In the SPSS output that belongs to solution of Question 8.1 the following
table shows the mean and median for survival time.

The mean for survival time can be calculated with the application of quit-
ting probabilities (that can be calculated based on the quitting probabilities
shown in Table 8.3). Table 8.5 shows the quitting probabilities belonging to
the calculation of the mean survival time. Based on data in Table 8.5, the
mean for survival time can be calculated as follows:

1 3 3
-1+ =24 —- 1-025-0.15-0.3)-7=3. 4
1 -1—20 +10 3+(1-025-0.15—-0.3)-7=3.55 (8.4)

The median for survival time is 3 (months), since the survival function

value is 0.5 when the time value on the horizontal axis of Figure 8.3 is equal
to 3.

The previous example data contained only a few observations. In practice, it
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Table 8.4: Survival time data

Means and Medians for Survival Time

Mean? Median
95% Confidence Interval 95% Confidence Interval
Estimate | Std. Error | Lower Bound | UpperBound | Estimate | Std. Error | LowerBound | UpperBound
3,550 ,890 1,805 5,285 3,000 585 1,854 4145

a. Estimation is limited to the largest survival time if itis censored.

Table 8.5: Kaplan-Meier model calculations

“quitting time” probability

T _ 1T
! L i
2 17Ty
3 $°3=1

is sometimes possible to analyze larger datasets. The file data2.xlsx contains
(simulated) data that can be imported into SPSS. The following questions are
related to this dataset, which contains a time variable, a status variable and
three other variables (X; and X, are “scale” variables, while X3 is a variable
measured on a nominal level of measurement). Since this dataset contains
simulated data (and aims only at highlighting selected survival analysis con-
cepts), no additional “names” and interpretation are given to the variables.

Question 8.3. In a Kaplan-Meier model can the survival functions be con-
sidered as identical in the categories of the variable X3¢

Solution of the question.

After selecting the time and status variable in the dialog box that belongs
to Kaplan-Meier model, the variable X3 should be “Factor” in the analysis
(this option can be found in the dialog box belonging to the Kaplan-Meier
model). In this example, the variable X3 has 3 categories (indicated by 0,
1 and 2). Figure 8.4 illustrates that the estimated survival functions differ
in these groups. In SPSS the equality of survival distribution can be tested
by applying three test statistics. The results of these analyses can be found
in Table 8.6. In case of all tests (log rank, Breslow, Tarone-Ware) the null
hypotesis (about the equality of survival distributions) can be rejected, since
the p-value (indicated by “Sig.” in Table 8.6) is small (it is smaller than 0.05,
thus the null hypoteses can be rejected at a 5 % significance level).
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Figure 8.4: Survival functions

Table 8.6: Differences between survival functions

Overall Comparisons

Chi-Square df Sig.
Log Rank (Mantel-Cox) 229874 2 0oo
Breslow (Generalized
Wilcoxon) 176,018 2 0oo
Tarone-Ware 206,820 2 000

Test of equality of survival distributions far the different levels of
3.

Question 8.4. Conduct Cox regression applying forward Wald method with
the variables X7 and X5. How can the estimated coefficient(s) of the entered
variable(s) be interpreted?

Solution of the question.

Before conducting a survival analysis with Cox regression model the re-
lationship of the explanatory variables and the status variable is worth ana-
lyzing. With a comparison of boxplots (illustrated by Figure 8.5) it can be
observed that the values of X5 differ more in the two groups than the values
of X;.

To conduct a survival analysis with Cox regression model in SPSS, per-
form the following sequence (beginning with selecting “Analyze” from the
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(a) variable X (b) variable X5

Figure 8.5: Boxplots of variables

main menu):

’ Analyze — Survival = Cox Regression...

As a next step, in the appearing dialog box select “time” as “Time” variable
and “status” as “Status” variable. In case of the “status” variable select “Define
Event ...” button and set “Single value:” equal to one. In the dialog box
belonging to Cox regression the variables X; and X, should be “Covariates”,
and “Forward: Wald” should be selected as method. Similar to the Kaplan-
Meier model, the survival function can also be estimated with Cox regression:
after clicking on the “Plots” button the “Survival” plot can be selected in the
dialog box.

Survival Function at mean of covariates

1.0

Cum Survival
o
=
1

T T T T T
0o 50,00 100,00 150,00 200,00 250,00

time

Figure 8.6: Survival function
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Table 8.7: Estimated coeflicients

Vfariables in the Equation

95,0% CI for Exp(B)
B SE Wald df Sig. Exp(B) Lower Upper
Step 1 X2 - 737 047 246,375 1 ,ooo 474 436 525

Table 8.7 shows that only one of the variables (X3) is entered into the
analysis. The estimated coefficient of X5 is -0.737, which means that the
hazard rate function in this example is as follows:

h(t) = ho(t) - e 073X (8.5)

This result can be interpreted so that if the value of X, increases by one
unit, then the hazard rate is multiplied by e~%™7 for each ¢.

Question 8.5. How can the partial residuals in the model be interpreted?

Solution of the question.

Partial residuals belonging to the uncensored observations are calculated
for each (entered) explanatory variable (Vékds (2011), page 185) Figure 8.7
shows the relationship of partial residuals (belonging to variable X5) and the
time variable. This plot can be considered as showing no significant trend,
thus it may be concluded that (approximately) the proportional hazards
assumption can not be rejected (based on Figure 8.7).

3,00000

2,00000-{

1,00000

Partial residual for X2

00000+ ]

-1,00000-

T T
50,00 250,00

Figure 8.7: Partial residuals
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Individuals using the internet for ordering goods or services
(percentage of individuals aged 16 to 74)

Data source: Eurostat (Retrieved from:

year
2010 2015

Belgium 38 25
Bulgaria D 18
Czech Republic 27 45
Denmark 68 79
Germany 60 73
Estonia 17 59
Ireland 36 51
Greece 12 32
Spain 24 42
France o4 65
Croatia 14 31
Italy 15 26
Cyprus 18 23
Latvia 17 38
Lithuania 11 32
Luxembourg 60 78
Hungary 18 36
Malta 38 51
Netherlands 67 71
Austria 42 58
Poland 29 37
Portugal 15 31
Romania 4 11
Slovenia 27 39
Slovakia 33 50
Finland 59 71
Sweden 66 71
United Kingdom 67 81

APPENDIX

http://ec.europa.eu/eurostat /web/information-society /data/main-tables)
Download date: 2016.03.23.
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Individuals using the internet for ordering goods or services from other EU

countries

(percentage of individuals aged 16 to 74)

Data source: Eurostat (Retrieved from:
http://ec.europa.eu/eurostat/web /information-society /data/main-tables)

year
2010 2015

Belgium 20 35
Bulgaria 2 7
Czech Republic 2 9
Denmark 28 35
Germany 8 13
Estonia 8 26
Ireland 18 30
Greece 4 10
Spain 7 18
France 15 21
Croatia 3 10
Italy 4 11
Cyprus 15 20
Latvia 7 19
Lithuania 3 11
Luxembourg 53 68
Hungary 3 11
Malta 35 44
Netherlands 12 21
Austria 29 44
Poland 2 4
Portugal 6 16
Romania 1 2
Slovenia 10 17
Slovakia, 9 20
Finland 21 38
Sweden 13 25
United Kingdom 10 20

Download date: 2016.03.23.
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Individuals regularly using the internet
(percentage of individuals aged 16 to 74)

Data source: Eurostat (Retrieved from:

year
2010 2015

Belgium 5 83
Bulgaria 42 5}
Czech Republic 58 7
Denmark 86 93
Germany 75 84
Estonia 71 86
Ireland 63 78
Greece 41 63
Spain 58 75
France 72 81
Croatia 51 66
Italy 48 63
Cyprus 50 70
Latvia 62 75
Lithuania 58 69
Luxembourg 86 97
Hungary 60 72
Malta 60 74
Netherlands 88 91
Austria 70 81
Poland 55 65
Portugal 47 65
Romania 34 52
Slovenia 65 71
Slovakia 73 74
Finland 83 91
Sweden 88 89
United Kingdom 80 90

APPENDIX

http://ec.europa.eu/eurostat /web/information-society /data/main-tables)
Download date: 2016.03.23.



Individuals never having used the internet
(percentage of individuals aged 16 to 74)

year
2010 2015

Belgium 18 13
Bulgaria o1 35
Czech Republic 28 13
Denmark 9 3
Germany 17 10
Estonia 22 9
Ireland 27 16
Greece 52 30
Spain 32 19
France 20 11
Croatia 42 26
Italy 41 28
Cyprus 45 26
Latvia 29 18
Lithuania 35 25
Luxembourg 8 2
Hungary 33 21
Malta 36 22
Netherlands 8 4
Austria 23 13
Poland 35 27
Portugal 46 28
Romania 57 32
Slovenia 28 22
Slovakia 17 16
Finland 11 5)
Sweden 7 5
United Kingdom 13 6

Data source: Eurostat (Retrieved from:
http://ec.europa.eu/eurostat /web /information-society /data/main-tables)
Download date: 2016.03.23.
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Enterprises having received orders online (at least 1%)
(percentage of enterprises with at least 10 persons employed in the given
NACE sectors, by size class, all enterprises, without financial sector)

year
2010 2015

Belgium 26 25
Bulgaria 4 6
Czech Republic 20 24
Denmark 25 26
Germany 22 25
Estonia 10 13
Ireland 21 32
Greece 9 6
Spain 12 17
France 12 16
Croatia 22 20
Italy 4 7
Cyprus 7 11
Latvia 6 9
Lithuania 22 18
Luxembourg 14 7
Hungary 8 11
Malta 16 16
Netherlands 22 17
Austria 14 15
Poland 8 10
Portugal 19 19
Romania 6 8
Slovenia 10 16
Slovakia 7 13
Finland 16 16
Sweden 24 26

United Kingdom 14 20

Data source: Eurostat (Retrieved from:
http://ec.europa.eu/eurostat/web /information-society /data/main-tables)
Download date: 2016.03.23.



