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Abstract We consider a possible game-theoretic foundation of Forchheimer’s
model of dominant-firm price leadership based on quantity-setting games with
one large firm and many small firms. If the large firm is the exogenously given
first mover, we obtain Forchheimer’s model. We also investigate whether the
large firm can emerge as a first mover of a timing game.
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1 Introduction

In Forchheimer’s model of dominant-firm price leadership (see for example
Scherer and Ross, 1990, p. 221) it is assumed that there is one large and many
small firms. The large firm is assumed to determine the price in the market and
the firms in the competitive fringe act as price takers. Therefore, the large pro-
ducer sets its price by maximizing profit subject to its residual demand curve.
More specifically, the large firm’s residual demand curve can be obtained as
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the horizontal difference of the demand curve and the aggregate supply curve
of the competitive fringe. However, this usual description of Forchheimer’s
model is not derived from the firms’ individual profit maximization behavior.

Ono (1982) provided a theoretical analysis of price leadership by investi-
gating a model in which one firm sets the market price, the remaining firms
choose their outputs and the price setter serves the residual demand. Hence,
one firm uses price as its strategic variable while the remaining firms use quan-
tity as their strategic variable. Under these circumstances Ono demonstrated
that there is a firm that accepts the role of the price setter, while the remaining
firms prefer to set their quantities. However, Ono leaves open the questions of
why the price-setting firm serves the residual demand and why there is just
one price-setting firm in the market (since these are assumed in Ono’s model).

A complete price-setting game-theoretic foundation of dominant-firm price
leadership was given by Deneckere and Kovenock (1992) in the framework
of a capacity-constrained Bertrand-Edgeworth duopoly game. Tasnadi (2000)
provides another game-theoretic foundation of Forchheimer’s model, based on
a price-setting game with one large firm and a nonatomic fringe in which all
firms have strictly convex cost functions. In a follow-up paper Tasnddi (2004)
shows that for the case of strictly convex cost functions, the large firm will not
accept the role of the leader in a simple two-period timing game.?

In this paper we seek a game-theoretic foundation of the dominant-firm
model of price leadership based on quantity-setting games; but in this case
the term “price leadership” may not be appropriate since we use quantity as
the strategic variable. Nevertheless, we will establish that if the large firm is
the exogenously specified first mover and there are sufficiently many “almost
negligible” small firms moving second, then equilibrium price and aggregate
production of the two-stage quantity-setting game will be very close to the
dominant firm price and the Forchheimer market output, respectively.? To
show this type of convergence result we will consider a sequence of two-stage
quantity-setting games, all having the same efficient firm and an increasing
number of less efficient firms, where the total competitive supply of the less-
efficient firms remain the same in each market. Hence, an oligopoly market of
the sequence is not obtained from another oligopoly market by the entry of
new firms.

We find that the quantities of the appropriate sequence of quantity-setting
two-stage games will converge to the same values determined by the dominant-
firm model of price leadership (Proposition 1).# Thus, a kind of game-theoretic
foundation of Forchheimer’s dominant-firm model can be given by two-stage

2 We refer to Rassenti and Wilson (2004) for an experimental investigation of the
dominant-firm model of price leadership.

3 Purely sequential-move quantity-setting games with identical firms have been investi-
gated from a different viewpoint by Robson (1990) and Anderson and Engers (1992).

4 Tesoriere (2008) shows for a market with infinitely many quantity-setting firms, in which
the firms have identical and linear cost functions, that only first movers produce a positive
amount. Of course, his findings cannot support Forchheimer’s model since because of the
symmetric setting there is no firm with a clear cost advantage.



quantity-setting games. A similar result has been obtained by Sadanand and
Sadanand (1996) in the presence of a sufficiently small but nonvanishing
amount of demand uncertainty in a market with one large firm and a con-
tinuum of identical small firms.® In this respect, the present paper relaxes the
assumptions of identical and infinitely many small firms.

Concerning the endogenous timing of moves, Sadanand and Sadanand
(1996) mention in the proof of their Proposition 3 for the deterministic case
that the large firm still could be the endogenous quantity leader in the mar-
ket, but unfortunately this equilibrium outcome of the timing game does not
remain unique. This paper adds to Sadanand and Sadanand by showing that
nonvanishing demand uncertainty and a continuum of small firms play a cru-
cial role in obtaining the large firm as the endogenous leader (Proposition 2).
In particular, most of the small firms do not want to accept the role of the
follower.

The remainder of this paper is organized as follows. In Section 2 we describe
the framework of our analysis. Section 3 presents a game-theoretic foundation
of dominant-firm price leadership based on quantity-setting games, while Sec-
tion 4 shows that the exogenously given order of moves in Section 3 cannot be
endogenized. Finally, Section 5 contains concluding remarks.

2 The framework

The demand is given by the function D : Ry — R, on which we impose the
following assumptions in order to ensure the existence of equilibrium in the
oligopoly games:

Assumption 1 There exists a positive price b such that D(p) > 0 if p < b,
and D(p) =0 if p > b. The demand function D is strictly decreasing on [0, b],
twice continuously differentiable on (0, ) and concave on [0, b].

Let a be the horizontal intercept of the demand function, i.e., D (0) = a.
Clearly, the firms will not produce more than a. Let us denote by P the
inverse demand function; that is, P(0) = b, P(q) = D~(q) for all ¢ € (0, a),
and P(q) =0 for all ¢ > a.

The result in Section 3 will be asymptotic in nature and therefore, we will
consider a sequence of oligopoly markets O = (O™),_,. The demand function
D is assumed to be the same in every oligopoly market of the sequence O.
The cost, marginal cost and supply functions in the oligopoly market O™
will be denoted by ¢} : Ry — Ry, mcl : Ry — Ry and s} : Ry — Ry,
respectively (i € {0,1,...,n}). Thus, the nth oligopoly market of the sequence
O is described by O™ = ({0,1,...,n},(cf,c},...,c"), D), where n stands for
the number of second movers in case of one exogenously given first mover. We
shall denote by N the set of positive integers.

5 For a recent contribution on quantity-setting timing games with demand uncertainty
see Caron and Lafay (2008).



In order to ensure the existence and at some points also the uniqueness of
the equilibrium through our analysis we impose on the firms’ cost functions
the following assumptions:

Assumption 2 The cost functions ¢’ are twice continuously differentiable,
there are no fixed costs and the cost functions are strictly increasing and
strictly convex. Furthermore, (¢}')’ (0) = lim,_,o+(c}")’ (¢) = mc} (0) = 0 and
limg_, o mcl(q) = oo for all i € {0,1,...,n}.

Assumption 2 implies that the competitive supply, henceforth briefly supply, at
price level p of firm ¢ can be given by s? (p) := (mc?)_1 (p) because the supply
of firm ¢ at price level p is a solution of the problem s}'(p) = argmax,>0 pg —
c?(q), which has a unique solution for all p > 0 because of Assumption 2.

So far we have not made any distinction between the firms. We call firm
0 the large firm and the remaining firms small firms. The usage of this termi-
nology is justified by the following two assumptions.

Assumption 3 The (competitive) supply of firm 0 as well as the aggregate
(competitive) supply of firms 1,...,n remain the same in every oligopoly mar-
ket of the sequence O. Hence, we can denote by sy = s{ the supply of the
large firm, by ¢y = ¢f} the cost function of the large firm, by S, = >_"" ; s the
aggregate supply of the small firms and by MC, := S.! its inverse.

Assumption 4 There exists a positive real value a such that
@
si (p) < —Se(p)
n
holds true for any p € (0,b], for any n € N and for any firm ¢ € {1,...,n}.

Assumptions 3 and 4 jointly imply that by considering an oligopoly market O™
with a sufficiently large index n, the supply of any small firm can be regarded
as ‘almost negligible’ compared to the large firm’s supply. This justifies the
qualifiers large and small.

We want to emphasize that we do not investigate the case of free entry.
Clearly, considering a fixed oligopoly market O™ and a potential entrant la-
beled n+1 with a given cost function cj; , | satisfying Assumption 2, firm n+1
would always enter since it can make positive profits. In particular, two dif-
ferent oligopoly markets O™ and O™ out of the same sequence of oligopoly
markets (O™) 7, are just two different technological scenarios in which large
firms have identical supply functions and sets of small firms have identical
aggregate supply functions.

It should be mentioned that Anderson and Engers (1994) have developed
a model of entry in a multi-period quantity-setting framework with costly ca-
pacity investments, for which they determine the number of active firms in
the market in function of a uniform fixed cost. More recently, a two-stage
Stackelberg-type game (similar to the oligopoly markets employed in this pa-
per) with one exogenously given leader allowed to enter in the first period and
other followers allowed to enter in the second period has been considered by



Etro (2008).5 For each firm, entry involves paying fixed entry costs and deter-
mining the magnitude of its decision variable.” Since Etro assumes identical
firms, his model does not yield Forchheimer’s model of dominant firm price
leadership.

Now we briefly describe Forchheimer’s model of dominant-firm price lead-
ership (for more details we refer to Scherer and Ross, 1990). The dominant
firm sets its price by maximizing profit with respect to its residual demand
curve, which can be obtained as the horizontal difference of the demand curve
and the aggregate supply curve of the competitive fringe. Hence, the residual
demand curve is given by Dy (p) := (D (p) — S (p))" and the dominant firm
has to maximize the residual profit function:

74 (p) == Da (p) p — co (Da (p)) (1)

where we used cost function ¢y because in our model firm 0 shall play the role
of the dominant firm. We can obtain the prices maximizing w4 by solving

7q (p) = Da (p) + Dy (p) (p — meo (Da (p))) =0, (2)

by Assumptions 1 and 2. It can be verified that each stationary point of (1) has
to be a strict local maximum, and therefore, the first-order condition (2) gives
us the unique solution to the profit maximization problem of a Forchheimer
type dominant firm. We call the price maximizing w4, denoted by p*, the
dominant-firm price. According to Forchheimer’s dominant-firm model of price
leadership, the dominant firm chooses price p*, the small firms set also price
p* and the competitive fringe supplies S, (p*).

3 The quantity-setting games

In this section we consider a sequence of quantity-setting games O, = (Of;)zo: L
corresponding to a sequence of oligopoly markets O = (O™)>"_,. The firms
choose the quantities of production and the market clearing price is determined
through an unspecified market-clearing mechanism in each quantity-setting
game. Usually, the presence of an auctioneer® is assumed in such types of
models (for more details see for instance Tirole, 1988).

The quantity actions of the firms in the nth oligopoly market are given
by a vector q = (qo,q1,---,qn) € [0,a]"T! that we call from now on a
quantity profile. The nth quantity-setting game is described by the structure

0p = ({0,1,...n}, 0,0, (72)1y )

6 For more on entry and product differentiation in the two-stage quantity-setting frame-
work see Zigié (2008).
7 Etro (2008) also investigates the case of price competition.

8 For a model that does not assume an auctioneer and explains the price formation mech-
anism see Kreps and Scheinkman (1983). One has to mention that Kreps and Scheinkman’s
result crucially depends on their imposed assumptions on rationing and cost (see for instance
Davidson and Deneckere, 1986; and Deneckere and Kovenock, 1992).



where
(@) =Ploo+aq+ - +a)a—c ()

for any ¢ € {0,1,...,n}.
In this section we make the following assumption on the timing of decisions:

Assumption 5 Let firm 0 be the exogenously specified first mover. The re-
maining firms move simultaneously following firm 0.

We will establish a link between our sequence of quantity-setting games
and Forchheimer’s model of dominant-firm price leadership. In particular the
sequence of equilibrium prices of the quantity-setting games converges to the
dominant-firm price p* and the aggregate output of the small firms converges
to the output of the competitive fringe in Forchheimer’s model. This is stated
more formally in the following proposition.

Proposition 1 Let O, = (OZ;):O:l be a sequence of quantity-setting oligopoly
market games satisfying Assumptions 1-5. Then for any n € N the game
Oy has a subgame perfect Nash equilibrium and for any sequence of subgame
perfect Nash equilibrium profiles (q™),—, we have

n n
Jim P (Z q?) =p", lim gy = Dy (p”) and nlggozq{L =S (p7) -
i=0 i=1
Proof We start with demonstrating that every two-stage game Oy has a sub-
game perfect Nash equilibrium. Suppose that firm 0 produces an amount of
qo € [0,a] in stage one. Then by our assumptions it follows from Szidarovszky
and Yakowitz (1977) that for any n the subgame has a unique Nash equilib-
rium. For the game O; we shall denote by fni (q0) (7 € {1,...,n}) the unique
equilibrium solution of stage two in response to the large firm’s first-stage
action go. Furthermore, let fo..(qo) := Y_i—; fni (q0). The equilibrium of the
subgame has to satisfy the first-order conditions

P (QO + fnc ((Zo)) + P’ ((JO + fnc ((Zo)) fnz (QO) - mc? (fnz (QO)) = 07 (3)

(1 € {1,...,n)}. The Implicit Function Theorem implies that the functions
fni and fp. are continuous and differentiable. Thus, the large firm’s first-stage
profit function

70 (q0) := 70(q0, fn1(q0), - - - fan(q0)) = P (qo + fne (90)) g0 — co (q0)  (4)

is continuous, and therefore, it follows that the game Oy has a subgame perfect
Nash equilibrium.

We take a sequence of subgame perfect Nash equilibrium quantity profiles
q". Let the small firms aggregate production be ¢l := 21;1 g;'. The sequence
(g8, q2),2, has at least one cluster point since it is bounded. We pick an ar-
bitrary convergent subsequence form the sequence (g, ¢”), ;. For notational
convenience we suppose that (g, q”),-, is already convergent. We shall de-
note by (qy,q,) its limit point. Note that ¢ = f; (q}) and ¢7 = fne (q).



The small firms’ equilibrium actions (¢g/");_, in stage two have to satisfy the
following first-order conditions
87'('7;
94

(@") = P(qy +q2) + P (g5 +q2) qi —mei (q) = 0. (5)

We claim that lim,,_, ¢}' = 0, where in case of a double sequence a}" with
i,m € N and ¢ < n we write lim,,_,oc a} = a if

Ve>0:3ngeN:Vn>ng:Vie{l,2,...,n}:|a] —a| <e.
From (5) and Assumption 4 we obtain that
g = si (Pag +¢) + P (g +a2) ai') (6)
a
< Se(Plag +az) + P (ag +a)af') < —Se (b)
for any ¢ € {1,...,n}. Thus, we have lim,_,~ ¢ = 0.
Let p" := P(qq +qr), " := P' (g5 +q¢), and u™ := P" (q5 + q;'). Note
that p™ > 0, ™ < 0 and u™ < 0 for all n € N. We shall denote by p, 7, and

u the corresponding limit points of sequences (p™),~;, (r") >, and (u )ZOZI.
By taking limits in (5) we obtain
p= lim mc} (¢f). (7)

n— oo

The following three auxiliary statements can be derived®:

p=MC.(q.), (8)
fre=—1+ : (9)
ne L+ S ey
and
r +uql T
lim = — . 10
Hooz (mc ny/ (q?) MC! (g,) (10)

Now, substituting (10) into (9) yields
1- ! n I F
A2 Ine ) = =5 er gy

which we need for determining the large firm’s behavior.
The sequence of the large firm’s decisions (gf}),-, has to satisfy the fol-
lowing first-order condition derived from (4):

7o (a0) = P(qy +a2) + P' (g0 +q) (1 + fre (a5)) g5 — meo (g5) = 0. (12)

9 The calculations of (8), (9) and (10) are quite tedious and therefore, relegated to the
Appendix.



If we take limits in equation (12), then in consideration of (11)

p=mco(qy) =T (1 - r—MTCg(qc)> [ (13)

must hold. From (8) and (13) we can easily obtain that P is a solution to (2):

F ey 1 1 TMC(4.) -
40 =10+ (7~ 51y ) (e ) =
Thus, p is indeed a solution of equation (2). Since equation (2) has a unique
solution we also conclude that the sequence (p™),, has only one cluster point.
Therefore, p* = p. Furthermore, it follows that all convergent subsequences of
the bounded sequence (g, q?)fj’:l have the same limit point, which means that
(g, q2),2, is convergent. Hence, (8) implies lim, o0 Y., g" = Sc (p*), and
therefore, lim,, o ¢f = Dg (p*) by p* = P (gy + G.)- O

We illustrate Proposition 1 by considering the case of linear demand,
quadratic cost functions and the small firms having identical cost functions,
because in this case (2), (5) and (12) can be solved explicitly.

Ezample 1 D(p) =1 —p, co(q) = 2¢* and ¢;(q) = nb¢® foralli =1,...,n.

Maximizing profits with respect to D;'(¢) = b(ltb‘” gives us the output
F_ b
9 = 71\ L on
ab+ 1)+ 2

of the Forchheimer-type dominant firm. Turning to the two-stage quantity-
setting game with the large firm as the exogenously given first mover, if the
large firm produces qq in stage 1, then the small firms will produce

1—qo

=———— foralli=1,...
TS nlb+1) or all ¢ ey T

qi

in stage 2. Taking the reactions of the small firms into consideration, the large
firm produces

14+nb b
4o = 1+n(b+1) N b+1 o b _ q(lf
- 1+nb 20 -
o+l otg bt )42

as n tends to infinity. It is straightforward to check that the aggregate output
of the small firms in stage 2 converges to the output of the competitive fringe
in Forchheimer’s model.

For an economic interpretation of Proposition 1 and Example 1, consider
a market with one large firm and sufficiently many small firms. In case of
modeling this market, for instance, in an empirical research, we could say by
Proposition 1 that employing the dominant firm model of price leadership
— even in a quantity-setting environment — would lead only to minor errors,
while substantially simplifying the analysis. To be more precise we would need



a result on the speed of convergence to the dominant firm model. By imposing,
for example, an error margin on the equilibrium price, we could easily deter-
mine the minimum number of required small firms in Example 1 to justify the
application of the dominant firm model.

Finally, we would like to remark that our convergence result stated in
Proposition 1 is in the spirit of Novshek’s (1985) Cournot convergence result
in the sense that the increase in the number of small firms is linked with a
rescaling of the small firms cost functions.

4 Endogenous timing

Proposition 1 ensures that a two-stage quantity-setting game with a large
firm as the exogenously given first mover and many almost negligible small
firms as exogenously given followers almost results in Forchheimer’s dominant
firm model of price leadership. A crucial question to be addressed is why the
large firm should accept the role of the leader and the small firms the role
of the follower. By remaining in a deterministic framework and considering
only quantity as a possible strategic variable, we give a negative answer to
this question by applying Matsumura’s (1999) general result on timing in
quantity-setting games, which allows us to investigate a quite complex timing
game.

We have to emphasize that the outcome of the quantity-setting timing
game is independent of the supply structure of the firms and thus, we will
not have to consider a sequence of quantity-setting games as in Section 3. Let
us briefly sketch Matsumura’s (1999) timing game and result. Suppose that
there are n + 1 firms and m + 1 stages. In the first stage (period 0) each
firm selects its production period t € {1,2,...,m}. A firm ¢ producing ¢; in
period t; € {2,...,m} observes any production decision g; made in period
t; € {1,...,t; — 1} and firm ¢ does not know the set of firms producing in
the same period t;, which means that this timing game can be regarded as
an extension of the ‘extended game with action commitment’ investigated by
Hamilton and Slutsky (1990).19 At the end of period m the market opens and
each firm sells its entire production at the market clearing price. That is, firm
i achieves 7;(go, q1, - -5 qn) = P(3j_ )@ — ci(gqi) profits.

In order to determine the outcome of the introduced timing game Mat-
sumura (1999) imposes three assumptions on two-stage games with exogenous
timing. The set of leaders, denoted by S, consisting of those firms producing
in period 1, and the set of followers, denoted by S, consisting of those firms
producing in period 2, are exogenously given. Firms moving in the same pe-
riod move simultaneously and the followers observe the production quantities
of the leaders. The production g; of a firm i € {0,1,...,n}\ (SFUST) is exoge-
nously given and common knowledge. Matsumura assumes that all two-stage
games with exogenous sequencing have a unique equilibrium in pure strategies

10 At the end of this section we will also consider the ‘extended game with observable
action delay’ in which the firms know the set of firms moving in the same time period.
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(Matsumura, 1999, Assumption 1), every firm strictly prefers moving simul-
taneously with the other firms to being the only follower (Matsumura, 1999,
Assumption 2), and every firm strictly prefers moving before the other firms to
moving simultaneously with them (Matsumura, 1999, Assumption 3). Under
these three assumptions Matsumura (1999, Proposition 3) shows that in any
equilibrium of the m + 1 period timing game at most one firm does not move
in the first period.

We will establish that our assumptions imposed on the cost functions and
the demand curve in Section 2 imply Matsumura’s second and third assump-
tions.!! Thus, we have to assume explicitly only the following assumption.

Assumption 6 Any two-stage game with exogenous sequencing possesses a
unique equilibrium in pure strategies.

Assumption 6 is needed because there is no simple condition in our frame-
work, which guarantees the existence and uniqueness of the equilibrium for
two-stage games. Sherali (1984) provides sufficient conditions for the existence
and uniqueness of the subgame perfect equilibrium. However, Sherali’s (1984)
conditions for uniqueness cannot be applied in our model since we have to al-
low asymmetric cost functions, while Sherali (1984, Theorem 5) requires that
the firms’ moving in the first period have identical cost functions.'? More-
over, Ehrenmann (2004) points to the difficulty of the problem even in case
of identical leaders by presenting an example of a triopoly market with two
leaders having identical linear cost functions, a follower having also a linear
cost function and a linear demand function that possesses also non-symmetric
equilibria concerning just the first-stage output of the leaders. These results
indicate also that checking Matsumura’s (1999) Assumptions 2 and 3 for the
oligopolistic case is a far more difficult task than for the simple duopolistic
case for which the results are well-known. While the case of just one leader
has been investigated in the literature, for example, by Sherali, Soyster and
Murphy (1983), the case of just one follower has not got, as far as we know,
real attention in the literature — with the exception of the above-mentioned
counterexample by Ehrenmann (2004).

The next proposition determines the endogenous order of moves in quantity-
setting games.

Proposition 2 Let O, be a quantity-setting oligopoly game satisfying As-
sumptions 1, 2, and 6. Then in an equilibrium of the m+ 1 period Matsumura
timing game at most one firm does not set its output in the first period.

1 Matsumura (1996) gives a sufficient condition which ensures that these two Assumtions
are satisfied. However, we cannot apply this latter result in our framework without imposing
further assumptions.

12 For more on the existence and the uniqueness of the subgame perfect Nash equilibrium
of two-stage quantity-setting games we refer to Tobin (1992), Flam, Mallozzi and Morgan
(2002), and Mallozzi and Morgan (2005). DeMiguel and Xu (2009) shows existence in case
of stochastic demand. For the easier case of linear demand and identical firms with linear
cost functions Daughety (1990) investigates welfare effects, mergers and concentration in
the market.
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Proof In order to demonstrate the proposition we have only to verify that
our Assumptions 1, 2 and 6 imply Matsumura’s (1999) Assumptions 2 and 3.
Hence, we have to consider three different two-stage games with exogenous
timing. In particular, the Cournot game in which each firm moves in the
same time period, the game with only one leader and the game with only
one follower.

Since the Assumptions 1 and 2 ensure the existence of a unique Nash
equilibrium in pure strategies'® (see for instance Szidarovszky and Yakowitz,
1977) the first-order conditions below determine the outcome of the Cournot
game.

a n n
87q.7ri(q07Q17'~'aQ71):P g | +P D | e —meilg) =0 (14)
? §=0 7=0

Regarding that our assumptions imply that (14) has an interior solution, by
rearranging (14) we can obtain the next useful equation:

o iqj _ mei(q;) — P (Z?:o Qj) o 15)
j=0

qi

We shall denote the Cournot solution by (¢f)i,.

Next we investigate the game with only one leader. Suppose that firm 4
is the leader. Clearly, the leader achieves the same profit as in the Cournot
game by setting its production to ¢f.'* Hence, it remains to show that the
leader earns more as a leader than by moving simultaneously with the other
firms. Given the production g; of firm ¢ the followers play in the subgame a
simultaneous-move quantity-setting game subject to the inverse demand curve
P(q) = P(q+ ¢;). Thus, the subgame has a unique Nash equilibrium because
of Assumptions 1 and 2. Let us denote by @ _;(g;) the aggregate production of
the followers in response of the leader’s output ¢;. Then firm ¢ maximizes the
function 7;(q;) := P (¢ + Q_i(q:)) ¢; — ci(q:). It can be easily checked!® that
Q" ;(¢;) € (—1,0) holds for all ¢; € (0,a). Therefore, in consideration of (14)
and ¢f +Q-i(qf) = Y7 ¢5 it follows that

Ti(qf) = P (qf + Q—i(qf)) + (1 + Q_s(¢f)) P' (¢f + Q—i(qf)) ¢f — mei(qf) > 0,

which in turn implies that firm ¢ makes more profits by producing more than
¢f. This means that Matsumura’s (1999) Assumption 3 is fulfilled.

Finally, we have to investigate the two-stage game with only one follower.
Suppose that firm i is the follower. Again we denote by Q)_; the aggregate
production of the other firms but now g; depends on )_;. For a given amount

13 Note that this is also guaranteed by Assumption 6, but we wanted to emphasize that
Assumption 6 is not needed at this stage of the proof.

14 This has been already shown by Sherali, Soyster and Murphy (1983, Lemma 6).

15 Note that by deriving (9) we have carried out the necessary calculations since (9) does
not depend on the special role played by firm 0 in Proposition 1.
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Q_; firm ¢ has to maximize the function 7;(¢;) := P(¢; + Q—) ¢ — c¢i(qi),
which has a unique solution determined by

7(qi) = P (¢ + Q—i) + P' (¢: + Q—i) s — mei(qi) = 0. (16)
From this first-order condition we obtain that
dgi  _ P'(qi+Q—i) + P"(q;i + Qi) q (17)

dQ_; 2P (¢i +Q—i) + P"(¢i + Qi) ¢s — mci(q:)’

which implies that dg;/d@Q_; € (—1,0) and d(¢; + Q—;) /dQ—_; € (0,1) for
any Q_; € [0,a). This means that an increase in the first-stage aggregate
output decreases the followers output and increases the total output. Let us
remark that dg;/dg; = dg;/dQ_; holds true for any firm j # i. The first-stage
quantities of firms {0,1,...,n} \ {i} are determined (because of Assumption
6) by the first-order conditions

dg;
qu'

P@Q-)+ @)+ (14 52) P @Q-) + @4 - mes(a) 0. (18)
Clearly, for an equilibrium profile we must have ¢; + Q—; € [0,a) and ¢; > 0
for all j # ¢. Hence, by rearranging (18) we obtain

(1 - dg]ii) P (g:(Q_i) + Q_;) = me;(g;) = P (Z;(Q—i) +Qy)

for all j # i. We shall denote the solution to equations (16) and (18) by (¢;);—,-

We claim that ¢f + Q¢, < ¢ + Q¥ ;. Suppose that this is not the case; i.e.,
¢ +Q°%,; > qf +Q*, holds true. Then we must have Q¢, > @Q*, and therefore,
we can find a firm j 7 i for which we have ¢§ > ¢;. For this firm j we can
derive the following inequalities:

<0 (19)

di / * * / * * / c c
<1+ 4 )P(Qi+Qi)>P(Qi+Qi)2P(Qi+Qi)

d@Q_;
me;(q5) — P (g5 + Q%)

45
me;(q5) — P (qf + Q)
> z
me;(q;) — P (q; + Q)
- q;k b)

by applying d¢;/dQ_; = dg¢;/dg; € (—1,0), Assumption 1, (15), Assumption
1 and by observing that the function f(q) := (mc;(q) — P(q; + Q;))/q is
strictly increasing on (g}, ¢5]. But this contradicts (19).

Since ¢f + Q%; < ¢; + Q; and (17) imply ¢f > ¢ and P(¢f + Q<;) >
P(gF + Q*,) we can deduce that firm ¢ realizes more profits in the Cournot
game than in the game in which it plays the role of the only one follower.
Thus, Matsumura’s (1999) Assumption 2 is also satisfied. O
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Proposition 2 implies for quantity-setting games satisfying the assumptions
in Proposition 2 that none of the firms will become the unique leader in the
market if there are at least three firms and therefore, Forchheimer’s model will
not emerge.

We state our result following from Proposition 2 on the sequence of oligopoly
markets investigated in Section 3 explicitly.

o}

Corollary 1 Let (O;‘)nzl be a sequence of quantity-setting oligopoly market
games satisfying Assumptions 1-4 and Assumption 6. Then for any n € N the
large firm does not emerge as the unique endogenous first mover of game Oy .

If we consider the extended timing game with observable action delay,'®
then we will not have an equilibrium with one follower, while every firm mov-
ing in the first period will be an equilibrium. This follows immediately from
Matsumura’s (1999) Assumption 2.

5 Concluding remarks

The intuition behind Proposition 1 is quite straightforward: If we consider the
Cournot game which occurs after firm 0 has chosen its quantity ¢g, then the
outcome of the subgame played by the remaining firms will converge to the
competitive one in the residual market as n becomes large under appropriate
assumptions. Thus, in the limit the price in the market must equal the marginal
costs of the small firms and therefore, if we were allowed to exchange the
order of the limits, then Proposition 1 would follow. In particular, the order
of maximizing the profits of the large firm and taking infinitely many small
firms has to be exchanged.

Of course, it is not at all clear that we can exchange the order of the
limits in the intuitive proof described above. Nevertheless, if we would like to
apply existing convergence results for Cournot games (see, for instance, Ruffin,
1971 and Novshek, 1985), then these convergence results would need to be
extended substantially. In particular, to exchange the order of the limits we
would need to prove that the convergence is uniform in the large firm’s action
qo- Hence, working out the described intuitive proof does not necessarily result
in a shorter proof of Proposition 1.

Finally, we would like to mention that Example 1 could be suitable to
illustrate (in textbooks on Industrial Organization) how Forchheimer’s model
can be implemented.

16 In case of observable action delay, a firm does not only know about the quantities of
those firms moving earlier, but also the group of those firms with which it will move in the
subsequent period.
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Appendix

Proof of (8). In order to verify (8) note that by (7) we have
Ve>0:3ng e N:Vn>ng:Vie{l,...,n}:|mc} (¢f') —D| <e. (20)

Select values g* and g such that mc} (qz ) =Dp—¢ and mc} (¢') = p+e¢. From
qr < ¢ < gl it follows that g7 < ¢ < g, which in turn nnphe MC.(q) <
MC.(qF) < MC.(q). Since MC.(q) =D —¢ and MC.(q}) = D+ € we
obtain, by the continuity of MC., equation (8). O

\/U)

Proof of (9). Differentiating (3) with respect to gy we obtain
(Lt fre) P+ friP' + (L4 fre) P fui = fri (me?) =0, (21)

where we have omitted the arguments of the functions in order to shorten the
expression. Rearranging (21) yields

P/ + P//fni
P’ — (mc?)

K3

fri=— (14 fre) - (22)

Summing (21) for all ¢ € {1,...,n} we get

n

WP+ P frot (4 1) P+ P foe) foo = S fs(mel) =0, (23)
=1

Substituting (22) for f/, in (23) we can express f, . and after the necessary

rearrangements we obtain (9). O

Proof of (10). First, we prove

n

1 1
lim = —. (24)
oo ; (mep) () MCL()
Let p} := mc} (q}'), p* 1= min;—y ., p{" and p" := max;—1, ., py. Then, by
(20) and the continuity of S/ we can find to all € > 0 an ng € N such that for
all n > ng we have

SL(p)—e<SL(P") <D (s} S.(p") < S.(p)+e.  (25)
=1
Thus,
e _ 1
S By e g =&Z )= 500 = STy

i=1 qa

where the second equality follows from (25) while the last from (8).
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Finally, we check (10). Consider

n n

- 4yl r - uqn
B U : A
LTy @ - @ ey @

i=1 =1 i=1

where the second summand tends to 0 since for all K > 0 we can find an
my € N such that for all n > m; we have (mc}) (¢f') — ™ > K for all

i€{1,...,n} because lim, o, (mc}) (¢?) = oo; and therefore,
n n,n no,nan it

lim ZL“ < lim u-g; — uq.

n—00 = rn — (mc;‘) (q;ﬂ) n—00 P —-K —-K

for all K > 0. We show that the first summand in (26) tends to —7/MC’. (q,)
by two inequalities. First,

- r’ - r" T
lim —— < — lim =— —
nee g — (mep) () T noee i (mep) (qf)  MCL(E)

by (24). Second, to any £ > 0 there exists a positive integer mo such that for
all n > mo we have

0 < (mef) (qf) =" < (1 +¢) (me}) (¢7")

for all 4 € {1,...,n}, which in turn implies that

,rn ,rn

rm— (me}) (q}) (1+¢) (mep) (a)

Thus, by (24)

n

r T
li > ,
el > rv — (men) (qr) ~  MCL(q,)

i=1

and we have established (10). O
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