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Summary. In a framework with two parties, deterministic voter preferences and a type
of geographical constraints, we propose a set of simple axioms and show that they jointly
characterize the districting rule that maximizes the number of districts one party can
win, given the distribution of individual votes (the “optimal gerrymandering rule”). As
a corollary, we obtain that no districting rule can satisfy our axioms and treat parties
symmetrically.
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1 Introduction

The districting problem has received considerable attention recently, both from the
political science and the economics viewpoint. Much of the recent work has focused
on strategic aspects and the incentives induced by different institutional designs on
the political parties, legislators and voters (see, among others, Besley and Preston,
2007, Friedman and Holden, 2008, Gul and Pesendorfer, 2009). Other contributions
have looked at the welfare implications of different redistricting policies (e.g. Coate and
Knight, 2007). Finally, there is also a sizable literature on the computational aspects of
the districting problem (see, e.g. Puppe and Tasnádi, 2008, and the references therein).

In contrast to these contributions, the present paper takes a normative point of
view. We formulate desirable properties (“axioms”) and investigate which districting
functions satisfy them. There are several reasons for exploring this approach. First, the
axiomatic method allows one to endow the vast space of conceivable districting rules
with useful additional structure: each combination of desirable properties character-
izes a specific class of districting rules, and thereby helps one to assess their respective
merits. Second, one may hope that specific combinations of axioms single out a few,
perhaps sometimes even a unique districting rule, thus reducing the space of possibili-
ties. Finally, the axiomatic approach may reveal incompatibility of certain axioms by
showing that no districting rule can satisfy certain combinations of desirable properties,
thereby terminating a futile search.

In a framework with two parties and geographical constraints on the shape of dis-
tricts, we propose a set of simple axioms and show that they jointly characterize the
districting rule that maximizes the number of districts one party can win, given the
distribution of individual votes (the “optimal gerrymandering rule”). While some of
the axioms have a more pragmatic justification, others have straightforward normative
foundations such as the neutrality property which requires that a districting rule should
treat parties symmetrically. Evidently, by generating a maximal number of winning
districts for one of the parties, the optimal gerrymandering rule violates the neutrality
axiom. Therefore, as a straightforward corollary of our main result, we obtain that no
districting rule can satisfy a set of reasonable properties and treat parties symmetrically
at the same time.

The work closest to ours in the literature is Chambers (2008, 2009) who also takes
an axiomatic approach. However, one of his central conditions is the requirement that
the election outcome be independent of the way districts are formed (“gerrymandering-
proofness”), and the main purpose of his analysis is to explore the consequences of this
requirement. By contrast, our focus is precisely on the districting process which we
try to structure by means of simple governing principles. In particular, geographical
constraints which are absent in Chambers’ model play an important role in our analysis.

The districting rules that we consider depend among other things on the distribution
of votes for each party in the population. One might argue, perhaps on grounds of
some “absolute” notion of ex ante fairness, that a districting rule must not depend on
voters’ party preferences since these can change over time. From this perspective, the
districting problem is not really an issue and it would seem that any districting which
partitions the population in (roughly) equally sized subgroups should be acceptable. By
contrast, in the present paper we are interested in a “relative” or ex post notion of fair
districting, i.e. in the question of what would constitute an acceptable districting rule
given the distribution of the supporters of each party in the population. This question
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seems particularly important for practical purposes since a districting policy can be
successfully implemented only if it receives sufficient support by the actual legislative
body.

2 The Framework

We assume that parties A and B compete in an electoral system consisting only of
single member districts, where the representatives of each districts are determined by
plurality. The parties as well as the independent bodies face the following districting
problem.

Definition 1 (Districting problem). A districting problem is given by the structure
Π = (X,A, µ, µA, µB , t, G), where

• the voters are located within a subset X of the plane R2,

• A is the σ-algebra on X consisting of all districts that can be formed without
geographical or any other type of constraints,

• the distribution of voters is given by a measure µ on (X,A),

• the distributions of party A and party B supporters are given by measures µA
and µB on (X,A) such that µ = µA + µB ,

• t is the given number of seats in parliament,

• G ⊆ A, also called geography, is the set of admissible districts satisfying µ(g) =
µ(X)/t and

µA(g) 6= µB(g) (1)

for all g ∈ G, and possessing a partitioning of X, i.e there exist mutually disjoint
sets g′1, . . . , g

′
t ∈ G such that ∪ti=1g

′
i = X.

Condition (1) excludes ties in the distribution of party supporters in all admissible
districts to avoid the necessity of introducing tie-breaking rules. This condition is
satisfied, for instance, if the set of voters is finite, µ, µA, µB are the counting measures
and the district sizes are odd.

Definition 2 (Districting). A districting for the problem (X,A, µ, µA, µB , t, G) is a
subset D ⊆ G such that D forms a partition of X and #D = t.

We shall denote by δA(D) and δB(D) the number of districts won by party A and
party B under D, respectively. We write DΠ for the set of all admissible districtings
of problem Π and let δA(D) = {δA(D) : D ∈ D} and δB(D) = {δB(D) : D ∈ D} for
any D ⊆ DΠ.

Definition 3 (Solution). A solution F associates to each districting problem Π a
non-empty set of chosen districtings FΠ ⊆ DΠ.
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3 Several Solutions

We now present a number of simple solution candidates. The first solution determines
the optimal partisan gerrymandering from the viewpoint of party A.

Definition 4 (Optimal solution for A). The optimal solution OA for party A deter-
mines for districting problem Π = (X,A, µ, µA, µB , t, G) the set of those districtings
that maximize the number of winning districts for party A, i.e.

OAΠ = arg max
D∈DΠ

δA(D).

Evidently, in the absence of other objectives, OA is the solution favored by party
A supporters. The optimal solution OB for party B is defined analogously. If we are
referring to an optimal solution O, then we have either OA or OB in mind.

The next solution minimizes the difference in the number of districts won by the
two parties. It has an obvious egalitarian spirit.

Definition 5 (Most equal solution). The solution ME determines for districting prob-
lem Π = (X,A, µ, µA, µB , t, G) the set of most equal districtings, i.e.

MEΠ = arg min
D∈DΠ

|δA(D)− δB(D)| . (2)

Since an equal solution does not always exist the most equal solution aims to get
as close as possible to equality in terms of the number of winning districts for the two
parties.

The third solution maximizes the difference in the number of districts won by the
two parties. The objective to maximize the winning margin of the ruling party could
be motivated, for instance, by the desire to avoid too much political compromise.

Definition 6 (Most unequal solution). The solution MU determines for districting
problem Π = (X,A, µ, µA, µB , t, G) the set of most unequal districtings, i.e.

MUΠ = arg max
D∈DΠ

|δA(D)− δB(D)| . (3)

Fourth, we consider the solution that minimizes partisan bias. It has a clear mo-
tivation from the point of view of maximizing representation of the “people’s will” in
the sense that the share of the districts won by each party is as close as possible to its
share of votes in the population.

Definition 7 (Least biased solution). The solution LB determines for districting prob-
lem Π = (X,A, µ, µA, µB , t, G) the set of those districtings that minimize the absolute
difference between shares in winning districts and shares in votes, i.e.

LBΠ = arg min
D∈DΠ

∣∣∣∣δA(D)
t
− µA(X)

µ(X)

∣∣∣∣ = arg min
D∈DΠ

∣∣∣∣δB(D)
t
− µB(X)

µ(X)

∣∣∣∣ . (4)

Finally, we mention the trivial solution that associates to each problem the set of
all admissible districtings.

Definition 8 (Complete solution). The complete solution C associates with any dis-
tricting problem Π = (X,A, µ, µA, µB , t, G) the set of all possible districtings DΠ.
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4 Axioms

In this section, we formulate five simple axioms each of which has an appeal either
from a normative or a pragmatic point of view.

The case of two districts plays a fundamental role in our analysis. Note that by
(1) it is not possible that a party can win both districts under one districting and
lose both districts under another districting, i.e. if t = 2 then δA(DΠ) (respectively,
δB(DΠ)) cannot contain both 0 and 2. Our first axiom requires that a solution must in
fact be “determinate” in the two-district case in the sense that it must not leave open
the issue whether there is a draw between the two parties or a victory for one party.
In other words, if a solution chooses a districting that results in a draw between the
parties for a given problem it cannot choose another districting for the same problem
that results in a victory for one party.

Axiom 1 (Two-district determinacy). A solution F satisfies two-district determinacy
if for any districting problem Π with t = 2, the sets δA(FΠ) and δB(FΠ) are singletons.

Evidently, all solutions considered in Section 2 with the exception of the complete
solution C satisfy Axiom 1. Also observe that on the family of all two-district problems
the most equal solution ME and the least biased solution LB coincide.1

Our next axiom requires that a solution behaves “uniformly” on the set of two-
district problems in the sense that the solution must treat different two-district prob-
lems in the same way, provided they admit the same set of possible distributions of the
number of districts won by each party.

Axiom 2 (Two-district uniformity). A solution F satisfies two-district uniformity if
for any districting problems Π and Π′ with t = 2 such that δA(DΠ) = δA(DΠ′) (and
therefore also δB(DΠ) = δB(DΠ′)) we have δA(FΠ) = δA(FΠ′) (and therefore also
δB(FΠ) = δB(FΠ′)).

Even though it is imposed only in the two-district case, Axiom 2 is admittedly a
strong requirement. It is motivated by the desire to keep the complexity of a solu-
tion manageable. Evidently, without Axiom 2, characteristics other than the possible
distributions of the number of districts won by each party would have to enter the defi-
nition of a solution. Whatever these characteristics may be – whether derived from the
underlying distribution of party supporters or from geographical information – their
influence would complicate the definition and implementation of a districting rule con-
siderably. In any case, it is easily seen that all solutions presented in Section 2 above
satisfy Axiom 2.

Our third axiom, imposed on districting problems of any size, has a motivation
similar to that of the previous axiom. It states that if a possible districting induces
the same distribution of the number of winning districts for each party than some
districting chosen by a solution, it must be chosen by this solution as well.

Axiom 3 (Indifference). A solution F satisfies indifference if for any districting prob-
lem Π we have that D ∈ FΠ, D′ ∈ DΠ, δA(D) = δA(D′) and δB(D) = δB(D′) implies
D′ ∈ FΠ.

1To verify this, observe that if there exist admissible districtings D,D′ ∈ DΠ with δA(D) = 2 and
δA(D′) = 1, then one must have 0.5 < µA(X)/µ(X) < 0.75. Thus, D′ must be chosen both by ME
and LB.
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Again, it is evident that all solution presented so far satisfy this condition. The fol-
lowing consistency axiom plays a central role. It requires that a solution to a problem
should also deliver appropriate solutions to specific subproblems. Its spirit is very simi-
lar to the uniformity principle in Balinski and Young’s (2001) theory of apportionment
(“every part of a fair division should be fair”).

Axiom 4 (Consistency). A solution F satisfies consistency if for any districting prob-
lem Π = (X,A, µ, µA, µB , t, G), any D ∈ FΠ and any D′ ⊆ D we have for Y = ∪d∈D′d
that

D|Y = D′ ∈ FΠ|Y = F(Y,A|Y ,µ|Y ,µA|Y ,µB |Y ,#D′,G|Y ),

where A|Y = {A ∩ Y : A ∈ A}, G|Y = {g ∈ G : g ⊆ Y } and µ|Y , µA|Y , µB |Y stand for
the restrictions of measures µ, µA, µB to (Y,A|Y ).

The optimal and complete solutions satisfy consistency. This is evident for the
complete solution. To verify it for the optimal solution suppose, by contradiction, that
there would exist D′ ⊂ D ∈ OAΠ such that D′ /∈ OAΠ|Y , where Y = ∪d∈D′d. This would
imply δA (D′′ ∪ (D \D′)) > δA (D) for any D′′ ∈ OAΠ|Y , a contradiction.

By contrast, the other solutions considered in Section 2 violate consistency. This
can be verified by considering the districting problem Π with t = 3 shown in Fig-
ure 1. It consists of 27 voters of which 11 are supporters of party A (indicated by
empty circles) and 16 are supporters of party B (indicated by solid circles), and four
admissible districtings D1 = {d1, d2, d3}, D2 = {d1, d4, d5}, D3 = {d3, d7, d8} and
D4 = {d5, d7, d9}. Note that party A wins two out of the three districts in D1 and D2,
respectively, and one of the three districts in D3 and D4, respectively. Consider the
solution ME first. Since the difference in the number of winning districts for the two
parties is one in all cases, we have MEΠ = {D1, D2, D3, D4}. Consider the districting
D1 ∈ MEΠ and Y = d1 ∪ d2. Consistency would require that the districting {d1, d2}
is among the chosen districtings if the solution is applied to the restricted problem
on Y . But obviously, we have MEΠ|Y = {{d7, d8}}, because the districting {d7, d8}
induces a draw between the winning districts on Y while the districting {d1, d2} entails
two winning districts for party A (and zero districts won by party B). Similarly, MU
violates consistency with D3 ∈ MUΠ and Y = d7 ∪ d8 since MUΠ = {D1, D2, D3, D4}
and MUΠ|Y = {{d1, d2}}.

v v f v f vf v f vv v f f ff ff
v v v v v vv v f

d1 d2

d3

v v f v f vf v f vv v f f ff ff
v v v v v vv v f

d1

d5

d4

v v f v f vf v f vv v f f ff ff
v v v v v vv v f

d7 d8

d3

v v f v f vf v f vv v f f ff ff
v v v v v vv v f

d7

d5

d9

Figure 1: ME, MU and LB violate consistency

To verify, finally, that also LB violates consistency observe first that LBΠ = {D3, D4}
in Figure 1. Consider D4 ∈ LBΠ and Y = d7 ∪ d9. Consistency would require that the
districting {d7, d9} is among the districtings chosen by the solution on the restricted
problem on Y . But it is easily seen that LBΠ|Y = {{d1, d4}}, since the districting
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{d1, d4} gives rise to a draw between the parties on Y which is closer to their re-
spective relative shares of votes on Y . Thus the least biased solution also violates
consistency.

Our final axiom expresses a fundamental principle of fairness in our context, namely
the symmetric treatment of parties ex ante.

Axiom 5 (Neutrality). A solution F satisfies neutrality if for any districting prob-
lem Π = (X,A, µ, µA, µB , t, G) and any D ∈ F(X,A,µ,µA,µB ,t,G) it follows that D ∈
F(X,A,µ,µB ,µA,t,G).

It is easily seen that all solutions presented so far with exception of the optimal
solution(s) satisfy the neutrality axiom.

In the following we will show that for a large class of geographies no solution can
satisfy all five axioms simultaneously. While we consider the neutrality condition to
be an indispensable fairness requirement, our proof strategy is to show that the first
four axioms characterize the optimal partisan gerrymandering solution O. Since this
solution evidently violates the neutrality requirement the impossibility result follows.

5 A Characterization Result and an Impossibility

First, we consider districting problems with only two districts.

Lemma 1. F satisfies two-district determinacy, two-district uniformity and indiffer-
ence if and only if F = O, F = ME or F = MU for t = 2.

Proof. Observe that two-district determinacy and two-district uniformity reduces the
number of possible districting rules for t = 2 to O, ME and MU if only the num-
ber of winning districts matters (recall that ME = LB on all two-district problems).
Now indifference ensures that either all two-to-zero, all one-to-one, or all zero-to-two
districtings admissible for problem Π have to be selected by solution F .

Finally, we have seen that O, ME and MU satisfy two-district determinacy, two-
district uniformity and indifference, which completes the proof.

Consider districting problems for t = 3 with the 9 possible districts and the 3
resulting districtings shown in Figure 2, in which party A voters are indicated by
empty circles and party B voters by solid circles, µ equals the counting measure on
(X,A) and µA, µB determine the respective number of party A and party B voters.
It can be verified that, considering the districtings from left to right, we obtain 3 to 0,
2 to 1 and 1 to 2 winning districtings for party A, respectively. Thus, e.g. the optimal
solution for party A would choose the first districting from the left, while the least
biased solution would choose the middle districting. The geography in the depicted
problem is “thin” in the sense that all proper subproblems allow only one possible
districting. Therefore, the consistency condition has no bite at all in this problem. In
order to make use of the consistency property, we will restrict the family of admissible
geographies in the following way.

Definition 9. The geography G of a problem Π = (X,A, µ, µA, µB , t, G) is linked if
for any two possible districtings D,D′ ∈ DΠ there exists a sequence D1, . . . , Dk of
districtings such that D = D1, D′ = Dk and #Di∩Di+1 = t−2 for all i = 1, . . . , k−1.
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Figure 2: Unlinked districtings

In the appendix, we present a large and natural class of linked geographies. While
the linkedness condition clearly limits the scope of our analysis, there is no hope to
obtain characterization results of the sort derived here without further assumptions on
the family of geographies.

Proposition 1. If F equals OA for t = 2 and F is consistent and indifferent, then
F = OA for linked geographies.

Proof. Consider a districting problem Π = (X,A, µ, µA, µB , t, G) with t ≥ 3 and sup-
pose that FΠ 6= OAΠ but F is consistent and indifferent. Since FΠ is not OAΠ , there
exist D′ ∈ OAΠ and D ∈ FΠ such that δA(D′) > δA(D) by indifference. Since
Π has a linked geography there exists a sequence D1, . . . , Dk of districtings such
that D′ = D1, D = Dk and #Di ∩ Di+1 = t − 2 for all i = 1, . . . , k − 1. Let
i′ = max{i ∈ {1, . . . , k − 1} : δA(D1) = δA(D2) = . . . = δA(Di) > δA(Di+1)} and
j′ = min{j ∈ {2, . . . , k} : δA(Dj−1) 6= δA(Dj) = . . . = δA(Dk)}. It follows by indiffer-
ence that Di′ ∈ OAΠ and Dj′ ∈ FΠ.

If i′ = j′− 1, then Di′ and Dj′ just differ in two districts, which we shall denote by
d, d′, e and e′, where the first two districts belong to Di′ while the latter two to Dj′ .
Observe that Di′ \ {d, d′} = Dj′ \ {e, e′} by linkedness. Let Y = d ∪ d′ = e ∪ e′. Since
OA and F are consistent we have {d, d′} ∈ OAΠ|Y and {e, e′} ∈ FΠ|Y . Our assumption
that F equals OA for t = 2 and Di′ \ {d, d′} = Dj′ \ {e, e′} implies δA(Di′) = δA(Dj′);
a contradiction.

Assume that i′ < j′ − 1. Employing (1), consistency and linkedness, we have

|δA(Di)− δA(Di+1)| ≤ 1 (5)

for all i = i′, . . . , j′ − 1 because Di and Di+1 just differ in two districts. Moreover, by
the definition of j′, by consistency and by our assumption that F equals OA for t = 2 we
must have δA(Dj′−1) < δA(Dj′), which in turn implies by (5) and δA(Di′) > δA(Dj′−1)
that there exists a smallest j∗ ∈ {i′ + 1, . . . , j′} such that δA(Dj∗) = δA(Dj′). Clearly,
Dj∗ ∈ FΠ by indifference. We cannot have j∗ > i′ + 1 since this would contradict the
definition of j∗, Dj∗ ∈ FΠ, δA(Dj∗−1) < δA(Dj∗) and (5). However, if i′ = j∗ − 1,
then we can repeat the argument of the previous paragraph by replacing j′ with j∗ to
obtain a contradiction.

Since neither the most equal or most unequal solutions satisfy consistency we cannot
extend ME or MU for t = 2 to arbitrary t in a manner of Proposition 1. However, it
might be the case that ME or MU for t = 2 can be extended to another consistent
solution. The next proposition demonstrates that such an extension does not exist.
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Proposition 2. There does not exist a consistent and indifferent solution F that equals
ME or MU for t = 2 even for linked geographies.

Proof. Suppose that there exists a consistent and indifferent solution F that equals
ME for t = 2. Consider the districting problem Π = (X,A, µ, µA, µB , 3, G), where X
consists of 27 voters, A equals the set of all subsets of X, µ is the counting measure,
and G = {d1, . . . , d9} is as shown in Figure 3 in which party A supporters are indicated
by empty circles and party B supporters by solid circles.

v f f v f vf f vf v v f f vv f fv f v f v fv v v
d1 d2

d3

v f f v f vf f vf v v f f vv f fv f v f v fv v v
d4

d2

d5

v f f v f vf f vf v v f f vv f fv f v f v fv v v
d1

d7

d6

v f f v f vf f vf v v f f vv f fv f v f v fv v v
d8 d9

d3

Figure 3: ME and MU cannot be extended

We can see from Figure 3 that the four possible districtings are D1 = {d1, d2, d3},
D2 = {d2, d4, d5}, D3 = {d1, d6, d7} and D4 = {d3, d8, d9}. It can be checked that the
given geography is linked. Since δA(D1) = 2 and δA(D2) = δA(D3) = δA(D4) = 1
we must have either {D1} = FΠ, {D2, D3, D4} = FΠ or {D1, D2, D3, D4} = FΠ by
indifference. First, consider the cases of {D1} = FΠ and {D1, D2, D3, D4} = FΠ.
By consistency we must have {d1, d2} ∈ F(X′,A′,µ′,µ′A,µ′B ,2,G′), where X ′ = d1 ∪ d2,
G′ = {d1, d2, d8, d9} and A′, µ′, µ′A, µ′B denote the restrictions of A, µ, µA, µB to
X ′, respectively. However, F(X′,A′,µ′,µ′A,µ′B ,2,G′) should equal {d8, d9} since F = ME
for t = 2; a contradiction. Second, consider the case of {D2, D3, D4} = FΠ and pick
the case of D3. By consistency we must have {d6, d7} ∈ F(X′′,A′′,µ′′,µ′′A,µ′′B ,2,G′′), where
X ′′ = d6 ∪ d7, G′′ = {d2, d3, d6, d7} and A′′, µ′′, µ′′A, µ′′B denote the restrictions of A,
µ, µA, µB to X ′′, respectively. However, F(X′′,A′′,µ′′,µ′′A,µ′′B ,2,G′′) should equal {d2, d3}
since F = ME for t = 2; a contradiction.

Now suppose that there exists a consistent and indifferent solution F that equals
MU for t = 2. Consider once again the problem shown in Figure 3. First, con-
sider the cases of {D1} = FΠ and {D1, D2, D3, D4} = FΠ. By consistency we must
have {d1, d3} ∈ F(X′,A′,µ′,µ′A,µ′B ,2,G′), where X ′ = d1 ∪ d3, G′ = {d1, d3, d4, d5} and
A′, µ′, µ′A, µ′B denote the restrictions of A, µ, µA, µB to X ′, respectively. How-
ever, F(X′,A′,µ′,µ′A,µ′B ,2,G′) should equal {d4, d5} since F = MU for t = 2; a contra-
diction. Second, consider the case of {D2, D3, D4} = FΠ and pick the case of D4.
By consistency we must have {d8, d9} ∈ F(X′′,A′′,µ′′,µ′′A,µ′′B ,2,G′′), where X ′′ = d8 ∪ d9,
G′′ = {d1, d2, d8, d9} and A′′, µ′′, µ′′A, µ′′B denote the restrictions of A, µ, µA, µB to
X ′′, respectively. However, F(X′′,A′′,µ′′,µ′′A,µ′′B ,2,G′′) should equal {d1, d2} since F = MU
for t = 2; a contradiction.

Our main theorem follows from Lemma 1 and Propositions 1 and 2.

Theorem 1. The optimal solution O is the only solution that satisfies two-district de-
terminacy, two-district uniformity, indifference and consistency on linked geographies.

We obtain the following result as a simple corollary.
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Corollary 1. There does not exist a two-district determinate, two-district uniform,
indifferent, consistent and neutral solution on linked geographies.

Appendix

We provide an example showing that linkedness is satisfied by a quite natural planar
geography. A bounded subset A of R2 will be called strictly connected if its boundary
∂A is a Jordan curve. A subset A of a strictly connected set B ⊆ R2 separates B if
B \ A is not strictly connected. We call a continuous function f : X → R nowhere
constant if for any x ∈ X and any neighborhood N(x) of x there exists a y ∈ N(x)
such that f(x) 6= f(y).

Example 1 (Regular). A districting problem Π = (X,B(X), µ, µA, µB , t, G) is called
regular if

1. X is a bounded and strictly connected subset of R2,

2. µ, µA and µB are finite and absolutely continuous measures on (X,B(X)) with
respect to the Lebesgue measure,

3. G consists of all bounded, strictly connected and µ(X)/t sized subsets of B(X)
and

4. there exists a continuous nowhere constant function f : X → R such that
µA(C) =

∫
C
f(ω)dµ(ω) for all C ∈ B(X).

The last assumption is a purely technical one providing a sufficient condition to
ensure that the districtings emerging in the proof of Lemma 2 can be selected in a way
that they satisfy (1).

In what follows we write D ∼ D′ if for two districtings D,D′ ∈ DΠ there exists a
sequence D1, . . . , Dk of districtings such that D = D1, D′ = Dk and #Di∩Di+1 = t−2
for all i = 1, . . . , k − 1.

Lemma 2. Regular districting problems are linked.

Proof. Linkedness is clearly satisfied if t = 1 or t = 2. We show that the linkedness of
all regular districting problems for t ≤ n implies the linkedness of all regular districting
problems for t = n+ 1, which yields by induction the proof of our statement.

Take two arbitrary districtings D and E of a districting problem with t = n + 1.
We can pick a district d ∈ D such that d and X have at least a non-degenerate curve as
a common boundary and d does not separate X, i.e. there exists a curve C of positive
length such that C ⊆ ∂d ∩ ∂X and X \ d remains strictly connected. Moreover, there
exist a district e ∈ E and a curve C ⊂ R2 of positive length such that µ(d∩ e) > 0 and
C ⊆ ∂d ∩ ∂e ∩ ∂X.

Case 1: Assume that e does not separate X. Since µ is absolutely continuous
there exists a set h such that µ(h) = 2µ(X)/(n + 1), d ∪ e ⊂ h, d′ = h \ d ∈ G and
e′ = h \ e ∈ G and h does not separate X. Let H be a districting of Y = X \ h into
n − 1 strictly connected districts. Then Π |Y ∪d′ and Π |Y ∪e′ are regular districting
problems, and therefore it follows by the induction hypothesis that D ∼ H ∪ {d, d′}
and H ∪ {e, e′} ∼ E. Clearly {d, d′} ∼ {e, e′}, which gives H ∪ {d, d′} ∼ H ∪ {e, e′}.
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Case 2: Assume that e does separate X, where the number of strictly disconnected
regions of X \ {e} equals k ≤ n. Then dc ∩ ∂e ∩ ∂X 6= ∅. We can find a district
e′ ∈ E with a unique boundary element x ∈ ∂e′ satisfying x ∈ dc ∩ ∂e ∩ ∂X and
that ∂e ∩ ∂e′ has a common curve of positive length starting from x. Hence, one can
exchange territories between e and e′ so that for the resulting new districts h and h′

we have that d∩ e ⊂ h, h separates X into at most k− 1 strictly disconnected regions.
Clearly, E′ = (E \ {e, e′}) ∪ {h, h′} ∼ E and we can continue with either Case 1 or
Case 2, where now E′ and h plays the role of E and e, respectively. Observe that we
arrive to Case 1 after at most k steps.

References

[1] Balinski, M. and Young, H.P. (2001), Fair Representation. Meeting the Ideal
of One Man, One Vote, Second Edition, Brookings Institution Press, Washington
D.C.

[2] Besley, T. and Preston, I. (2007), “Electoral Bias and Public Choice: Theory
and Evidence,” Quarterly Journal of Economics 122, 1473-1510.

[3] Chambers, P.C. (2008), “Consistent Representative Democracy,” Games and
Economic Behavior 62, 348-363.

[4] Chambers, P.C. (2009), “An Axiomatic Theory of Political Representation,”
Journal of Economic Theory, 144, 375-389.

[5] Coate, S. and Knight, B. (2007), “Socially Optimal Districting: A Theoretical
and Empirical Exploration,” Quarterly Journal of Economics 122, 1409-1471.

[6] Friedman, J.N. and Holden, R.T. (2008), “Optimal Gerrymandering: Some-
times Pack, But Never Crack,” American Economic Review, 98, 113-144.

[7] Gul, R. and Pesendorfer, W. (2009), “Strategic Redistricting,” American
Economic Review, forthcoming.
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