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Abstract

Factor analysis is often applied in empirical data analysis to explore

data structures. Due to its theoretical construction, factor analysis is

suitable for the study of linear relationships, and adequacy of a fac-

tor analysis solution is often assessed with linear correlation related

measures. This paper aims to contribute to literature by examining

whether linear factor structures can correspond to multiple require-

ments simultaneously. Theoretical and simulation results also suggest

that under the applied assumptions the examined optimality criteria

can not be met simultaneously. These criteria are related to the deter-

minant of the correlation matrix (that should be minimized so that it

is close to zero), the determinant of the anti-image correlation matrix

(that should be maximized so that it is close to one), and the Kaiser-

Meyer-Olkin measure of sampling adequacy (that should be above a

prede�ned minimum value). Results of the analysis highlight the com-

plexity of questions related to the design of quantitative methodology

for exploring linear factor structures.

JEL: C43, C52
Keywords: Aggregation, Indicators, Model Evaluation

1 Introduction

Linear factor structures are important in exploring empirical data. Factor
analysis, that can provide information about linear factor structures in data
analysis, may reveal interesting insights regarding the underlying data pat-
terns. If nonlinearity within data does not prevail, factor analysis may be
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applicable for several data analysis purposes. Theoretically a distinction be-
tween con�rmatory factor analysis (applicable for testing an existing data
model) and exploratory factor analysis (aimed at �nding latent factors) can
be made. (Sajtos-Mitev (2007), pages 245-247) Goodness measures may be
related to the speci�c purpose of a factor analysis, for example the grade
of reproducibility of correlations or the size of partial correlation coe�cients
may also contribute to the evaluation of results. This paper focuses on ex-
ploratory factor analysis, thus correlation values are of central importance in
assessing model adequacy.

Exploratory factor analysis methods include common factor analysis and
principal component analysis (Sajtos-Mitev (2007), page 249), with the ma-
jor di�erence that principal component analysis is based on the spectral de-
composition of the (ordinary) correlation matrix, while other factor analysis
methods apply di�erent algorithms in calculating factors, for example in
some cases eigenvalues and eigenvectors of a reduced correlation matrix (as
opposed to the unreduced ordinary correlation matrix) are computed. The
application of a reduced correlation matrix in calculations (for example in
principal axis factoring, that is one of the factor analysis algorithms) em-
phasizes the distinction between the common and unique factors that are
assumed to determine measurable data. In case of a �good� exploratory
factor analysis output spectral decomposition results in an uneven distribu-
tion of eigenvalues so that (relatively easily interpretable) eigenvectors are
strongly correlated with observable variables, with partial correlations be-
tween measurable variables being relatively low. As a consequence, some
criteria (related to the goodness of factor analysis results) can be formulated
based on the Pearson correlation coe�cients and the partial correlation val-
ues. The determinant of a correlation matrix is a function of matrix values
and thus, although it does not necessarily fully express all �information� in-
herent in the matrix, it can be considered as a simple measure of goodness of
factor analysis results. In case of assuming the equality and non-negativity
of the o�-diagonal elements in a correlation matrix containing Pearson cor-
relation values a lower determinant value indicates a better factor analysis
solution. For example if the determinant of this correlation matrix is zero,
then some eigenvalues of the correlation matrix are equal to zero and it is
possible that all observable variables are perfectly correlated with one of the
eigenvectors of the correlation matrix.

Partly similar to Pearson correlation coe�cients, partial correlation val-
ues also describe the linear relationship between two observable variables
(while controlling for the e�ects of other variables). The presence of latent
factors in the data may be indicated by linear relationships of observable
variables that are characterized by (in absolute terms) high Pearson correla-
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tion coe�cients and (in absolute terms) low partial correlation values. The
total Kaiser-Meyer-Olkin (KMO) value and the anti-image correlation ma-
trix in a factor analysis summarize the most important information about
partial correlations. In case of an adequate factor analysis result the to-
tal KMO value should be above a prede�ned minimum value (e.g. Kovács

(2011), page 95 and George-Mallery (2007), page 256). The o�-diagonal el-
ements of the anti-image correlation matrix are the negatives of the partial
correlation coe�cients, while the diagonal values represent partial correla-
tion related measures of sampling adequacy (variable related KMO values)
for observable variables. (Kovács (2014), page 156) If the determinant of the
anti-image correlation matrix is high (for example close to one) it may be
considered as an indicator of the goodness of a factor analysis solution.

The paper aims at exploring whether these alternative goodness crite-
ria can be met simultaneously (the determinant of the ordinary correlation
matrix should be close to zero when the determinant of the anti-image cor-
relation matrix is close to one, so that the total KMO value is above the
minimum requirement). The key theoretical result of the paper is that if all
Pearson correlation coe�cients between observable variables are assumed to
be non-negative values that are equal, then the optimal solutions in case of
the two determinants di�er. In addition to this, simulation results show that
in case of the assumed matrix size, low (close to zero) correlation matrix de-
terminants are not associated with high (close to one) anti-image correlation
matrix determinant values if the requirement about the expected minimum
of KMO value is also taken into account.

The paper is organized as follows. Section 2 outlines some features of
factor analysis methods. Section 3 introduces the assumptions applied to
calculate optimality measures, and Section 4 summarizes theoretical and sim-
ulation results about optimality criteria in the paper. Section 5 concludes
and describes directions for future research.

2 Linear correlation in factor analysis

In exploratory factor analysis the factors can be considered as latent variables
that, unlike observable variables, cannot be measured or observed. (Rencher-
Christensen (2012), page 435) Interpretable latent variables may not only
underlie cross sectional data, but may also be identi�ed in case of time series
(Fried-Didelez (2005)). The range of quantitative methods for the analysis
of latent data structures is wide, for example conditional dependence models
for observed variables in terms of latent variables can also be presented with
copulas (Krupskii-Joe (2013)).
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The creation of latent variables can be performed with several algorithms,
and a general feature of factor analysis is the central importance of (linear)
Pearson correlation values during calculations. According to some authors
(e.g. Hajdu (2003), page 386) principal component analysis can be consid-
ered as one of the factor analysis methods. However, it has to be emphasized
that principal component analysis and other factor analysis methods exhibit
certain di�erences. In the following these di�erences are illustrated with
a comparison of principal component analysis and principal axis factoring.
One of the main di�erences between these two methods is that in pricipal
component analysis the whole correlation matrix can be reproduced if all
components are applied for the reproduction, while in principal axis factor-
ing theoretically only a reduced correlation matrix can be reproduced (in
which the diagonal values are lower than one). This di�erence is related
to the dissimilarity of assumptions about the role of unique factors in de-
termining measurable data. Principal axis factoring assumes that common
and unique factors are uncorrelated and the diagonal values of the repro-
duced correlation matrix are related solely to the common factors. In case
of principal component analysis the e�ect of common and unique factors are
modeled together. (Kovács (2011), page 89)

Linear combinations of observable variables are called components in prin-
cipal component analysis, while in principal axis factoring combinations of
observable variables are referred to as factors. Despite calculation di�erences
components and factors (belonging to the same database) may be similar.
The following simulation analysis aims at illustrating similarities of principal
component analysis and principal axis factoring results. It is worth men-
tioning that although factor analysis results are sensitive to outliers (e.g.
Serneels-Verdonck (2008), Hubert et al. (2009)), in the following calculation
model, due to the applied distributional assumptions, this possible problem
may be considered as not serious.

In data analysis, simulations may be applied to assess selected features
of algorithms (Josse-Husson (2012)), for example related to factor analy-
sis (Brechmann-Joe (2014)). Assume that the matrix containing theoretical
Pearson correlation values is described by Equation (1).

R =

 1 r1 r2
r1 1 r3
r2 r3 1

 (1)

Based on Equation (1) it is possible to simulate empirical correlation
matrices by means of the Cholesky decomposition of the correlation matrix
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(a) simulated values (b) histogram

Figure 1: Simulated Pearson correlation values
Source: own calculations

(R = C · CT ), with the transformation of independent normal variables
into dependent normal (Madar (2015)). The matrix C in this Cholesky
decomposition is described by Equation (2).

C =

 1 0 0

r1
√

1− r21 0

r2
r3−r1·r2√

1−r21

√
1− r21 −

(r3−r1·r2)2
1−r21

 (2)

In the simulation analysis it is assumed that 1000 observations belong to
each of the three variables, and these variables follow a normal distribution.
The number of simulations is 1000. Related to these distributional assump-
tions it is worth mentioning that (as Boik (2013) points out) it is possible
to construct principal components without assuming multivariate normality
of data. For each set of simulated variables principal component analysis
and principal axis factoring are performed and the component and factor
with the highest eigenvalue is calculated. If the absolute value of Pearson
correlation between this component and this factor is close to one in a sim-
ulation, then it can be considered as indicating the similarity of principal
component analysis and factor analysis results. Since the components and
factors correspond to eigenvectors, thus the absolute values of correlation
coe�cients are analyzed. In a relatively simple example it can be assumed
that r1 = 0, r2 = 0 and r3 = 0.99. Simulated Pearson correlation values and
the histogram (belonging to this example) are illustrated by Figure 1.

The distribution of Pearson correlation coe�cients (between the compo-
nent and the factor) indicate that the simulated values are relatively close
to one, thus in this example principal component analysis and principal axis
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factoring results can be considered as relatively similar. The appendix in-
troduces simulation results for three additional examples, and the similarity
of principal component analysis and factor analysis results can be observed
also in case of these examples: the correlation values between the component
and the factor in the examples are relatively close to one. Thus (although
the theoretical construction of principal axis factoring is more appropriate
in identifying latent factors in data) in the following it is assumed that the
spectral decomposition of the complete (unreduced) correlation matrix can
also provide information about the goodness of factor analysis results, and in
the following the complete (unreduced) correlation matrix is applied in the
calculations (instead of a reduced correlation matrix).

3 The correlation model

An ordinary correlation matrix can be quite complex, since the only theoreti-
cal restriction related to its form is that it is a symmetric positive semide�nite
matrix. Strong (Pearson) correlations between observable variables and la-
tent factors (calculated with the application of factor analysis algorithms) are
often considered as indicating a good linear factor structure, but it is worth
emphasizing that low partial correlations between observable variables are
also necessary to the identi�cation of latent factors. The question arises
whether there is a linear factor structure that corresponds to all these re-
quirements. The paper aims at contributing to the research of this question.

Since the potential complexity of a correlation matrix increases with its
size, the paper examines a simple case with three observable variables. Even
in this case the requirement that the (ordinary) correlation matrix is positive
semide�nite allows several combinations of (Pearson) correlation values. As-
sume for example that the correlation matrix is de�ned as in Equation (1).
The requirement that the (ordinary) correlation matrix is positive semidef-
inite is equivalent to assuming that the correlation matrix has only non-
negative eigenvalues. Assume that the lowest eigenvalue of the correlation
matrix in Equation (1) is indicated by λ3, then it can be calculated based on
Equation (3):

(1− λ3)3 − (1− λ3) · (r21 + r22 + r23) + 2 · r1 · r2 · r3 = 0 (3)

Theoretically the solution of Equation (3) could be a complex number
(and then its interpretation in factor analysis could be problematic), but since
all values in the correlation matrix are real numbers, thus the eigenvalues of
the correlation matrix are also real numbers. As a solution of Equation (3)
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the lowest eigenvalue of the correlation matrix in Equation (3) is described
by Equation (4):

λ3 = 1− 2 ·
√
r21 + r22 + r23

3
· cos

1

3
· arccos

 −r1 · r2 · r3√(
r21+r22+r23

3

)3

 (4)

To illustrate that only certain combinations of correlation values are re-
lated to a positive semide�nite correlation matrix, assume in the following
example that r1 = 0. In case of this assumption Equation (4) is equivalent
to Equation (5):

λ3 = 1− 2 ·
√
r21 + r22 + r23

3
· cos

(π
6

)
(5)

By rearranging Equation (5) the condition for the positive semide�nite-
ness of the correlation matrix is described by Equation (6):√

r22 + r23 ≤ 1 (6)

The possible combinations of correlation values that meet the condition
in Equation (6) are illustrated by Figure 2, on this graph all combinations
of Pearson correlations (indicated on the horizontal and vertical axis of the
graph) that are not above the plotted curve result in a semide�nite ordinary
correlation matrix.

These results indicate that, as a consequence of the theoretical positive
semide�niteness of the correlation matrix, the relationships of Pearson cor-
relation values in an (ordinary) correlation matrix should meet some re-
quirements. For the sake of simplicity, in the following it is assumed that
all o�-diagonal elements in the ordinary correlation matrix are non-negative
values that are equal: r1 = r2 = r3 = r and r >= 0. In this case the lowest
eigenvalue in Equation (3) is equal to 1− r (under these simple assumptions
the highest eigenvalue of the ordinary correlation matrix is equal to 1 + 2r,
and the other two eigenvalues are equal to 1− r), thus the condition for the
positive semide�niteness of the correlation matrix is met. In the following
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Figure 2: Possible combinations of correlation values

Source: own calculations

theoretical results are calculated under these simple assumptions about the
form of the ordinary correlation matrix.

4 Correlation based optimality measures

Goodness of an explanatory factor analysis solution has several aspects, thus
the range of possible goodness measures is also relatively wide. For ex-
ample with the application of Barlett's test it may be evaluated whether
the sample correlation matrix di�ers signi�cantly from the identity matrix
(Knapp-Swoyer (1967), Hallin et al. (2010)) when all eigenvalues were equal
(and thus the related eigenvectors could not be interpreted as correspond-
ing to latent factors). Theoretically subsphericity (equality among some of
the eigenvalues) could also be tested (Hallin et al. (2010)), and other eigen-
value related goodness of �t measures (Chen-Robinson (1985)), for example
the total variance explained by the extracted factors (Martínez-Torres et

al. (2012)), Hallin et al. (2010)) may also contribute to the assessment of
factor models. Beside these aspects, interpretability of factors is an other
important question in goodness evaluation (Martínez-Torres et al. (2012)),
that should be considered when deciding about the number of extracted fac-
tors. The choice of relevant factors (or for example components in a principal
component analysis) may depend also on the objectives of the analysis (Ferré
(1995)) If maximum likelihood parameter estimations can be performed, then
for example Akaike's information criterion (AIC) or Bayesian information cri-
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terion (BIC) may be applied during the determination of the factor number
(Zhao-Shi (2014)), but it is worth emphasizing that not all factor selecting
approaches are related to distributional assumptions (Dray (2008)), for ex-
ample a possible method for factor extraction is to retain those factors (or
components) that have eigenvalues larger than one (Peres-Neto (2005)). De-
spite the wide range of possible goodness measures, the comparison of factor
analysis results is not necessarily simple, since factor loadings in di�erent
analyses can not be meaningfully compared. (Ehrenberg (1962))

In the following a simple theoretical model is introduced, in which the
relationship of selected goodness measures is analyzed. It has to be empha-
sized that although theoretically a distinction could be made between data
adequacy (for example whether correlation values make �data aggregation�
possible) and goodness of factor analysis results (for example whether factors
can be easily interpreted), this paper does not analyze potential di�culties
in the interpretation of factors, thus data adequacy and goodness of factor
analysis results can be considered as similar concepts in the paper.

Goodness of a factor structure can be evaluated based on ordinary and
partial correlations, thus in the following these values are calculated in a the-
oretical model. Equation (7) contains the (symmetric and positive semide�-
nite) ordinary correlation matrix that corresponds to the simple assumptions
in the paper.

R =

1 r r
r 1 r
r r 1

 (7)

These assumptions result in a nonnegative positive semide�nite matrix,
and although an exact nonnegative decomposition of a nonnegative positive
semide�nite matrix is not always available (Sonneveld et al. (2009)), the
eigenvalues are all nonnegative real numbers in this case.

Under the applied simple assumptions the determinant of the ordinary
correlation matrix is described by Equation (8), as also presented by the
literature (e.g. Joe (2006)).

det (R) = 2 · r3 − 3 · r2 + 1 (8)

Theoretically the determinant of a correlation matrix can be between
zero and one, and the determinant of the unity matrix is equal to one. If the

9



correlation matrix is a unity matrix, then all eigenvalues of the correlation
matrix are equal to one, and in a factor analysis this case would correspond
to a solution, when the highest number of observable variables that strongly
correlate with a calculated factor is only one. Thus, if the correlation matrix
is a unity matrix, factor analysis solutions can not be considered as optimal.
Based on these considerations, a lower (close to zero) correlation matrix
determinant could indicate a better factor structure (that could be related
to latent factors in data). In this paper, one of the factor structure optimality
criteria is de�ned in terms of the ordinary correlation matrix determinant:
the factor structure that belongs to the lowest correlation matrix determinant
is identi�ed as optimal from this point of view.

An other aspect of the optimality of factor structures is related to the
partial correlation coe�cients between the observable variables. Partial cor-
relations measure the strength of the relationship of two variables while
controlling for the e�ects of other variables. In a good factor model the
partial correlation values are close to zero. (Kovács (2011), page 96) The
anti-image correlation matrix summarizes information about the partial cor-
relation coe�cients: the diagonal values of the anti-image correlation matrix
are the Kaiser-Meyer-Olkin (KMO) measures of sampling adequacy, and the
o�-diagonal elements are the negatives of the pairwise partial correlation co-
e�cients. The KMO measure of sampling adequacy can be calculated for
the variables separately, or for all variables together. If calculated for the
variables separately (and if pairwise Pearson correlation values and partial
correlation coe�cients are indicated by rij and pij, respectively), the KMO

value is equal to

∑
i6=j

rij
2∑

i6=j
rij2+

∑
i6=j

pij2
. (Kovács (2011), pages 95-96) Equation (9)

shows the anti-image correlation matrix that corresponds to the model as-
sumptions:

P =

KMO −p −p
−p KMO −p
−p −p KMO

 (9)

Theoretically the maximum value in case of the KMO measure is equal to
one (if the partial correlation values were equal to zero), and a higher KMO
value indicates a better database for the analysis (Kovács (2011), pages 95-
96) Similar to the individual KMO values that can be calculated for the
variables, the total (database level) KMO value (that takes into account all
pairwise ordinary and partial correlation coe�cients) can also be calculated:
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∑
i6=j

∑
rij

2∑
i6=j

∑
rij2+

∑
i6=j

∑
pij2

. In case of an adequate factor analysis solution the total

KMO value should be at least 0.5. (Kovács (2011), page 95 and George-

Mallery (2007), page 256)
Under the assumptions in the paper the pairwise partial correlation coef-

�cients are equal in the simple model framework, and can be expressed as a
function of the Pearson correlation values, as described by Equation (10).

p =
r

r + 1
(10)

The variable-related KMO values are also equal for each variable and this
KMO value is described by Equation (11).

KMO =
(1 + r)2

(1 + r)2 + 1
(11)

As indicated by Equation (12), based on Equation (10) and Equation (11)
the determinant of the anti-image correlation matrix can be expressed as a
function of the Pearson correlation values (indicated by r in the model).

det (P ) =

(
(1 + r)2

(1 + r)2 + 1

)3

− 2 · r3

(1 + r)3
− 3 · (1 + r)2

(1 + r)2 + 1
· r2

(1 + r)2
(12)

Theoretically, as far as partial correlation values are concerned, in case
of an optimal factor structure the pairwise partial correlation coe�cients
were equal to zero, thus also resulting in all KMO values being equal to one.
In this optimal case the anti-image correlation matrix were a unity matrix
with a determinant equal to one. Based on these considerations, an other
optimality criterion can be de�ned in terms of the determinant belonging to
the anti-image correlation matrix: the optimal factor structure is associated
with the highest determinant value (that should be close to one). It is worth
mentioning that theoretically the determinant of the anti-image correlation
matrix can not only be a value between zero and one.
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(a) determinants as a function of r (b) relationship of the two determinants

Figure 3: Correlation matrix determinants
Source: own calculations

It has to be emphasized that optimality is only analyzed from a math-
ematical point of view in this paper (whether goodness criteria can be met
simultaneously), but in practical applications other aspects (for example in-
terpretability) may also contribute to the identi�cation of an optimal factor
structure. In the paper only the two correlations matrix determinants are
compared and the requirement about the total KMO value is analyzed.

Figure 3 shows the determinants as a function of the Pearson correlation
(indicated by r in the model) and illustrates the relationship of the two ma-
trix determinants. It can be observed that the minimal correlation matrix
determinant value belongs to that case when the Pearson correlation between
the variables is equal to one. The determinant of the anti-image correlation
matrix reaches its maximum at a Pearson correlation value that is lower
than one. These results indicate that in this simple example the two opti-
mality criteria (de�ned in terms of the matrix determinants) can not be met
simultaneously. Results also show that the determinant of the anti-image
correlation matrix is not close to one, thus this goodness requirement is also
not met. In addition to these results, in this case the requirement about the
total KMO value (that it should be at least 0.5) does not have an e�ect on
the conclusion about the availability of factor solutions that simultaneously
correspond to multiple goodness criteria, since (as Figure 3 shows) under
the applied simple theoretical assumptions no factor structure corresponds
to the goodness criteria (described by the correlation matrix determinants)
simultaneously.

Although these conclusions belong to a relatively simple case, the results
may also indicate potential di�culties in �nding linear factor structures that
are adequate not only from the point of view of Pearson correlation coe�-
cients, but also in terms of partial correlation values (that are important in
deciding whether a linear combination of observable variables can be consid-
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5 Conclusions

With the development of information technologies the amount of empirically
analyzable data has grown continuously over the last decades. Along with
these tendencies, the need for advanced pattern recognition techniques has
also increased. Linear factor structures may be present in data, and the-
oretically several factor analysis methods can be applied to identify latent
factors. It is thus a compelling research question, whether theoretically there
are optimal linear factor structures.

Factor analysis methods are related to the measurement of strength of
linear relationships between observable variables. The ordinary correlation
matrix contains information about linear relationships between variables, this
matrix however can be quite complex, since the only theoretical restriction
about its form is that it is symmetric and positive semide�nite. Partly as
a consequence of the complexity of correlation matrices various optimality
criteria can be formulated for the evaluation of factor analysis results. In
addition to the requirement about the Kaiser-Meyer-Olkin measure of sam-
pling adequacy (it should be above a minimum value), this paper de�nes
optimality in terms of two matrices (the ordinary correlation matrix and the
anti-image correlation matrix), with the formulation of two theoretical opti-
mality criteria (minimization of the determinant of the ordinary correlation
matrix and maximization of the determinant of the anti-image correlation
matrix), by also taking into account that for a good factor analysis solution
the determinant of the ordinary correlation matrix should be close to zero,
while the determinant of the anti-image correlation matrix should be close
to one. Relevancy of the anti-image correlation matrix (that contains in-
formation about partial correlations) is explained by the importance of (in
absolute value) low partial correlations in identifying linear combinations of
observable variables as latent factors.

The paper aims at contributing to the literature with a simultaneous anal-
ysis of the applied goodness criteria in case of a relatively small correlation
matrix (that has 3 columns), by presenting both theoretical and simulation
results. Despite the relative simplicity of theoretical model assumptions and
optimality criteria de�nition, the results may provide interesting insights into
the relationship of Pearson correlation coe�cients and partial correlation val-
ues. Theoretical results suggest that the two optimal factor solutions (that
correspond to the maximization of the anti-image correlation matrix deter-
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minant and the minimization of the ordinary correlation matrix determinant)
are not identical, and the maximum determinant value of the anti-image cor-
relation matrix (under the simple model assumptions) is not close to one.
Simulation results illustrate that the determinant related optimality criteria
(that the anti-image correlation matrix determinant should be close to one
while the ordinary correlation matrix determinant is close to zero) can not be
met simultaneously, when the KMO value related requirement is also taken
into account. These results are associated with the relationship of the Pear-
son correlation values (between observable variables) and the pairwise partial
correlation coe�cients: the theoretical model illustrates that an increase in
the pairwise Pearson correlation values may be related with an increase in
the partial correlation coe�cients.

Optimality of linear factor structures has several aspects, thus its further
analysis o�ers a wide range of directions for future research. Possible theoret-
ical extensions of the model in the paper include for example modi�cations
in the de�nition of optimality criteria, or a more general set of assumptions
about the elements in the ordinary correlation matrix.
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Appendix

Comparison of eigenvectors in principal component analysis and

principal axis factoring

In the following example three cases are analyzed. Similar to Section 2,
in each of these cases it is assumed that the theoretical Pearson correlation
coe�cients are described by Equation (1).

For each of the three analyzed cases it is assumed that the variables (with
1000 observations) in the analysis follow a normal distribution. The number
of simulations is 1000 in each of the cases. For each simulation principal
component analysis and principal axis factoring are performed and the com-
ponent and factor with the highest eigenvalue is calculated. An adequately
high (close to one) absolute value of the Pearson correlation between this
component and this factor can be considered to indicate similarity of prin-
cipal component analysis and principal axis factoring results. The empirical
distribution of these Pearson correlation values is analyzed and compared
among the three cases (the absolute values of correlation coe�cients are an-
alyzed, since these components and factors correspond to eigenvectors). In
the analyzed three cases it is assumed that r1 = r2 = r3 so that the theo-
retical correlation in the examples is 0.25, 0.75 and 0.99, respectively. The
following �gures (showing the simulated Pearson correlation coe�cients and
the histogram of these correlation values) illustrate di�erences in these cases.

The main conclusion is that in these simulation examples the results of
principal component analysis and principal axis factoring can be considered
as relatively similar, since the Pearson correlation coe�cients (in absolute
value) between the component and factor with the highest eigenvalue are
relatively close to one. According to simulation results that are summarized
in the following table, the standard deviation of these values is smaller if the
correlation values are larger in the theoretical correlation matrix.

correlation values

average st. dev.

r = 0.25 0.996788 0.003481
r = 0.75 0.999785 0.000228
r = 0.99 0.999995 0.000005
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(a) r = 0.25, simulated values (b) r = 0.25, histogram

(c) r = 0.75, simulated values (d) r = 0.75, histogram

(e) r = 0.99, simulated values (f) r = 0.99, histogram

Simulation results
Source: own calculations
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