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Abstract: Rationing occurs if the demand for a certain good exceeds its
supply. In such situations a rationing method has to be specified in order to
determine the allocation of the scarce good to the agents. Moulin (1999) intro-
duced the notion of probabilistic rationing methods for the discrete frame-
work. In this paper we establish a link between classical and probabilistic
rationing methods. In particular, we assign to any given classical rationing
method a probabilistic rationing method with minimal variance among those
probabilistic rationing methods, which result in the same expected distribu-
tions as the given classical rationing method.
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1 Introduction

If for some good aggregate demand exceeds aggregate supply, then some-
how aggregate supply has to be rationed to the individuals. Such situations
may occur in various economic situations. For macroeconomics examples see
for instance Clower (1965) and Benassy (1982), while for microeconomics
examples consider Boyer and Moreaux (1989) and Gilbert and Klemperer
(2000) among others. Furthermore, many interesting examples can be found
in Young (1994) and Moulin (2000).
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In the classical1 (continuous) model the scarce good is allocated deter-
ministically and the supply of the scarce good, the agents’ demands as well as
the agents’ shares are infinitely divisible; while in the discrete model the good
comes in indivisible units but the allocation remains deterministic. Moulin
(2000) characterized rationing methods in both the classical and the discrete
model. Moulin (2000, Theorem 1) found that a rationing method satisfies
a set of three reasonable axioms (consistency, upper composition and lower
composition) if and only if it is a priority rule (that is the order in which
the agents are served is predetermined and independent from the occurring
rationing problem). In contrast to this negative result in the classical model
the set of reasonable rationing methods is substantially larger (Moulin 2000,
Theorem 2). Considering distributive justice the two models are behaving
quite differently. Thus, it would be useful to establish a link between the two
models.

The classical model can be linked with the discrete model if the indivis-
ible units are sufficiently small since in that case the discrete model can be
regarded as an approximation of the classical model. This paper follows an-
other possibility by considering Moulin’s (1999) probabilistic model in which
the good comes in indivisible units (like in the discrete model) but the al-
locations are random. A connection will be established between the discrete
framework and the classical framework by requiring that for discrete rationing
problems a probabilistic rationing method equals a given classical rationing
method in expected value. Particularly, we associate with a given classical
rationing method a probabilistic rationing method with the same allocations
in expected value and minimal variance for each individual. Therefore, we
will call this method a minimal variance method associated with the given
classical rationing method.

The classical proportional rationing method, which requires that the in-
dividual shares shall be determined in proportion to the individual demands,
is one of the most natural methods to distribute the scarce good. Therefore,
we will consider the minimal variance methods associated with the classical
proportional method and we will refer to them as the fair remainder methods.
Two axioms will be needed in order to provide our first axiomatic charac-
terization of fair remainder methods (Proposition 2): proportional expected
shares which is satisfied if the expected individual shares are in proportion
to the individual demands, and proportion monotonicity which is fulfilled if
larger proportions in demand lead to larger shares (in the sense of stochastic
dominance). In addition, we present a second characterization (Proposition

1This model is called classical because it has received the most attention in the literature
on rationing problems.
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3) which does not rely explicitly on the proportionality principle.
The rest of the paper is organized as follows. Section 2 describes the

framework of our analysis. Section 3 introduces the minimal variance meth-
ods associated with a classical rationing method. Section 4 contains two
axiomatic characterizations of the fair remainder rationing methods. Finally,
Section 5 concludes our paper.

2 The framework

We denote by N the set of nonnegative integers and by R+ the set of nonneg-
ative real values. Let N be the finite set of potential agents. For any subset
N of N , for any x ∈ RN

+ and any subset M of N , we write xM =
∑

i∈M xi.
Let us denote by N ⊂ N the set of agents, by t ∈ N the quantity that has

to be divided among agents in N and by xi ∈ N the demand of agent i ∈ N .
Note that there is no need for rationing if xN ≤ t since then everybody could
receive their entire demanded quantity. Therefore, we will assume without
loss of generality that xN ≥ t. We have to mention that we allow the case of
xN = t because this simplifies the proof of Proposition 2. A discrete rationing
problem is specified by the triple

(
N, t, (xi)i∈N

)
for which we have N ⊂ N ,

t ∈ N, xi ∈ N for all i ∈ N and xN ≥ t.
In case of a discrete rationing problem (N, t, x) we call a vector y ∈

RN
+ an allocation if yN = t and 0 ≤ y ≤ x. A classical rationing

method2 r assigns to any discrete rationing problem (N, t, x) an alloca-
tion y = r (N, t, x) ∈ RN

+ . A probabilistic rationing method assigns a prob-
ability distribution over integer valued allocations, i.e., if we denote by
ΩN,t,x :=

{
ω ∈ NN | ωN = t, 0 ≤ ω ≤ x

}
the set of possible integer valued

allocations, then a probabilistic rationing method ρ assigns to every discrete
rationing problem (N, t, x) a probability measure on the probability space
(ΩN,t,x,P (ΩN,t,x)), where P (ΩN,t,x) denotes the power set of ΩN,t,x. For con-
venience, we will write ρN,t,x instead of ρ (N, t, x). Furthermore, for any agent
i ∈ N let us denote by ρi

N,t,x the marginal distribution of agent i.
For reasons of convenience EρN,t,x stands for the expected value of

a random variable corresponding to the probability measure ρN,t,x, i.e.,
Eρi

N,t,x =
∑xi

k=0 kρi
N,t,x(k) for any i ∈ N . We will assign to any classical ra-

tioning method r a probabilistic rationing method ρ so that for any discrete
rationing problem this allocates in expected value the same shares as r, that

2Classical rationing methods are usually defined for any continuous rationing problem
(i.e., t ∈ R+ and x ∈ RN

+ ), but with the exceptions of the second half of Section 4 we will
only consider discrete rationing problems.
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is, r(N, t, x) = EρN,t,x. We shall denote by E(r) the set of such probabilistic
rationing methods.

Probabilistic rationing methods involve uncertainty. Thus, a risk averse
individual prefers a rationing method with a smaller variance of the obtained
amount to a rationing method with higher variance if both allocate the same
amount to the individual in expected value. For any probabilistic rationing
method, for any discrete rationing problem (N, t, x) and for any individual
i ∈ N the individual variance of shares equals

V ar
(
ρi

N,t,x

)
=

xi∑

k=0

(
k − Eρi

N,t,x

)2
ρi

N,t,x (k) .

3 The minimal variance rationing methods

In this section we associate a probabilistic rationing method with a classical
rationing method and we determine how this associated method can be com-
puted. Especially, this also ensures that E(r) is nonempty for any classical
rationing method r.

For a given classical rationing method r we define a probabilistic rationing
method ρ to be an associated minimal variance method if ρ ∈ E(r) and if for
any discrete rationing problem (N, t, x) we have

∀µ ∈ E(r) : ∀i ∈ N : V ar
(
ρi

N,t,x

) ≤ V ar
(
µi

N,t,x

)
.

Next, we turn to the question how a minimal variance method associated
with a classical rationing method r can be determined. Take an arbitrarily
fixed discrete rationing problem (N, t, x). In step one, any agent i ∈ N re-
ceives y∗i = bri(N, t, x)c units of the supply t, where bac stands for the largest
integer not greater than a ∈ R. After step one, the residual of agent i ∈ N ,
denoted by ui, equals ui = ri(N, t, x) − bri(N, t, x)c. In step two, we have
to distribute the remaining amount so that r = Eρ. We achieve this, for
instance, if the individuals’ marginal distributions equal

ρi
N,t,x (y∗i + 1) = ui and ρi

N,t,x (y∗i ) = 1− ui. (1)

The following theorem establishes that we can find a probabilistic rationing
method satisfying (1) and thus, the marginal distributions in (1) determine
indeed the minimal variance methods associated with r.

Theorem 1. A probabilistic rationing method ρ ∈ E(r), where r is a given
classical rationing method, is a minimal variance method associated with r
if and only if each agent’s realized share differs by less than one from his
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expected share. In particular, the associated minimal variance methods are
specified through the individual marginal distributions in (1).

Proof. We suppose for notational convenience that N = {1, . . . , n}. Let us
denote by M the set of those agents, who do not obtain an integer share
in case of applying r, that is, M = {i ∈ N | y∗i < ri(N, t, x)}. Observe that
we are done if set M is empty or if equivalently y∗N = t. Therefore, in what
follows we assume that y∗N < t. For notational convenience we suppose that
M = {1, . . . , m}. We have to specify ρ appropriately. The support of ρ is
subset Ω∗

N,t,x =

{
ω∗ ∈ NN | ω∗N = t, ∀i ∈ M : ω∗i ∈ {y∗i , y∗i + 1} and ∀i ∈ N \M : ω∗i = y∗i

}
,

of ΩN,t,x. The cardinality of set Ω∗
N,t,x equals q :=

(
m

t−y∗N

)
. Note that m >

t − y∗N and thus q ≥ m. Let the sequence (ai)
q
i=1 be an enumeration of the

elements of set Ω∗
N,t,x−y∗ :=

{
z ∈ NN | ∃ω∗ ∈ Ω∗

N,t,x : z = ω∗ − y∗
}
. We shall

denote by aij ∈ {0, 1} the amount distributed to agent j ∈ N in step two
by ai (i ∈ {1, . . . , q}). Clearly, aij = 0 for any j ∈ N \ M . Since (1) shall
hold we obtain the following linear equation system with variables αi ≥ 0
(i = 1, . . . , q)

q∑
i=1

αiaij = uj (2)

for all j ∈ M . Observe that
∑m

j=1 aij =
∑n

j=1 aij = t− y∗N for all i = 1, . . . , q.
We can verify by summing the m equations in (2) that

∑q
i=1 αi = 1 holds

true. The existence of a nonnegative solution of (2) follows from Lemma 4,
which we state and prove in the Appendix. In fact the proof of Lemma 4
is constructive so that we can find ρ for instance by applying the simplex
method. Finally, it follows immediately from (1) that ρ is a minimal variance
method associated with r.

A nonnegative solution of (2) determines the required probability measure
ρN,t,x needed to specify the associated minimal variance method. Problem (2)
may have multiple nonnegative solutions. However, any solution results in the
same one dimensional marginal distributions and satisfies r = Eρ. Hence, we
can specify an associated minimal variance method based on an arbitrary
nonnegative solution of (2).

4 The fair remainder rationing methods

Among the classical rationing methods the proportional method, given by
pro(N, t, x) := (t/xN)x whenever xN > 0 and by proi(N, t, x) := 0 for all
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i ∈ N whenever xN = 0, is of special interest. Probabilistic rationing methods
in E(pro) can be regarded as fair, in some sense, because they satisfy by
definition:

Axiom 1. Proportional expected shares: For any discrete rationing problem
(N, t, x) we have EρN,t,x = pro(N, t, x).

We call the minimal variance methods associated with the classical pro-
portional method the fair remainder methods.

In this section we present two characterizations of the fair remainder
methods. But before we can state the first one we have to introduce the ax-
iom of proportion monotonicity, which requires that for any agent a larger
proportion in demand leads to higher shares, in the sense of stochastic domi-
nance. The stochastic dominance relation, denoted by ≤, between two prob-
ability measures µ and ν on ({0, 1, . . . , n},P ({0, 1, . . . , n})) can be defined
in the following way:

µ ≤ ν ⇔ ∀k ∈ {0, 1, . . . , n} : µ ({k, k + 1, . . . , n}) ≤ ν ({k, k + 1, . . . , n}) .

Axiom 2. Proportion monotonicity: For any pair of discrete rationing prob-
lems (N, t, x) and (N, t, y) such that xN > 0 and yN > 0 we have

xi

xN

≤ yi

yN

⇒ ρi
N,t,x ≤ ρi

N,t,y

for any i ∈ N .

Now, we can give our first characterization of the fair remainder methods.

Proposition 2. A probabilistic rationing method is a fair remainder method
if and only if it satisfies proportion monotonicity and proportional expected
shares.

Proof. It follows easily from its definition and Theorem 1 that a fair re-
mainder method meets proportion monotonicity and proportional expected
shares.

To demonstrate the converse statement take an arbitrary discrete ra-
tioning problem (N, t, x). Observe that there is nothing to prove if t = 0
or xN = xi for a certain i ∈ N , since in these two cases any probabilistic
rationing method results in the same deterministic allocation. Therefore, in
what follows we can assume that t > 0 and xN > xi for all i ∈ N . Note
that we have only to show that any agent i ∈ N obtains with positive prob-
ability either an amount of btxi/xNc or btxi/xNc+ 1 since then the converse
statement is implied by proportional expected shares. Pick an agent i ∈ N .
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We select demand vectors y and z so that yi = btxi/xNc, yN\i = t − yi,
zi = yi + 1, zN\i = t− zi and yj, zj ∈ N for all j 6= i. Clearly, by yi ≤ txi/xN

and yN\i = t−yi it follows that yi/yN ≤ xi/xN . Similarly, by zi ≥ txi/xN and
zN\i = t − zi it follows that xi/xN ≤ zi/zN . For rationing problem (N, t, y)
we have ΩN,t,y = {y} and thus, y is the only possible allocation by the
definition of probabilistic rationing methods. But then by proportion mono-
tonicity it follows for rationing problem (N, t, x) that agent i obtains less
than yi units with zero probability. Again from the definition of probabilisitc
rationing methods it follows for rationing problem (N, t, z) that the assigned
quantities equal z. Therefore, by proportion monotonicity we conclude that
agent i obtains more than zi units with zero probability in rationing problem
(N, t, x), which completes the proof of our proposition.

Now, we argue for the sustainability of the two requirements in Proposi-
tion 2. It does not seem to offend us that a larger share in demand shall lead
to a larger share in allocation. Hence, we would accept proportion mono-
tonicity. Furthermore, proportional expected shares can be regarded as a
requirement of fairness.

We have to verify that the statement in Proposition 2 is tight in the
sense that dropping any of the two axioms will allow for other probabilis-
tic rationing methods besides the fair remainder methods. The proportional
probabilistic rationing method3 is an example for rationing methods ful-
filling proportional expected shares but violating proportion monotonicity.
The latter statement can be verified through comparing rationing problems
({1, 2, 3}, 3, (1, 1, 1)) and ({1, 2, 3}, 3, (1, 2, 3)). Although in the second one
agent 3 has a larger share in demand, he receives 0 units with positive
probability, while in the first one he never receives 0 units. For a prob-
abilistic rationing method violating only proportional expected shares we
modify a fair remainder method slightly. For discrete rationing problems
of type ({1, 2}, 1, (x1, x2)) let ρ{1,2},1,(x1,x2)(1, 0) = 1 if x1 ≥ 1, and let
ρ{1,2},1,(x1,x2)(0, 1) = 1 if x1 = 0. For any other discrete rationing problem
the probabilistic rationing method is defined in the fair remainder manner.
It can be easily checked that this rationing method meets proportion mono-
tonicity, but violates proportional expected shares.

We can characterize the fair remainder methods easily in other ways with-
out relying on the proportionality principle by applying already existing char-
acterizations of the classical proportional method (see for instance Banker,

3Moulin (1999) defines and characterizes the proportional probabilistic rationing
method. Briefly, this method can be implemented, for example, through successive random
rounds, where in each round the probabilities of obtaining the next unit are in proportion
to the unsatisfied demands.
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1981; O’Neill, 1982; Moulin, 1987; Chun, 1988; and Young, 1988). We will
apply the simplest of the four characterizations appearing in Moulin (2001)
Theorem 1.1. Therefore, we will introduce two other properties. The first one
requires that each agent’s possible shares differ by at most one unit.

Axiom 3. A probabilistic rationing method ρ is almost deterministic if for
any discrete rationing problem (N, t, x) and any i ∈ N there exists a yi ∈
{0, 1, . . . , xi − 1} such that ρi

N,t,x ({yi, yi + 1}) = 1.

To apply existing characterizations of the classical proportional method
we have to extend our framework. In Section 2 we only required that classical
rationing methods are defined for discrete rationing problems because this
was appropriate for our analysis so far. However, rationing methods can also
be defined for problems in which the demands xi (i ∈ N) and the supply t
are nonnegative real values. A rationing problem

(
N, t, (xi)i∈N

)
is said to be

continuous if N ⊂ N , t ∈ R+, xi ∈ R+ for all i ∈ N and xN ≥ t. Clearly,
the proportional method pro is defined for any continuous rationing problem.
For any given probabilistic rationing method ρ we can extend the classical
rationing method Eρ, which assigns to each discrete rationing problem an
allocation, to the set of continuous rationing problems. In particular, F is
an extension of Eρ to the set of continuous rationing problems, henceforth
briefly an extension of Eρ, if F is defined, satisfies 0 ≤ F (N, t, x) ≤ x
and FN (N, t, x) = t for any continuous rationing problem, and F (N, t, x) =
EρN,t,x for any discrete rationing problem. Of course, there are many possible
extensions of Eρ.

Our last property requires for an extension F of Eρ that transfers of
demands across a subset of agents do not affect the expected total share of
this coalition.4

Axiom 4. Let ρ be a probabilistic rationing method. Then an extension F
of Eρ fulfills no advantageous reallocation if FM (N, t, x) = FM (N, t, x′) for
all pairs of continuous rationing problems (N, t, x), (N, t, x′) and all M ⊂ N
such that xM = x′M and xi = x′i for all i ∈ N \M .

Now we are ready to state our second characterization of the fair remain-
der methods, which does not refer explicitly to the proportionality principle.

Proposition 3. Suppose N contains at least three agents. Then a probabilis-
tic rationing method ρ is a fair remainder method if and only if it is almost
deterministic and there exists an extension F of Eρ satisfying no expected
advantageous reallocation.

4Moulin (1987) and Chun (1988) used the axiom of no advantageous reallocation in
characterizations of the classical proportional method.
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Proof. By Theorem 1 the fair remainder rationing methods are exactly those
which are almost deterministic and satisfy proportional expected shares.
Thus, if ρ is a fair remainder method, then pro, which is defined for any
continuous rationing problem, is an extension of Eρ. Since pro statisfies no
advantageous rellocation (see Moulin, 2001 Theorem 1.1), F := pro is an
appropriate extension of Eρ.

To establish the converse statement suppose that ρ is almost deterministic
and F is an extension of Eρ satisfying no advantageous reallocation. Then
it follows from Moulin (2001) Theorem 1.1 that F = pro. Hence, ρ fulfills
proportional expected shares. Finally, applying that ρ is almost deterministic,
we derive that ρ has to be a fair remainder method.

Finally, let us remark that by applying other characterizations of the
classical proportional rationing method further characterizations of the fair
remainder methods can be obtained in an analogous way to Proposition 3. In
particular, to derive another characterization of the fair remainder methods
one needs Axiom 3 and the existence of an extension F of Eρ satisfying the
Axioms appearing in the applied characterization of the classical proportional
rationing method.

5 Conclusions

In this paper we have established a connection between classical rationing
methods and probabilistic rationing methods. In particular, we defined a cor-
respondence from the set of classical rationing methods to the set of prob-
abilistic rationing methods (by requiring expected allocations to equal the
allocations resulting from a given classical rationing method and selecting
from such probabilistic methods those with minimal variance). In the classi-
cal (continuous) model the proportional, the uniform gains5 and the uniform
losses methods6 are of special importance because of their axiomatic prop-
erties (see Moulin, 2000). Moulin and Stong (2000) found that in the prob-
abilistic model the proportional probabilistic, the fair queuing and the fair
queuing* methods play the same roles respectively as the previously listed
three classical methods.7

5Specified by ugi(N, t, x) := min{λ, xi}, where
∑

i∈N min{λ, xi} = t.
6Specified by uli(N, t, x) := max{xi − µ, 0}, where

∑
i∈N max{xi − µ, 0} = t.

7The fair queuing method allocates the insufficient supply in successive round-robin
fashion so that in each round the consumers, who still have unsatisfied demand, receive an
additional unit in a random order while there are remaining units left. The fair queuing*
method allocates losses in an analogous way.
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It can be easily checked that the fair queuing method is a minimal vari-
ance method associated with ug, while the fair queuing* method is a minimal
variance method associated with ul. Thus, from a point of view other than
Moulin’s and Stong’s (2000), we can confirm that the fair queuing method
corresponds to the uniform gain method, while the fair queuing* method cor-
responds to the uniform losses method. However, our correspondence points
out a different probabilistic rationing method for the proportional method,
which we called fair remainder. Following from its definition a fair remainder
method has the smallest level of uncertainty among those rationing methods
that satisfy proportional expected shares. We characterized the fair remain-
der methods, first, by proportion monotonicity and proportional expected
shares. In the presence of at least three agents our second characterization
shows that the fair remainder methods are exactly those methods which are
almost deterministic and which satisfy that all subsets of agents cannot im-
prove their expected total share by redistributing their demands.

Appendix

In the appendix we state and prove a Lemma, which guarantees the existence
of a nonnegative solution of problem (2). Take two positive integers k and
m so that k < m. Let q :=

(
m
k

)
, M := {1, . . . , m}, Q := {1, . . . , q} and let

Mm,k denote the set of those q × m matrixes that contain only zeros and
ones so that they have q different rows with each row containing exactly k
ones. This means that an A ∈ Mm,k contains every possible distribution of
k ones in its rows. Formally, Mm,k :=
{

A ∈ {0, 1}q×m | ∀i ∈ Q :
m∑

j=1

aij = k; ∀i, j ∈ Q, i 6= j : ∃l ∈ M : ail 6= ajl

}
.

We are looking for a nonnegative solution y ∈ Rq of the linear equation
system

yA = b, (3)

for a given A ∈Mm,k and b ∈ (0, 1)m for which
∑m

i=1 bi = k.

Lemma 4. Problem (3) has a nonnegative solution.

Proof. The matrix A = (aij)q×m has m linearly independent rows because
any of the unit vectors ej ∈ Rm can be obtained by the linear combination
of rows ai = (ai1, . . . , aim). To verify this check that

ej =

∑q
i=1 ai(
m−1
k−1

) −
∑

i∈Ij
ai(

m−2
k−1

) ,
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where Ij = {i ∈ Q | aij = 0} and j ∈ M . Thus, we know that (3) has a solu-
tion, but we do not know whether it has a nonnegative solution. Therefore,
we will consider the following linear programming problem:

yA ≤ b

y ≥ 0q (4)
q∑

i=1

yi → max

where 0q = (0, . . . , 0) ∈ Rq. From yA ≤ b it follows that
∑q

i=1 yi ≤ 1. Hence
(4) has an optimal value. If the maximum equals 1, then the optimal solution
of (4) is also a solution to (3). To verify that indeed the maximum equals 1
we will investigate the dual problem of (4)

Ax ≥ 1q

x ≥ 0m (5)

bx → min

where x ∈ Rm and 1q = (1, . . . , 1) ∈ Rq. Since (5) has an optimal value,
we must find an optimal point among the extreme points of the set S =
{x ∈ Rm | Ax ≥ 1q, x ≥ 0m}. It can be checked that the set of its extreme
points equals Se =
{

x ∈ S | ∃I ⊂ M : |I| < k, xi =
1

k − |I| for i ∈ M \ I, xi = 0 for i ∈ I

}
.

To find an optimal point we have to evaluate the object function of the dual
problem (5) above set Se. For x∗ = 1m/k ∈ Se we obtain bx∗ = 1. For any
x ∈ Se \{x∗} , with a corresponding set of indices I ⊂ M so that 0 < |I| < k,
the following inequality holds true

bx =
1

k − |I|
∑

i∈M\I
bi =

1

k − |I|

(∑
i∈M

bi −
∑
i∈I

bi

)
>

>
1

k − |I|

(∑
i∈M

bi −
∑
i∈I

1

)
=

1

k − |I| (k − |I|) = 1 = bx∗

and therefore we conclude that x∗ is the unique optimal point of (5), which
in turn implies that the maximum of problem (4) equals 1.

The solution of problem (4) and therefore a nonnegative solution of (3)
can be determined for instance by the simplex method.
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