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Abstract

It is often assumed (for analytical convenience, but also in accordance with common intuition)
that consumer preferences are convex. In this paper, we consider circumstances under which such
preferences are (or are not) optimal. In particular, we investigate a setting in which goods possess
some hidden quality with known distribution, and the consumer chooses a bundle of goods that
maximizes the probability that he receives some threshold level of this quality. We show that if the
threshold is small relative to consumption levels, preferences will tend to be convex; whereas the
opposite holds if the threshold is large. Our theory helps explain a broad spectrum of economic
behavior (including, in particular, certain common commercial advertising strategies), suggesting
that sensitivity to information about thresholds is deeply rooted in human psychology.
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1 Introduction

Convexity of preferences is one of a small handful of canonical assumptions
in economic theory. Typically justified in introductory texts by a brief appeal
to introspection, convexity is appealing in part because it is conducive to
marginal analysis and to single-valued, continuous demand functions.1 But in
the real world, there are many situations in which sudden shifts in demand are
observed2, and the consumer’s “preference for variety” finds its limits. It would
therefore be useful to have a theory of preferences in which convexity (and its
counterpart, nonconvexity) arises as the predictable result of a well-defined
choice environment.

Given the ubiquity of convex preferences in economic models, it is surpris-
ing how little scrutiny this particular aspect of human nature has received.3

While there have been many refinements to the theory of convex preferences
(e.g., Kannai 1977, Richter and Wong 2004), these authors always ultimately
assume the primitive behavioral postulate in question, rather than asking the
deeper question of the circumstances in which such preferences might be op-
timal.4 Our approach to this question will be to explicitly step back from
reliance on the consumer’s subjective report of his motivations for choosing
to purchase particular goods (a notoriously unreliable method of inquiry, if
modern neuroscience is to be believed),5 and appeal instead to evidence from

1Such brevity is not limited to introductory textbooks. The popular graduate text of
Mas-Colell, Whinston, and Green (1995, p. 44) justifies the convexity assumption as follows:
“A taste for diversification is a realistic trait of economic life. Economic theory would be
in serious difficulty if this postulated propensity for diversification did not have significant
descriptive content.”

2An important example of such shifts in individual demand is the consumer response
to product advertisements. This phenomenon is typically viewed in economics as driven
by informative signaling (see, e.g., Milgrom and Roberts 1986) rather than nonconvexities,
but the two explanations are not necessarily inconsistent. Indeed, the framework we will
develop emphasizes the role of information in inducing non-convex behavior, and–as we note
below–even provides a rich framework for predicting ad content.

3It should be noted that this lack of scrutiny does not pertain to the producer-theoretic
analog of our question: the monopolist’s optimal bundling decision. See, for example, Fang
and Norman (2006) or Ibragimov (2005).

4A partial exception is found in the theory of risk-bearing, in which it has long been
known that risk-averse consumers (i.e., consumers with concave expected utility functions)
should choose a diversified portfolio (Arrow 1971). This result is closely related to the
theory we will develop below, but again it requires assumption of the basic postulate (risk
aversion).

5See, for instance, Gazzaniga (2000). For a broad review of findings in social psychology
and neuroscience that relate to the development of economic and legal theory, see Hanson
and Yosifon (2004).
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fields such as social psychology, marketing, and behavioral ecology. The first
innovation to flow from this dismissal of subjective experience will quickly be-
come apparent: in developing the beginnings of a normative theory of convex
preferences, we will treat as stochastic decision problems that have typically
been viewed as deterministic. It is certainly true that a college student decid-
ing what combination of bread and soup to consume at lunchtime is unlikely
to view his decision as involving a risky portfolio of uncertain inputs (nutri-
ents, pathogens, etc.) and unknown outcomes (health, survival), but viewed
as a problem with an objective optimum–i.e., one in which the accumulated
wisdom of human evolutionary history sees a multitude of possible outcomes,
each with a well-defined payoff–that is exactly what it is.

The implications of our departure from the usual practice in consumer the-
ory are not trivial. We investigate the circumstances under which evolution
would have generated agents with (non-)convex preferences over goods. We
follow the behavioral ecology literature in presuming that natural selection
favors agents who maximize their expected payoff (where the payoff is “Dar-
winian fitness” or some proximate currency thereof) in a stochastic environ-
ment. The preferences–over goods–thus generated can therefore be considered
optimal, given the underlying stochastic payoff structure. It will necessarily
be true that the (ordinal) preferences generated by our model will depend im-
portantly on the (cardinal) assumptions we make about the payoff structure.
This raises the important question of whether our assumptions are testable,
especially if the environment in which humans evolved differs substantially
from conditions observed in the modern world.6 While we do investigate a
number of alternative assumptions about this postulated stochastic environ-
ment, we acknowledge from the outset that the task of empirical validation (of
our primitive assumptions) is a task best left to the anthropological sciences.7

6This “evolutionary mismatch” problem arises in part because human culture, technol-
ogy, and living conditions change more rapidly than innate “preferences” encoded in the
human genome. Smith and Tasnádi (2007) model this mismatch explicitly–in distinguishing
“beneficial” from “harmful” addictions–by positing that while in the former case an objective
optimum is obtained, in the latter the consumer maximizes a “subjective function” based
on demonstrably false beliefs about risky outcomes.

7Interestingly, while we choose a stochastic framework for decision problems that are
commonly perceived to be deterministic, Huffaker (1998) has argued the opposite: that
most stochastic environments are driven by deterministic underlying physical phenomena,
and thus can (and perhaps should) be modeled deterministically. We hope the reader
will not see a contradiction in our agreement with this view. As noted, investigations
of this sort necessarily cross disciplinary boundaries, and–at their best–draw on a much
broader spectrum of disciplines than the traditional conception of “anthropology.” Diamond
(1997) provides a book-length example of such an endeavor; though less comprehensive
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This is not to say that our theory will not generate testable hypotheses. On
the contrary, by viewing preferences as the endogenous outcome of a stochastic
(evolutionary) payoff structure, we aim to develop a richer theory of consumer
behavior in which “informative” cues induce systematic changes in behavior.

It is not difficult to imagine situations in the evolutionary history of our
species in which a propensity for diversity in consumption would have been
beneficial. An obvious example is nutrition: the human diet must include a
host of essential nutrients (from calories and protein to iron and vitamin C)
in order to sustain life, but no particular food contains all these nutrients in
the necessary proportions. Similarly, in societies in which food sharing is an
important form of social insurance, it might pay to distribute favors among
many allies, rather than directing them to just a few close friends (Kaplan
and Gurven 2005). Or if loss of social status–an important form of “wealth” in
many pre-industrial societies–is a concern, then it might make sense to avoid
risky gambles involving large, conspicuous losses. The common theme we see
in these examples is the presence of threshold payoffs: in the natural world, the
consequences of consuming insufficient quantities of limiting micronutrients in-
clude debilitating illness and death8; going an extended period of time without
food results in starvation; and social status is by nature a relative measure,
and–in the small groups that characterized most of human history–necessarily
entails discrete thresholds with respect to rank order. We will argue in this pa-
per that threshold payoffs provide a foundation upon which to build a theory
of convex preferences that captures certain deeply rooted aspects of consumer
psychology. Moreover (we argue) the implications of our theory are consistent
with the content and form of many modern marketing messages delivered by
profit-maximizing firms. This last observation underscores an important ad-
vantage of the theory of threshold utility we introduce, should it prove to have
some generality: the same reasons that human evolution presumably favored
strong reactions to the presence of thresholds (i.e., their stark consequences
and ease of detection) make them promising subjects for empirical study in
economics.

An important caveat warrants mention before we proceed to our formal

investigations are certainly possible (see Rogers 1994 for a compelling example). For a
discussion of the merits of pursuing ever-deeper levels of causation in the social sciences, see
Smith (2009).

8Threshold requirements have long been the accepted norm in nutrition science, as re-
flected in Stigler’s early work on diet as a linear programming problem (Stigler 1945). The
central importance of nutrition in the pre-industrial world is emphasized by Ortner and
Theobald (2000), who review archaeological evidence of deficiencies in vitamin C, vitamin
D, iron, and protein in human prehistory.
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model: although the convexity assumption is widely employed in economic
analysis, it can be argued that it is not strictly testable with consumption data.
This is because the behavioral implications of convexity and non-convexity are
either not unique or cannot be strictly verified via revealed preference method-
ologies (Samuelson 1948, Little 1949, Houthakker 1950). In particular, data
that is apparently consistent with convex preferences cannot eliminate (with a
finite number of observations) the possibility that local non-convexities still ex-
ist; and likewise data consistent with non-convex preferences cannot (because
choice will never be observed in non-convex regions) rule out the possibility
that the behavior is not the product of nearly linear (but still strictly convex)
indifference curves. Nevertheless, the contrast–broadly speaking–between di-
versified consumption sensitive to marginal changes in budget parameters (i.e.,
convexity) and specialized consumption locally unresponsive to parameter val-
ues (i.e., nonconvexity) is striking, and we think further investigation of this
aspect of consumer behavior is warranted.

2 Utility in the Presence of a Quality Threshold

Our starting point for this investigation is the problem studied by Smith and
Tasnádi (2007) in the context of dietary habit formation. The setting was as
follows: an individual chooses a bundle of two foods with uncertain concen-
trations of some limiting micronutrient. Given a finite gut size and known
nutrient distributions, the objective was to choose the combination of foods
that maximizes the probability that nutrient intake meets a critical thresh-
old level–which, given the context, was assumed to be “small” relative to the
amounts of food consumed. We extend this work below by studying the more
general problem of optimal consumption in the presence of uncertain product
quality, and by considering “large” as well as “small” thresholds in the objec-
tive function. Indeed, we will show that the size of the threshold is a critical
determinant of the convexity (and nonconvexity) of preferences.

We now formalize the problem as follows. A decision-maker (“consumer”)
is faced with a menu of two goods, x and y, and must choose how much of each
to consume, given income m and prices p and 1, respectively. There is a single
unobservable characteristic (quality) for which there is a critical threshold: the
consumer seeks only to maximize the probability that he consumes k units of
this quality. The amounts of the unobservable quality per unit of x and y are
independent random variables, denoted Cx and Cy, with distribution functions
F and G, respectively. Formally, the consumer’s utility function is given by

U (x, y) = P (Cxx + Cyy ≥ k) , (1)
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and his decision problem can be stated:

max
x,y

U(x, y)

s.t. px + y ≤ m (2)

x, y ≥ 0

If the support of these random variables is the unit interval,9 then (assum-
ing continuous random variables with respective density functions f and g)10

determination of the consumer’s utility function

U(x, y) = P (Cxx + Cyy ≥ k) =

∫ ∞

k

∫ min{x,t}

max{0,t−y}

1

xy
f

(z

x

)

g

(

t − z

y

)

dzdt

requires integration across five distinct regions in commodity space, which we
illustrate in Figure 1.

k

k

A0

A−−

A−+ A++

A+−

x

y

Figure 1: Five Regions

9If both random variables are non-negative and have finite support, this is just a matter
of normalization. Because we are conceiving of Cx and Cy as representing the spectrum
of outcomes observed over the course of human evolution, finite support seems to us a
reasonable assumption.

10Note that independence of f and g implies that the density of the sum of random
variables Cxx and Cyy will be the convolution of their densities.
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We will refer to these regions as follows: the “death zone”

A0 =
{

(x, y) ∈ R
2
+ | x + y ≤ k

}

in which the probability of meeting the threshold is zero, the low-probability
region

A−− =
{

(x, y) ∈ R
2
+ | k < x + y, x ≤ k, y ≤ k

}

in which probability of meeting the threshold is positive but the consumption
levels of both goods are small (i.e., x, y ≤ k), the region

A−+ =
{

(x, y) ∈ R
2
+ | x ≤ k, k < y

}

in which the consumption level of x is small, the region

A+− =
{

(x, y) ∈ R
2
+ | k < x, y ≤ k

}

in which the consumption level of y is small, and the region

A++ =
{

(x, y) ∈ R
2
+ | k < x, k < y

}

in which the consumption levels of both x and y are large relative to the size
of the threshold.

3 An Informative Special Case: Uniform Distri-

butions

In order to isolate the effects of the threshold on the consumer’s behavior,
we begin by assuming that the random variables Cx and Cy are distributed
according to the uniform distribution on the unit interval, i.e.,

Case 1 “Uniform case”:

F (x) = G (x) =







0, if x < 0;
x, if x ∈ [0, 1];
1, if 1 < x.

The following proposition summarizes the properties of utility function (1).

Proposition 1 In Case 1, the consumer’s utility function is quasi-concave on
{(x, y) ∈ R

2
+ | 2k ≤ x+y} and quasi-convex on {(x, y) ∈ R

2
+ | k ≤ x+y ≤ 2k}.

Moreover, the indifference curves that describe his preferences on R
2
+ \A0 are

continuously differentiable, reflection invariant about the line y = x, strictly
concave on A−−, strictly convex on A++ and linear on A−+ and A+−.
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Proof. The utility function for Case 1 has been derived in a more general
setting in Smith and Tasnádi (2007).11 Taking the symmetric setting into
consideration we obtain for Case 1 that

U(x, y) =



























0 if (x, y) ∈ A0,

1 − k
x

+ y

2x
+ (k−x)2

2xy
if (x, y) ∈ A−−,

1 + x
2y

− k
y

if (x, y) ∈ A−+,

1 + y

2x
− k

x
if (x, y) ∈ A+−,

1 − k2

2xy
if (x, y) ∈ A++.

The indifference curves of utility function U are shown in Figure 2.

k

k

x

y

Figure 2: Indifference Curves (k = 1)

It can be easily verified that the indifference curves for U are strictly con-
cave in A−−, strictly convex in A++ and linear in A−+ and A+−. Moreover,
the indifference curves associated with positive threshold probabilities are con-
tinuously differentiable and reflection invariant about the line y = x by the
symmetric setting.

Now we turn to problem (2) in Case 1.

11It should be noted that although Smith and Tasnádi (2007) establish analogous results,
the accompanying discussion focuses exclusively on the region in which preferences are con-
vex. In other words, it appears that these authors established an important non-convexity
result without realizing its significance.
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Proposition 2 The optimal solution of problem (2) in Case 1 is given by
(x∗, y∗) ∈























































{(

m
2p

, m
2

)}

if m
2p

> k and p ≥ 1;

{(0, m)} if m
2p

< k and p > 1;
{

(x, y) = λ
(

m
2p

, m
2

)

+ (1 − λ) (0, m) , λ ∈ [0, 1]
}

if m
2p

= k and p > 1;
{(

m
2
, pm

2

)}

if pm

2
> k and p < 1;

{(m, 0)} if pm

2
< k and p < 1;

{

(x, y) = λ
(

m
2
, pm

2

)

+ (1 − λ) (m, 0) , λ ∈ [0, 1]
}

if pm

2
= k and p < 1;

{(0, m) , (m, 0)} if m
2

< k and p = 1;
{(m − λ, λ) , λ ∈ [0, m]} if m

2
= k and p = 1.

Proof. We determine the optimal solution of Problem (2) as a function of
k. Note that the consumer’s utility function is strongly monotonic in R

2
+ \A0,

and therefore, the optimal solution (x∗, y∗) lies on the budget line, i.e., px∗ +
y∗ = m.

We start with the case p ≥ 1. Hence, we can assume that m > k, be-
cause otherwise the budget set is contained in A0 and the consumer attains
the threshold with probability zero. First, we assume that (x∗, y∗) ∈ A++.
Since the indifference curves in A++ are strictly convex, the solution will be
characterized by the indifference curve that has a unique intersection point
with the budget line. Thus, we are searching for the utility level u for which

y =
1

2

k2

x(1 − u)
= m − px

has a unique solution. From this we get

u∗ = 1 −
2pk2

m2
, x∗ =

m

2p
, and y∗ =

m

2
. (3)

Because (x∗, y∗) ∈ A++, we must have m/(2p) > k and m/2 > k, where the
latter inequality is redundant because p ≥ 1. Second, it can be verified that if
m/(2p) < k and p > 1, then we have a corner solution in A−+. In particular,
x∗ = 0 and y∗ = m. Third, if m/(2p) < k and p = 1, then the two corner
solutions are x∗ = 0, y∗ = m and x∗ = m, y∗ = 0. Fourth, if m/(2p) = k and
p > 1, then the continuum of optimal solutions is given by the line segment
connecting points (0, m) and (k, m/2). Fifth, if m/(2p) = k and p = 1, then
the continuum of optimal solutions is given by the line segment connecting
points (0, m) and (m, 0).
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Finally, taking the symmetric setting into consideration one can obtain
the solutions for the case of p < 1 simply by exchanging the roles played by
variables x and y in our calculations.

We illustrate the optimal solutions as a function of k in Figure 3 for p > 1.
Note that there is a discontinuous change in the demand correspondence as the
threshold k increases from values slightly lower than m/(2p) to values slightly
higher than m/(2p). For fixed k, this implies in turn that demand will be
discontinuous in (p, m).12

m
2p

m
2

m

m
2p

y∗(k)

x∗(k)

m k

x∗, y∗

Figure 3: Optimal solutions for Case 1

As a corollary to Proposition 2 we are able to formulate our first result on
discontinuous threshold effects.

Corollary 1 In Case 1, we observe a discontinuous change in behavior at
k = m/(2p) if p ≥ 1 and at k = pm/2 if p < 1.

In this section, we have established that in the case of uniformly distributed
quality in the presence of a threshold payoff, preferences will be strictly convex
if the threshold is “small enough” relative to the amount of x and y consumed

12The demand correspondence in Case 1 is nevertheless upper hemi-continuous at m =

2pk, a property that does not require convexity of preferences (see, e.g., Mas-Colell, Whin-
ston, and Green (1995), Propositions 3.D.2(iii) and 3.AA.1).
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(i.e., for bundles in region A++), and strictly non-convex if the threshold is
“large enough” (i.e., for bundles in region A−−). And importantly, under these
circumstances demand is a discontinuous function of both price and income.
Before turning to a more general class of distributions, we provide an intuitive
explanation for these results in the next section.

4 The Geometry of Threshold Effects

Our convexity results for Case 1 can be visualized in Figure 4, which shows
the effect of consumption on threshold utility in outcome space. Consider,
for example, the line cxx

++ + cyy
++ = k (i.e., the line connecting the points

(0, k
y++ ) and ( k

x++ , 0)). Given that the consumer chooses the consumption bun-

dle (x++, y++), this line traces the outcomes (cx, cy) that result in the threshold
level (k) of quality being exactly attained. Note that as drawn, x++ = y++,
and (x++, y++) lies in region A++, because k

y++ = k
x++ < 1. Note also that

because the random variables Cx and Cy are distributed uniformly (and inde-
pendently) on the unit interval, probability mass for the joint distribution is
(uniformly) distributed on the unit square in (cx, cy)-space. So given alloca-
tion (x++, y++), the area in the unit square above and to the right of the line
cxx

++ + cyy
++ = k is the probability of attaining k or more units of quality,

and the area below and to the left of this line is the probability of attaining less
than k units of quality. Now consider a slight shift in consumption, whereby
the consumer gives up ε units of good x in exchange for pε units of good y.
This results in a counter-clockwise rotation of the line cxx

++ + cyy
++ = k, so

that the consumer “gains” area B++ while losing area L++. It is easy to show
that for p ≤ 1, area B++ is smaller than area L++, so the consumer would
have been better off with the “diversified” bundle in which x = y.

It should be apparent from Figure 4 that this logic is reversed in region
A−−. In moving from allocation (x−−, y−−) (where x−− = y−−) to allocation
(x−− − ε, y−− + pε) , the consumer increases the probability (given p ≥ 1) of
exceeding the threshold. Hence for a sufficiently large threshold, preferences
become non-convex.

Intuitively, when the threshold (k) is very small, the consumer chooses a
strategy (diversification) that minimizes the “variance” of quality outcomes
(i.e., Cxx + Cyy), because this will minimize the probability mass associated
with the “very bad” outcomes that lie below the threshold. On the other hand,
when the threshold is large enough, the consumer chooses a strategy (special-
ization) that increases the variance, in order to maximize the probability mass
associated with the “very good” outcomes lying above the threshold.

10
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k

y++ + pε

k

y++

1

k

x++

k

x++ − ε

1

L++

B++

cxx++ + cyy++ = k

cx (x++ − ε) + cy (y++ + pε) = k

cxx- - + cyy- - = k

cx (x- - − ε) + cy (y- - + pε) = k

B- -

L- -

cx

cy

Figure 4: The Geometry of Threshold Utility

5 Generalization to Log-Concave Distributions

5.1 A General Statement

We now offer a generalization of the convexity properties and discontinuous
threshold effect shown for Case 1 to random variables with log-concave density
functions (i.e., random variables for which the logarithm of the density function
is concave).13 As might be expected, allowing for such a general class of
random variables does not come without cost: several additional restrictions
will be needed (the necessity of each will be shown in the next section), which
underscore both the limitations of our framework and the importance of the
product-specific probability distributions in determining threshold utility.

Definition 1 If Cx and Cy are two random variables, then we say that Cx is
more peaked than Cy, whenever

P (|Cx − ECx| ≥ t) ≤ P (|Cy − ECy| ≥ t)

13The uniform distribution, for example, is log-concave. See Bagnoli and Bergstrom (2005)
for a review of economic applications of log-concavity.
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for all t ≥ 0. If the above inequality is strict for all t > 0 unless the probabilities
are either both 0 or both 1, then we say that Cx is strictly more peaked than
Cy.

We will employ Proschan’s (1965) Lemma 2.1.

Lemma 1 [Proschan 1965] Suppose that Cx and Cy are independent random
variables both possessing a symmetric log-concave density function f . Then for
any given m > 0 we have that Zλ,m := λCx + (m − λ)Cy is strictly increasing
in peakedness in λ on

[

0, m
2

]

.

It is also known that Zλ,m has a symmetric log-concave density function.
We investigate the following objective function:

v(λ) = U(λ, m − λ) = P (Zλ,m ≥ k) , (4)

where λ ∈ [0, m]. We are now ready to state the following proposition:

Proposition 3 Suppose that the independent nonnegative random variables
Cx and Cy are symmetric around their common means µ = ECx = ECy, have
log-concave density f and supp(Cx) =supp(Cy) = [0, 2µ]. Then we have the
following four cases:

1. If k < mµ, then v is strictly quasi-concave with a maximum at m
2

(inte-
rior solution).

2. If mµ < k < 2mµ, then v is strictly quasi-convex with two maxima at 0
and m (boundary solutions).

3. If k = mµ, then v is constant.

4. If 2mµ ≤ k, then v equals zero (death zone).

Proof. Clearly, EZλ,m = mµ, where λ ∈
[

0, m
2

]

. Since f is symmetric
around mµ, it follows for all t > 0 and all λ ∈

[

0, m
2

]

that

P (mµ − t ≤ Zλ,m ≤ mµ) = P (mµ ≤ Zλ,m ≤ mµ + t) and (5)

P (Zλ,m ≥ mµ) =
1

2
. (6)

Now pick two values α and β such that 0 ≤ α < β ≤ m/2. From Lemma 1 it
follows that

P (|Zβ,m − mµ| ≤ t) > P (|Zα,m − mµ| ≤ t) (7)
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for all mµ > t > 0. Combining (5) with (7), we obtain

P (mµ − t ≤ Zβ,m ≤ mµ) > P (mµ − t ≤ Zα,m ≤ mµ)

and therefore by (6) we get

P (mµ − t ≤ Zβ,m) > P (mµ − t ≤ Zα,m)

for all mµ > t > 0. Finally, in case 1 by setting t equal to mµ− k we derive14

P (k ≤ Zβ,m) > P (k ≤ Zα,m) .

Thus v is strictly increasing on
[

0, m
2

]

. In an analogous way one can establish
that v is strictly decreasing on

[

m
2
, m

]

.
We derive the second statement from the first one. Assume that mµ < k <

2mµ. Then employing the symmetry of Cx − µ and Cy − µ, we obtain

v(λ) = P (λCx + (m − λ)Cy ≥ k)

= P (λ(Cx − µ) + (m − λ)(Cy − µ) ≥ k − mµ)

= P (λ(µ − Cx) + (m − λ)(µ − Cy) ≤ mµ − k)

= P (λ(Cx − µ) + (m − λ)(Cy − µ) ≤ mµ − k)

= 1 − P (λ(Cx − µ) + (m − λ)(Cy − µ) ≥ mµ − k)

= 1 − P (λCx + (m − λ)Cy ≥ 2mµ − k) = 1 − v∗(λ),

where v∗ stands for the (restricted) utility function in case of constraint 2mµ−
k > 0. Since for the problem associated with v∗ we have E(λCx+(m−λ)Cy) =
mµ > k∗ = 2mµ − k by our assumption of case 2, v∗ is strictly quasi-concave
with minima at 0 and m by case 1; and therefore, v is strictly quasi-convex
with maxima at 0 and m.

Case 3 follows by the continuity of u.
Finally, since Cx and Cy are nonatomic, nonnegative and symmetric with

mean µ, the supports of Cx and Cy equal [0, 2µ], λCx + (m − λ)Cy has to
be smaller than 2mµ with probability one, which completes the proof of our
proposition.

As a corollary of our previous proposition we obtain our main theorem.

Theorem 1 [Discontinuous threshold effect] Under the Assumptions of our
previous proposition, as k increases from 0 to mµ the optimal consumption
bundle of the consumer remains (m

2
, m

2
), while from mµ to 2mµ the two op-

timal consumption bundles are (0, m) and (m, 0). In particular, if the payoff
threshold k increases from mµ− ε to mµ + ε, where ε denotes a small positive
value, then we observe a discontinuous shift in the consumer’s behavior.

14Note that the assumption k < mµ implies t = mµ − k > 0.
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5.2 Counterexamples: Continuous Threshold Effects

One important restriction in Theorem 1 is that we consider only convex com-
binations of goods (i.e., we restrict our attention to budget lines with slope
−1).15 The following example shows that Theorem 1 cannot be generalized to
arbitrary budget lines.

Case 2 Arbitrary Price counterexample:

f (x) = g (x) =

{

6
7
(1 − x(x − 1)) , if x ∈ [0, 1];

0, if x /∈ [0, 1].

By solving Problem 1 for Case 2 we obtain utility function U(x, y) =



























































































































0 if (x, y) ∈ A0,

−

−60x2yk3 + 420x2y3k + 420x3y2k − 210xy4k+
210x3yk2 + 210xk2y3 − 210x4yk − 15xyk4−

60xy2k3 − 490x3y3 − 180x2y2k2 + 34y6 − 2k6+
34x6 + 69xy5 − 210x2y4 − 210x4y2 + 69x5y+
6yk5 + 6xk5 + 30y2k4 + 30x2k4 − 140y3k3−

140x3k3 + 210x4k2 + 210k2y4 − 138x5k − 138y5k

490x3y3 if (x, y) ∈ A−−,

−210yk2 − 420y2k + 210xyk + 210xy2 − 34x3 − 69x2y
+490y3 + 140k3 − 210xk2 + 138x2k

490y3 if (x, y) ∈ A−+,

−210xk2 − 420x2k + 210xyk + 210x2y − 34y3 − 69xy2

+490x3 + 140k3 − 210yk2 + 138y2k

490x3 if (x, y) ∈ A+−,

−60x2yk3 − 15xyk4 − 60xy2k3 + 490x3y3−
180x2y2k2 − 2k6 + 6yk5 + 6xk5 + 30y2k4 + 30x2k4

490x3y3 if (x, y) ∈ A++.

If we maximize U above the budget line 0.8x + y = 50 and let the threshold
vary from 24 to 25.5, we observe a continuous move from an interior solution
to a corner solution. The optimal solutions as a function of k are depicted in
Figure 5.

The next example shows that even for budget lines of slope −1, symmetry
is a necessary assumption for establishing Theorem 1.

15This restriction could be relaxed, of course, by transforming the distributions accord-
ingly.
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60

55

50

45

40

35

24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 k

x

Figure 5: Case 2

Case 3 Non-symmetric counterexample:

f (x) = g (x) =

{

2x, if x ∈ [0, 1];
0, if x /∈ [0, 1].

Considering budget line y = 50−x, the optimal values for x as a function of
k can be found in Figure 6. We can observe a continuous move from the optimal
interior solution x∗ = y∗ = 25 to the two corner solutions x∗ = 50, y∗ = 0 or
x∗ = 0, y∗ = 50. Because of the symmetric setting we have two branches.

50

40

30

20

10

26 28 30 32 34 36 38 40 k

x

Figure 6: x∗(k) for Case 3
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Figure 7 emphasizes, for k = 32, that even the peakedness statement of
Lemma 1 is violated in Case 3.

0.594

0.592

0.590

0.588

0.586

0.584
10 20 30 40 50 x

Figure 7: Violation of increasing peakedness by Case 3

Finally, we show that even log-concavity cannot be dropped without con-
sequence in Theorem 1.

Case 4 Non-log-concave counterexample:

f (x) = g (x) =

{

12
(

x − 1
2

)2
, if x ∈ [0, 1];

0, if x /∈ [0, 1].

Considering again the budget line y = 50 − x, the optimal values for x
as a function of k are shown in Figure 8. Note the continuous change in the
consumer’s behavior for values around k = 10. By the symmetric setting, we
again have two branches.

Figure 9 emphasizes, for k = 10, that even the peakedness statement of
Lemma 1 is violated in Case 4.

Cases 2, 3, and 4 establish that Theorem 1 does not hold in general if the
assumptions p = 1, symmetry, and/or log-concavity are violated.

5.2.1 Non-Identical Distributions

Next we consider the case of non-identical distributions.

Definition 2 Random variable X dominates random variable Y in the sense
of likelihood ratio, denoted by X ≻ Y , if f(x)/g(x) is non-decreasing in x,
where f and g denote their respective density functions.
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Figure 8: x∗(k) for Case 4

0.75

0.70

0.65

0.60

10 20 30 40 50 x

Figure 9: Violation of increasing peakedness by Case 4
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We will employ Ma’s (1998) Lemma 2.

Lemma 2 [Ma 1998] Suppose that X and Y are independent random variables
possessing symmetric log-concave density functions f and g, respectively. If
|X| ≻ |Y |, then for any given m > 0, (m− λ)X + λY is strictly increasing in
peakedness in λ on

[

0, m
2

]

.

We investigate the following objective function:

v(λ) = U

(

m − λ

p
, λ

)

= P (Zλ,m ≥ k) , (8)

where λ ∈ [0, m] and Zλ,m := (m − λ) Cx

p
+ λCy. We are now ready to state

the following proposition:

Proposition 4 Suppose that the independent nonnegative random variables
Cx and Cy are symmetric around their means pµ = ECx and µ = ECy, have
log-concave densities f and g and |Cx/p − µ| ≻ |Cy − µ|. If k < mµ, then the
consumer, facing budget line px + y = m spends at least as much on good y as
on good x.

Proof. Clearly, EZλ,m = mµ, where λ ∈
[

0, m
2

]

. Since Zλ,m is symmetric
around mµ, it follows for all t > 0 and all λ ∈

[

0, m
2

]

that

P (mµ − t ≤ Zλ,m ≤ mµ) = P (mµ ≤ Zλ,m ≤ mµ + t) and (9)

P (Zλ,m ≥ mµ) =
1

2
. (10)

Now pick two values α and β such that 0 ≤ α < β ≤ m/2. From Lemma 2 it
follows that

P (|Zβ,m − mµ| ≤ t) > P (|Zα,m − mµ| ≤ t) (11)

for all mµ > t > 0. Combining (9) with (11), we obtain

P (mµ − t ≤ Zβ,m ≤ mµ) > P (mµ − t ≤ Zα,m ≤ mµ)

and therefore by (10) we get

P (mµ − t ≤ Zβ,m) > P (mµ − t ≤ Zα,m)

for all mµ > t > 0. Finally, in case 1 by setting t equal to mµ− k we derive16

P (k ≤ Zβ,m) > P (k ≤ Zα,m) .

16Note that assumption k < mµ implies t = mµ − k > 0.
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Thus v is strictly increasing on
[

0, m
2

]

, which implies that the consumer buys
at most m/(2p) units of good x and at least m/2 units of good y.

Proposition 4 implies that the consumer will not spend more on the “more
risky” asset when the threshold is small. Note that under the assumptions of
Proposition 4, the expected returns on a monetary unit of the two goods are
identical; and that symmetry together with the likelihood dominance condition
implies that the good with less “spread” should be preferred.

6 Economic Behavior and Threshold-Induced

Nonconvexities

It seems likely to us that threshold payoffs played an important role in the
evolutionary history of the human species, and that this history is reflected
in our collective psychological architecture. If this hypothesis is correct, we
would expect to see evidence of nonconvexity (i.e., corner solutions, or sud-
den shifts in demand) in situations for which a threshold is (or would have
been, in human prehistory) within reach. An obvious first example is the one
with which we began this investigation: consumption of a sufficient quantity
of limiting micronutrients. As noted in Smith (2004), food marketers appear
to have stumbled on a deep truth about human nature: if you want to induce
a dramatic upward shift in consumption of your product, broadcast messages
proclaiming (at least implicitly) that this food has the power to cure illnesses
of unknown origin. These messages, in which a “medical miracle” accompanies
ingestion of the target product, are commonly employed in television adver-
tisements for food aimed at children. In the pre-industrial world such scenar-
ios would have provided critical information about nutritional value (Smith
2002). In other words, providing information (in the form of situational cues
embedded in advertising messages) to the consumer suggesting that a critical
threshold is larger than might have otherwise been apparent, might effectively
“shift demand” for the advertised product by inducing a local nonconvexity.17

As noted by Rubin and Paul (1979), reproductive success represents an
obvious source of threshold payoffs in human history. The ubiquitous use
of sexual themes in commercial advertisements could, therefore be viewed as
providing “information” (in the subconscious, or psychological sense of the
word) to the consumer about a looming threshold: buy this product, increase
the probability of winning an attractive mate.

17Interestingly, there is also some evidence that consumers who are under conditions of
“stress” systematically choose less-balanced diets (Torres and Nowson 2007).
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Thresholds are also likely to be important outside the world of commer-
cial marketing messages: consider the important–and ubiquitous–life decision
about family size. A woman (and her mate) can choose to have many children–
perhaps at the expense of per-child parental investment–or she can choose to
have just one. Demographers have long known that fertility falls dramatically
when economies transition from subsistence agriculture to an industrial econ-
omy (Jones et al. 1998). A concise explanation for this phenomenon might
be that in the developed world, the returns to education (i.e., parental invest-
ment) are much higher. In other words, the threshold for success in affluent
societies is much higher, so parents respond by devoting more resources to
fewer children.

There is also no reason our model could not be applied to choices made
by producers. Diamond (2005) recounts the story of the medieval Greenland
Norse, who demonstrated a surprising reluctance to utilize new and innovative
technologies in the production of food. Having immigrated some years before
to a stark and desolate land, they faced a perennial looming threshold: growing
enough food in the short summer season to survive the long, cold winters.
Perhaps the risks of diversification (given the consequences of failure) made it
optimal, in some sense, to maintain the old ways. More generally, modern firms
face the threat of bankruptcy–a fact of economic life that might push them
toward extreme and high-risk (in other words, non-convex) business strategies.

As we noted at the outset, it is somewhat surprising that economics lacks
a normative theory of convex preferences. It is our hope that in proposing one
reason why preferences might be convex, we may have taken one small step
toward being able to predict when preferences will be convex. And when they
won’t.
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