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Abstract: This paper extends the Bertrand-Edgeworth price-setting game
with finitely many firms to a game with infinitely many firms. Taking a
market with one significant firm and a nonatomic fringe, we present a micro-
foundation of dominant-firm price leadership.
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1 Introduction

In the following we shall consider a homogenous good market with one signif-
icant firm and a nonatomic fringe containing many infinitesimal firms. Our
model may be regarded as an extension of the Bertrand-Edgeworth game in
which there are finitely many firms to a game with infinitely many firms.

Mixed measure theoretic models have been considered, for instance, by
Gabszewicz and Mertens (1971), Shitovitz (1973), and Okuno, Postlewaite,
and Roberts (1980) in a general equilibrium framework. Sadanand and
Sadanand (1996) used in their analysis a partial equilibrium model containing
a dominant firm and a nonatomic competitive fringe in order to investigate
the timing of quantity-setting oligopoly games. Our model may be considered
as the price-setting counterpart of their model.

In our analysis we will assume that the large firm is the exogenously speci-
fied first mover while the small firms follow simultaneously. We will show that
our model gives a game theoretic foundation of dominant-firm price leader-
ship. In the dominant-firm price leadership model introduced by Forchheimer
(see Scherer and Ross, 1990) there is one large firm and many small firms.
Furthermore, the large firm is able to set the price on the market and the
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firms in the competitive fringe act as price takers. Therefore, the large pro-
ducer sets a price by maximizing profit subject to its residual demand curve.
The large firm’s residual demand curve can be obtained as the horizontal
difference of the demand curve and the aggregate supply curve of the com-
petitive fringe. The problem is that this model is not based on the firms’
individual profit maximizing behavior since it does not explain the large
firm’s price-setting behavior nor why small firms act as price takers. A game
theoretic foundation of price leadership on a duopolistic market was given
by Deneckere and Kovenock (1992). They extended the capacity constrained
Bertrand-Edgeworth duopoly game to a two-stage game with the timing of
price decision in stage one. While they assumed constant average costs up
to some capacity levels, in our analysis we shall assume strictly convex cost
functions.

2 The model

We denote the set of producers by Ω. Let us denote by ωd ∈ Ω the dominant
firm and by Ωc := Ω \ {ωd} the competitive fringe. There is a σ-algebra A
given above the set of producers such that {ωd} ∈ A. We suppose that there
is a finite measure µ given above the set of producers such that ωd is its only
µ-atom with µ ({ωd}) = 1 and the restriction of µ to Ωc is nonatomic.

Let us denote by P := [0, p] the set of possible prices. We denote by
s (p, ω) the supply of producer ω ∈ Ω at price level p.

Assumption 2.1. We assume that s is a bounded and A measurable func-
tion for all p ∈ P . Furthermore, we assume that s is differentiable for all ω
with respect to p, that s is integrable for all p ∈ P with respect to µ, and
that s (0, ω) = 0, ∂s(p,ω)

∂p
> 0 for all ω.

The supply function s (·, ω) of firm ω ∈ Ω can be obtained from its cost
function c (·, ω). Suppose that c (0, ω) = 0 for all ω ∈ Ω. Then in the opposite
direction we can reconstruct the cost functions from the supply functions
since s (·, ω) is invertible by Assumption 2.1. Hence, we have ∂c

∂q
(q, ω) = p if

and only if s (p, ω) = q.
The supply of producers A ∈ A is given at price level p by S (p,A) :=∫

A
s (p, ω) dµ (ω). Assumption 2.1 assures that function S (p,A) is differen-

tiable with respect to p and that ∂S
∂p

(p, A) =
∫

A
∂s
∂p

(p, ω) dµ (ω). Hence, it

follows that ∂S
∂p

(p,A) > 0 for any set A with positive measure, which means

that S (p,A) is strictly increasing in p.
We will model dominant-firm price leadership by a price-setting game.

The price actions of the producers’ are given by a measurable function p :
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Ω → P that we will call from now on a price profile. Let us denote by P the
set of price profiles.

Lemma 2.2. For any price profile p function f (ω) := s (p (ω) , ω) is mea-
surable and integrable with respect to µ.

Proof. We pick an arbitrary set A ∈ A of producers and an arbitrary price
profile p ∈ P . We will construct an increasing sequence (fn)n∈N of type
Ω → P measurable functions that converges pointwise to f . Let pn

i = ip/2n,
where i = 0, 1, . . . , 2n; let An

i =
{
ω ∈ A | pn

i−1 ≤ p (ω) < pn
i

}
, where i =

1, . . . , 2n−1; and let An
i =

{
ω ∈ A | pn

i−1 ≤ p (ω) ≤ pn
i

}
, where i = 2n. Define

the functions fn =
∑2n

i=1 1An
i
s
(
pn

i−1, ·
)

and gn =
∑2n

i=1 1An
i
s (pn

i , ·), where
1A denotes the characteristic function of set A. Obviously, fn ≤ f ≤ gn,∫

A
fn (ω) dµ (ω) =

∑2n

i=1 S
(
pn

i−1, A
n
i

)
, and

∫
A

gn (ω) dµ (ω) =
∑2n

i=1 S (pn
i , An

i )
for any n ∈ N.

For any ε > 0 there exists a δ > 0 such that

|s (p (ω) , ω)− s (p′, ω)| < ε, if |p (ω)− p′| < δ,

because s (·, ω) is continuous for any ω ∈ Ω. We can choose a sufficiently
large number n ∈ N so that |p (ω)− pn

i | < δ for some i = 0, 1, . . . , 2n − 1.
Hence,

f (ω)− fn (ω) = s (p (ω) , ω)−
2n∑
i=1

1An
i
(ω) s

(
pn

i−1, ω
)

< ε.

Therefore, it follows that the sequence (fn)n∈N converges increasingly point-
wise to function f and thus f is measurable. Now, we can conclude by
Lebesgue’s monotone convergence theorem that

∫
A

f (ω) dµ (ω) exists and
that

∫

A

f (ω) dµ (ω) = lim
n→∞

∫

A

fn (ω) dµ (ω) = lim
n→∞

2n∑
i=1

S
(
pn

i−1, A
n
i

)
.

Furthermore,
∫

A
f (ω) dµ (ω) has to be finite since f ≤ gn and

∫
A

gn (ω) dµ (ω)
is finite for any n ∈ N. 2

The supply of producers A ∈ A at price profile p ∈ P can be defined by
Ŝ (p, A) :=

∫
A

s (p (ω) , ω) dµ (ω) because of Lemma 2.2. The consumers side
is given by the demand function D.

Assumption 2.3. We assume that the demand curve is a continuously dif-
ferentiable, decreasing function and intersects both axis. Formally D ∈ C1,
D′ < 0, D (p) = 0 and D (p) > 0 for all p ∈ [0, p).
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We denote by B (p, ω) the set of those producers setting prices be-
low producer ω ∈ Ω, and by C (p, ω) the set of those producers in the
fringe setting the same price as producer ω ∈ Ω. Formally, B (p, ω) :=
{ω′ ∈ Ω | p (ω′) < p (ω)} and C (p, ω) := {ω′ ∈ Ωc | p (ω′) = p (ω)}. Assum-
ing efficient rationing of consumers, we define the demand served by the firms
in the following manner:

∆(p, ω) :=

8>>>>><>>>>>:
s (p (ω) , ω)min

n
1,

D(p(ω))−bS(p,B(p,ω))bS(p,C(p,ω))

o
,

if bS (p, C (p, ω)) > 0 and

D (p (ω)) ≥ bS (p, B (p, ω)) ;

s (p (ω) , ω) ,
if bS (p, C (p, ω)) = 0 and

D (p (ω)) ≥ bS (p, B (p, ω)) ;

0, if D (p (ω)) < bS (p, B (p, ω)) ;

(1)

for any firm ω ∈ Ωc and

∆(p, ωd) := min

�
s (p (ωd) , ωd) ,

�
D (p (ωd))− bS (p, B (p, ωd) ∪ C (p, ωd))

�+
�

(2)

for the dominant firm ωd. The definitions (1) and (2) assume that the dom-
inant firm serves the consumers at a given price level after the competitive
fringe has already sold its supply. However, this assumption is not necessary,
but we impose it only for the purely technical reason of avoiding the need to
have a competitive fringe setting their prices arbitrarily close to, but below,
the dominant firm’s price. This simplification has already been applied by
Deneckere and Kovenock (1992) in their analysis. Now, we are ready to define
the profit function of firm ω ∈ Ω as π (p, ω) := p (ω) ∆ (p, ω)−c (∆ (p, ω) , ω).

Our next assumption concerns the timing of the game in that we suppose
that firm ωd is the exogenously given first mover.

Assumption 2.4. We suppose that firm ωd set its price first and that the
firms in the fringe set their prices simultaneously already in the knowledge
of the price set by the dominant firm.

For any price profile p and any firm ω ∈ Ω we denote by p−ω the restric-
tion of p to the set Ω \ {ω}, that is p−ω contains the price decisions of firm
ω’s rivals. We will also write (p (ω) ,p−ω) for p.

Definition 2.5. Let the dominant firms’s action be pd ∈ P . We call the price
profile p∗ with p∗ (ωd) = pd a Nash equilibrium of stage two, if

π
((

p∗ (ω) ,p∗−ω

)
, ω

) ≥ π
((

p,p∗−ω

)
, ω

)

for any firm ω ∈ Ωc and for any price p ∈ P .

The following behavior is called the dominant-firm price-setting behavior:
firm ωd is maximizing profit subject to its residual demand function Dr

d (p) :=
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(D (p)− S (p, Ωc))
+. The existence of a price p∗d ∈ P maximizing the residual

profit function πr
d (p) := pDr

d (p) − c (Dr
d (p) , ωd) on set P is guaranteed by

the continuity of the residual profit function. We want to show that in a
subgame perfect Nash equilibrium of the price-setting game the dominant
firm and all other firms set price p∗d.

Proposition 2.6. The extensive game 〈Ω,P , π〉 has a unique subgame perfect
Nash equilibrium under Assumptions 2.1, 2.3, and 2.4. The equilibrium price
profile is given by p∗ (ω) = p∗d for all ω in Ω.

Proof. Let the dominant-firm’s action be any pd ∈ P . We have to distin-
guish between three cases: (i) S (pd, Ωc) < D (pd) − s (pd, ωd), (ii) D (pd) −
s (pd, ωd) ≤ S (pd, Ωc) ≤ D (pd), and (iii) D (pd) < S (pd, Ωc). Let pl be the
price level for which S (p, Ωc) = D (p)−s (p, ωd) holds and let pu be the price
level for which D (p) = S (p, Ωc). Such prices pl and pu exist uniquely because
of Assumptions 2.1 and 2.3.

In case of (i) we have pl > pd since S (·, Ωc) is a strictly increasing con-
tinuous function, and D is a decreasing continuous function. Firm ω ∈ Ωc

will not set its price below pl, because at price pl it can sell its entire supply
independently from its rivals’ actions and its profit function by Assumption
2.1 increases on the interval [0, pl]. Therefore, it follows that at price pd the
dominant firm will sell s (pd, ωd) amount of product.

In case of (ii) any firm ω ∈ Ωc will not set its price below pd because
at price pd a firm in the fringe can sell its entire supply. Let us denote by
p the price profile for that p (ω) = pd for all ω ∈ Ω. Furthermore, suppose
that there is a Nash equilibrium price profile p′ of the subgame so that
p′ (ωd) = pd, p′ (ω) ≥ pd for all ω ∈ Ωc and p′ > p above a set with positive
measure. Let A ∈ Ωc∩A be the set of those producers in the fringe for which
p′ (ω) > pd. Denote by U the set of those producers in A that cannot sell
their entire supply, i.e. U := {ω ∈ A | ∆ (p′, ω) < s (p′ (ω) , ω)}. Let Ap :=

{ω ∈ Ω | p′ (ω) ≤ p}, F :=
{

p ∈ P | Ŝ (p′, Ap) ≤ D (p)
}

, and ps := sup F .

Of course, ps ≥ pd because Ŝ (p′, Ap) = 0 for any p < pd. It can be verified
that if ps = pd, then any firm ω ∈ A will not sell anything at all. Thus, p′

cannot be a Nash equilibrium of the subgame. Therefore, in what follows we
suppose that ps > pd. Since Ap increases as p increases it follows that either
F = [0, ps] or F = [0, ps).

First, suppose that F = [0, ps]. Then ps < p because otherwise

Ŝ (p′, Ap) = Ŝ (p′, Ω) ≤ D (p) would follow, which is in contradiction to

Ŝ (p′, Ω) > S (pd, Ω) ≥ D (pd) ≥ D (p) because of the properties of Ŝ and
D. Ω \ U = {ωd} ∪ {ω ∈ Ωc | ∆ (p, ω) = s (p (ω) , ω)} by the definition of
set U . We claim that Ω \ U = Aps . Clearly, ωd is contained in both sets. If
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ω ∈ Aps \ {ωd}, then Ŝ
(
p′, Ap′(ω)

) ≤ D (p′ (ω)) because of p′ (ω) ∈ F . Thus
ω ∈ Ω\U since B (p′, ω)∪C (p′, ω) = Ap′(ω). Hence, Ω\U ⊃ Aps . If ω ∈ Ωc\U ,

then D (p′ (ω)) ≥ Ŝ (p′, B (p′, ω)) + Ŝ (p′, C (p′, ω)) = Ŝ
(
p′, Ap′(ω)

)
regard-

ing the definition of ∆ (equation (1)). This means that p′ (ω) ∈ F , which
implies that p′ (ω) ≤ ps. Thus, ω ∈ Aps and therefore Ω \ U ⊂ Aps . It fol-
lows that U = {ω ∈ Ω | p′ (ω) > ps} ∈ A. For any price p ∈ (ps, p] we have

Ŝ (p′, Ap) > D (p); thus, we obtain Ŝ (p′, Ap \ Aps) > 0. But this implies that

Ŝ (p′, U) > 0, which in turn implies µ (U) > 0. Any producer ω ∈ U cannot

sell anything at all because Ŝ (p′, B (p′, ω)) ≥ Ŝ (p′, Aep) > D (p̃) > D (p′ (ω))
for any p̃ ∈ (ps,p

′ (ω)). Hence, any producer in set U will prefer price pd to
p′ (ω), and therefore p′ cannot be a Nash equilibrium profile.

Second, suppose that F = [0, ps). We claim that

E := {ω ∈ Ω | p′ (ω) < ps} = Ω \ U.

Clearly, ωd is contained in both sets. If ω /∈ E, then p′ (ω) /∈ F and therefore

Ŝ
(
p′, Ap′(ω)

)
= Ŝ (p′, B (p′, ω)) + Ŝ (p′, C (p′, ω)) > D (p′ (ω)). Thus, ω ∈ U

and E ⊃ Ω \ U . If ω ∈ U , then regarding the definition of ∆ (equation

(1)) we obtain Ŝ
(
p′, Ap′(ω)

)
> D (p′ (ω)), which implies that p′ (ω) /∈ F .

Therefore, ω /∈ E and Ω \ U = E ∈ A. Let V := {ω ∈ Ω | p′ (ω) = ps} ∈ A.

Set V has positive measure since Ŝ (p′, Ω \ U) ≤ D (ps) < Ŝ (p′, Aps) =

Ŝ (p′, V ∪ (Ω \ U)). Hence, producers setting price ps can sell their supply
only partly and producers setting prices above ps cannot sell anything at all.
Therefore, any producers form set V can sell their whole supply by setting a
price slightly below ps and therefore p′ cannot be a Nash equilibrium profile.

Furthermore, if p′ = p almost everywhere, then those producers that are
setting a price above pd will not sell anything since the restriction of µ to Ωc

is nonatomic. Hence, the only Nash equilibrium candidate is profile p. Profile
p is a Nash equilibrium because if any producer raises its price unilaterally
above pd, then the demand it faces will be zero because the restriction of µ
to Ωc is nonatomic. We can conclude that at price pd the dominant firm will
sell D (pd)− S (pd, Ωc) amount of product.

In case of (iii) any firm ω ∈ Ωc will not set its price below pu (pu < pd)
because setting prices below pu yields less profits, since at price pu a firm
in the fringe can sell its entire supply. Let us denote by p′′ the price profile
for that p′′ (ωd) = pd and p′′ (ω) = pu for all ω ∈ Ωc. We can proceed
in an analogous way to case (ii) in order to establish that p′′ is a unique
Nash equilibrium of the subgame. Therefore, it follows that at price pd the
dominant firm faces no demand at all. This implies that the dominant firm
will not set a price above pu.
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We already know that pd ≤ pu. If the dominant firm set its price p below
pl then πr

d (p) = ps (p, ωd)− c (s (p, ωd) , ωd). Since

dπr
d

dp
(p) = p

∂s

∂p
(p, ωd) + s (p, ωd)− ∂c

∂q
(s (p, ωd) , ωd)

∂s

∂p
(p, ωd) = s (p, ωd) > 0

the residual profit function πr
d (p) is strictly increasing on the interval (0, pl).

Therefore, pd ≥ pl, which means that the dominant firm set its price in the
region corresponding to case (ii). Thus, the dominant firm will set its price
to p∗d in order to maximize its profits and the firms in the fringe will also set
their price to p∗d. This completes the proof of the proposition. 2

In order to present a complete model of dominant-firm price leadership we
should resolve Assumption 2.4. Following Deneckere and Kovenock (1992) we
shall investigate the outcome of the simultaneous-move price-setting game.
Thereafter we have to compare the firm’s profits in the simultaneous-move
game to the profits in the extensive game. In case of the simultaneous-move
game there is a lack of equilibrium in pure strategies because the large firm
will have an incentive to slightly undercut price p∗d and therefore it will trigger
a price war. The competitive price will not be an equilibrium either since the
large firm will prefer price p∗d to it. Hence, one has to consider equilibrium
in mixed strategies. The crucial point is that we cannot even guarantee the
existence of a mixed strategy equilibrium. The main existence theorems for
games with discontinuous payoffs given by Dasgupta and Maskin (1986),
Simon (1987) and the recent one by Reny (1999) can be applied only in the
case of finitely many firms.

3 Concluding remarks

The price-setting game with a continuum of firms, as presented in Section
2, may also be formulated for the case of more than one large firm, but the
equilibrium behavior of the model would be quite different.

The random rationing rule for the Bertrand-Edgeworth game with a con-
tinuum of firms may be specified by the following residual demand function:

Dr (p) := D (p)

(
1−

∫

{ω′∈Ω|p(ω′)<p}

s (p (ω) , ω)

D (p (ω))
dµ (ω)

)+

.

Our proposition remains valid in the case of random rationing because it can
be shown that in the relevant price region of the large firm the small firms
will follow the price set by the large firm. Therefore, the large firm has to
maximize the following residual demand function:

Dr
d (p) = D (p) (1− Sc (p) /D (p)) = D (p)− Sc (p) .
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