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Abstract Exact enforcement values (Ashlagi I, Monderer D and Tennen-
holz M (2008) Journal of Arti�cial Intelligence 33:575-613) of soft correlated
equilibrium (Forgó F (2010) Mathematical Social Sciences 60:186-190) for non-
decreasing and mixed two-facility simple linear congestion games (including n-
person chicken and prisoners�dilemma games) are determined and found to be
1 and 2, respectively. For non-inreasing two-facility simple linear congestion
games lower and upper bounds are given for the enforcement value. The upper
bound 1; 265625 is signi�cantly better than the previously known 1; 333.
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1 Introduction

Correlated equilibrium (CE) was introduced by Aumann (1974) as a gener-
alization of Nash equilibrium (NE), Nash (1950, 1951). By adding a pre-game
phase to a normal-form game it is de�ned as an NE of the extended game. Orig-
inally the pre-game phase presupposes a mediator who does a lottery according
to a commonly known distribution over the strategy pro�les and then, without
letting the others know it, recommends each player to play her strategy in the
selected strategy pro�le. Then she either accepts the proposal and implements
it or chooses some other strategy. The probability distribution is said to be
a CE if following collectively the recommendations is an NE of the extended
game i.e. each player�s expected utility (payo¤) cannot be improved by devi-
ating from the recommendation provided the rest of the players do accept the
mediator�s advice. By agreeing to participate in the extended game the social
welfare (SW ) as measured e.g. by the sum of the players�s utility (or average
utility) can be more than the SW in any NE. There are, however, games where
CE is of no help in improving NE outcomes.

Generalizations of CE�s aim at improving SW beyond the levels CE�s can
reach. This is done by changing the protocol of the pre-game phase. The price to
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pay is a stricter protocol, more commitment required of the players. The pro-
tocol of coarse correlated equilibrium (CCE) introduced by Moulin and Vial
(1978) requires the players to commit to blindly follow the recommendation of
the mediator whatever it may be. Each player is allowed to deny commitment
and play freely any strategy. A CCE is a probability distribution for which
no player can improve her payo¤ by denying commitment provided everybody
else commits. There are examples and entire classes of games Moulin and Varet
(1978), Moulin et al (2014a), (2014b) where CCE outperforms CE (and con-
sequently NE). Soft correlated equilibrium (SCE) Forgó (2010) is another
generalization of CE. The protocol of CE is "slightly" di¤erent from that of
CCE: a player who does not want to commit can choose freely any other strat-
egy except the one selected by the lottery for her. CCE and SCE are both
generalizations of CE but not of each other as shown in Forgó (2010). There
are games, however, where SCE is a generalization of CCE: An important class
where this is true are binary games, i.e. games where every player has only two
choices.

In this paper we are concerned with measuring the performance of SCE
over a class of games C by how close it can approach the absolute maximum of
SW that can be achieved if players obey a benevolent dictator. We will use the
enforcement value (EV ) as de�ned by Ashlagi et al. (2005). For a game G 2 C
the enforcement value EV (G) is the ratio of the absolute maximum of SW and
the maximum an SCE is able to realize. The EV of the class C is then de�ned
as EV = supG2C EV (G). EV is a typical worst-case indicator commonly used
in computer science. It is a close relative to "price of stability", where the social
cost of the best NE (or CE) is related to the absolute minimum of the social
cost (see Anshelevich et al (2004) and Christodoulou and Koutsoupias (2005)).
Results about the price of stability in cost models cannot be carried over to
utility models by simple means as demostrated by Ashlagi et al (2005).

The class of games considered in this paper are two-facility simple linear
congestion games. In these games players can choose between two facilities and
the utility they get linearly depends on the number players using the particular
facility chosen. We will determine the exact value of EV for two subclasses: non-
decreasing and mixed games. These are in turn 1 and 2. Certain social dilemma
games (SD) such as the prisoners�dilemma and chicken games (see Osborne
and Rubinstein (1996), Hamburger (1973),Bornstein et al (1997), Szilagyi and
Somogyi (2010)) are subclasses of mixed games. We will determine the EV
for these games as well. It will turn out that in the general case the EV does
not change, however, for the 2 and 3-person chicken game EV = 1; 5. For
non-increasing games we determine a lower bound 1; 125 and an upper bound
1; 265625. The latter is better than the previously known 1; 333.

One might wonder whether linearity is too strong an assumption and covers
only irrelevant trivial cases? This is not by far the case. It is straightforward
to show that semi-compound games are linear. An n-person SD is said to be
semi-compound, if each of the n players simultaneously plays the same 2 � 2
SD game with a �xed number k of all the other players and each is required to
make the same move in the k games she is playing. If k = n� 1, then the game
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is compound, as de�ned for prisoners�dilemma games by Hamburger (1973)
The paper is organized as follows. Section 2 contains the necessary pre-

liminaries and de�nitions. Section 3 deals with the class of non-increasing and
non-decreasing simple linear congestion games. Section 4 addresses the class of
"chicken-like games" whereas Section 5 is devoted to "prisoners�dilemma-like
games". Section 6 concludes.

2 Preliminaries, notation and de�nitions

We begin with the de�nition of SCE. To this end we need some notation and
de�nitions of basic game theory. Let G = fS1; :::; Sn; f1; :::; fng be an n-person
game in normal (strategic) form with �nite strategy sets S1; :::; Sn and payo¤
functions f1; :::; fn. The basic ingredients in the de�nition of various kinds of
correlated equilibria are the "incentive" constraints which compare the expected
utility when following the advice of the mediator to that of turning it down. We
will formulate the incentive constraints for a particular player i and suppress
index i if it does not cause any confusion. Introduce the following notation:
N = f1; :::; ng: set of players.
I = f1; :::;mg: strategy set of player i represented by the indices of strategies.
S�: Cartesian product of strategy sets of all players but i.
s� 2 S� : strategy pro�le of all players but i.
(j; s�); j 2 I; s� 2 S�: strategy pro�le of all players.
S = f(j; s�) : j 2 I; s� 2 S�g: set of strategy pro�les.
f(j; s�): payo¤ (utility) to player i if she plays strategy j and the rest of

the players play s�:
p: probability distribution on S.
p(j; s�): probability assigned by p to pro�le (j; s�).

De�nition 1 A CE is a probability distribution p satisfying the following
incentive constraints for player i, (i 2 N)

X
s�2S�

f(j; s�)p(j; s�) �
X

s�2S�

f(k; s�)p(j; s�) for all j; k 2 I :

De�nition 2 A CCE is a probability distribution p satisfying the following
incentive constraints for player i, (i 2 N)

X
j2I

X
s�2S�

f(j; s�)p(j; s�) �
X
j2I

X
s�2S�

f(k; s�)p(j; s�) for all k 2 I :

For the de�nition of SCE we need the notion of "admissible" sets. For a
�xed j 2 I, consider the constraints

X
s�2S�

f(j; s�)p(j; s�) �
X

s�2S�

f(l; s�)p(j; s�) for all l 2 I :
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and call them a j-set (of constraints). Consider the set

K =
mY
j=1

(I n fjg) :

Elements of K are called admissible (index)sets.

De�nition 3 An SCE is a probability distribution p satisfying the following
incentive constraints for player i, (i 2 N)

X
j2I

X
s�2S�

f(j; s�)p(j; s�) �
X
j2I

X
s�2S�

f(kj ; s�)p(j; s�)

for all admissible sets (k1; :::; km) 2 K.
Now we turn to n-player two-facility simple congestion games. This is going

to be a brief account, for more details consult Forgó (2014). An n-player, two-
facility simple congestion game can be given by the "congestion form": two
non-negative n-vectors a = (a1; :::; an); b = (b1; :::; bn) meaning that if j many
players choose facility 1 (F1); then each one gets utility aj and if k many players
choose facility 2 (F2); then each one gets utility bk. The associated congestion
game is de�ned by the player set N , the strategy set fF1; F2g for each player,
brie�y denoted by f1; 2g; and the payo¤s determined by the utility vectors
a and b. A strategy pro�le of the n players is (i1; :::; in) where ij 2 f1; 2g;
j 2 N . Let pi1;:::;in be the probability of the mediator selecting strategy pro�le
(i1; :::; in). Let t denote the number of players using facility F2; t = 0; 1; :::; n:
Let furthermore St = f(i1; :::; in) 2 S : number of players choosing F2 = tg:
Taking into account the inherent symmetry of the game we assume that all
probabilities pi1;:::;in , (i1; :::; in) 2 St are equal and denote this by pt.

Using this notation the incentive constraint of each player becomes

(an � b1)p0 +
n�1X
t=1

(

�
n� 1
t� 1

�
(bt � an�t+1) +

�
n� 1
t

�
(an�t�bt+1))pt+(bn�a1)pn � 0: (1)

The normalizing and the non-negativity constraints are

nX
t=0

�
n

t

�
pt = 1 , pt � 0; t = 0; 1; :::; n: (2)

and the SW (de�ned as the sum of the utilities of the players) is
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SW =
nX
t=0

�
n

t

�
(btt+an�t(n�t))pt: (3)

Introducing the notation qt =
�
n
t

�
pt; t = 0; 1; :::; n (1); (2); (3) can be brought to

the more simple form

nX
t=0

(t(bt�an�t+1)+(n�t)(an�t�bt+1))qt � 0 (4)

nX
t=0

qt = 1; qt � 0; t = 0; 1; :::; n

SW =
nX
t=0

(btt+an�t(n�t))qt: (5)

The maximum SW achievable through SCE can be determined by the solution
of the following LP

P : max
nX
t=0

(btt+ an�t(n� t))qt

nX
t=0

(t(bt � an�t+1) + (n� t)(an�t � bt+1))qt � 0

nX
t=0

qt = 1; ; qt � 0; t = 0; 1; :::; n:

The proof of this claim is relegated to the appendix.

3 The EV for two-facility non-increasing and non-decreasing simple
linear congestion games

The performance of SCE for non-increasing simple linear congestion games
was the subject of an earlier paper by Forgó (2014). These games were also
analyzed by Ashlagi et al (2008) for CE. In these games utility of a player does
not increase for either facility as congestion grows. Tra¢ c situations are typical
examples. In Forgó (2014) an upper bound 4

3 was determined for the EV and it
was conjectured that this bound can signi�cantly be decreased. As it will turn
out, this is the case. Exact values of EV were obtained up to n = 4. EV = 1
for n = 2; 3 and EV = 1; 007478 for n = 4. So we may assume n � 5.

Here, and throughout the whole paper we will minimally infringe on gen-
erality by �xing the level of the lowest utility at 0. This is fairly typical in
microeconomics. The purpose is to make the complicated analysis much easier
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since we have only to consider three parameter instead of four. The congestion
form of a non-increasing simple linear congestion game is given in the following
table

F1 F2
a1 = (n� 1)x b1 = y + (n� 1)z
a2 = (n� 2)x b2 = y + (n� 2)z

::: :::
at = (n� t)x bt = y + (n� t)z

::: ::::
an�1 = x bn�1 = y + z
an = 0 bn = y

We assume that x; y; z are all nonnegative, x > 0; and at least one of y and z is
positive. This will also be assumed for all other simple linear congestion games
considered in this paper. Substituting the congestion form into (4) and (5) we
get

nX
t=0

(t(n+ 1� 2t)x+ (2t� n)y + (n� t)(2t� n+ 1)z)qt � 0

SW =
nX
t=0

(t(n� t)(x+ z) + ty)qt:

In order to make the dependence on parameters clear, introduce the notation

C(n; x; y; z; t) = �[t(n+ 1� 2t)x+ (2t� n)y + (n� t)(2t� n+ 1)z] (6)

W (n; x; y; z; t) = t(n� t)(x+ z) + ty (7)

for any 0 � t � n; (n � 5): As seen earlier the maximum SW achievable in an
SCE for �xed n; x; y; z;is the optimal objective function value of the following
LP

P : max

t=nX
t=0

W (n; x; y; z; t)qt

t=nX
t=0

C(n; x; y; z; t)qt � 0

t=nX
t=0

qt = 1, qt � 0; t = 0; 1; :::; n:
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Obviously max0�t�nW (n; x; y; z; t) is an upper bound to the highest achievable
SW without any mediation whatsoever which happens to be exact if the maxi-
mumpoint is an integer. Then for any feasible point q = (q0; q1; :::; qn) of P we
have

EV � sup
n;x;y;z;t

max0�t�nW (n; x; y; z; t)Pt=n
t=0 W (n; x; y; z; t)qt

: (8)

On the other hand, for any set of parameters n; x; y; z

EV � maxt=0;1;:::;nW (n; x; y; z; t)

maxq2LP
Pt=n

t=0 W (n; x; y; z; t)qt
(9)

where LP denotes the feasible set of P:
We state a simple lemma and two corollaries.

Lemma 1 For any n; x; y; z; t and � > 0,W (n; �x; �y; �z; t) = �W (n; x; y; z; t)
and

Pt=n
t=0 C(n; �x; �y; �z; t)qt = �

Pt=n
t=0 C(n; x; y; z; t)qt:

Proof By substituting into (6) and (7):�

Corollary 1 EV is not a¤ected by scaling with a factor � > 0.

Corollary 2 Without loss of generality we may take y = 1 if y > 0, or when
it is more convenient z = 1 if z > 0.

Theorem 1 For the class of two-facility non-increasing simple linear con-
gestion games EV �

�
9
8

�2
= 1; 265625:

Proof It can easily be seen that the absolute (continuous) maximum of
W (n; x; y; z; t) with respect to t is attained at

t� =
n

2
+

y

2(x+ z)
: (10)

We distinguish two cases
A. r � n+3

2 . Assume that n is even. Then qn
2
= 1; qt = 0; t 6= n

2 is feasible
to P . Therefore if y = 0; then EV = 1: If y > 0, then by Corollary 2 we may
set y = 1. De�ne r = 1

x+z .Thus we have

EV � W (n; x; 1; z; t�)

W (n; x; 1; z; n2 )
=
((n2 )

2 � ( r2 )
2)(x+ z) + (n2 +

r
2 )

(n2 )
2(x+ z) + n

2

=
(n+ r)2

n(n+ 2r)
:

This is an increasing function of r, therefore

EV �
(n+ n+3

2 )2

n(n+ 2n+32 )
=

1
4 (3n+ 3)

2

n(2n+ 3)
: (11)
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This ratio is a decreasing function of n. Since n = 6 is the smallest even number
satisfying n � 5 we get

EV �
1
4 (3 � 6 + 3)

2

6(2 � 6 + 3) = 1; 225:

If n is odd, then qn�1
2
= 1

2 ; qn+12
= 1

2 ; qt = 0; t 6=
n�1
2 ; n+12 is feasible to P . Thus

EV � W (n; x; 1; z; t�)
1
2W (n; x; 1; z;

n�1
2 ) + 1

2W (n; x; 1; z;
n+1
2 )

=
(n+ r)2

n(n+ 2r)� 1 :

The right-hand side is again an increasing function of r and thus

EV �
1
4 (3n+ 3)

2

n(2n+ 3)� 1 :

Since this ratio is a decreasing function of n, substituting n = 5 we obtain the
estimation

EV � 81

64
=

�
9

8

�2
= 1; 265625:

B. r > n+3
2 . Again, if y = 0; then EV = 1 and we may set y = 1. Take the

minimum of C(n; x; 1; z; t) with respect to t. The minimumpoint is

t0 =
(n+ 1)x+ 2 + (3n� 1)z

4(x+ z)
=
n+ 1

4
+
r

2
+
(n� 1)zr

2
: (12)

Since r > n+3
2 and zr > 0, therefore

t0�n
2
=
n+ 1

4
+
r

2
+
(n� 1)zr

2
�n
2
> 1. (13)

C(n; x; 1; z; t) is a convex quadratic function of t which is symmetric to
its minimumpont t0. We know that C(n; x; 1; z; n2 ) < 0, therefore by (13)
we have C(n; x; 1; z; [t0]) < 0 and C(n; x; 1; z; [t0] + 1) < 0, where [a] denotes
the integer part of the real number a. Consider �rst the simple case when
[t0] � t� � [t0] + 1. Then [t0] = [t�] and since maxt=0;1;:::;nW (n; x; y; z; t) =
maxfW (n; x; 1; z; [t�]);W (n; x; 1; z; [t�] + 1g, the two solutions q[t�] = 1; qt =
0; t 6= [t�] and q[t�]+1 = 1; qt = 0; t 6= [t�] + 1 are both feasible to P implying
EV = 1:

Thus we may suppose that t� =2 [[t0]; [t0]+1] and meaning that it is su¢ cient
to prove that

EV � sup
n;x;z

W (n; x; 1; z; t�)

W (n; x; 1; z; t0)
� 9

8
: (14)
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Showing that

8W (n; x; z; t�)�9W (n; x; z; t0) < 0 (15)

holds for all possible values of the parameters implies the validity of (14). Using
the notation r = 1

x+z we can bring (15) to the following form

8((
n

2
+
r

2
)(
n

2
� r

2
)
1

r
+
n

2
+
r

2
)�

9[(
n+ 1

4
+
r

2
+
n� 1
2

rz)(
3n� 1
4

� r
2
� n� 1

2
rz)
1

r
+
n+ 1

4
+
r

2
+
n� 1
2

rz < 0:

Multiply both siges by r

8(
n2

4
� r

2

4
+
n

2
r +

r2

2
)�

9[(
n+ 1

4
+
r

2
+
n� 1
2

rz)(
3n� 1
4

� r
2
� n� 1

2
rz)+

n+ 1

4
r+

r2

2
+
n� 1
2

r2z] < 0:

Multiplying out after simpli�cation and rearrangement we get

5

16
n2� 9

8
n+

9

16
+r(�1

2
n)+r2(�1

4
)+rz(�9

4
(n�1)2)+(rz)2 9

4
(n�1)2 < 0: (16)

The sum of the last two terms is a convex quadratic function of rz. Since
0 � rz < 1, this cannot be more than 0. The coe¢ cients of r and r2 are
negative. Taking in account that r > n+3

2 , if (16) holds by substituting r =
n+3
2 and omitting the last two terms, then it holds for all possible values of the

parameters. Then (16) reduces to � 9
4n < 0 which obviously holds for any n � 1.

Cases A and B cover all possible values of r, and since 9
8 �

�
9
8

�2
, the proof

of the theorem is complete.�

Theorem 2 For the class of two-facility non-increasing simple linear con-
gestion games EV � 9

8 = 1; 125.
Proof We will consider a series of games where x = 2

n�3 ; y = 1; z = 0 (or
equivalently r = n�3

2 ; y = 1; z = 0). Assume that n is odd and
p
n+ 1 is integer.

The smallest such n � 5 is 15. In order to determine the numerator in (9) we
have to �nd the integer maximum of W (n; x; y; z; t). The continuous maximum
is attained at t� = n

2 +
r
2 =

3(n�1)
4 . This is either an integer or half way between

two integers. In the �rst case the continuous and integer maxima coincide. In
the latter case, since for �xed n; x; y; z the function W is concave and quadratic
in t, the integer maximum of W occurs at either integer neighbor of t�, say at
t� � 1

2 =
3n�5
4 . Then the integer maximum of W is

9



9(n� 1)2
8(n� 3) if t� is integer,

(3n� 5)(3n� 1)
8(n� 3) if t� is not integer.

Turning to the denominator, we �rst observe that C(n; x; y; z; t) is a convex
quadratic function of t for any �xed n; x; y; z. The two roots of the quadratic
equation

C(n; x; y; z; t) = C(n;
2

n� 3 ; 1; 0; t) = 0
are

t1 =
n� 1�

p
n+ 1

2

t2 =
n� 1 +

p
n+ 1

2
:

By our assumption both t1 and t2 are integers. We claim that q0 = (q00; q
0
1; :::; q

0
n);

q0t2 = 1; qt = 0; t 6= t2 is an optimal solution of P . Feasibility is obvious. The
objective function value of P at this solution is

W (t2) =
1

2(n� 3)(2n
2 � 5n+ (n� 1)

p
n+ 1 + 1):

Problem P is an LP and its dual D is

D : min v

v � �C(n; 2

n� 3 ; 1; 0; t)u+W (n;
2

n� 3 ; 1; 0; t); for all t = 0; 1; :::; n

u � 0:

By substitution and some algebra it can be veri�ed that

u =
1

4n
((n� 1)

p
n+ 1� (n+ 1))

v =
1

2(n� 3)(2n
2 � 5n+ (n� 1)

p
n+ 1 + 1)

is a feasible solution to D, v also being the objective function value of D. Since
v =W (t2), by the weak duality theorem of linear programming we have

W (t2) = max
q2LP

t=nX
t=0

W (n; x; y; z; t)qt:
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Thus the following inequalities hold

EV �
9(n�1)2
8(n�3)

1
2(n�3) (2n

2 � 5n+ (n� 1)
p
n+ 1 + 1)

if t� is integer,

EV �
(3n�5)(3n�1)

8(n�3)
1

2(n�3) (2n
2 � 5n+ (n� 1)

p
n+ 1 + 1)

if t� is not integer.

In both cases the right-hand side of the inequality goes to 9
8 if n!1 thereby

establishing the claim of the theorem.�
From Theorem 1 and 2 we get

Corollary 3 For the class of two-facility non-increasing simple linear con-
gestion games 9

8 � EV �
�
9
8

�2
.

Notice that estimation (11) gets tighter as n grows and thus asymptotically
we get an exact EV

EV � lim
n!1

1
4 (3n+ 3)

2

n(2n+ 3)
=
9

8
= 1; 125:

In non-decreasing simple linear congestion games utility grows as congestion
increases. The congestion form for these games is given by the following table

F1 F2
a1 = 0 b1 = y
a2 = x b2 = y + z

::: :::
at = (t� 1)x bt = y + (t� 1)z

::: ::::
an�1 = (n� 2)x bn�1 = y + (n� 2)z
an = (n� 1)x bn = y + (n� 1)z:

These games are models of situations where the utility of a player grows as
the number of players using a facility increases. We may think of two politi-
cal parties, where each voter�s utility (hope of his party winning the election)
increases as the number of people casting their votes on his party grows. The
complexity of these games, however, does not reach that of the other two types
of two-facility simple linear congestion games.

Theorem 3 For non-decreasing simple linear congestion games EV = 1.
Proof Denote again by t the number of players choosing F2. The absolute

maximum of SW is achieved at

t = 0 if (n� 1)x � y + (n� 1)z
t = n if (n� 1)x � y + (n� 1)z

11



and thus the maximum SW = maxfn(n�1)x; n(y+(n�1)z)g. Substituting the
values from the congestion form and p0 = 1; pi = 0; i 6= 1 if (n�1)x � y+(n�1)z
or pn = 1; pi = 0; i 6= n if (n � 1)x � y + (n � 1)z into (4) and (5) we see that
in both cases we have an SCE, respectively, realizing the absolute maximum of
SW . Consequently, EV = 1 for this class of games.�

It is worth mentioning that correlation is not necessary for achieving the
best possible SW since the two SCE�s de�ned in the proof of Theorem 3 are
NE�s. If, n = 2; and y < x < y + z, then we have the "stag hunt" game (see
e.g. Osborne and Rubinstein (1994)), where the issue is not the maximization
of SW but coordination for realizing the better NE. The scenario of the CE
will do for this purpose, there is no need for the "stricter" protocol of the SCE.

4 The exact value of EV for two-facility "chicken-like" linear con-
gestion games

The class of games considered in this section consists of mixed two-facility
linear congestion games where utility is lowest when all players use the "decreas-
ing" facility F1. We will call this class, for good reason, two-facility "chicken-
like" linear congestion games, CH-type games for short. Again, we assume that
the lowest utility is normalized to 0 and parameters x; y; z are all nonnegative,
y > 0; and at least one of x and z is positive. In particular, the congestion form
is the following

F1 F2
a1 = (n� 1)x b1 = y
a2 = (n� 2)x b2 = y + z

::: :::
at = (n� t)x bt = y + (t� 1)z

::: ::::
an�1 = x bn�1 = y + (n� 2)z
an = 0 bn = y + (n� 1)z:

Assuming that t players choose F2, thus n � t players choose F1 and sub-
stituting in the incentive constraint C and the social welfare function W we get
from (4) and (5)

C(n; x; y; z; t) = �(t(n� 2t+ 1)x+ (2t� n)y + t(2t� n� 1)z) � 0

W (n; x; y; z; t) = t(n� t)x+ t(y + (t� 1)z):

Theorem 4 For the class of CH-type games EV � 2.
Proof We distinguish two cases.

12



a) x � z. In this case W is a convex (linear if x = z) quadratic function of t
on the interval [0; n]. Therefore, its maximum is taken at one of the endpoints.
Since W (n; x; y; z; 0) = 0 and W (n; x; y; z; n) > 0, the maximumpoint is t = n.
Since C(n; x; y; z; n) = �(n(n � 1)(z � x) + ny) < 0, t = n also satis�es the
incentive constraint and thus EV = 1.

b) x > z. Assume that n is even. Then qn
2
= 1; qi = 0; i 6= n

2 is an SCE
which can easily be checked by substituting into the incentive constraint. Indeed

C(n; x; y; z;
n

2
) = �n

2
(x� z) < 0: (13)

The absolute unconstrained continuous maximum of W is attained at

t� =
y + nx� z
2(x� z) : (14)

Clearly t� � n
2 . If t� � n, then W , being a concave quadratic function of t,

attains its maximum on [0; n] at t = n. Thus we have the simple estimation

EV � W (n; x; y; z; n)

W (n; x; y; z; n2 )
=

n(y + (n� 1)z)
n2

4 (x+ z)�
n
2 z +

n
2 y
� 2:

Consider the case when t� < n: Then from (14) we obtain

y < nx�(2n�1)z. (15)

Look �rst at the case when z > 0. By Corollary 2 we can set z = 1. Then we
get

EV � W (n; x; y; 1; t�)

W (n; x; y; 1; n2 )
=

(y+nx�1)2
4(x�1)

n2

4 (x+ 1)�
n
2 +

n
2 y
=

(y + nx� 1)2
n2(x2 � 1) + 2n(x� 1)(y � 1) :

By taking the derivative of the right-hand side with respect to y it is easy to
see that it is positive for any n � 2 that is, it is an increasing function of y over
the positive reals for any �xed x. From (15) taking z = 1 we obtain

y < 1+nx�2n. (16)

Thus

EV � W (n; x; 1 + nx� 2n; 1; n)
W (n; x; 1 + nx� 2n; 1; n2 )

=
4

3
< 2: (17)

If z = 0, then y > 0 and by Corollary 2 we may set y = 1. Then (15) becomes

13



1 < nx

and

EV � W (n; x; 1; 0; t�)

W (n; x; 1; 0; n2 )
=

(1+nx)2

4x
n2

4 x+
n
2

=
(1 + nx)2

n2x2 + 2nx
<
4

3
:

The proof for the case when n is odd is the same, the only di¤erence is that in this
case we should work with the SCE qn

2�1 =
1
2 ; qn2+1 =

1
2 ; qi = 0; i 6=

n
2 �1;

n
2 +1.

�

Theorem 5 For the class of CH-type games EV � 2.
Proof Consider an n-player CH-type game with parameters x = 1 + 2

n ; y =
0; z = 1; n � 4 and even. First we will determine the exact value of the denom-
inator in (9). We claim that the SCE qn

2
= n+2

2n+2 ; qn2+1 =
n

2n+2 ; qi = 0; i 6=
n
2 ;

n
2 + 1 is an optimal solution of

P : max
t=nX
t=0

W (n; 1 +
2

n
; 0; 1; t)qt

t=nX
t=0

C(n; 1 +
2

n
; 0; 1; t)qt � 0 (18)

t=nX
t=0

qt = 1; qt � 0; t = 0; 1; :::; n:

By substitution, it can be veri�ed that it is feasible and its objective function
value is n(n+1)

2 � 1: The dual of P is

D : min v

v � �C(n; 1 + 2

n
; 0; 1; t)u+W (n; 1 +

2

n
; 0; 1; t); for all t = 0; 1; :::; n (19)

u � 0:

We claim that u = n
2 � 1; v =

n(n+1)
2 � 1 is a feasible solution of (19). By

simple algebra we can determine that the continuous maximum of the concave
quadratic function

Q(t) = �C(n; 1 + 2

n
; 0; 1; t)u+W (n; 1 +

2

n
; 0; 1; t)

is at t = n+1
2 which is not an integer but it is half way between the integers

n
2 ;

n
2 + 1. By the symmetry of the quadratic function the maximum is attained

at both of these integers. The objective function value at both of them is
n(n+1)

2 � 1 which is equal to the objective function value of P at the SCE
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qn
2
= n+2

2n+2 ; qn2+1 =
n

2n+2 ; qi = 0; i 6= n
2 ;

n
2 + 1. Thus by the weak duality

theorem of linear programming, this solution is optimal to P: We have just
shown that

max
q2LP

t=nX
t=0

W (n; 1 +
2

n
; 0; 1; t)qt =

n(n+ 1)

2
� 1:

The absolute maximum of W (n; 1 + 2
n ; 0; 1; t) over t 2 [0;1) is at

t� =
n(1 + 2

n )� 1
4
n

;

which cannot be less than n if n � 4 as it is assumed. Thus the maximum of
W (n; 1 + 2

n ; 0; 1; t) over t 2 [0; n] is W (n; 1 +
2
n ; 0; 1; n) = n(n � 1): Therefore

we have the following inequality for the EV

EV � n(n� 1)
n(n+1)

2 � 1
=

2n(n� 1)
n(n+ 1)� 2 : (20)

The right-hand side of the above inequality is an increasing function of n and
its limit is 2 as n!1 through even n�s. �

Consider now the special case when n = 2 and

y + z < x < 2y + 2z: (21)

This is the well known chicken game with the payo¤s in bimatrix form

L H
L y + z; y + z y; x
H x; y 0; 0

The �rst strategy of both players is a low-risk (L) and the second strategy is
a high-risk action (H). There are two NE�s in pure strategies (L;H) and (H;L),
the maximum SW 2(y + z) occurs at (L;L) and the minimum at (H;H). This
means that if a player chooses H alone, then she gets the highest payo¤, whereas
both players�choosing H is disastrous, giving the lowest possible SW . For a
CH-type game to represent an n-player chicken game (CH-game for short) we
need to preserve these properties of the two-player chicken game:
(i) taking H alone gives the highest individual utility,
(ii) highest SW is at the collective choice of L.
Based on the congestion-form model, facility F1 plays the role of H, while

F2 does so for L. Thus, in order to render a CH-type game a CH-game we
need to assume that

(i) (n� 1)x > y + (n� 1)z
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(ii) W (n) > W (t); for all t = 0; 1; :::; n� 1:

For (i) to hold it is necessary that x > z. For (ii) to hold we need to have

t� =
y + nx� z
2(x� z) � n

or equivalently

y � nx� (2n� 1)z: (22)

The question emerges whether we have a better EV if we constrain ourselves
to the class of CH-games? The answer is given in the following theorem.

Theorem 6 For the class of CH-games EV = 2:
Proof Since chicken games are CH-type games, by Theorem 4 we have EV �

2. In order to be able to apply Theorem 5 to prove EV � 2, it is enough to show
that the n-player CH-game with parameters x = 1+ 2

n ; y = 0; z = 1 (n � 4 and
even) is a CH-game. Substituting into (i) and (21) we get

(n� 1)(1 + 2

n
) > (n� 1);

0 � n(1 + 2

n
)� 2n+ 1

which hold if n � 3:�

For small n�s we have a better EV than 2.

Theorem 7 For two-player CH-games EV = 3
2 .

Proof We only have to consider case b) and subcase t� = y+2x�z
2(x�z) > 2 in the

proof of Theorem 4 since for t� � 2 we know from (17) that EV � 4
3 <

3
2 . The

maximum SW is 2(y+ z) by (21). The maximum SW of SCE�s is obtained as
the optimal objective function value of the following LP

max(x+y)p1+2(y+z)p2

2yp0+(z�x)p1+2(x�y�z)p2 � 0

p0+p1+p2 = 1; p0; p1; p2 � 0: (23)

p0 = 0; p1 =
2
3 ; p2 =

1
3 is easily seen to be feasible to (23) and thus we have the

estimation

2(y + z)
2
3 (x+ y) +

2
3 (y + z)

� 3

2

which must hold since x > y + z by (21).
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Take the chicken game with parameters x = 1 + "; y = 0; z = 1 which
obviously satisfy (21): It can be veri�ed that p0 = 0; p1 =

2
3 ; p2 =

1
3 is an

optimal solution of (23) with objective function value 2
3 (1+")+

2
3 . The absolute

maximum of the SW is 2. Thus we have

lim
"!0

2
2
3 (1 + ") +

2
3

=
3

2

completing the proof.�

It is interesting that the EV does not get any worse if the number of players
increases by 1.

Theorem 8 For the class of three-player CH-games EV = 3
2 .

Proof The maximum SW of SCE�s is obtained as the optimal value of the
following LP

max(2x+y)p1+2(x+y+z)p2+(3y+6z)p3

3yp0+(�2x+y+2z)p1�yp2+(6x�3y�6z)p3 � 0

p0+p1+p2+p3 = 1; p0; p1; p2; p3 � 0: (24)

The absolute maximum of SW is either 2(x+y+ z) or 3y+6z. In the �rst case
p2 = 1; pi = 0; i 6= 2 is an SCE and EV = 1. From 2(x + y + z) < 3y + 6z we
get x > z + 1

2 . Since p2 = 1; pi = 0; i 6= 2 is feasible, we have the estimation

EV � 3y + 6z

2x+ 2y + 2z
<

3y + 6z

2(z + 1
2 ) + 2y + 2z

=
3y + 6z

2y + 4z + 1
<
3

2
: (25)

Consider the CH-game with parameters x = 1 + "; y = 0; z = 1: It is easy to
show that the SCE p2 = 1; pi = 0; i 6= 2 is an optimal solution of (24) with
objective value 4 + 2". The absolute maximum of the SW is 6. Thus we have

lim
"!0

6

4 + 2"
=
3

2
: (26)

Combining (25) and (26) we get EV = 3
2 .�

From (20) for n = 4 we get the lower bound 28
17 = 1; 647:: and by Theorem

5 this grows (through even n�s) monotonically towards 2.

An example
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Assume that there are four �rms which can decide on mitigating the pollution
of a common resource (e.g. a lake) that they use for their business activities
or do nothing and dump waste in the lake uncontrolled. They have bilateral
contracts with each other in which they pledge to control the pollution. Not
controlling the pollution means a violation of this contract and is penalized by
having to pay a �ne. The �ne is proportional with the amount of the pollutants
damaging the lake which depends on the number of �rms violating the contract.
So each �rm faces the decision problem of choosing between mitigation (M) and
uncontrolled pollution (P ) knowing the consequences of both. Utilities (based
on pro�ts achievable) are such that every �rm plays a chicken game with every
other. Assume that the utilities are given by the following matrix (Firm i is the
row player, �rm j is the column player)

M P
M (6; 6) (2; 7)
P (7; 2) (0; 0)

:

This gives rise to the following congestion game with congestion form

No. of �rms P M
1 21 6
2 14 10
3 7 14
4 0 18

:

This is a CH-type game, in particular a four-person CH-game. To determine
an SW maximizing SCE we solve the following LP :

max 27p1 + 48p2 + 63p3 + 72p4

24p0 + 3p1 � 6p2 � 3p3 + 12p4 � 0

p0 + p1 + p2 + p3 + p4 = 1

p0; p1; p2; p3; p4 � 0:

The optimal solution is p0 = 0; p1 = 0; p2 = 0; p3 = 0; 8; p4 = 0; 2 with SW =
64; 8. For the best pure NE�s SW = 63. Thus the best SCE gives a 2; 86%
improvement relative to the best pure NEP�s.

To implement the SCE, the �rms may establish a club every player may or
may not join. Members of the club commit themselves to follow the instruction
of the club o¢ cial. The o¢ cial does a lottery and with probability 0; 2 forces
every �rm to mitigate and with probability 0; 8 forces three of them to mitigate
and let the remaining one pollute. Which one to choose to allow to pollute can
be chosen arbitrarily. In the spirit of the inherent symmetry of the �rms the
most acceptable way is a uniform random selection. This policy is stable in the
sense that if everybody joins the club, there is no incentive for any player to
leave it.
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5 The exact value of EV for two-facility "prisoners�dilemma-like"
linear congestion games

In this section we deal with the other class of mixed two-facility simple linear
congestion games where utility is lowest when all players use the "increasing"
F1 facility. We will call this class two-facility "prisoners�dilemma-like" linear
congestion games, PD-type games for short. As it will turn out both the classical
two-person prisoners�dilemma and a generalization due to Hamburger (1973)
are special cases of PD-type games. In Forgó (2016) a bound EV � 4 was
established for the class of PD-type games and it was conjectured that this
bound can signi�cantly be decreased. Again, we assume that the lowest utility
is normalized to 0 and parameters x; y; z are all nonnegative, y > 0; and at least
one of x and z is positive. The congestion form is the following

F1 F2
a1 = 0 b1 = y + (n� 1)z
a2 = x b2 = y + (n� 2)z

::: :::
at = (t� 1)x bt = y + (n� t)z

::: ::::
an�1 = (n� 2)x bn�1 = y + z
an = (n� 1)x bn = y

:

In the language of the prisoners� dilemma F1 can be thought of as the "co-
operator" facility whereas F2 represents the "defector" facility. The two most
important properties of a (two-person) PD from which many others can be
deduced (Hamburger, 1994) are the following:
P1 Each player has a dominant strategy (F2),
P2 (F2; F2) is the only NE:
There are many ways to generalize the PD to n players, see Carrol (1988).

The minimum requirement for the generalization is to preserve P1 and P2:
Following Hamburger (1973) we de�ne the "cooperators� function" C(k); k =
1; :::; n which is interpreted as the payo¤ to an F1-chooser provided there are k
of them and the "defectors�function" D(k); k = 0; 1; :::; n � 1 which gives the
payo¤ an F2-chooser gets provided there are k F1-choosers. C(0) and D(n) are
unde�ned. We assume that
(Q1) C(k) < D(k � 1); k = 1; :::; n� 1;
(Q2) C(n) > D(0):
Assumptions Q1; Q2 are meant to ensure that P1 and P2 carry over to the

n-person case. Q1 means that for a single player it is pro�table to leave the
set of cooperators no matter how many of them there are. Q2 makes collective
cooperation preferable to collective defection.

Let t denote the number of players playing F2, t = 0; 1; :::; n: Then from the
congestion form and (4),(5) we can construct the following LP whose optimal
objective function value gives the maximum SW achievable in an SCE for �xed
n; x; y; z
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P : max
t=nX
t=0

W (n; x; y; z; t)qt

t=nX
t=0

C(n; x; y; z; t)qt � 0 (27)

t=nX
t=0

qt = 1, qt � 0; t = 0; 1; :::; n:

where

C(n; x; y; z; t) = �((ty � t(n� t)(x� z) + (n� t)((n� t� 1)(x� z)� y)) (28)

W (n; x; y; z; t) = t(y + (n� t)z) + (n� t� 1)(n� t)x: (29)

In order for this game to represent an n-person PD, assumptions Q1 and Q2
must be satis�ed. If t players play F2, then n� t play F1. By Q1, at+1 � bn�t
for t = 1; :::; n� 1 and thus the parameters should satisfy

y + tz > tx; t = 1; :::; n.

All these inequalities are implied by the single inequality

y + (n� 1)z > (n� 1)x:
Taking assumption Q2 in account, we get C(n) = (n � 1)x > D(0) = y. So,
for a two-facility simple mixed linear congestion games to represent an n-person
PD it is necessary that the parameters x; y; z satisfy

0 <
1

n� 1y < x <
1

n� 1y + z if n � 2: (30)

We will call a PD-type game a PD-game if (30) is satis�ed.

Theorem 9 For PD-type games EV � 2.

Proof. Extend the domain of the quadratic function W to the interval [0; n].
The maximum W �of W (t) over [0; n] is an upper bound of the absolute max-
imum of SW which is attained at some integer point in [0; n]. The coe¢ cient
of the quadratic term in (29) is x � z. Depending on the sign of x � z, we
distinguish two cases.

a) x � z. In this case
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W � = maxfW (0);W (n)g = ny if x � 1
n�1y

n(n� 1)x if 1
n�1y < x

.

The probabilities qt = 0; t = 0; 1; :::; n � 1; qn = 1 constitute an SCE since
y > 0, therefore we trivially have EV = 1 ifW � = ny. Consider now the subcase
when W � = n(n � 1)x: The set of probabilities q0 = qn = 1

2 ; qt = 0; t 6= 0; n is
easily seen to be an SCE by substituting into (27) thus getting

�(1
2
(�y + (n� 1)(x� z)) + 1

2
y) = �(n� 1)(x� z) � 0.

The SW of this SCE is

1

2
n(n� 1)x+ 1

2
ny.

Thus we get the estimation

EV � n(n� 1)x
1
2n(n� 1)x+

1
2ny

< 2.

b) x < z. Assume �rst that n is even. An SCE can be obtained by setting
the probabilities qn

2
= 1; qi = 0; i 6= n

2 : This satis�es (27) because

�(n
2
y�n

2
(n�n

2
)(x�z)+(n�n

2
)((n�n

2
�1)(x�z)�y)) = �n

2
(z�x) < 0. (31)

The SW belonging to this SCE is

W (
n

2
) =

n

2
(y +

n

2
z) +

n

2
(
n

2
� 1)x) = n

2
(y +

n

2
z +

n

2
x� x).

In this case the quadratic function W (t) attains its continuous absolute maxi-

mum at r = y+nz�(2n�1)x
2(z�x) . If r > n, then just as in a), we have EV = 1. If

r < 0, then W (0) > W (t) for all t 2 [0; n] and we have the estimation

EV � W (0)

W (n2 )
=

n(n� 1)x
n
2 (y +

n
2 z +

n
2x� x)

= 4
(n� 1)x

2y + nz + (n� 2)x =

4
(n� 1)x

2y + nz + (n� 2)x < 2.

which truly holds since z > x.
Consider now r 2 (0; n). We claim that the coe¢ cient of every qt in (27) is

negative if n2 � t � n. To see this, observe that if t is considered a continuous
variable, then the coe¢ cient of qt is a convex quadratic function of t since the
coe¢ cient x � z of the quadratic term is positive. The coe¢ cient �y of qn is
negative by assumption, so is the coe¢ cient of qn

2
by (31). The negativity at

the endpoints of an interval implies negativity at all points by convexity thus
establishing our claim.
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So, if the continuous maximumpoint r of the function W falls in the inter-
val [n2 ; n]; so does the integer maximumpoint t� (being one of the neighboring
integers of r). The coe¢ cient of qt� being negative, qt� = 1; qt = 0; t 6= t� is an
SCE and EV = 1: Then we have to consider only the case when 0 � r < n

2 .
The continuous maximum can be bounded from above by

W � =W (r) = n(n� 1)x+ r2(z � x) < n(n� 1)x+ n
2

4
(z � x)

because r < n
2 and z � x > 0. For the EV we have

EV <
W �

W (n2 )
=
n(n� 1)x+ n2

4 (z � x)
n
2 (y +

n
2 z +

n
2x� x)

=
4(n� 1)x+ n(z � x)
2y + nz + (n� 2)x < 2.

Now we turn to the case when n is odd, n � 3. We have already seen
that the coe¢ cients of qt in inequality (27) are negative for n+1

2 � t � n
and if the integer maximumpoint t� of W falls in this interval, then EV = 1.
Therefore it is enough to deal with the case when 0 � r < n+1

2 . Consider the
SCE = qn�1

2
= 1

2 ; qn+12
= 1

2 ; qi = 0; i 6=
n�1
2 ; n+12 : The SW of this SCE is

W =
1

2
W (

n� 1
2

)+
1

2
W (

n+ 1

2
) =

1

2
(
n� 1
2

(y +
n+ 1

2
z) +

n� 1
2

n+ 1

2
x+

n+ 1

2
(y +

n� 1
2

z) +
n� 1
2

n� 3
2

x):

Then we have the estimation

EV � n(n� 1)x+ r2(z � x)
1
2W (

n�1
2 ) + 1

2W (
n+1
2 )

�

n(n� 1)x+ (n+1)2

4 (z � x)
1
2 (
n�1
2 (y + n+1

2 z) + n�1
2

n+1
2 x+ n+1

2 (y + n�1
2 z) + n�1

2
n�3
2 x)

:

After multiplying the numerator and the denominator by 4 and deleting positive
terms from the denominator we get

EV � 4n(n� 1)x+ (n+ 1)2(z � x)
(n� 1)(n+ 1)z + (n�1)(n+1)

2 x+ (n�1)(n�3)
2 x

:

We would like to prove that this ratio is no more than 2. This means that the
following inequality must hold

4n(n� 1)x+ (n+ 1)2z � (n+ 1)2x � 2(n2 � 1)z + 2(n� 1)2x:
By rearranging we get

(n� 3)(n+ 1)x � (n� 3)(n+ 1)z
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which obviously holds by the assumption x < z. Thus we have that for PD-type
games EV � 2.�

In Forgó (2016) it is shown that for the two-person PD-game EV = 2 which
together with Theorem 9 imply the following two corollaries.

Corollary 4 For PD-type games EV = 2.

Corollary 5 For PD-games EV = 2.

6 Conclusion

All four classes of two-facility simple linear congestion games were considered
and for the soft correlated equilibrium (SCE) the enforcement value (EV ), an
indicator how close one can get to the absolute maximum of social welfare (mea-
sured as the sum of the utilities of the players) by applying the special protocol
of SCE. For non-increasing utilities it was found 1; 125 � EV � 1; 265625, for
non-decreasing utilities EV = 1 (the best possible) and for both classes of mixed
non-increasing/non-decreasing utilities EV = 2. Mixed utility cases contain n-
player generalizations of two important social dilemmas: chicken and prisoners�
dilemma. For both EV = 2, though for the two- and three-person chicken
games EV = 1; 5. The technique used for �nding these values is parametric
linear programming where parameters are in one row of the coe¢ cient matrix
and in the objective function. Further research may take various courses. Just
to mention a few: changing utilitarian social welfare to egalitarian, replacing
the bene�t-model with a cost-model, increasing the number of facilities, exam-
ining what happens if the worst-case approach is replaced by the average-case
approach, abandon the assumption of linearity, etc. Of course, �nding the exact
EV for the non-increasing case remains a challange. Actual application of the
theory for concrete problems in economics, business, sociology and other social
sciences would also do good to enhance the relevance of the models studied.
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Appendix

When determining the EV , the e¢ cient maximization of SW over the set
of SCE�s plays a crucial role. Due to the special structure of the n-player
two-facility simple congestion games (not necessarily linear) this maximization
requires the solution of an LP with n+1-constraints. An optimal solution of this
LP can be obtained by reducing the problem to an LP with only two constraints.
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In Forgó (2014) this reduction was not complete and made certain proofs more
complicated than necessary. In this paper we used the reduced problem as a
complete substitute for the original one. The proof of why this simpli�cation
works has been relegated to this appendix. We use the terminology and notation
introduced in Section 2 of this paper.

The set of SCE�s is de�ned by incentive constraints. The incentive constraint
of player j is of the formX

(i1;:::;in)2S

fj(i1; :::; in)pi1;:::;in �
X

(i1;:::;in)2S

gj(i1; :::; in)pi1;:::;in :

The expected (utilitarian) social welfare (SW ) is

nX
j=1

X
(i1;:::;in)2S

fj(i1; :::; in)pi1;:::;in .

If we maximize SW over the set of SCE�s, then we have an LP with n + 1
constraints. In addition to the n incentive constraints there are non-negativity
constraints and the normalizing equality for the probabilities. We call this the
full-size LP .

The following problem will be referred to as the small-size LP (see (1); (2); (3))

maxSW =
nX
t=0

�
n

t

�
(btt+an�t(n�t))pt

(an�b1)p0+
n�1X
t=1

(

�
n� 1
t� 1

�
(bt�an�t+1)+

�
n� 1
t

�
(an�t�bt+1))pt+(bn�a1)pn � 0

nX
t=0

�
n

t

�
pt = 1 , pt � 0; t = 0; 1; :::; n:

For determining the EV we are primarily interested in the objective value of
the full-size LP . For the sake of a more simple exposition, in order to establish a
relationship between the full-size LP and the small-size LP we put the problem
in a more general setting.

Let aij be a row vector of size rj and cj be scalars (i = 1; :::; l; j = 1; :::; k).
Assume that aij1 is identical for all i = 1; :::; l where 1 is a vector of 1�s. Denote
bj = aij1; j = 1; :::; k.

Consider the LP with rj-vectors of variables xj ; j = 1; :::; k and denote it by
FS (full size)

FS : max
kX
j=1

cj1xj
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kX
j=1

aijxj � 0 i = 1; :::; l

kX
j=1

xj1 = 1

xj � 0; j = 1; :::; k:

De�ne another LP with scalar variables yj which will be referred to as SS
(small-size)

SS : max
kX
j=1

cjrjyj

kX
j=1

bjyj � 0

kX
j=1

rjyj = 1; yj � 0; j = 1; :::; k:

The following two propositions are straightforward and can be proved by simple
substitution. In particular, set k = n + 1; x1 = p0;xj = fpi1;:::;in ; (i1; :::; in) 2
Sjg i.e. a vector of variables pi1;:::;in for which the number of players choosing
F2 is j,j = 1; :::; n � 1; xn = pn; ai1 = (an � b1); aij =

�
n�1
j�1
�
(bj � an�j+1) +�

n�1
j

�
(an�j � bj+1); j = 1; :::; n� 1; ai(n+1) = bn � a1; rj =

�
k
j�1
�
; j = 1; :::; k.

Proposition 1 If x01; :::;x
0
k is feasible for FS, then y0j = x

0
j1; j = 1; :::; k is

feasible for SS and the two solutions have the same objective value.

Proposition 2 If y01 ; :::; y
0
k is feasible for SS, then x0j =

1
rj
y0j1; j = 1; :::; k

is feasible for FS and the two solutions have the same objective value.

Corollary 5 If y01 ; :::; y
0
k is optimal to SS, then x0j =

1
rj
y0j1; j = 1; :::; k is

optimal to FS and the two solutions have the same objective value.

Clearly, the full-size and small-size LP�s de�ned for the maximization of the
SW over the set of SCE�s can be identi�ed as FS and SS, therefore Corollary
5 holds for them. Thus, if we are only interested in the objective value of the
full-size problem, then it is enough to solve the much simpler small-size problem.
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