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Abstract. We consider a situation in which agents have mutual claims on each other,
summarized in a liability matrix. Agents’ assets might be insufficient to satisfy their lia-
bilities, leading to defaults. In case of default, bankruptcy rules are used to specify the
way agents are going to be rationed. A clearing payment matrix is a payment matrix con-
sistent with the prevailing bankruptcy rules that satisfies limited liability and priority of
creditors. Since clearing payment matrices and the corresponding values of equity are not
uniquely determined, we provide bounds on the possible levels equity can take. Unlike
the existing literature, which studies centralized clearing procedures, we introduce a large
class of decentralized clearing processes. We show the convergence of any such process in
finitely many iterations to the least clearing payment matrix. When the unit of account is
sufficiently small, all decentralized clearing processes lead essentially to the same value
of equity as a centralized clearing procedure. As a policy implication, it is not necessary
to collect and process all the sensitive data of all the agents simultaneously and run a
centralized clearing procedure.
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1. Introduction
The treatment of bankruptcy of countries, banks, firms,
organizations, and individuals will always be a chal-
lenge for society. In the original bankruptcy problem,
starting with the seminal paper of O’Neill (1982), there
is a single bankrupt agent and the other agents have
claims on the estate of the bankrupt agent. In this
paper, we analyze networks of agents, where agents
have mutual claims on each other. An agent is char-
acterized by his endowments and his liabilities to the
other agents. The assets of an agent consist of the sum
of his endowments and the payments received from
other agents having liabilities to him. The equity of an
agent is equal to his assets minus the payments made
to the other agents.
If the assets of an agent are not sufficient to pay for

his liabilities, then the agent has to default. In a net-
work setting, a default can also result from contagion,
where an agent defaults only because other agents are
not fully paying their liabilities to him. The default of
a single agent can therefore result in a domino effect
that potentially leads to an all-encompassing cascade
of defaults. We are interested in the final resulting out-
come in terms of payments and equity—and in par-
ticular, in the question of whether one needs to use

centralized clearing procedures as is assumed in the
systemic risk literature or whether one can instead rely
on decentralized clearing processes as introduced in
this paper.

An important application of our model concerns
financial networks, where Eisenberg and Noe (2001) is
the seminal paper. The recent crisis in financial markets
triggered by the Lehman bankruptcy and sovereign
debt problems of European countries provide prime
examples of why the network perspective is impor-
tant. Part of the literature on financial networks con-
cerns the appropriate measurement of systemic risk
(see Chen et al. 2013 for an axiomatic approach as well
as Demange 2016). There is also a substantial litera-
ture that relates the number andmagnitude of defaults
to the network topology and that characterizes those
structures that tend to propagate default; see Gai and
Kapadia (2010), Elliott et al. (2014), Acemoglu et al.
(2015), Glasserman and Young (2015), and Capponi
et al. (2016). The basic setup of Eisenberg and Noe
(2001) has also been extended in various directions—
for instance, in Cifuentes et al. (2005) and Shin (2008)
by allowing for liquidity considerations and in Rogers
and Veraart (2013) by allowing for costs of default.

Given the prominence of the financial applications,
we use the terminology of that framework but want to
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emphasize that our model is relevant outside of that
specific setup. Indeed, network effects of defaults occur
also outside of financial settings. Brown (1979) presents
an application of a supply chain network consisting
of coal mines and power companies, where because
of a strike, only the nonunion mines produce and the
other mines default on their deliveries of coal. Another
example is related to international student exchange
problems, as well as the closely related problem of
tuition exchange studied in Dur and Ünver (2016),
where the agents correspond to colleges. The endow-
ments of a college equal the maximum net inflow
of students it can handle, its liabilities correspond to
commitments made to receive incoming students, and
claims are the agreements with other colleges to send
outgoing students. Default now corresponds to a col-
lege not fully honoring its promises to receive incom-
ing students. As another example, the agents can be
servers that process jobs for a set of users. The endow-
ments of a server correspond to its capacity for process-
ing jobs, its liabilities to jobs that it has to process for
other servers, and its claims to jobs that are outsourced
to other servers. If one of the servers fails to carry out
some of its jobs, then default occurs. An example simi-
lar to the one with servers concerns time banks, where
the agents are workers instead of servers.
A clearing payment matrix describes how much

the agents pay to each other. The literature on finan-
cial networks has presented a number of algorithms
to compute a clearing payment matrix and empha-
sizes the computation of the greatest clearing payment
matrix. Examples of such algorithms are presented in
Eisenberg and Noe (2001), Rogers and Veraart (2013),
and Elliott et al. (2014). These algorithms correspond to
centralized procedures for finding a clearing payment
matrix. The required levels of payments during the exe-
cution of the algorithm are typically not implementable
and are computed by solving a joint optimization pro-
gram or a simultaneous system of equations.

Asnoted inElsinger et al. (2006) andGai andKapadia
(2010), the complexity of the financial system means
that policy makers have only partial information about
the true linkages between financial intermediaries. It
is therefore not realistic to assume that a single deci-
sion maker has all the information needed for the exe-
cution of the algorithms. In international insolvency
proceedings, there are not only information problems
that interfere with a centralized approach but there
are also issues with respect to the multiplicity of juris-
dictions involved. In the case of a multinational firm
holding assets in more than one state, the analysis can-
not be restricted to a single jurisdiction. As explained
in Franken (2014), in international insolvency proceed-
ings, different courts basically work in parallel. There
are essentially two main approaches in cross-border
insolvency law, territorialism and universalism. Under

territorialism, each state applies its own insolvency law
to the assets located in its own jurisdiction. This is
obviously a case where the clearing process is decen-
tralized. Under a universalist approach, the insolvency
law of one of the states applies to all assets of the multi-
national firm worldwide. As soon as the multinational
firm interacts with another insolvent firm using the
insolvency law of another state, then the clearing pro-
cess becomes necessarily decentralized under the uni-
versalist approach too.

Whereas the entire literature on systemic risk has
considered centralized procedures to compute a clear-
ing payment matrix, we introduce a large class of
decentralized clearing processes in this paper. At each
point in time, an agent is selected by means of a pro-
cess that is potentially history dependent and stochas-
tic. This agent would typically be an agent that has
filed for bankruptcy. Next, the selected agent makes
any amount of feasible payments to the other agents.
The amount that is paid depends only on local infor-
mation and is determined by a process that again is
potentially history dependent and stochastic. The only
requirement that we make is that the selected agent
be eligible—that is, can make a positive incremental
payment without ending up with negative equity. Our
class of decentralized processes thereby also captures
the fact that it is not realistic to assume that all assets
of defaulting agents can be liquidated instantaneously.

To define the class of decentralized clearing pro-
cesses, it is mathematically convenient to express all
quantities in some smallest unit of account (dollars,
number of students, number of jobs, etc.) and work in
a discrete setup. We also show that our main result, on
finite convergence of any decentralized clearing pro-
cess in our class, is not true in the perfectly divisible
case. The discrete setup has also been analyzed in the
bankruptcy literature with multiple claimants on a sin-
gle estate—see Young (1994) Moulin (2000), Moulin
and Stong (2002), Herrero and Martínez (2008), and
Chen (2015)—but so far not in a network setting, and
the emphasis in that literature is on the axiomatic foun-
dation of allocation rules. All papers in the systemic
risk literature stick to the perfectly divisible approach.

We think of the discretemodel as beingmore general
than the perfectly divisible model. On the one hand,
using integers, we can study all the financial applica-
tions, where the unit of account can be taken to be one
cent or one dollar and it is really a matter of mathe-
matical convenience whether one uses a model with
integers or reals. At the same time, we can study all the
applications where indivisibilities matter like the men-
tioned applications of international student exchange
or job processing by a network of servers, where real-
ism dictates the use of integers rather than reals.

If an agent is bankrupt, then a bankruptcy rule
specifies how the liabilities of various creditors are
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going to be settled. Following the seminal paper by
Eisenberg and Noe (2001), the literature on systemic
risk in financial networks has adopted proportional
rules specifying payment ratios of less than 1 in the
case of default. In reality, not all the liabilities are
of the same seniority, and some of the liabilities are
more senior than others. American bankruptcy law,
for instance, is a mixed lexicographic-proportional sys-
tem (see Kaminski 2000). We therefore allow for gen-
eral bankruptcy rules and present a convenient repre-
sentation for them. We also relate the specification of
bankruptcy rules to the political science literature on
apportionment.
A clearing payment matrix is characterized by the

properties of feasibility, limited liability, and priority of
creditors. Feasibility of a payment matrix means that
payments are made in accordance with bankruptcy
rules. Limited liability means that the payment matrix
should result in nonnegative equity levels for all
agents. Priority of creditors requires that if an agent is
not paying all of its liabilities, then a higher payment
should lead to a negative equity level.

We characterize all clearing payment matrices as a
fixed point of an appropriately defined function. We
show that there exist a least and a greatest clearing
paymentmatrix. Unlike the perfectly divisible case, dif-
ferent clearing payment matrices may result in differ-
ent amounts of equity. We provide lower and upper
bounds on the maximum difference in equity that re-
sults from two different clearing payment matrices.

We show that any decentralized process in a large
class converges in finitely many iterations to the least
clearing payment matrix. In this sense, the cost of
decentralization is therefore to go from the greatest
to the least clearing payment matrix. The bounds we
derive on the final levels of equity show that this cost
is typically small in financial applications. Thus, as a
policy implication for financial applications, instead of
working on collecting and processing data centrally,
we suggest that it is sufficient to have local liquidators
enforcing bankruptcy rules.

We also think our results on decentralized clear-
ing are of importance with regard to recent develop-
ments to implement distributed ledgers by means of
permissioned blockchain technologies, a category of
digital shared ledgers that finds its roots in the crypto-
currency Bitcoin. Blockchains offer the ability to vali-
date the execution and settlement of a transaction car-
ried out upon its networkwithout the need for a central
third party. Our results on decentralized clearing show
that even in the case of bankruptcy, there is no need to
resort to a central third party to arbitrate the fulfilment
of a liability. A decentralized clearing process therefore
combines naturally with a decentralized implementa-
tion of a blockchain.

The rest of this paper is organized as follows. Sec-
tion 2 presents the model of financial networks, the
representation of bankruptcy rules, and some exam-
ples. Section 3 defines clearing payment matrices. In
Section 4, we analyze clearing payment matrices as
fixed points and derive the bounds for the differences
in equities that result from two different clearing pay-
ment matrices. Section 5 introduces a large class of
decentralized clearing processes and shows how any
process in this class converges to the least clearing pay-
ment matrix in a finite number of iterations. Section 6
deals with the relationship between the discrete and
the perfectly divisible case. Section 7 concludes.

2. Financial Networks
In the bankruptcy literature, there is typically a single
bankrupt agent and the estate is an exogenously given
amount.1 The emphasis of the analysis is on the study
of normative properties of different bankruptcy rules.
The systemic risk literature invariably uses the pro-
portional bankruptcy rule. In that literature, there are
multiple defaulting agents and the estates are endoge-
nously determined. In this section, we develop our
model of financial networks that combines insights
from both literatures.

The primitives of a financial network are given by the
tuple (z , L, b).
Let �0 denote the natural numbers including 0. The

vector z ∈ �I
0 represents the endowments of the agents

in the finite set of agents I with cardinality n. The
endowment of an agent includes all of his tangible and
intangible assets but excludes the claims and liabili-
ties such an agent has toward the other agents. We
work in the space of natural numbers, so implicitly, it is
assumed that all quantities are expressed in a smallest
unit of account, which could be one dollar or one cent
in the financial applications.

The n×n liability matrix L ∈�I×I
0 describes themutual

claims of the agents. Its entry Li j is the liability of
agent i toward agent j or, equivalently, the claim of
agent j on agent i. We make the normalizing assump-
tion that Lii � 0 for all i ∈ I. In general, it can occur that
agent i has a liability toward agent j and agent j has a
liability toward agent i , so both Li j > 0 and L ji > 0 can
occur simultaneously.

The payments to be made by agent i ∈ I to the other
agents are determined by the bankruptcy rule bi : �0→
�I

0 of agent i. Given a value Ei ∈ �0 of the estate of
agent i, the monetary amount bi j(Ei) ∈�0 specifies how
much agent i has to pay to agent j ∈ I. The tuple (bi)i∈I
of bankruptcy rules is denoted by b.
Contrary to the bankruptcy literature, the value of

the estate Ei of agent i ∈ I is endogenously deter-
mined in a financial network, since it depends not only
on the initial endowments of agent i but also on the
claims i has on other agents, part of which may not be
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received by agent i. Exactly how the value of the estate
is endogenously determined is one of the important
aspects studied in this paper and is addressed in the
subsequent sections.
We make the following assumption on bankruptcy

rules.
Assumption 1. Let (z , L, b) be a financial network. For
every i ∈ I , the bankruptcy rule bi is a monotonic function
bi : �0→�I

0 such that
(1) for every Ei ∈ �0 ,

∑
j∈I bi j(Ei) ≤ min{∑ j∈I Li j ,Ei}

with equality if ∑ j∈I Li j ≤ Ei ;
(2) for every Ei ∈ �0 , for every j ∈ I , bi j(Ei) ≤ Li j ; and
(3) for everyEi ,E′i ∈�0 such thatEi ≤E′i ,

∑
j∈I bi j(E′i)≤Ei

implies bi(Ei)� bi(E′i).
Assumption 1 requires the bankruptcy rule bi to be

monotonic: for every Ei ,E′i ∈�0 such that Ei ≤ E′i , it holds
for every j ∈ I that bi j(Ei) ≤ bi j(E′i), or equivalently,
bi(Ei) ≤ bi(E′i).Aweakly higher value of the estate leads
to weakly higher payments to all agents. This property
is called resource monotonicity in the bankruptcy liter-
ature (see Thomson 2003) or endowment monotonicity
(see Thomson 2015).
Assumption 1(1) allows for the possibility that∑
j∈I bi j(Ei) < Ei if Ei <

∑
j∈I Li j . Some of the estate

may not be distributed among the agents in case the
estate falls below the total value of the liabilities. We
will illustrate how fairness considerations, like the
fairness norm that equal claimants should receive an
equal payment, can be at odds with the requirement
that ∑

j∈I bi j(Ei) � Ei whenever Ei <
∑

j∈I Li j . At the
same time, we present several rules that do satisfy
the requirement that ∑

j∈I bi j(Ei) � Ei whenever Ei <∑
j∈I Li j , so such rules are by no means excluded.
Assumption 1(2) specifies that a claimant never

receives more than the value of his claim.
Assumption 1(3) puts limits on the extent to which

paying less than the estate is possible. If total payments
made at the higher estate E′i do not exceed the value of
the lower estate Ei , then those are also the payments
made at Ei .
We continue by presenting a convenient representa-

tion for bankruptcy rules. The image Fi of a bankruptcy
rule bi determines the set of feasible payments. More for-
mally, we have

Fi � bi(�0)�
⋃

Ei∈�0 ,Ei≤
∑

j∈I Li j

{bi(Ei)},

where the second equality follows from the observa-
tion that by Assumptions 1(1) and 1(2) it holds that
bi(Ei) � Li whenever Ei ≥

∑
j∈I Li j . The set of feasible

payments Fi can be found by considering the value
of the bankruptcy rule for integer values of the estate
between zero and the total amount of claims.
Assumption 1(3) corresponds to the requirement

that bankruptcy rules impose maximal feasible pay-
ments. Indeed, bi(Ei) is the maximal vector in Fi for

which the sum of the components is less than or equal
to Ei . Notice that the monotonicity of bi implies that ≤
is a total order on the set Fi ; that is, the order ≤ on Fi
is antisymmetric, transitive, and complete. A maximal
vector in Fi for which the sum of the components is less
than or equal to Ei is therefore uniquely determined.
Conversely, any set Ti ⊂ �I

0 , which is totally ordered
by ≤, contains 0I , and has Li as a maximum, pins down
a bankruptcy rule bTi

i with a set of feasible payments
equal to Ti . For Ei ∈ �0 , let

bTi
i (Ei)� max

{
fi ∈ Ti

����∑
j∈I

fi j ≤ Ei

}
, (1)

where the maximum in (1) is unique since Ti is a finite
set, Ti contains 0I , and ≤ is a total order on Ti . The
following proposition states that bTi

i indeed satisfies
Assumption 1.
Proposition 1. For every i ∈ I , let Ti be a subset of
�I

0 , which is totally ordered by ≤, contains 0I , and has
max Ti � Li . Then the tuple of induced bankruptcy rules
(bTi

i )i∈I satisfies Assumption 1.

Proof. Let some i ∈ I be given. Clearly, it holds that bTi
i

is a monotonic function from �0 into �I
0.

If ∑ j∈I Li j ≤ Ei , then

bTi
i (Ei)� max

{
fi ∈ Ti

����∑
j∈I

fi j ≤ Ei

}
� Li ,

where the second equality follows since ∑
j∈I Li j ≤ Ei .

In this case, we therefore have that∑
j∈I

bTi
i j (Ei)� min

{∑
j∈I

Li j ,Ei

}
.

If ∑ j∈I Li j > Ei , then∑
j∈I

bTi
i j (Ei) ≤ Ei � min

{∑
j∈I

Li j ,Ei

}
,

where the inequality follows immediately from the def-
inition of bTi

i (Ei).Assumption 1(1) is therefore satisfied.
Since Ti is totally ordered by ≤, we have, for every

fi ∈ Ti , fi ≤ max Ti � Li . It now follows that, for every
Ei ∈ �0 , for every j ∈ I , bTi

i j (E) ≤ Li j . This shows that
Assumption 1(2) holds.

Let Ei ,E′i ∈ �0 be such that Ei ≤ E′i and
∑

j∈I bTi
i j (E′i)

≤ Ei . Since

bTi
i (E′i)� max

{
fi ∈ Ti

����∑
j∈I

fi j ≤ E′i

}
and ∑

j∈I bTi
i j (E′i) ≤ Ei , it follows that

bTi
i (Ei)� max

{
fi ∈ Ti

����∑
j∈I

fi j ≤ Ei

}
� bTi

i (E′i).

We have shown that Assumption 1(3) holds. �
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An important class of bankruptcy rules consists of
the priority bankruptcy rules. They depend on a per-
mutation π: I→{1, . . . , n},which indicates the rank of
the various liabilities. For j ∈ I , we define

π j
� {i ∈ I | π(i) < π( j)}

as the set of agents ranked before agent j according
to π.
Definition 1. Given a vector of liabilities Li ∈ �I

0 of
agent i ∈ I and a permutation π: I → {1, . . . , n}, the
priority bankruptcy rule bπi : �0→�I

0 is defined by

bπi j(Ei)� max
{
0,min

{
Li j ,Ei −

∑
k∈π j

Lik

}}
, j ∈ I , Ei ∈�0.

Under the bankruptcy rule bπi , the estate of agent i
has a priority list of creditors as determined by the
permutation π. The claims of agents π−1(1), π−1(2), . . .
are paid for sequentially as long as the estate of agent i
permits this.
A priority bankruptcy rule clearly satisfies Assump-

tion 1. It also has the property that ∑
j∈I bi j(Ei) �

min{Ei ,
∑

j∈I Li j} for every Ei ∈ �0 , so the equality also
holds in case ∑

j∈I Li j > Ei . Priority bankruptcy rules
have nice axiomatic foundations. As has been demon-
strated in Moulin (2000), these are the only rules
satisfying consistency, upper composition, and lower
composition.2
Another frequently used bankruptcy rule is the pro-

portional bankruptcy rule. It is easily defined when
the estate and the payments are treated as real num-
bers. Given a vector of liabilities Li ∈ �I

0 , the function
dprop

i : �+→�I
+
is defined by

dprop
i j (Ei)� min

{
Li j ,

Li j∑
k∈I Lik

Ei

}
, j ∈ I , Ei ∈ �+.

Under the function dprop
i j , the estate is divided in pro-

portion to the liabilities. If the estate exceeds the sum of
the liabilities, then every claimant receives his claim.3
The function dprop

i j may not lead to integers, even if
the estate is an integer. It is for this reason that Moulin
(2000) describes the priority rules as the most natural
rationing methods in the discrete model.
There are many ways to define a proportional rule

while taking the integer requirements into account.
We present two such constructions here leading to the
fair proportional bankruptcy rule and the quota bankruptcy
rule, respectively. The fair proportional bankruptcy
rule is based on the fairness principle that agents with
equal claims should receive equal payments.
Given a set X ⊂ �I

+
, we define

bXc � { f ∈ �I
0 | ∃ x ∈ X such that f � bxc},

where bxc denotes the vector obtained by taking for
every i ∈ I the floor of xi , the largest integer that is less
than or equal to xi .

Table 1. The Estate and Claims on the
Estate of Agent 1 in Example 1

E1 L1

1 0 2 2

Definition 2. Given a vector of liabilities Li ∈ �I
0 of

agent i ∈ I , the fair proportional bankruptcy rule bprop
i :

�0→�I
0 is defined by

bprop
i � b

bdprop
i (�+)c

i .

Under the fair proportional bankruptcy rule, all pos-
sible real-valued payment vectors d prop

i (�+) are first
rounded down to obtain the set of feasible pay-
ments Ti � bd

prop
i (�+)c . Next, the fair proportional

bankruptcy rule bprop
i is defined by setting it equal to

the bankruptcy rule bTi
i induced by Ti .Clearly, bprop

i sat-
isfies the fairness criterion that equal claimants receive
an equal payment.

It is easily verified that bdprop
i (�+)c satisfies the con-

ditions of Proposition 1, so bprop
i satisfies Assump-

tion 1.
We illustrate the definitions of bankruptcy rule and

set of feasible payments in the following example.

Example 1. We have three agents, I � {1, 2, 3}. Agent 1
has an initial endowment z1 � 1, and his liabilities are
L1 � (0, 2, 2), as presented in Table 1. We assume that
agents 2 and 3 have no liabilities, so the estate of agent 1
is equal to his initial endowment, E1 � z1 � 1. The net-
work aspect is not relevant for this example, and the
only problem is therefore to divide the estate of agent 1.
First, let us consider priority bankruptcy rules,

where priorities are described by the identity,
π(1)� 1, π(2) � 2, and π(3) � 3, so first payments to
agent 1 should be made, a possible remainder of the
estate should be given to agent 2, and if there is still
part of the estate remaining, payments can be made
to agent 3. Since agent 1 has no liability to himself, it
is easily verified that the set of feasible payments is
given by

F1 � {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (0, 2, 2)}.

It therefore holds that bπ1 (1) � (0, 1, 0), so the entire
estate goes to agent 2.

Second, let us consider the fair proportional bank-
ruptcy rule. In this case we have

F1 � bd
prop
1 (�+)c � {(0, 0, 0), (0, 1, 1), (0, 2, 2)}.

It follows that bprop
1 (1) � (0, 0, 0), so no payments are

made to any agent in this case.

Another possibility in defining the proportional rule
is to emphasize efficiency rather than fairness and
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require that the entire estate be divided. In a differ-
ent guise, that problem has been extensively studied in
the rich political science literature on apportionment.
Apportionment addresses how to allocate a fixed num-
ber of seats among regions according to their respec-
tive numbers of inhabitants as well as the related prob-
lem of how to allocate a fixed number of seats among
political parties according to their respective votes. In
bankruptcy problems, the estate Ei plays the role of the
fixed number of seats, the agents in the set I correspond
to either regions or the political parties, and the liabil-
ity Li j corresponds to either the number of inhabitants
of region j or the number of votes of political party j.

Balinski and Young (1975) give an overview of many
methods for apportionment that are used in practice,
such as the Jefferson method (known in the United
States as the method of greatest divisors and in Europe
as the method of d’Hondt), the Hamilton method
(generally known as the Vinton method), the Web-
ster method (known as the method of major fractions),
and the Huntington method (known as the method of
equal proportions). Not all of these methods qualify as
bankruptcy rules. For instance, the Alabama paradox
refers to the fact that the Hamilton method violates
monotonicity, a property called house monotonicity in
the apportionment literature.

The issue of apportionment is still attracting a lot
of attention in the literature on political science. Apart
from the introduction of new methods, along with
axiomatizations and an analysis of their properties,
there are many empirical studies of how the apportion-
ment problemhas been tackled in various jurisdictions.
Noteworthy examples are applications to the U.S. Sen-
ate in Malhotra and Raso (2007) and to the European
Parliament in Grimmett (2012). It is also increasingly
recognized that many problems are closely related or
equivalent to the apportionment problem. Biró et al.
(2015) argue that the drawing of single-seat constituen-
cies within a region is equivalent to the apportionment
problem. Luss (2012) considers equitable resource allo-
cation problems appearing in communication net-
works, manufacturing, and emergency services. For
recent overviews of the literature on apportionment,
we refer the reader to the books by Balinski and Young
(2010) and Pukelsheim (2014).

Balinski and Young (1975) propose the so-called
quota method of apportionment. It is actually not a
single solution but rather a set of solutions. One solu-
tion in the set is defined next, and we call it the
quota bankruptcy rule. To define it, we need some addi-
tional notation. Given a permutation π: I→{1, . . . , n},
the unique argument that has the highest priority
according to π among the arguments that maximize
a function g defined on a subset K of I is denoted
by arg maxπk∈K g(k), so if j ∈ arg maxk∈K g(k), and for

every i ∈ arg maxk∈K g(k) it holds that π( j) ≤ π(i), then
arg maxπk∈K g(k)� j.

Let some agent i ∈ I with liabilities Li and estate Ei <∑
j∈I Li j be given, and suppose agent i makes a payment

Pi ∈�I
0. The set of agents whose payment is below their

proportional share is defined as

Bi(Pi ,Ei)�
{

j ∈ I
���� Pi j <

Li j∑
k∈I Lik

Ei

}
.

Definition 3. Given a vector of liabilities Li ∈ �I
0 of

agent i ∈ I and a permutation π: I → {1, . . . , n}, the
quota bankruptcy rule qπi : �0→�I

0 is recursively defined
as follows:

qπi (0)� 0I .

If 0 < Ei <
∑

j∈I Li j , then

qπi j(Ei)�


qπi j(Ei −1)+1 if j �

πargmax
k∈Bi (qπi (Ei−1),Ei )

Lik

qπik(Ei −1)+1
,

qπi j(Ei −1) otherwise.

If Ei ≥
∑

j∈I Li j , then

qπi (Ei)� Li .

The quota bankruptcy rule is defined recursively
for increasing values of the estate. Given some value
of the estate Ei , it considers the agents j′ in the set
Bi(qπi (Ei − 1),Ei) whose payment qπi j′(Ei − 1) at estate
Ei − 1 is strictly below their quota (Li j′/(

∑
k∈I Lik))Ei at

estate Ei . Among those agents, it considers the agents k
with the highest ratio of liability to payment when the
payment would be increased by 1, Lik/(qπik(Ei − 1)+ 1),
and selects the agent with the highest priority accord-
ing to π to receive the additional unit. It follows from
the results in Balinski and Young (1975) that the quota
bankruptcy rule is monotonic. It is clear that the quota
bankruptcy rule always divides the entire estate when
the total liabilities exceed the estate. It is now easily
verified that quota bankruptcy rules satisfy Assump-
tion 1. An interesting property of the quota bankruptcy
rule is that it satisfies⌊ Li j∑

k∈I Lik
Ei

⌋
≤ qπi j(Ei) ≤

⌈ Li j∑
k∈I Lik

Ei

⌉
,

so the payment received by every agent is always in-
between his quota when rounded down and his quota
when rounded up.

Example 2. We consider again the primitives of Exam-
ple 1, now assuming that the estate of agent 1 is sub-
ject to the quota bankruptcy rule. As before, priorities
are described by the identity, π(1) � 1, π(2) � 2, and
π(3)� 3. It is easily derived that

F1 � {(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (0, 2, 2)}.
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It therefore holds that qπ1 (1) � (0, 1, 0), so the entire
estate goes to agent 2. While efficient, the quota
bankruptcy rule is not fair. Agents 2 and 3 have identi-
cal claims on the estate of agent 1 but receive different
payments.

The principles of proportionality and priority play
an important role in bankruptcy law across the globe.
The European Commission (EC) Council Regulation
on insolvency proceedings states that4

every creditor should be able to keep what he has
received in the course of insolvency proceedings but
should be entitled only to participate in the distribution
of total assets in other proceedings if creditors with the
same standing have obtained the same proportion of
their claims.

The principle of proportionality is used to treat cred-
itors with the same standing. Priorities are important
to treat creditors of different standing. Kaminski (2000)
describes American bankruptcy law as a system that is
based on a mix of the principles of proportionality and
priority. Assumption 1 therefore covers the bankruptcy
rules that are used in legal practice worldwide.

Example 3. As a final example, consider the all-or-
nothing bankruptcy rule, in which either all or none of
the claims are being paid. An example of such a rule
can be found in Acemoglu et al. (2015), who study
banking networks and assume that banks are forced
to liquidate their projects in full, for example, because
it is difficult to liquidate a fraction of an ongoing real
project. Other examples would arise in applications
with supply chain networks, where either a complete
delivery or no delivery takes place.
In Example 1, the set of feasible payments cor-

responding to the all-or-nothing bankruptcy rule is
given by

F1 � {(0, 0, 0), (0, 2, 2)}.
Using Proposition 1, it is easily shown that all-or-
nothing bankruptcy rules satisfy Assumption 1.

3. Clearing Payment Matrices
Let some financial network (z , L, b) be given. An n × n
payment matrix P ∈ �I×I

0 collects the mutual payments
of the agents; that is, Pi j is the amount paid by agent i
to agent j. We make the normalizing assumption that
Pii � 0 for all i ∈ I. The set of all payment matrices with
this property is denoted by M. The partial order ≤ on
M is defined in the usual way: for P,P′ ∈M, it holds that
P ≤ P′ if and only if Pi j ≤ P′i j for all (i , j) ∈ I × I .
A payment matrix P ∈ M is feasible if for every i ∈ I

it holds that Pi ∈ Fi , so a payment matrix is feasible if
every row i of the matrix belongs to the set of feasible
payments of agent i; that is, payments are made in
accordance with bankruptcy rules.

The set of all feasible payment matrices is denoted
by P , so

P � {P ∈M | ∀ i ∈ I , Pi ∈ Fi}.
The sum of the initial endowments of an agent and
the payments received from the other agents deter-
mines an agent’s asset value, more formally defined as
follows.

Definition 4. Given a financial network (z , L, b) and a
payment matrix P ∈M, the asset value ai(P) of agent i ∈ I
is given by

ai(P)� zi +
∑
j∈I

P ji .

The asset value of an agent will play the role of the
estate Ei .

Subtracting the payments as made by an agent from
his asset value yields an agent’s equity. More formally,
we have the following definition.

Definition 5. Given a financial network (z , L, b) and a
payment matrix P ∈M, the equity ei(P) of agent i ∈ I is
given by

ei(P)� ai(P) −
∑
j∈I

Pi j � zi +
∑
j∈I
(P ji −Pi j). (2)

If agent i ∈ I has negative equity even when all agents
pay all of their liabilities, so if

ei(L)� zi +
∑
j∈I
(L ji − Li j) < 0,

then agent i has so-called fundamental default.When an
agent defaults only because other agents are not fully
paying their liabilities to him, then the agent is said to
have contagion default.

It holds that∑
i∈I

ei(P)�
∑
i∈I

zi +
∑
i∈I

∑
j∈I
(P ji −Pi j)�

∑
i∈I

zi . (3)

Payment matrices only lead to a redistribution of initial
endowments.

Example 4. Consider a financial network (z , L, b) with
three agents I � {1, 2, 3} and endowments and lia-
bilities as presented in Table 2. For every i ∈ I , the
bankruptcy rule bi equals the priority bankruptcy rule
bπ where π is the identity, so agent 1 has priority over
agent 2, who in turn has priority over agent 3.

Table 2. The Endowments and
Liabilities of the Agents in Example 4

z L

1 0 2 2
1 2 0 2
1 0 0 0
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Table 3. An Undesirable Payment Matrix in Example 4

z L P a(P) e(P)

1 0 2 2 0 1 0 3 2
1 2 0 2 2 0 2 2 −2
1 0 0 0 0 0 0 3 3

The paymentmatrix P in Table 3 is feasible since each
row i is selected from the set of feasible payments Fi .
Agent 1 has equity e1(P) � 2 but still has unpaid lia-
bilities to both agents 2 and 3. Agent 2 has negative
equity, e2(P) � −2. The payment matrix P suffers from
two undesirable features. Agent 1 has positive equity
and outstanding liabilities. Agent 2 has negative equity.

To overcome this situation, we extend the notions
of priority of creditors and limited liability defined in
the perfectly divisible case for proportional rules by
Eisenberg and Noe (2001) to our discrete setup with
general bankruptcy rules.5

Definition 6. Given a financial network (z , L, b),P ∈M
is a clearing payment matrix if it satisfies the following
three properties:
(1) Feasibility: P ∈P.
(2) Limited liability: For every i ∈ I , ei(P) ≥ 0.
(3) Priority of creditors: For every i ∈ I , for every P′i ∈ Fi

such that P′i > Pi , it holds that ai(P) −
∑

j∈I P′i j < 0.

A clearing payment matrix is feasible, leads to non-
negative equities, and satisfies priority of creditors.
Notice that priority of creditors is satisfied whenever
Pi � Li since there is no P′i ∈ Fi with P′i > Pi in that case.6
The following proposition shows that in the case

where the asset value of an agent is sufficient to pay
all his liabilities, then the agent will do so in a clearing
payment matrix.

Proposition 2. Let P be a clearing payment matrix for
the financial network (z , L, b). For every i ∈ I , if ai(P) ≥∑

j∈I Li j , then Pi � Li .

Proof. Suppose not. Let i ∈ I be such that ai(P) ≥∑
j∈I Li j and Pi < Li .We define P′i � Li , which is an ele-

ment of Fi by Assumption 1. It holds that

ai(P) −
∑
j∈I

P′i j � ai(P) −
∑
j∈I

Li j ≥ 0,

so P violates priority of creditors and is therefore not a
clearing payment matrix—a contradiction. �

For the perfectly divisible setup with proportional
rules, Eisenberg and Noe (2001) show that when all
endowments are positive, then there is a unique clear-
ing payment matrix. Although in general multiple
clearing payment matrices can coexist, Eisenberg and
Noe show that the final value of equity is the same
irrespective of the clearing matrix that is being used.

Table 4. The Clearing Payment Matrix
¯
P in Example 5, with

Fair Proportional Bankruptcy Rules

z L
¯
P a(

¯
P) e(

¯
P)

1 0 2 2 0 0 0 1 1
1 2 0 2 0 0 0 1 1
1 0 0 0 0 0 0 1 1

Glasserman and Young (2015) present other conditions
to get a unique clearing payment matrix. For the per-
fectly divisible setup with general bankruptcy rules,
though not allowing for agent-specific bankruptcy
rules, uniqueness of final equity is shown in Groote
Schaarsberg et al. (2013).

The next example shows that in the case with indi-
visibilities, the clearing payment matrix with fair pro-
portional bankruptcy rules may not be unique even
when all initial endowments are positive. More impor-
tantly, the resulting values of equity might be different
as well.

Example 5. As in Example 4, we consider a financial
network (z , L, b) with three agents I � {1, 2, 3} and
endowments and liabilities as presented in Table 2, but
we replace the priority bankruptcy rules of that exam-
ple with fair proportional bankruptcy rules.

Table 4 presents the clearing payment matrix
¯
P and

Table 5 the clearing payment matrix P̄. There are no
other clearing payment matrices. The matrices

¯
P and

P̄ induce different equities, e(
¯
P) � (1, 1, 1) and e(P̄) �

(0, 0, 3).
It holds that e1( ¯P)� e2( ¯P)� 1, so there is some equity

left for both agents 1 and 2 when the payment matrix
¯
P

is used. Nevertheless, condition 3 of Definition 6, pri-
ority of creditors, holds since there is no higher feasible
payment compatible with the asset values of agents 1
and 2.

Although Example 5 shows the possibility of multi-
ple values of equity, the next section puts bounds on
the maximum differences that are possible. For finan-
cial applications, it will turn out that the consequences
of having multiple values for equity are not very seri-
ous. On the other hand, if the application concerns
a student exchange network, then some college not
accepting a couple of students may trigger many other
colleges doing the same, and in this case, there could
be significant effects.

Table 5. The Clearing Payment Matrix P̄ in Example 5, with
Fair Proportional Bankruptcy Rules

z L P̄ a(P̄) e(P̄)

1 0 2 2 0 1 1 2 0
1 2 0 2 1 0 1 2 0
1 0 0 0 0 0 0 3 3
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4. Clearing Payment Matrices as
Fixed Points

In this section, we characterize a clearing payment
matrix as a fixed point of an appropriately defined
function and derive the bounds for the difference
between the values of equity for a given agent in any
two clearing payment matrices.

Given a financial network (z , L, b), let ϕ: P→ P be
defined by

ϕi j(P)� bi j(ai(P)), P ∈P , i , j ∈ I .

Proposition 3. Let a financial network (z , L, b) be given.
The matrix P ∈ P is a clearing payment matrix if and only
if P � ϕ(P).
Proof. (⇒) Consider some i ∈ I . We define P′i � ϕi(P).
Since Pi ∈ Fi and bi is monotonic, it holds that either
(a) Pi < P′i , or (b) Pi � P′i , or (c) Pi > P′i .

Case (a). Pi < P′i .
We have that

ai(P) −
∑
j∈I

P′i j � ai(P) −
∑
j∈I
ϕi j(P)

� ai(P) −
∑
j∈I

bi j(ai(P)) ≥ 0.

This contradicts the fact that P satisfies priority of cred-
itors. We conclude that Case (a) cannot occur.
Case (c). Pi > P′i .

Since P satisfies limited liability, it holds that ei(P) ≥ 0.
Let Ei ∈ �0 be such that Pi � bi(Ei). From bi(Ei) � Pi >
P′i � bi(ai(P)), it follows that ai(P) < Ei . Together with
the fact that∑

j∈I
bi j(Ei)�

∑
j∈I

Pi j � ai(P) − ei(P) ≤ ai(P),

this implies by Assumption 1 that bi(ai(P))� bi(Ei) and
therefore that P′i � Pi—a contradiction to Pi > P′i . We
conclude that Case (c) cannot occur.
It now follows that Case (b) holds, so Pi � P′i � ϕi(P).
(⇐)
(1) Feasibility: It holds that P ∈ P by the definition

of ϕ.
(2) Limited liability: For every i ∈ I , we have that

Pi � ϕi(P)� bi(ai(P)),

so

ei(P)� ai(P) −
∑
j∈I

Pi j

� ai(P) −
∑
j∈I

bi j(ai(P)) ≥ ai(P) − ai(P)� 0.

(3) Priority of creditors: Let i ∈ I and P′i ∈ Fi be such
that P′i > Pi . Let E′i ∈ �0 be such that bi(E′i) � P′i . Since

bi(ai(P)) � Pi < P′i � bi(E′i), monotonicity of bi implies
that E′i > ai(P).
Suppose, by contradiction, that ai(P) −

∑
j∈I P′i j ≥ 0.

Then it holds that∑
j∈I

bi j(E′i)�
∑
j∈I

P′i j ≤ ai(P).

Since E′i > ai(P), it follows from Assumption 1 that

Pi � bi(ai(P))� bi(E′i).

We conclude that Pi � P′i ,—a contradiction to the
assumption that P′i > Pi . �

A lattice is a partially ordered set in which every pair
of elements has a supremum and an infimum. A com-
plete lattice is a lattice in which every nonempty subset
has a supremum and an infimum. Any finite lattice can
be shown to be complete. The infimum of a two-point
set {x , x′} is denoted by x ∧ x′ and its supremum by
x ∨ x′.
The matrices in P are partially ordered by ≤, since ≤

is a reflexive, transitive, and antisymmetric order onP .
Consider twomatrices P,P′ ∈P .Wedefine thematri-

ces
¯
P , P̄ ∈P by

¯
P i � Pi ∧P′i , i ∈ I ,
P̄i � Pi ∨P′i , i ∈ I .

Since Fi is totally ordered by ≤, it holds that
¯
P i is either

equal to Pi or to P′i . Similarly, it holds that P̄i is either
equal to Pi or equal to P′i . It is now immediate that

¯
P , P̄ ∈ P and that P ∧ P′ �

¯
P and P ∨ P′ � P̄. Every pair

of matrices in P therefore has a supremum and an
infimum inP .We conclude that the setP is a complete
lattice.

Proposition 4. Consider a financial network (z , L, b). The
set of clearing payment matrices is a complete lattice. In
particular, there exists a least clearing payment matrix P−

and a greatest clearing payment matrix P+.

Proof. We show that ϕ is monotone. Let P,P′ ∈ P be
such that P ≤ P′. For every i ∈ I , it holds that

ϕi(P)� bi(ai(P))� bi

(
zi +

∑
j∈I

P ji

)
≤ bi

(
zi +

∑
j∈I

P′ji

)
� bi(ai(P′))� ϕi(P′),

where the inequality follows from the monotonic-
ity of bi .
By Tarski’s fixed point theorem (Tarski 1955), the set

of fixed points of ϕ is a complete lattice with respect
to ≤ . It follows that the set of fixed points has a least
and a greatest element. By Proposition 3, the set of
fixed points of ϕ is equal to the set of clearing payment
matrices. �

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

11
0.

64
.8

2]
 o

n 
18

 J
un

e 
20

18
, a

t 0
6:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Csóka and Herings: Decentralized Clearing in Financial Networks
10 Management Science, Articles in Advance, pp. 1–19, ©2017 INFORMS

Example 5 shows that two clearing paymentmatrices
may lead to different values of equity. To analyze the
size of the possible differences, we introduce the fol-
lowing notation. For every i ∈ I , for every Pi ∈ Fi\{Li},
we define Si(Pi) as the unique successor of Pi , (i.e., the
lowest feasible payment vector that is strictly greater
than Pi). Note that Si(Pi) is not defined if Pi � Li .

For every i ∈ I , the number κi equals the maximal
difference between total payments in two consecutive
feasible payment vectors for agent i. If Fi consists of
a single element, so Fi � {Li} � {0I}, then we define
κi � 1. Otherwise, Fi has at least two elements, and we
define

κi � max
Pi∈Fi\{Li }

∑
j∈I
(Si j(Pi) −Pi j).

The bankruptcy rules discussed in Section 2 give three
typical numbers for κi . If bi is a priority bankruptcy
rule or a quota bankruptcy rule, then κi � 1. If bi is the
fair proportional bankruptcy rule and Li > 0, then κi is
less than or equal to the number of nonzero liabilities
λi � #{ j ∈ I | Li j > 0} of agent i ,which in turn is less than
the number of agents n. If bi corresponds to the all-or-
nothing bankruptcy rule and Li > 0, then κi �

∑
j∈I Li j

equals the sum of the liabilities of agent i.
The numbers κi for i ∈ I can be used to provide

lower and upper bounds on themaximumdifference in
equity that results from two different clearing payment
matrices.

Proposition 5. Consider a financial network (z , L, b) and
two clearing payment matrices P and P′ with P ≤ P′. For
every i ∈ I , the difference between the value of equity at P
and P′ satisfies −(κi −1) ≤ ei(P′)− ei(P) ≤

∑
j∈I\{i}(κ j −1).

Proof. We argue first that, for every i ∈ I ,

max
{
0, ai(P) −

∑
j∈I

Li j

}
� ai(P) −

∑
j∈I

Pi j − εi(P)

� ei(P) − εi(P), (4)

where

εi(P) ∈
{
{0} if ai(P) ≥

∑
j∈I Li j ,

{0, . . . , κi − 1} if ai(P) <
∑

j∈I Li j .

We distinguish two cases: (a) ai(P) ≥
∑

j∈I Li j and (b)
ai(P) <

∑
j∈I Li j .

Case (a). ai(P) ≥
∑

j∈I Li j .
It holds that

max
{
0, ai(P) −

∑
j∈I

Li j

}
� ai(P) −

∑
j∈I

Li j

� ai(P) −
∑
j∈I

Pi j � ei(P),

where the second equality follows from Proposition 2.
It follows that εi(P)� 0.

Case (b). ai(P) <
∑

j∈I Li j .
It holds that

εi(P)� ei(P) −max
{
0, ai(P) −

∑
j∈I

Li j

}
� ei(P). (5)

Since P is a clearing payment matrix, it follows that
εi(P) ∈ �0.Moreover, we have by Proposition 3 that∑

j∈I
Pi j �

∑
j∈I

bi j(ai(P)) ≤min
{∑

j∈I
Li j , ai(P)

}
� ai(P) <

∑
j∈N

Li j .

Since P satisfies priority of creditors, we have that

ai(P) −
∑
j∈I

Si j(Pi) < 0.

Finally, using Equation (5), it follows that

εi(P)� ei(P)� ai(P)−
∑
j∈I

Pi j ≤ ai(P)−
∑
j∈I

Si j(Pi)+κi

≤ κi −1.

This completes the proof that Equation (4) holds.
Let some i ∈ I be given. Since P ≤ P′, we have that

max
{
0, ai(P) −

∑
j∈I

Li j

}
≤max

{
0, ai(P′) −

∑
j∈I

Li j

}
,

so it follows from Equation (4) that

ei(P) − εi(P) ≤ ei(P′) − εi(P′).

Rewriting this inequality, we obtain

ei(P′) − ei(P) ≥ εi(P′) − εi(P) ≥ −(κi − 1).

Using Equation (3), we find that

ei(P′) − ei(P)�
∑

j∈I\{i}
(e j(P) − e j(P′)) ≤

∑
j∈I\{i}
(κ j − 1),

which completes the proof. �

By Proposition 4, it holds for any clearing payment
matrix P that P− ≤ P ≤ P+. Natural choices in Proposi-
tion 5 are therefore P � P− and P′ � P+.
In Example 5 it holds that κ1 � κ2 � 2 and κ3 � 1.

There are only two possible clearing payment matrices,

¯
P and P̄. It holds that e1(P̄)− e1( ¯P)� e2(P̄)− e2( ¯P)�−1�
−(κ1 − 1) � −(κ2 − 1), so the lower bound of Proposi-
tion 5 is tight. Since e3(P̄)− e3( ¯P)� 2� (κ1−1)+ (κ2−1),
the upper bound of Proposition 5 is tight as well.
In a financial network with priority or quota

bankruptcy rules, or more generally, in a financial net-
work where κi � 1 for every i ∈ I , Proposition 5 implies
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that the difference between the value of equity for a
given agent at the least clearing payment matrix P−

and any clearing payment matrix P is zero. The value
of equity is uniquely determined in this case.
In a financial network with fair proportional bank-

ruptcy rules, the difference between the value of equity
of agent i at the greatest clearing payment matrix P+,
and any clearing payment matrix P is bounded
between −λi ≥ −(n − 1) and ∑

j∈I\{i}(λ j − 1) ≤ (n − 1) ·
(n − 1 − 1) � (n − 1)(n − 2) by Proposition 5. If all
bankruptcy rules are all-or-nothing, then this differ-
ence is bounded between −(κi − 1) ≥ −∑

j∈I Li j and∑
j∈I\{i}(κ j − 1) ≤∑

j∈I\{i}
∑

k∈I L jk .

5. Decentralized Clearing
The literature on default in financial networks has so
far always considered centralized clearing procedures.
In this section, we introduce a large class of decen-
tralized clearing processes. We show that any process
in this class converges to the least clearing payment
matrix. Bounds on equity differences with the greatest
clearing payment matrix are given by Proposition 5.
In a centralized clearing procedure, it is implicit that

all agents are filing for bankruptcy simultaneously and
a clearing payment matrix is centrally computed. One
possibility to do so is by formulating an integer pro-
gramming problem where the objective is to maximize
the total payments that are made subject to feasibil-
ity constraints (see also Eisenberg and Noe 2001 for a
similar formulation in the perfectly divisible case with
proportional rules):

max
P∈P

∑
i∈I

∑
j∈ J

Pi j

subject to
∑
j∈I
(Pi j −P ji) ≤ zi , i ∈ I . (6)

Proposition 6. Consider a financial network (z , L, b). The
payment matrix P+ is the unique solution to the maximiza-
tion problem in (6).

Proof. Assume that the paymentmatrix P′ is a solution
to the maximization problem in (6). We show next that
P′ satisfies the conditions of Definition 6, so P′ is a
clearing payment matrix.
(1) Feasibility: Since P′ ∈ P , feasibility is satis-

fied, that is payments are made in accordance with
bankruptcy rules.
(2) Limited liability: For every i ∈ I , because of the

inequality ∑
j∈I(P′i j −P′ji) ≤ zi , we have

ei(P′)� zi +
∑
j∈I
(P′ji −P′i j) ≥ 0,

so P′ satisfies limited liability.

(3) Priority of creditors: Suppose there is i′ ∈ I and
P∗i′ ∈ Fi′ such that P∗i′ > P′i′ and

ai′(P′) −
∑
j∈I

P∗i′ j ≥ 0. (7)

Complete the definition of the matrix P∗ by setting P∗i �
P′i for i ∈ I\{i′}.We have that∑

j∈I
(P∗i′ j −P∗ji′)�

∑
j∈I
(P∗i′ j −P′ji′) ≤ ai′(P′) −

∑
j∈I

P′ji′

� zi′ +
∑
j∈I
(P′ji′ −P′ji′)� zi′ ,

where the inequality follows from (7). For every i ∈
I\{i′}, it holds that∑

j∈I
(P∗i j −P∗ji)�

∑
j∈I
(P′i j −P∗ji) ≤

∑
j∈I
(P′i j −P′ji) ≤ zi ,

where the last inequality follows since P′ is a solution
to the maximization problem in (6).

We have shown that P∗ satisfies all feasibility con-
straints of the maximization problem in (6). Since
P∗ > P′, we obtain a contradiction to P′ being an opti-
mal solution.

Consequently, for every i ∈ I , for every P∗i ∈ Fi such
that P∗i > P′i , it holds that ai(P′) −

∑
j∈I P∗i j < 0, and P′

satisfies priority of creditors.
A solution to the maximization problem in (6) is

therefore a clearing paymentmatrix.We shownext that
the greatest clearing payment matrix P+ , guaranteed
to exist by Proposition 4, satisfies the feasibility con-
straints of the maximization problem (6).

It holds that P+ ∈ P . Since P+ satisfies limited liabil-
ity, for every i ∈ I it holds that

ei(P+)� zi +
∑
j∈I
(P+

ji −P+

i j) ≥ 0.

The proposition now follows from the observation
that P+ is the greatest clearing paymentmatrix and that
the objective function in (6) is strictly monotonic in all
entries of P. �

The only feature of the objective function in maxi-
mization problem (6) that is used in the proof of Propo-
sition 6 is its strict monotonicity in each entry of P. If
we replace the objective function ∑

i∈I
∑

j∈I Pi j in (6) by
any objective function o: P→ � that is strictly mono-
tonic on P , then we get P+ as the unique solution.
So even if the objective function is such that some
agents are favored to others (i.e., carry a higher weight
in the objective function), or if smaller payments are
relatively more important than bigger payments (i.e.,
the marginal benefits from additional payments are
decreasing and the objective function is concave), it
would still be the case that P+ emerges as the unique
solution.

Eisenberg and Noe (2001) formulate the fictitious
default algorithm to find a clearing payment matrix for
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the perfectly divisible case with proportional rules. It
starts by assuming that all agents pay their liabilities in
full and then checks whether defaults occur. If no first-
order default arises, then the algorithm is terminated.
Otherwise, it is assumed that the agents involved in
first-order defaults end up with zero equity, whereas
the other agents pay their liabilities in full, a problem
that corresponds to solving a system of linear equa-
tions. If no second-order defaults occur, then the algo-
rithm is terminated. Otherwise, it proceeds by setting
the equity of first-order and second-order defaulting
agents to zero, and so on. It is shown that this algo-
rithm terminates in atmost n steps to the greatest clear-
ing payment matrix. Variations on this algorithm have
been presented in Rogers and Veraart (2013) and Elliott
et al. (2014).
The centralized approaches toward clearing have

their limitations. In reality, agents do not file for bank-
ruptcy simultaneously, and even for agents that are
declared bankrupt, the settlement of payments does
not occur at the same time. Indeed, not all assets of
a bankrupt agent are equally liquid, and the liquida-
tion process may take considerable time. Moreover,
examples such as the Lehman bankruptcy or the Euro-
pean sovereign debt problems involve many different
(international) institutions. As explained in Franken
(2014), in international insolvency proceedings, differ-
ent courts basically work in parallel. As emphasized by
Elsinger et al. (2006) and Gai and Kapadia (2010), the
complexity of the financial system means that policy
makers have only partial information about the true
linkages between financial intermediaries. The infor-
mation that is required for a centralized approach is
simply not available.

In this section, we introduce a general class of decen-
tralized clearing processes with the following fea-
tures. At each point in time, an agent is selected by
means of a process that is potentially history depen-
dent and stochastic. This agent would typically be an
agent that has filed for bankruptcy. Next, the selected
agent makes any amount of feasible payments to the
other agents. The amount that is paid depends only
on local information and is determined by a process
that again is potentially history dependent and stochas-
tic. The only requirement that we make is that the
selected agent be eligible—that is, can make a positive
incremental payment without ending upwith negative
equity.

Definition 7. Let (z , L, b) be a financial network. The set
of eligible agents at P ∈P is equal to

G(P)�
{

i ∈ I | ∃P′i ∈ Fi such that P′i > Pi and
ai(P) −

∑
j∈I P′i j ≥ 0

}
.

It is easily verified that a payment matrix P ∈ P vio-
lates priority of creditors if and only if G(P),�.

The requirement of making a payment that does not
violate limited liability addresses another problematic
aspect of the centralized approach, which is that the
payment matrices as derived in, for instance, the inter-
mediate steps of the fictitious default algorithm lead to
negative equities and are therefore not implementable.

Next, we define the general class of decentralized
clearing processes described before.

Definition 8. Let somefinancial network (z , L, b)begiv-
en. A decentralized clearing process operates as follows.
Step 1. We define k � 1 and P1 � 0I×I . If G(P1) � �,

then stop. Otherwise, continue to Step 2.
Step 2. Select any agent ik+1 ∈G(Pk) and any payment

vector Pk+1
ik+1
∈ Fik+1

such that Pk+1
ik+1

> Pk
ik+1

and aik+1
(Pk) −∑

j∈I Pk+1
ik+1 j ≥ 0. The matrix Pk+1 is completed by defining

Pk+1
j � Pk

j for every j ∈ I\{ik+1}.
Step 3. If G(Pk+1)��, then stop. Otherwise, increase

the value of k by 1 and return to Step 2.

We start from P1 � 0I×I . This payment matrix satisfies
feasibility and limited liability, and it violates prior-
ity of creditors if and only if G(P1) , �. In Step 2 of
the process, the selected eligible agent ik+1 ∈ G(Pk) is
required to make a positive (not necessarily maximal)
additional payment Pk+1

ik+1
− Pk

ik+1
. The payment matrix

Pk+1 clearly satisfies feasibility. It satisfies limited lia-
bility by construction for the selected agent. Since the
payments for the other agents only increase, it can be
shown by induction that for them, limited liability is
satisfied as well. The payment matrix Pk+1 violates pri-
ority of creditors if and only if G(Pk+1),�.

There are many alternative ways in which agents can
be selected in Step 2 of a decentralized clearing process.
Typically, the selection would be determined by the
timing of agents filing for bankruptcy and the timing
of the liquidation of their assets. The payment vector in
Step 2 can be the greatest payment vector that satisfies
limited liability, but it is also possible that the assets of a
defaulting agent are not all simultaneously liquidated,
and therefore sequential payments to the agent’s cred-
itors are made. In this way, a decentralized clearing
process allows for selling the liquid assets first and the
illiquid ones later. Implicitly, by allowing for partial liq-
uidation of assets, a decentralized clearing process also
allows multiple eligible agents to be treated simulta-
neously. Although formally eligible agents are selected
sequentially, this covers the case where multiple eligi-
ble agents are selected simultaneously, by not using the
payments that are made simultaneously, when decid-
ing on the amounts of payments to be made in the
sequential case.

Although our clearing processes are decentralized, a
substantial amount of information gathering may still
be required to carry them out. If, for instance, we con-
sider the big lawsuit resulting from the bankruptcy of
a highly connected firm, then even in a decentralized
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clearing process, all the claimants of this highly con-
nected firm should be at the table, either directly or
via representatives, in order to select a feasible pay-
ment vector in Step 2 of Definition 8. For instance, in
case the prevailing bankruptcy rule is a mix of priority
and proportional rules, then at the very least all of the
liabilities having the highest priority should be deter-
mined in order to select a feasible payment vector. In
case all liabilities belong to the same priority class, then
the claims of all of the claimants of the firm should be
known in order to determine a feasible payment vector.
We illustrate the decentralized clearing process by

means of the following example.

Example 6. As in Examples 4 and 5, we consider the
financial network (z , L, b)with three agents I � {1, 2, 3}
and endowments and liabilities as presented in Table 6.
We first consider the case where b only involves fair

proportional bankruptcy rules. The sets of feasible pay-
ments are given by

F1 � {(0, 0, 0), (0, 1, 1), (0, 2, 2)},
F2 � {(0, 0, 0), (1, 0, 1), (2, 0, 2)},
F3 � {(0, 0, 0)}.

We start from P1 � 0I×I . Under P1 it holds that
G(P1)��, so no agent is eligible to be selected. Indeed,
agents 1 and 2 both have an asset value of one unit, but
since ∑

j∈I(S1 j(P1
1 ) − P1

1 j) �
∑

j∈I(S2 j(P1
2 ) − P1

2 j) � 2, their
next higher payment vector requires an asset value of
two units. We stop at the least clearing payment matrix
P− as derived in Example 5.
Now let b only involve priority bankruptcy rules,

where agent 1 has priority over agent 2, and agent 2
has priority over agent 3. The sets of feasible payments
are given by

F1 � {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (0, 2, 2)},
F2 � {(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 0, 1), (2, 0, 2)},
F3 � {(0, 0, 0)}.

Let us start the process again with P1 � 0I×I . Under P1 ,
both agents 1 and 2 are eligible to be selected, G(P1) �
{1, 2}. Suppose agent 1 files for bankruptcy first. Since
a1(P1) � 1, the only possible payment vector is (0, 1, 0),
where agent 1 pays one unit to agent 2 and the payment
matrix is updated to P2 , as presented in Table 7.

Table 6. The Endowments and
Liabilities of the Agents in Example 6

z L

1 0 2 2
1 2 0 2
1 0 0 0

Table 7. The Total Payments in Iterations 1–5 in Example 6

P1 P2 P3 P4 P5

0 0 0 0 1 0 0 1 0 0 2 1 0 2 1
0 0 0 0 0 0 2 0 0 2 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Under P2, only agent 2 is eligible; G(P2) � {2}. Since
a2(P2)� 2, there are now two possible payment vectors
for agent 2, (1, 0, 0) and (2, 0, 0). Suppose the liquidator
always selects the maximal payment compatible with
limited liability, b2(a2(P2)) � (2, 0, 0). Agent 2 pays two
units to agent 1 and zero units to agent 3. The payment
matrix is now P3, as presented in Table 7.
Under P3 , only agent 1 is eligible; G(P3) � {1}. Since

a1(P3) � 3, there are two possible payment vectors for
agent 1, (0, 2, 0) and (0, 2, 1). Under the maximal pay-
ment of b1(a1(P3)) � (0, 2, 1), agent 1 makes an addi-
tional transfer of one unit to agent 2 and makes a trans-
fer of one unit to agent 3, and the new payment matrix
is equal to P4. At P4, it holds that G(P4)� {2}, ; the only
possible payment vector is (2, 0, 1), so agent 2 makes a
transfer of one unit to agent 3. Since G(P5) � �, there
are no more eligible agents, and the process is over at
the payment matrix P5 of Table 7. In this example, the
matrix P5 is the unique clearing payment matrix.

Proposition 7. Given a financial network (z , L, b), a decen-
tralized clearing process terminates in a finite number of
iterations with the least clearing payment matrix P−.

Proof. Finite convergence is satisfied, since total pay-
ments made increase by at least one unit in each itera-
tion and total payments have to be bounded above by
the amounts involved in the liabilities, a finite number.

Assume that (P1 , . . . ,PK) corresponds to the realiza-
tion of a decentralized process. We show that PK is a
clearing payment matrix by verifying the conditions of
Definition 6.

(1) Feasibility: In each iteration a feasible payment
vector is selected, thus PK ∈P.

(2) Limited liability: It is immediate to verify that
P1 �0I×I satisfies limited liability.We proceed by induc-
tion. Assume, for some k < K, Pk satisfies limited liabil-
ity. For the selected agent ik+1, it holds that∑

j∈I
Pk+1

ik+1 j ≤ aik+1
(Pk)� aik+1

(Pk+1).

For every agent i ∈ I\{ik+1}, we have∑
j∈I

Pk+1
i j �

∑
j∈I

Pk
i j ≤ ai(Pk) ≤ ai(Pk+1),

where the first inequality follows from the induction
hypothesis.

We conclude that Pk satisfies limited liability for
every k ∈ {1, . . . ,K}.
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(3) Priority of creditors: Suppose PK does not satisfy
priority of creditors. It follows that G(PK) , �, which
contradicts that the decentralized clearing process ter-
minates at PK .
We have shown that PK is clearing payment matrix.

To show that it is the least clearing payment matrix, let
k be the last iteration in {1, . . . ,K} such that Pk ≤ P−.
Notice that such a k exists since P1 ≤ P−.

Suppose k < K. We argue first that Pk+1 ≤ ϕ(Pk). By
constructionofPk+1

ik+1
, it holds that∑ j∈I Pk+1

ik+1 j≤ aik+1
(Pk), so

clearly, Pk+1
ik+1
≤ bik+1

(aik+1
(Pk))�ϕik+1

(Pk). For i∈ I\{ik+1}, it
holds that

Pk+1
i � Pk

i ≤ bi(ai(Pk))� ϕi(Pk),

where the inequality follows from the fact that Pk sat-
isfies limited liability.
Then we have that

Pk+1 ≤ ϕ(Pk) ≤ ϕ(P−)� P− ,

where the second inequality follows from the mono-
tonicity of ϕ as shown in the proof of Proposition 4 and
the equality from the fact that P− is a fixed point of ϕ
by Proposition 3. This contradicts the definition of k as
the last iteration such that Pk ≤ P−.

Consequently, we have that k � K. Since PK ≤ P−

and PK is a clearing payment matrix, it follows that
PK � P−. �

Whereas the centralized procedures yield the great-
est payment matrix P+ , a decentralized process con-
verges to the least payment matrix P−. Surprisingly, the
convergence to P− is independent of the precise spec-
ification of the decentralized process in the following
sense. The process to select eligible agents is poten-
tially history dependent and stochastic. The additional
payments are only required to be positive and not nec-
essarily maximal, taking into account limited liabil-
ity. They may be determined in a potentially history-
dependent and stochastic way, too. What is important
is that selected agents pay some extra amount in accor-
dancewith the bankruptcy rules. If payments are not in
accordance with the bankruptcy rules, then one might
end up with a different clearing payment matrix. For
instance, in case agents could decide themselves whom
to pay, they have incentives to pay those agents on
which they have claims themselves. Obviously, with-
out enforcement of payments, agents would prefer not
to pay at all.
Whether the difference between a centralized pro-

cedure and a decentralized process is substantial or
not depends on the values of κi (see Proposition 5).
For almost any financial application, κi is a very small
number when compared with the size of the liabilities,
and so the difference between a centralized procedure
and a decentralized process will not be significant.

6. The Perfectly Divisible Case
In this section, we analyze the perfectly divisible case
and relate it to our discrete approach.

A financial network (z , L, d) in the perfectly divis-
ible case consists of endowments z ∈ �I

+
, a liabil-

ity matrix L ∈ �I×I
+
, and division rules d � (di)i∈I with

di : �+ → �I
+
. We use the term “division rule” rather

than “bankruptcy rule” to emphasize that we are oper-
ating in the perfectly divisible setup.

Assumption 2. Let (z , L, d) be a financial network in the
perfectly divisible case. For every i ∈ I , the division rule di
is a monotonic function di : �+→�I

+
such that

(1) for every Ei ∈ �+ ,
∑

j∈I di j(Ei) � min{∑ j∈I Li j ,Ei};
and

(2) for every Ei ∈ �+ , for every j ∈ I , di j(Ei) ≤ Li j .

It can be shown that any division rule satisfying
Assumption 2 is continuous.

In Section 2, we defined the proportional division
rule dprop , which is easily verified to satisfy Assump-
tion 2. When all division rules are proportional, we
have exactly the setting of Eisenberg and Noe (2001).
The case with general division rules, though not allow-
ing for agent-specific bankruptcy rules, corresponds to
the framework of Groote Schaarsberg et al. (2013).

In Section 2, we provided a construction to turn the
proportional division rule into the fair proportional
bankruptcy rule. The next definition extends this con-
struction to any division rule.

Definition 9. Given a vector of liabilities Li and a divi-
sion rule di : �+ → �I

+
of agent i ∈ I , the induced

bankruptcy rule bi : �0 → �I
0 of agent i is defined by

bi � b bdi (�+)c
i .

The next result establishes that if di is a division rule
satisfying Assumption 2, then the induced bankruptcy
rule bi satisfies Assumption 1.

Proposition 8. Given a vector of liabilities Li and a division
rule di : �+→�I

+
of agent i ∈ I satisfying Assumption 2, the

induced bankruptcy rule b bdi (�+)c
i satisfies Assumption 1.

Proof. We show that bdi(�+)c being a subset of �I
0 is

totally ordered by ≤, contains 0I , and has Li as its max-
imal element. The result then follows from Proposi-
tion 1.

Monotonicity of di implies that bdi(�+)c is totally
ordered by ≤ .
Since di maps into�I

+
and∑

j∈I di j(0)�min{∑ j∈I Li j ,0}
�0, it follows that di(0)�0I , so 0I∈bdi(�+)c .
Since, for every Ei ∈ �+ , for every j ∈ I , di j(Ei) ≤ Li j

by Assumption 2(2), it follows that bdi(�+)c is a subset
of �I

0, and its maximal element is Li . �

We have shown, in Section 2, that if bi is the fair
proportional bankruptcy rule and Li > 0, then κi is at
most as large as the number of nonzero liabilities λi
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of agent i, which in turn is less than the number of
agents n. The next result shows that the latter inequal-
ity holds for any induced bankruptcy rule.
Proposition 9. Consider a financial network (z , L, b). Let
i ∈ I be such that Li > 0 and the bankruptcy rule bi is induced
by a division rule di satisfying Assumption 2. It holds that
κi ≤ λi ≤ n − 1.
Proof. Take any Pi ∈ Fi\{Li}. Suppose there is j ∈ I
such that Si j(Pi) − Pi j ≥ 2. Let Ei ,E′′i ∈ �+ be such that
Pi j � bdi j(Ei)c and Si j(Pi)� bdi j(E′′i )c . By continuity and
monotonicity of di , there is E′i ∈ �+ such that Ei < E′i <
E′′i and

Pi j � bdi j(Ei)c < bdi j(E′i)c < bdi j(E′′i )c � Si j(Pi).

By monotonicity of di , we have that Pi < bdi(E′i)c <
Si(Pi). Since bdi(E′i)c ∈ Fi , this contradicts the definition
of Si(Pi).

Consequently, it holds for every j ∈ I that Si j(Pi) −
Pi j ∈ {0, 1}, so∑
j∈I
(Si j(Pi)−Pi j)�

∑
{ j∈I | Li j>0}

(Si j(Pi)−Pi j) ≤ #{ j ∈ I | Li j > 0}

�λi ≤ n−1,

and therefore

κi � max
Pi∈Fi\{Li }

∑
j∈I
(Si j(Pi) −Pi j) ≤ λi ≤ n − 1. �

The all-or-nothing bankruptcy rule is an example of
a bankruptcy rule satisfying Assumption 1 that is not
induced by any division rule satisfying Assumption 2.
Indeed, suppose i ∈ I is an agent having liabilities Li �

(0, 2, 2). Let di be a division rule satisfying Assump-
tion 2. Since di is continuous, the set bdi(�+)c contains
an element fi such that fi2 � 1, as well as an element f ′i
such that f ′i3 � 1. Recall from Example 3 that the set of
feasible payments corresponding to the all-or-nothing
bankruptcy rule is given by

Fi � {(0, 0, 0), (0, 2, 2)},

so both fi and f ′i are not part of it.
As before, we use P for the set of feasible payment

matrices, so

P � {P ∈ �I×I
+
| ∀ i ∈ I , Pi ∈ di(�+)}.

A clearing payment matrix is now defined as follows.
Definition 10. Given a financial network (z , L, d) in the
perfectly divisible case, P ∈ �I×I

+
is a clearing payment

matrix if it satisfies the following three properties:
(1) Feasibility: P ∈P .
(2) Limited liability: For every i ∈ I , ei(P) ≥ 0.
(3) Priority of creditors: For every i ∈ I , if Pi < Li , then

ei(P)� 0.
Using the approach of Groote Schaarsberg et al.

(2013), it can be shown that a clearing payment matrix

exists in the perfectly divisible case and that each
clearing payment matrix leads to the same value of
equity, thereby generalizing the same result for the case
with proportional division rules by Eisenberg and Noe
(2001). We denote this value of equity by e∗ ∈ �I

+
.

The assumption of perfectly divisible payments is
clearly an abstraction. We are interested in the question
of whether it serves as a good approximation for the
case with a smallest unit of account, when this smallest
unit converges to zero.

For m ∈ �, let 1/m be the unit of account. To each
financial network (z , L, d) in the perfectly divisible case,
we associate a financial network (z(m), L(m), bd(m)),
where z(m)� bm · zc , L(m)� bm · Lc, and for every i ∈ I,
bd

i (m) � b bm·di (�+)c
i . Amounts now correspond to multi-

ples of 1/m , so we have to divide z(m), L(m), and bd(m)
by m to compare them to z, L, and d , respectively.

Asset values and equities resulting from a payment
matrix P ∈M in the model with unit of account 1/m are
denoted by am(P) and em(P), respectively. We have

am
i (P)� zi(m)+

∑
j∈I

P ji , i ∈ I ,

em
i (P)� am

i (P) −
∑
j∈I

Pi j , i ∈ I .

The following proposition gives an affirmative
answer to our question.
Proposition 10. Let (z , L, d) be a financial network in the
perfectly divisible case. For every m ∈ �, let Pm be a clear-
ing payment matrix of the financial network (z(m), L(m),
bd(m)). Then limm→∞(1/m) · em(Pm)� e∗.
Proof. Since ((1/m) ·Pm)m∈� is a bounded sequence, we
can assume without loss of generality that it converges
to a matrix P̄.

We show that P̄ is a clearing payment matrix for the
financial network (z , L, d) in the perfectly divisible case
by verifying the three conditions of Definition 10.

(1) Feasibility: Take some i ∈ I . It holds that Pm
i ∈

bm ·di(�+)c , so (1/m) ·Pm
i � (1/m) · bm ·di(Em

i )c for some
Em

i ∈�+. It follows that (1/m) · bm · di(Em
i )c � bdi(Em

i )cm ,
where bxcm denotes the greatest multiple of 1/m that
is less than or equal to x ∈ �+. The Hausdorff distance
of the point bdi(Em

i )cm to the compact set di(�+) is less
than or equal to 1/m under ‖ · ‖∞. It then follows that

P̄i � lim
m→∞

1
m
· Pm

i � lim
m→∞
bdi(Em

i )cm ∈ di(�+).

(2) Limited liability: Take some i ∈ I . By limited lia-
bility in Definition 6, em

i (Pm) ≥ 0, so (1/m) · em
i (Pm) ≥ 0,

and
ei(P̄i)� lim

m→∞
(1/m) · em

i (Pm) ≥ 0.

(3) Priority of creditors: Assume i ∈ I is such that
P̄i<Li . Form sufficiently large, it holds thatPm

i < bm ·Lic.
By priority of creditors in Definition 6, it follows that

am
i (Pm) <

∑
j∈I

Sm
ij (Pm

i ) ≤
∑
j∈I

Pm
ij + n − 1,
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where Sm
i (Pm

i ) denotes the unique successor of Pm
i .We

find that

em
i (Pm)� am

i (Pm) −
∑
j∈I

Pm
ij < n − 1,

so
ei(P̄i)� lim

m→∞
(1/m)em

i (Pm) ≤ 0.

Since ei(P̄i) satisfies limited liability, it follows that
ei(P̄i)� 0.
We conclude that the matrix P̄ is a clearing payment

matrix in the sense of Definition 10, so e(P̄) � e∗ , and
therefore

lim
m→∞

1
m
· em(Pm)� e(P̄)� e∗. �

A decentralized clearing process in the spirit of Def-
inition 8 can also be defined in the perfectly divisible
setup. First, we show by means of an example that in
the perfectly divisible setup, convergence of a decen-
tralized clearing process might require infinitely many
iterations even if in every Step 2 of the process the high-
est payment vector consistent with limited liability is
selected.

Example 7. As in Example 5, we consider a financial
network (z , L, d) with three agents I � {1, 2, 3} and
endowments and liabilities as presented in Table 8, but
nowwedo not assume a smallest unit of account and so
have proportional division rules instead of fair propor-
tional bankruptcy rules. The unique clearing payment
matrix and the resulting asset values and equities are
presented in Table 8 as well.
We study a decentralized clearing process and start

with the situation with agents making no transfers,
P1 � 0I×I . Under P1 , both agents 1 and 2 are eligible to
be selected, since both of them have positive assets and
positive unpaid liabilities. Assume the liquidator starts
with agent 1 and requires him to make the maximal
payment vector satisfying limited liability, d1(a1(P1)) �

Table 8. The Financial Network and the Unique Clearing
Payment Matrix in Example 7, When Using Proportional
Division Rules

z L P a(P) e(P)

1 0 2 2 0 1 1 2 0
1 2 0 2 1 0 1 2 0
1 0 0 0 0 0 0 3 3

Table 9. The Total Payments in Iterations 1–5 in Example 7

P1 P2 P3 P4 P5

0 0 0 0 1/2 1/2 0 1/2 1/2 0 7/8 7/8 0 7/8 7/8
0 0 0 0 0 0 3/4 0 3/4 3/4 0 3/4 15/16 0 15/16 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0, 1/2, 1/2). At P2, only agent 2 is eligible, and the
maximal payment vector satisfying limited liability is
d2(a2(P2)) � (3/4, 0, 3/4). Proceeding in this way, we
obtain the sequence of payment matrices as presented
in Table 9. Agents 1 and 2 are selected in an alternating
fashion with their maximal payment vector consistent
with limited liability. The process takes infinitely many
iterations, and so never stops.

Example 7 has the feature that the process takes
infinitely many iterations, but in the limit there is con-
vergence to the unique clearing payment matrix. In
Example 7, the selected eligible agent is always making
the maximal payment compatible with limited liabil-
ity. In a decentralized clearing process for the discrete
case as defined in Definition 8, this was not required,
whereas convergence to the least clearing payment
matrix was still guaranteed according to Proposition 7.
Clearly, for the perfectly divisible case, such a result
would no longer be true, since it is easy to produce
counterexamples where the incremental payments are
taken smaller and smaller and the process converges to
a matrix with payments falling below the least clearing
payment matrix.

The following example demonstrates that evenwhen
one insists on making maximal payments compatible
with limited liability, convergence to the least clearing
payment matrix is not guaranteed. It should be empha-
sized that the requirement of making maximal pay-
ments compatible with limited liability is quite strong,
since it means that all available assets have to be liqui-
dated before payments are made, an operation that can
take considerable amounts of time.

Example 8. As in Example 7, we have proportional
division rules, but we change L31 to 2, so agent 3 now
has a liability of two units toward agent 1. The financial
network (z , L, d), the unique clearing payment matrix,
and the resulting asset values and equities are pre-
sented in Table 10.

Compared with Example 7, agent 3’s liability of two
units toward agent 1 changes the value of his equity
at the clearing payment matrix, going from 3 to 5/2.
Agent 1 becomes solvent with equity equal to 1/2 at the
clearing payment matrix. Agent 2 remains insolvent.
Total payments as being made in the system increase
substantially, with total payments as made by agent 1
going up from 2 to 4 and those made by agent 2 going
up from 2 to 3.
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Table 10. The Financial Network and the Unique Clearing
Payment Matrix in Example 8, When Using Proportional
Division Rules

z L P a(P) e(P)

1 0 2 2 0 2 2 9
2

1
2

1 2 0 2 3
2 0 3

2 3 0

1 2 0 0 2 0 0 9
2

5
2

We now study a decentralized clearing process with
the following features. In case of multiple eligible
agents, let us assume that the liquidator selects the
eligible agent having the lowest number. Let us also
assume that the liquidator requires the selected eligi-
ble agent to make the maximal payment vector satis-
fying limited liability. We start with the situation with
agents making no transfers, P1 � 0I×I . Under P1 , all
agents are eligible to be selected, since all of them
have positive assets and positive liabilities. The liq-
uidator would select agent 1 and require him to make
the maximal payment vector satisfying limited lia-
bility, d1(a1(P1)) � (0, 1/2, 1/2). At P2, agents 2 and 3
are eligible, so the liquidator selects agent 2, and the
maximal payment vector satisfying limited liability is
d2(a2(P2)) � (3/4, 0, 3/4). Proceeding in this way, we
obtain exactly the same sequence of payment matrices
as in Example 7, presented in Table 9. Agents 1 and 2
are selected in an alternating fashion and make maxi-
mal payments consistentwith limited liability. The pro-
cess takes infinitely many iterations and converges to
the limit payment matrix P̄ illustrated in Table 11.

The limit paymentmatrix P̄ is not a clearing payment
matrix in Example 8 since agent 3 has both positive
assets and positive unpaid liabilities. The payments of
all agents according to P̄ are strictly lower than the pay-
ments of the clearing payment matrix P as presented in
Table 10. The asset values and equities at the limit pay-
ment matrix P̄ are different from those at the clearing
payment matrix P, and importantly, agent 1 remains
insolvent at P̄ but is not so at P.
A small variation on Example 8 shows that there

may not be a unique limit payment matrix of a decen-
tralized process in the perfectly divisible case. Sup-
pose that the liquidator initially selects each eligible

Table 11. The Financial Network and the Limit Payment
Matrix in Example 8, When Using Proportional Division
Rules

z L P̄ a(P̄) e(P̄)

1 0 2 2 0 1 1 2 0
1 2 0 2 1 0 1 2 0
1 2 0 0 0 0 0 3 3

agent with equal probability and then continues in
the way described in Example 8. With probability 2/3,
agent 1 or agent 2 is initially selected, and the process
converges to the matrix P̄ depicted in Table 11. With
probability 1/3, agent 3 is initially selected and makes
a payment of one unit to agent 1. It can be verified that
the decentralized process then converges to the matrix
P̄′ given by

P̄′ �


0 5
3

5
3

4
3 0 4

3

1 0 0

 .
In this variation on Example 8, the decentralized pro-
cess leads to a nondegenerate probability distribution
on two payment matrices, none of which is a clearing
payment matrix.

7. Conclusion
Motivated by a large literature on contagion in finan-
cial networks, we study bankruptcy problems in a net-
work environment, thereby generalizing the literature
on bankruptcy problems that consider the division of a
single estate among multiple claimants. An important
difference with the case of a single estate is that in a
network environment, the value of the estate is endoge-
nous, as it depends on the extent to which other agents
pay their liabilities.

The systemic risk literature on financial networks has
considered a number of centralized procedures to find
a clearing payment matrix, and the emphasis has been
on finding the greatest clearing payment matrix. The
centralized procedures assume a great amount of coor-
dination and information that is typically not available.

In this paper, we introduce a large class of decentral-
ized clearing processes to select agents and force them
to liquidate their assets. We require that each iteration
in such a process satisfies limited liability. The required
payments can therefore be implemented at every step.
We find that for any decentralized clearing process in
the class, there is convergence to the least clearing pay-
ment matrix in a finite number of iterations.

To facilitate the definition of the class of decentral-
ized clearing processes, it is convenient to work in a
discrete framework, unlike the entire literature on sys-
temic risk. Also unlike this literature, which invari-
ably has focused on proportional bankruptcy rules, we
allow for general bankruptcy rules. Apart from the
already mentioned financial applications, other exam-
ples where our model applies are, for instance, interna-
tional student exchange networks and job processing
by a network of servers.

We define the notion of a clearing payment matrix
for our discrete setup as a payment matrix that satisfies
feasibility, limited liability, and priority of creditors.We
show that such payment matrices exist and that they
constitute a complete lattice, so in particular, there is a
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least and a greatest clearing payment matrix. Contrary
to the perfectly divisible setup, it is not the case that all
payment matrices induce the same value of equity. It
therefore matters which payment matrix is being used.
We derive tight bounds on the maximal differences in
equities that can result from using different clearing
payment matrices.
We show that when the unit of account is sufficiently

small, which would be the case in most financial appli-
cations, the final values of equity as determined by any
decentralized process are essentially the same as the
ones determined by a centralized procedure. As a pol-
icy implication, it is not necessary to collect and process
all the sensitive data of all the agents simultaneously
and run a centralized clearing procedure.

The results of our paper apply to a setting where the
values of the liabilities are not affected by the liquida-
tion process itself. A number of authors, most notably
Cifuentes et al. (2005) and Shin (2008), have argued that
when assets are illiquid, and so have less than perfectly
elastic demand curves, then sales by distressed institu-
tions depress the market prices of such assets. In the
setup of this paper, any decentralized clearing process
leads to the same clearing payment matrix. When the
values of the endowments depend on the clearing pro-
cess itself, then such a result is likely to change. How-
ever, as we have already noted, a decentralized clearing
process allows for selling the liquid assets first and the
illiquid ones later, thereby potentially mitigating such
effects.
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Endnotes
1For surveys of the literature on bankruptcy problems, we refer the
reader to Thomson (2003, 2013, 2015). There is also an emerging
literature on the extension of the bankruptcy literature to network
settings. The emphasis in these papers is on the axiomatic founda-
tion of allocation rules. Bjørndal and Jörnsten (2010) analyze gener-
alized bankruptcy problems with multiple estates as flow sharing
problems and define the nucleolus and the constrained egalitarian
solution for such problems. Moulin and Sethuraman (2013) consider
bipartite rationing problems, where agents can have claims on a
subset of unrelated estates. They consider whether rules for single
resource problems can be consistently extended to their framework.
Groote Schaarsberg et al. (2013) axiomatize the Aumann–Maschler
bankruptcy rule in financial networks in the perfectly divisible case.
Csóka and Herings (2017) axiomatize the proportional rule in the
same setup.

2Consistency imposes that in case an agent leaves with the payment
as described by the bankruptcy rule, then applying the bankruptcy
rule to the smaller problem does not change the payments of the
remaining agents. Upper composition requires that first applying
the bankruptcy rule using a too optimistic value of the estate and
using the resulting payments as the liabilities for the correct value
of the estate leads to the same payments as directly applying the
bankruptcy rule to the correct value of the estate. Lower composition
is the dual of upper composition. It requires that first applying the
bankruptcy rule using a too pessimistic value of the estate, revising
the liabilities accordingly, and then dividing the remainder of the
estate leads to the same result as directly applying the bankruptcy
rule to the correct value of the estate.
3The perfectly divisible case is treated in detail in Section 6.
4Council Regulation (EC) No. 1346/2000 of May 29, 2000, on insol-
vency proceedings: http://eur-lex.europa.eu/legal-content/EN/
TXT/HTML/?uri�CELEX:02000R1346-20140709&qid�1471509284560
(accessed January 25, 2017).
5Eisenberg and Noe (2001) refers to “priority of creditors” as “prior-
ity of debt claims” or “absolute priority” and to “limited liability” as
“limited liability (of equity).”
6 In the perfectly divisible setup, priority of creditors is defined as
follows by Eisenberg and Noe (2001): for every i ∈ I , if Pi < Li , then
ei(P) � 0. In the presence of integer payments, this condition is too
strong. We therefore use the requirement in condition 3 of Defini-
tion 6 that agent i ends up with negative equity if he chooses a fea-
sible payment that is strictly higher, whereas all other agents remain
paying the same.
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