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This article studies the determinants of pharmaceutical innovation diffusion among specialists. To 

this end, it investigates the influences of six categories of factors—social embeddedness, socio-

demography, scientific orientation, prescribing patterns, practice characteristics, and patient panel 

composition—on the use of 11 new drugs for the treatment of type 2 diabetes mellitus in Hungary. 

The Cox proportional hazards model identifies three determinants—social contagion (in the social 

embeddedness category) and prescribing portfolio and insulin prescribing ratio (in the prescribing 

pattern category). First, social contagion has a positive effect among geographically close 

colleagues—the higher the adoption ratio, the higher the likelihood of early adoption—but no 

influence among former classmates and scientific collaborators. Second, the wider the prescribing 

portfolio, the earlier the new drug uptake. Third, the lower the insulin prescribing ratio, the earlier the 

new drug uptake—physicians’ therapeutic convictions and patients’ socioeconomic statuses act as 

underlying influencers. However, this finding does not extend to opinion-leading physicians such as 

scientific leaders and hospital department and outpatient center managers. This article concludes by 
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arguing that healthcare policy strategists and pharmaceutical companies may rely exclusively on 

practice location and prescription data to perfect interventions and optimize budgets. 
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1. INTRODUCTION 

 

The healthcare industry all over the world faces the challenge of providing high quality patient care 

in an environment of limited resources. Recent developments in analytics and information technology 

offer important data-driven opportunities for enhancing the delivery of healthcare. Healthcare 

institutions which analyse big data are performing better, with lower costs, higher quality of care, 

shorter waiting times, reductions in medical errors, higher reimbursement rates (Alemi 2005). New 

drug diffusion is an area where healthcare analytics might result in better outcomes both for 

pharmaceutical companies and healthcare politicians. For this purpose, millions of prescription data 

should be mined and combined with doctors’ characteristics, including their social network.  

 

Innovation and the successful diffusion of new drugs are critical for the financial performance of 

pharmaceutical companies. Medicine and society benefit from pharmaceutical innovations as well 

(Greenhalgh 2005). Where new drugs expand therapeutics in areas of yet unmet clinical need, patients 

benefit from the early access to the latest therapeutic innovations. Improved health status might result 

in higher employment rates. Furthermore, newly marketed drugs, if cost efficient, have high potential 

to drive improvements in healthcare from the limited healthcare budget: a better health status is either 

achieved from the same budget, or the health status of patients is maintained at a lower cost. 

New drug uptake might be either driven by external forces, such as regulation, characteristics of 

medicines, competition, marketing effort or by internal forces such as social contagion (Dunn et al. 

2012). The diffusion of pharmaceutical innovation is mainly determined by the behaviour of patients 

and medical professionals, as well as the strategies of pharmaceutical companies and government 

policies (e. g. Greenhalgh 2005; Lublóy 2014; Coleman et al. 1966; Iyengar et al. 2011). Although 

doctors consider new drugs on individual merits, some may be more predisposed to adopt one than 

others. Several factors, such as participation in clinical trials, prescribing volume, either in total or 



 3 

within the therapeutic class of the new drug, pharmaceutical companies’ marketing efforts and some 

patient characteristics are significantly associated with early adoption (Lublóy 2014). Furthermore, 

several studies found convincing empirical evidence of social contagion in new drug diffusion (e. g. 

Coleman et al. 1966; Iyengar et al. 2011; Lin et al. 2011; Liu – Gupta 2012; Manchanda et al. 2008). 

Social interactions among colleagues are indispensable to gaining knowledge and reducing 

uncertainty about the consequences of new drug adoption.  

 

Previous literature on social contagion classified physicians according to the roles that they played in 

their social networks such as advisors, discussion partners, friends, physicians to whom patients are 

referred, and colleagues similar in terms of age and tenure (e.g. Lin et al. 2011; Liu – Gupta 2012; 

Manchanda et al. 2008; Van den Bulte C – Lilien 2001). Prior research used surveys and mail 

questionnaires for identifying early adopters and for listing collegial interactions (Chauhan – Mason 

2008; Mason 2008). A retrospective study based on self-reporting is not only costly, but runs the risks 

of recall and social desirability bias. This article uses prescription data which reflect prescribing 

realities, and thus are exempt from recall bias, and follows an alternative approach to defining social 

networks. Instead of asking specialists to list their collegial interactions, this article mines databases 

to construct the contagion measures. The contagion measures, being exempt from social desirability 

bias, reflect distinct channels of interpersonal communication: with former classmates, scientific 

collaborators, and geographically close colleagues. 

 

This article contributes to the literature on social contagion in new drug diffusion in the age of 

analytics, as large-scale prescription data and contagion measures extracted from databases. We 

investigate whether social contagion measures extracted from databases rather than from survey and 

mail questioners support pharmaceutical companies and healthcare politicians in influencing the 

uptake of pharmaceutical innovations. We hypothesize that the higher the number of classmates, co-

authors and geographically close colleagues who have already adopted the new drug, the higher the 

likelihood of adoption by a specific physician.  

 

The influences of former classmates and scientific collaborators on new drug diffusion have never 

been analysed in the pharmaceutical literature before. However, empirical evidence shows that former 

classmates are important channels of knowledge diffusion in various areas of life (Dahl – Pedersen 

2004; Østergaard 2009). Furthermore, anecdotal evidence shows that physicians regularly exchange 

ideas with former classmates even after graduation, especially if they practice medicine in the same 

specialty (Bajaj 2015; Wong 2015). Similarly, the influential role of scientific collaborators was 
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proved in many other domains (Acedo et al. 2006; Glänzel – Schubert 2005). Although distance-

based contagion measures were used in two recent studies (Liu – Gupta 2012; Manchanda et al. 2008), 

the pharmaceutical literature calls for further research on this measure. 

 

If contagion measures extracted from databases are found to be important predictors of new drug 

uptake, then pharmaceutical companies and health politicians might rely upon these contagion 

measures to influence new drug diffusion, and target their interventions at doctors whose adoption is 

the most contagious. For pharmaceutical companies, personal selling through sales representatives, 

is the primary promotional instrument (Manchanda – Honka 2005), and thus knowing the key-opinion 

leaders in the overlapping social networks is of major importance (Greenhalgh 2005). Governments 

are major influencers of new drug uptake through regulatory and approval agencies and budgetary 

allocations. However, healthcare politicians might encourage the adoption of the most efficient/least 

expensive new drugs through continuing medical education—targeting relevant, tailored information 

at specialist subgroups whose behaviour is contagious.  

 

Following this introduction, section 2 presents the key characteristics of the study drugs and the data 

sources used, discusses the statistical model, and specifies the covariates. Section 3 presents the 

results, which are then discussed in section 4, alongside policy implications and several possible 

research limitations. Finally, section 5 summarizes the research findings. 

 

2. METHODS 

 

2.1. Study Drugs 

 

This article focuses on new anti-diabetic drugs (A10Bs) for the treatment of type 2 diabetes mellitus 

(T2DM) in Hungary. A10Bs are blood glucose (HbAc1) lowering drugs other than insulin, classified 

by the World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC) classification 

system which is based on the organs/systems on which drugs act and/or the therapeutic and chemical 

characteristics of the drugs. In Hungary, 11 brands were introduced in a subsidized form between 

April 2008 and April 2010, outperforming all other therapeutic classes. Details of the 11 new brands 

are shown in Table 1. When added to metformin, the default treatment for T2DM, each drug reduces 

the HbAc1 level, with close to equal efficiencies, and despite distinct modes of action (EMA 2015). 

 

The study drugs are prescribed by internists subspecialized in endocrinology—a fairly closed 
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community, suitable for the purpose of this article. In Hungary, specialists share the care of T2DM 

patients with general practitioners, allowing for the examination of routine—as opposed to just first-

time—adoption of new A10Bs. Adoption becomes routine when specialists first ask referring general 

practitioners to prescribe new A10Bs, on grounds of efficacy and efficiency. Intuitively, any such 

drugs are already part of the specialists’ prescribing portfolios, following first-time adoption and 

follow-up tests. 

 

Table 1. New anti-diabetic drugs introduced in Hungary between April 2008 and April 2010: main 

data 

Brand 

name 

ATCa 

code 

Active 

ingredient 

FDAb 

therapeutic 

novelty 

Distribution 

rights 

Subsidized 

introduction 

date 

Cumulative 

DOTc (as of 

December 2011) 

Market shared (as of 

December 2011, in 

percentages) 

Actos A10BG03 pioglitazon 
new molecular 

entity 

Takeda Global 

Research 
April 2008 43 848 3.00 

Byetta A10BX04 exenatide 
new molecular 

entity 

Eli Lilly 

Nederland 
April 2010 23 360 1.60 

Competact A10BD05 
metformin; 

pioglitazon 

new 

combination 

Takeda Global 

Research 
June 2009 171 500 11.75 

Eucreas A10BD08 
metformin; 

vildagliptin 

without FDA 

approval 

Novartis 

Europharm 

November 

2008 
396 540 27.16 

Galvus A10BH02 vildagliptin 
without FDA 

approval 

Novartis 

Europharm 

November 

2008 
54 278 3.72 

Janumet A10BD07 
metformin; 

sitagliptin 

new 

combination 

Merck Sharp 

& Dohme 
February 2009 288 764 19.78 

Januvia A10BH01 sitagliptin 
new molecular 

entity 

Merck Sharp 

& Dohme 
August 2008 104 020 7.12 

Onglyza A10BH03 saxagliptin 
new molecular 

entity 

Bristol-Myers 

Squibb 
April 2010 74 850 5.13 

Velmetia A10BD07 
metformin; 

sitagliptin 

new 

combination 

Merck Sharp 

& Dohme 
April 2009 200 004 13.70 

Victoza A10BX07 liraglutide 
new molecular 

entity 
Novo Nordisk April 2010 52 080 3.57 

Xelevia A10BH01 sitagliptin 
new molecular 

entity 

Merck Sharp 

& Dohme 
April 2009 50 834 3.48 

Source: authors. 

a Anatomical Therapeutic Chemical. 

b Food and Drug Administration. 

c Days of therapy. 

d Relative to the other new A10Bs. 



 6 

 

2.2. Data Sources 

 

Adoption behaviour is extracted from a prescription database managed by DoktorInfo Ltd and covers 

prescription information between April 2008 and December 2011. Around one fifth of the Hungarian 

general practitioner population feeds real-time prescription data into the DoktorInfo database 

voluntarily—they are representative of the entire Hungarian general practitioner population in both 

age and location (defined by region and population size). General practitioners are compensated for 

providing information such as general practitioner identification number; prescription date; 

prescribed drug characteristics (brand name, ATC code, and dosage); prescribed drug subsidy; patient 

characteristics (age and gender); and, since January 2009, for patients whose care is shared, 

identification number of the therapy-initiating specialist. The latter enables monitoring the adoption 

behaviours and prescribing patterns of specialists who share care of T2DM patients. 

 

The database managed by the Office of Health Authorization and Administrative Procedures 

(OHAAP) covers socio-demographic and practice-related variables. This database contributes to the 

generation of two contagion measures: network of former classmates and geographically close 

colleagues.  

 

The database of ComFit, a bibliographic database similar to PubMed and containing Hungarian 

medical articles, and the database of the Hungarian Diabetes Association (HDA), with information 

on the scientific activities of qualified diabetologists (presentations at the HDA biennial congresses) 

contribute to constructing the scientific collaboration network. 

 

2.3. Statistical Model 

 

Similarly to many recent studies of the fields (Iyengar et al. 2011; Lin et al. 2011; Wen et al. 2011), 

this article uses the Cox proportional hazards model (Cox 1972) to examine factors influencing the 

likelihoods of routine adoptions of A10Bs by specialists. The Cox model is the most appropriate 

choice for the purpose because of the way it handles right-censored data—cases where specialists had 

not routinely adopted the A10Bs by the end of 2011 (time t). The model specified in Equation 1 

h(t ∣ Z, x(t))relates the time that passes before initial adoption to covariates that may be associated 

with that quantity of time. Separate models were run for each social contagion measure. The time 

period was divided into K equal parts by determining (K-1) points in time (0 <  𝜏1 = 30 < 𝜏2 =
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60 < ⋯ <  𝜏𝐾−1). 

 

The hazard ratio/likelihood of routine adoption at time t for each specialist is specified in Equation 1 

as follows: 

 

ℎ(𝑡 ∣ 𝑥(𝑡), 𝒁) = 𝜆0 exp( 𝛾𝑥(𝑡) + 𝜷𝒁), where          (1) 

𝑥(𝑡) = ∑ 𝑥𝑖−1𝐼[𝑡 𝜖[𝜏𝑖−1, 𝜏𝑖]]𝐾
𝑖=1             (2) 

and 

𝑥𝑖 = 100% ∗ 𝐾𝑖/𝑁𝑖              (3) 

 

in which λ0 is the baseline hazard function, exp(γ) is the hazard ratio of the respective contagion 

measure, x is the contagion measure, exp(β) is the vector of the hazard ratio, Z is the vector of the 

control variables, Ki is the number of adopting colleagues in period i, and Ni is the number of all 

colleagues in period i. By definition, λ0, the baseline hazard function describes the risk of adaption 

for specialists with the particular contagion measure being zero and thus serving as a point of 

reference. 

For multiple highly correlated covariates (with coefficients higher than 0.85), only one variable from 

the set of intercorrelated variables is used (Garson 2013). All independent variables were introduced 

in one step into the regression. Coefficients exp(γ) and the exp(β) were estimated with the IBM SPSS 

Statistic v22.0 programme. The coefficients of the independent variables and the control variables 

are calculated and interpreted in Section 3 (Results). 

 

Omnibus tests of model coefficients were conducted for assessing the validity of the model. The 

omnibus test is a likelihood-ratio chi-square test of the full model versus the null model (all the 

coefficients are zero). 

 

The dependent variable is a dummy indicating each month whether the specialist had routinely 

adopted the A10B.  

 

2.4. Independent Variables 

 

In the literature, interactions—professional and social—appear to be a very important influencing 

factor, information relayed through direct, personal contacts proving particularly powerful. 

Physicians’ adopting behaviours are affected by other physicians’ knowledge, attitudes, and 
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behaviours, thus reducing safety and efficacy uncertainties (Lublóy 2014, Coleman et al. 1966; 

Iyengar et al. 2011; Lin et al. 2011; Liu – Gupta 2012; Manchanda et al. 2008; McGettigan et al. 

2001; Prosser – Walley 2006). While other sources of information provide the nurturing groundwork 

of necessary knowledge, behavioural change requires the legitimizing power of personal advice from 

informed and respected colleagues through reliable, easy-to-digest assessments of new drugs.  

 

In this article, contagion measures assess whether the adoption decisions of colleagues significantly 

influence specialists’ likelihoods of adoption. Most prior research used surveys and mail 

questionnaires for constructing contagion measures (studies found convincing empirical evidence of 

social contagion in new drug diffusion (e. g. Coleman et al. 1966; Iyengar et al. 2011; Lin et al. 2011). 

Survey-based contagion measures capture interpersonal effects directly, but are time consuming and 

costly. Furthermore, a retrospective study based on self-report is at risk of recall and social desirability 

biases—rather than what actually occurs in practice, surveys and interviews may simply capture 

normative responses and expressed attitudes. In addition, social networks are not easy to construct if 

the response rate is low, and endogenous group formation might arise if physicians identify other 

physicians with similar preferences as members of their social network. The result of the effect of 

common preferences on individual adoption decisions incorrectly manifests as a social contagion 

effect (Liu – Gupta 2012). 

 

Instead of asking specialists to list their collegial interactions, this article uses complementary data 

sources to construct the contagion measures. The contagion measures selected for separate analysis 

capture social interactions with former classmates, with scientific collaborators and with 

geographically close colleagues. Contagion measures are time-dependent covariates, the percentage 

of adopting colleagues changing over time. To ensure causal relationships between explanatory and 

time-dependent covariates, the latter were lagged by one month. 

 

Table 2 summarizes the descriptive statistics for the three contagion measures. Former classmates 

graduated from the same medical establishment in the same year, scientific collaborators either 

published an article or prepared a presentation together, and geographically close colleagues had 

offices within a pre-specified radius. As argued in the literature, a radius of 20 miles is long enough 

to capture most of the interpersonal effects and short enough to allow social network differentiations 

(Manchanda et al. 2008). This article defines specialists’ spatial social networks through geographic 

circles with radiuses of 35 kilometres/22 miles centred on the specialists’ practice locations, radius 

sensitivity double-checked by additional radiuses at ±20 per cent. 
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Table 2. Contagion measures: definitions and descriptive statistics for 318 specialists 

Social network Link Data source 
Number of 

links 

Network density (in 

percentages) 

Former classmates 
graduating from the same medical establishment in 

the same year 
OHAAP 330 0.65 

Scientific 

collaborators 

co-authoring at least one article in 2009–13 or co-

preparing at least one HDA congress presentation in 

2006/2008 

ComFit; HDA 151 0.30 

Geographically close 

colleagues 

practicing within 35 kilometres/22 miles of at least 

two other specialists 

Google Maps; 

OHAAP 
4 856 9.63 

Source: authors. 

 

2.5. Control Variables 

 

Without controlling for factors relevant to prescribing behaviour, empirical evidence is at risk of 

presenting confounding effects. This article controls for five categories of factors—physicians’ socio- 

demographics, scientific orientations, prescribing patterns, as well as practice characteristics and 

patient-related factors. A systematic review on the determinants of new drug diffusion provides 

guidance for the control variables considered here and their expected signs (Lublóy 2014). Control 

variables were considered only if either prior research or industry experts suggested that they may be 

associated with early adoption. Table 3 provides an overview of the 17 control variables. 

 

Table 3. Time-independent covariates: definitions and descriptive statistics for 318 specialists (SP), 

with proportional and per patient values calculated over the two-year period 2010–11 

Variable Description 
Data 

source 
Mean Min. Max. 

St. 

dev. 

Socio-demographic characteristics 

gender 

gender of the SP (in percentages) 

male 

OHAAP 

47.80 
n/a 

female 52.20 

age age of the SP (as of December 2013) 51.92 32.00 78.00 9.94 

training location location of university where the first medical degree was earned (in percentages) 
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capital 

OHAAP 

34.28 

n/a 

southwest 19.81 

northeast 22.96 

southeast 16.04 

overseas 6.92 

Scientific orientation 

number of 

specialties 
number of specialties earned by the SP OHAAP 1.78 1 4 0.78 

publication record 
number of publications by the SP (between January 2009 

and June 2013) 
ComFit 2.07 0 136 9.26 

position 

position of the SP (in percentages) 

high ((deputy) head of hospital department or 

outpatient centre) 
OHAAP 

22.30 

n/a 
medium (chief physician) 33.30 

low (associate professor or physician) 44.30 

scientific 

commitment 

dummy variable for HDA board membership, HDA award 

receivership, or chief editorship 
HDA 0.04 0 1 n/a 

Prescribing characteristics 

prescribing 

intensity 
mean number of prescription initiations per patient 

DoktorInfo 

12.71 4.63 30.93 3.72 

portfolio width number of brands prescribed for patients in shared care 16.66 4 25 4.13 

insulin ratio 
prescriptions initiating treatment with insulin (in 

percentages) 
79.10 0.00 100.00 20.84 

old A10B ratio 
prescriptions initiating treatment with A10Bs introduced 

before April 2008 (in percentages) 
2.99 0.00 33.33 4.66 

Patient characteristics 

age age of patients on the SP’s patient panel 

DoktorInfo 

64.20 44.00 72.87 2.84 

health status 
patients with comorbidities on the SP’s patient panel (in 

percentages) 
45.25 0.00 100.00 21.94 

Practice characteristics 

number of patients 
number of the SP’s T2DM patients whose care is shared 

with GPs 

DoktorInfo 

123.48 14 784 114.71 

number of referring 

GPs 
number of GPs with whom the SP share cares patients 21.56 1 84 15.95 

number of 

consultations 

mean number of consultations per patient resulting in 

confirmation or change of prescription by the SP 
1.68 1.00 2.85 0.37 

proportion of loyal 

patients 
patients consulting the same SP (in percentages) 70.77 17.54 100.00 19.76 

Source: authors.

 



  

 

3. RESULTS 

 

The 318 physicians analysed here accounted for roughly 80 per cent of the specialists who treated 

T2DM on a daily basis. They were 52 years old, on average, and 48 per cent were male (see Table 3 

for basic statistics). The 33,448 patients in the sample received 499,131 specialist medication 

prescriptions from their general practitioners. A typical specialist suggested therapies for 123.48 

patients and asked general practitioners to write 1,570 prescriptions—12.71 prescriptions per patient. 

 

The three social networks serving as channels of interpersonal communication, and thus allowing for 

social contagion, are displayed in Figure 1. Geographically close colleagues form the densest social 

network with social interactions among colleagues being hypothesized. One part of these 

relationships is undeniable and intense—colleagues working in the same medical centre surely 

exchange ideas regularly. Although the network of classmates and scientific collaborators are sparser 

and have more cliques, the interactions within these social networks are direct. 

 

Figure 1. Social networks of specialists: (a) geographically close colleagues – 35 kms; (b) former 

classmates at Semmelweis University; and (c) scientific collaborators 

 

 (a) 

 

(c) 

 

 

 

318 SPs

4 856 links

12 clusters

90 SPs

 151 links

14 clusters
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(b) 

 

 

 

 

 

 

 

 

 

 

The regression results for the independent variables for the 11 study drugs are shown in Table 4. In 

the table exp(γ)s are shown—hazard ratios between two specialists when the values of the respective 

variables differ by one unit, all other covariates being held constant. Variables with exp(γ)s larger 

than one are associated with increased hazard—the higher the variable, the higher the hazard of the 

event. The regression results for the control variables for the 11 study drugs are shown in Table 5. In 

the table exp(β)s are shown. 

 

Table 4. The Cox model regression results for the independent variables 

 
Former 

classmates 

Scientific 

collaborators 

Geographically close colleagues 

35 km 28 km 42 km 

Actos 0.999 0.969† 1.091*** 1.077*** 1.085*** 

Byetta 0.869† 0.782 1.170† 1.148† 1.162 

Competact 0.985 1.002 1.047* 1.029 1.047† 

Eucreas 1.000 1.010 1.033* 1.034** 1.035* 

Galvus 1.026* 0.968 1.051** 1.045** 1.057** 

Janumet 0.988 1.002 1.033* 1.037* 1.039* 

Januvia 0.987† 0.971* 1.042** 1.039** 1.040** 

Onglyza 0.979 0.882* 0.936 0.967 0.912 

Velmetia 1.005 1.041* 1.011 1.013 1.013 

Victoza 0.997 1.045 0.984 1.000 0.980 

Xelevia 1.012 0.957 1.014 0.998 1.017 

Source: authors. 

93 SPs

 137 links

 28 clusters
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† p<0.1;      * p<0.05;     ** p<0.001;     *** p<0.0001 

The table shows the values for exp(γ), the ratio of hazards. If exp(γ) is larger than one, then the probability of a 

specialist adopting the new antidiabetic drug increases if the value of the respective social contagion measure increases 

by one unit, all other covariates being held constant. 

 

The social influence from colleagues within a 35-kilometer radius is a partially important predictor 

of new drug uptake— at the 95 per cent-confidence level the adoption ratio is positively associated 

with the likelihood of initial adoption for six brands. Counterintuitively, former classmates 

significantly delay the diffusion process for one brand and scientific collaborators for three brands. 

Among the rest, exchanges within social networks do not influence significantly the likelihood of 

initial adoption. 

 

At the 95 per cent-confidence level, two control variables produce consistent predictions of early 

adoption (Table 5). The number of brands individual specialists prescribe is a very influential 

predictor of new drug uptake. The wider the prescribing portfolios, the earlier specialists initiate new 

therapies, for all 11 brands, whereas the ratio of prescriptions for insulin is significantly negatively 

associated for nine brands. The rest of the control variables do not produce consistent prediction of 

new drug uptake: they are never associated with the likelihood of initial adoption for more than three 

brands. 
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Table 5. The Cox model regression results for the control variables (results without contagion measures) 

Category Variable Actos Byetta Competact Eucreas Galvus Janumet Januvia Onglyza Velmetia Victoza Xelevia 

SPs’ socio-demographic 

characteristics 

gender 1.045 0.986 0.980 0.865 0.889 0.792 1.158 1.071 1.129 0.974       1.479 Ɨ  

age 0.993 0.982 1.021* 1.004 0.999 0.997 1.002 0.983 0.996 0.965 * 0.977 Ɨ  

training location 0.851* 1.060 1.005 1.058 0.966 1.030 0.927 1.029 1.117Ɨ 0.980 1.102       

SPs’ scientific orientation 

number of specialties 0.955 1.088 0.830Ɨ 1.141 0.939 1.181Ɨ 1.021 1.026 0.982 0.944       1.174       

publication record 1.013 0.972 0.993 1.002 0.989 1.008 0.997 1.010 1.043*** 1.007       0.997       

position 0.928 0.882 1.083 1.144 1.049 0.926 0.958 0.827 0.833 0.956       0.750 Ɨ  

scientific commitment 1.223 2.885 1.125 0.766 0.780 0.537 1.498 0.198* 0.349* 1.830 2.782 Ɨ  

SPs’ prescribing 

characteristics 

prescribing intensity 0.933Ɨ 1.141Ɨ 1.037 0.982 0.998 1.052 0.995 0.97 1.01 1.055       1.029       

portfolio width 1.240*** 1.374*** 1.269*** 1.119*** 1.201*** 1.19*** 1.179*** 1.207*** 1.218*** 1.343 *** 1.254 *** 

insulin ratio 1.007 0.953*** 0.985** 0.981*** 0.974*** 0.976*** 0.984** 0.975*** 0.981*** 1.010 0.964 *** 

old OAB ratio 1.046Ɨ 0.905 0.996 0.994 0.940* 1.018 0.969 0.957 0.984 0.968       0.930 * 

patient characteristics 
age 1.045 0.874* 0.976 0.991 1.008 0.997 0.996 0.970 1.056Ɨ 0.959       1.058       

gender 1.011* 0.990 1.000 1.003 1.004 1.003 1.008* 0.996 1.005 0.994       1.011 * 

practice characteristics 

number of patients 1.001 1.000 1.000 1.003*** 1.000 1.001 1.000 1.003** 1.001 1.000 0.999       

number of referring GPs 1.005 1.013 1.006 0.998 1.004 1.000 1.008 0.991 1.004 0.994       1.013       

consultations per patient 3.280*** 0.697 2.012* 2.080** 1.349 0.953 1.640Ɨ 1.230 0.811 1.163       1.497       

proportion of loyal patients 0.997 0.982Ɨ 0.98*** 1.000 0.997 0.991* 1.004 1.006 0.997 1.000 1.007       

Omnibus test 128.524 *** 51.867*** 143.411*** 136.256*** 73.198*** 130.458*** 112.149*** 116.609*** 136.752*** 95.116*** 93.36 *** 

Source: authors. 

† p<0.1;      * p<0.05;     ** p<0.001;     *** p<0.0001 

The table shows the values for exp(β), the ratio of hazards. If exp(β) is larger than one, then the probability of a specialist adopting the new antidiabetic drug increases if the value of 

the covariate increases by one unit, all other covariates being held constant. 
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4. DISCUSSION AND POLICY IMPLICATIONS 

 

The findings reveal that social contagion among geographically close colleagues is ambiguous—

geographically close colleagues do not exert a significant influence on the initial adoption in around 

half of the cases, whereas they might do so in the other half. This finding contradicts prior research 

reporting that the estimated effect of social contagion among general practitioners in geographic 

proximity is positive and significant even after controlling for time trends and marketing efforts (Liu 

– Gupta 2012; Manchanda et al. 2008). However, prior research assessed only one innovative study 

drug which became widely accepted shortly after its introduction among highly penetrated general 

practitioners in a smaller and more closed geographic region. Most probably the efficiency of drug 

sales representatives, the novelty and overall acceptance of the new drug, the penetration of doctors, 

and the characteristics of the geographic region all play a role in whether contagion among 

geographically close colleagues is indeed in force. 

 

Furthermore, this article finds no empirical evidence for the hypothesized influential roles of former 

classmates and scientific collaborators. In a few cases, these had even delayed diffusion. Although 

former classmates know each other personally, they tend to discuss professional matters irregularly 

and might not be tied equally strong. A few classmates might be very influential, whereas the majority 

of them are not. Even if scientific collaborators exchange ideas regularly, their networks are small, 

sparse, and temporal which evidently hinders the diffusion process. Moreover, scientific collaborators 

with distinct affiliations most likely exchange ideas via e-mail—written communication offers less 

opportunity for sharing experience about a newly introduced drug than oral communication.  

 

In new drug diffusion data-driven social network analysis provides only limited practical benefits for 

pharmaceutical companies and healthcare politicians. Although it is easier and cheaper to construct 

the three social networks studied here than it is to construct survey-based networks, the added value 

is low—they do not help accelerating the diffusion process. Regardless how time consuming and 

costly survey-based contagion measures are, their construction is inevitable in exploiting the social 

influence among doctors in new drug diffusion. The role of data-driven analysis in new drug 

diffusion, however should not be underrated. Data-driven analysis plays a pivotal role in mining 

large-scale prescription claims databases. Vast empirical evidence shows that the higher the 

prescribing volume in total or in the therapeutic class of a new drug, the higher the likelihood of early 

adoption of that new drug (Lublóy 2014). Thus, identifying doctors prescribing the most and having 

the largest potential of exerting influence on new drug uptake through peer pressure is of major 
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importance which requires data-driven approaches. 

 

This article has several possible limitations. First and foremost, prescription data is incomplete. 

specialists’ prescribing behaviours are monitored through the reported prescription data by general 

practitioners with whom specialists share patient care. Second, the marketing efforts of 

pharmaceutical companies targeted at physicians are not accounted for. Had we controlled for 

marketing efforts, we might have found social contagion among physicians in geographic proximity 

even less influential. Third, the contagion measure based on geographic proximity captures 

interpersonal effects indirectly—one cannot validate whether geographically close physicians 

exchange ideas regularly, if at all. Fourth, conclusions based on only one therapeutic class cannot be 

generalized—future research may incorporate multiple therapeutic classes. 

 

5. CONCLUSIONS 

 

This article investigated whether data-driven social network analysis might support pharmaceutical 

companies and healthcare politicians in influencing the uptake of innovations. Several hundred 

thousands of prescription data was combined with social network data extracted from administrative 

databases. The large-scale archival dataset of specialists’ actual prescribing behaviours and the three 

contagion measures avoided several statistical biases usually related to retrospective surveys—for 

example, confounding bias, sample selection bias, and recall bias. 

 

First, this article showed that social contagion among geographically close colleagues is ambiguous—

geographically close colleagues do not exert significant influence on the initial adoption in around 

half of the cases, whereas they might do so in the other half. This finding contradicts prior research 

reporting that the adoption ratio of geographically close colleagues is significantly associated with 

the likelihood of initial adoption. Future research may examine which factors determine whether 

contagion among geographically close colleagues is indeed in force. Second, this article found no 

empirical evidence for social contagion among former classmates and scientific collaborators. 

 

In sum, data-driven social network analysis is of limited use—contagion measures extracted from 

administrative and bibliographic databases do not support pharmaceutical companies and healthcare 

politicians in exerting influence on new drug uptake. In new drug diffusion, data-driven analysis 

should focus on mining large-scale prescription claim databases and identify doctors prescribing the 

most in the therapeutic class of the new drug. Doctors with higher prescribing volumes shall than be 
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targeted by drug sales representatives once their social network is appropriately mapped. 
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