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1 Introduction

Bimatrix games have been in focus since the early days of game theory. This
is due to the fact that they are the most simple yet complex enough class of
games. Many small textbook games (prisoners�dilemma, chicken, battle of sexes
etc.) are bimatrix games that convey conceptual messages that contribute to
better understand the nature of con�ict and/or cooperation. Being a special
case of mixed extension of �nite games they are guaranteed to have at least one
Nash equilibrium (NEP). The problem of computing a NEP is a real challenge
in computational game theory and has been considered one of the central prob-
lems in computational complexity, Papadimitriou (1994). It is not even settled
whether the class called PPAD containing this problem along with other di¢ -
cult problems, is a distinct class somewhere between P and NP or it belongs
to either P, i.e. polynomially solvable, or to NP i.e. needs exponential-time to
solve. All algorithms known to-date to solve (�nd a NEP) the bimatrix game are
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exponential, including the famous Lemke-Howson(1964) algorithm. Apart from
identifying certain polynomially solvable special cases no signi�cant progress
has been made towards settling the position of the bimatrix game. Meanwhile
attention has turned to approximation and random games. A sketchy overview
of some of the results from the literature is the subject of the �rst part of this
paper. The second part is devoted to random symmetric games. To our knowl-
edge this is the �rst time when the experimental approach is used for the study
of symmetric random games. Empirical distribution of support sizes and NEP�s
are studied in order to set up conjectures about the e¢ ciency of a Las Vegas
algorithm. The main inspirational source is the work of Bárány et al. (2005)
where it is proved that it is enough to check for equilibrium up to support size
2 only to �nd a NEP with high probability. We raised the question whether
this nice behavior also holds for symmetric games. Symmetry arises naturally
in many classes of games. Social dilemmas and evolutionary games stand out
as most important. One has to be cautious since symmetric games in general
and random symmetric games in particular behave di¤erently from their gen-
eral counterparts, see e.g. Stanford (1996). We determined all extreme NEP�s
and their supports of 500 randomly generated matrices of size 12 and 15. The
entries of the matrix were independently drawn from a discrete uniform distri-
bution on the interval [0; 100]. The most important conclusion is a conjecture:
for �nding a symmetric NEP it is enough to check supports of size 4 whereas for
non-symmetric and all NEP�s this number is 3 and 2, respectively. This means
that if we do not care about the symmetry of the NEP we are going to �nd,
the method of Bárány et al. (2005) works in its original form. To support the
conjecture about symmetric solutions a proof is given for a subclass of games.
We show an example for the limitation on the naive version of a Las Vegas

algorithm for random games where entries are drawn from normal distributions
with di¤erent means but identical, small variance. We also give an example
demonstrating that if we only want to �nd an approximate NEP with high
probability, error terms can be signi�cantly reduced if we know the distribution
of the entries of the matrix.
The paper is organized as follows. Section 2 contains the necessary prelimi-

naries and de�nitions. In Section 3 a few classes of polynomially solvable games
are identi�ed, among them a new one. Section 4 is a brief overview of approx-
imate equilibria. Section 5 is about random games with special emphasis on
symmetric games. Section 6 concludes. Figures are collected in the Appendix.

2. Preliminaries

A general bimatrix game is given by two m � n matrices A and B. The
players get payo¤s aij ; bij if the row player plays her (pure) strategy i and
the column player plays her (pure) strategy j. The mixed extension of this
game, in normal form, is G = fX;Y; xAy; xByg where X;Y are simplices of
probability vectors of proper dimension and xAy; xBy are the expected payo¤s.
Unless otherwise stated, when we speak of a bimatrix game (A;B), we always
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mean the mixed extension. The NEP of a game (A;B) is a pair of strategies
(x�; y�); x� 2 X; y� 2 Y to satisfy

xAy� � x�Ay� for all x 2 X;
x�By � x�By� for all y 2 Y:

By Nash�s fundamental theorem Nash (1950) a NEP always exists. If B =
AT , then the game is called symmetric, if B = �A; then it is zero-sum. It was
also proved by Nash (1950), that symmetric games always have at least one
symmetric NEP where x� = y�:
Various characterizations have been developed through the years for NEP�s.

Since NEP�s are not a¤ected by adding a constant to the matrices, we may
assume that A;B � 0 or even A;B > 0. The latter will be assumed unless
otherwise stated. We will denote a vector of all 1�s by e and use the same
notation for column and row vectors if it does not cause any confusion.

Characterization 1 (Inequality system) For a pair (x�; y�) to be a NEP of
a bimatrix game (A;B) it is necessary and su¢ cient that there exist nonnegative
numbers ��; �� such that (x�; y�; ��; ��) satis�es the system

xAy � � = 0

xBy � � = 0

Ay � �e � 0 (1)

xB � �e � 0

ex = 1; ey = 1

x � 0; y � 0; � � 0; � � 0:

This takes a more simple form if the game is symmetric, B = AT and we are
only interested in symmetric solutions

xAx� � = 0

Ax� �e � 0

ex = 1

x � 0; � � 0:

Characterization 2 (Linear complementarity) Consider the following lin-
ear complementarity problem (LCP):
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e��Ay � 0

e� �BTx � 0

x(e��Ay) = 0 (2)

y(e� �BTx) = 0

x � 0; y � 0; � � 0; � � 0:

If (x�; y�) is a NEP of the bimatrix game (A;B), then x = x�; y = y�; � =
x�Ay�; � = x�By�is a solution of the LCP. Conversely, if (x; y; �; �) is a solution
of the LCP, then x� = 1

�x; y
� = 1

�y is a NEP of (A;B).
In the symmetric case (2) takes the form

e��Ax � 0

x(e��Ax) = 0

x � 0; � � 0:

Characterization 3 (Quadratic programming, Mangasarian and Stone 1964)
For a pair (x�; y�) to be a NEP of a bimatrix game (A;B) it is necessary and
su¢ cient that there exist nonnegative numbers ��; �� such that (x�; y�; ��; ��)
is an optimal solution of the quadratic problem

maximize Q(x; y; �; �) = x(A+B)y � �� �
subject to Ay � �e � 0 (3)

xB � �e � 0

ex = 1; ey = 1

x � 0; y � 0; � � 0; � � 0;

and the optimal objective function value is 0.
In the symmetric case

maximize Q(x; �) = x(A+AT )x� �:
subject to Ax� �e � 0

ex = 1

x � 0; � � 0:

The problem of computing NEP�s has been of great interest ever since the
early days of game theory for both game theorists and theoretical computer
scientists. From Characterization 1 we can construct an algorithm that �nds a
NEP by "brute force". Denote the support of a strategy x by Su(x). Su(x) is the
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set of indices of the positive components of x. If we know the supports Su(x�)
and Su(y�) of a NEP, then we can compute the exact NEP in polynomial time.
This is so because an equilibrium strategy of the column player equalizes the
payo¤that the row player gets. The same holds for the row player. Then we have
a linear program that is known to be polynomially solvable. Consequently, by
going through all the �nitely many possible pairs of supports, we are guaranteed
to �nd a NEP. In the symmetric case it is enough to check "only" 2n supports,
preferably in a systematic way. This exhaustive search can be e¢ cient if we
know beforehand that there is a NEP with support k � n. If k � 2 we do not
even have to bother with LP�s, a much simpler algorithm will do.
The �rst elegant algorithm for general bimatrix games that �nds a NEP is

due to Lemke and Howson (1964) and is based on complementary pivoting. It
turned out very soon that their algorithm is not e¢ cient in the sense that it
can take exponentially many steps to reach a solution, Savani and von Stengel
(2004). Moreover, not every (extreme) NEP is reachable by the algorithm.
All algorithms for �nding a NEP for the bimatrix game known to date are
exponential-time and it is not known whether there is one with polynomial run-
time. Many NEP related problems have been shown to belong to the NP-class
(see Gilboa and Zemel (1989)) but �nding a NEP for the general bimatrix game
is not among them. It is widely believed that it belongs to a special complexity
class called PPAD ("Polynomial Parity Arguments on Directed Graphs") �rst
de�ned by Papadimitriou (1994) containing such well-known problems as e.g.
Brouwer�s and Kakutani�s �xed point problem, Arrow and Debreu�s economic
equilibrium problem, envy-free cake cutting etc. PPAD is somewhere between
P and NP. There are strong arguments for PPAD being a distinct class between
P and NP but there is no proof available as of now. An important feature that
points towards bimatrix games lying outside of NP is the fact that bimatrix
problems are known to have solutions (NEP�s) while in NP one must count
with the possibility that there is no solution to the problem.
In this respect there is not much di¤erence between general and symmetric

bimatrix games since there are simple symmetrization techniques available. Let
(A;B) be a bimatrix game withm�n positive matrices. Consider the symmetric
bimatrix game (C;CT ) where

C =

�
0 A
BT 0

�
: (4)

As �rst proposed by Griesmer et al (1963) and also discussed in Mehta et al
(2014), a one-to-one correspondence can be established between the NEP�s of
(A;B) and certain symmetric NEP�s of the symmetric game (C;CT ). In particu-
lar, a NEP (x; y) of (A;B) corresponds to the symmetric NEP (�( 1vx;

1
wy); �(

1
vx;

1
wy))

where v = xAy;w = xBy and �(a) denotes the normalization of the non-zero,
non-negative vector a. Another, somewhat di¤erent symmetrization is due to
Gale, Kuhn and Tucker (discussed e.g. in Jurg et al (1992).

3. E¢ cient algorithms for special bimatrix games
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It is well known that matrix games (B = �A) can be e¢ ciently solved
(in polynomial time) by various versions of interior point methods of linear
programming (LP) since in this case the quadratic program becomes an LP.
Moreover, learning algorithms, such as e.g. �ctitious play, converge to a NEP.
The coordination game B = A is also "easy", �ctitious play is guaranteed to
converge to a NEP. One might hope that bimatrix games that are "close" to
zero-sum games in a certain sense could be easier treated than general games.
A nice idea to make things more simple is to �nd a zero-sum game (A0; B0)

that has the same set of NEP�s as the bimatrix game (A;B), in other words,
the two games are strategically equivalent. Moulin and Vial (1978) identify a
class of games whose unique completely mixed NEP cannot be improved upon
by coarse correlation. It is however, rather hard to verify wether a game belongs
to this class or not.
Another easy-to-check condition is given by Kannan and Theobald (2010).

Consider a bimatrix game (A;B), where

aij + bij = f(i; j) for all i; j

where f is a "simple" function. E.g. f(i; j) = ui + vj for some constants
u1; :::; um; v1; :::; vn: De�ne now the zero-sum game (A0; B0) by

a0ij = aij � vj ; b0ij = bij � ui:

It can easily be seen that

xA0y� � x�A0y� = xAy� � x�Ay�;
xB0y� � x�B0y� = xBy� � x�By�.

Therefore (A0; B0) has the same set of NEP�s as (A;B).
If f(i; j) = uivj for some constants u1; :::; um; v1; :::; vn, then the rank of

A + B is 1, pretty "close" to the case of zero-sum games where the rank of
A + B = 0 is zero. Kannan and Theobald (2010) thoroughly study "low rank
games" i.e. when rank(A + B) = k is �xed (possibly small). Low rank games
do not seem to be any simpler as far as the multitude of NEP�s is concerned.
Even rank 1 games may have arbitrary many NEP�s. In particular, as Kannan
and Theobald (2010) prove, for any d � 2 there exists a non-degenarate d � d
game of rank 1 with at least 2d � 1 NEP�s. Interestingly, a polynomial time
algorithm was given by Adsul et al. (2011) for �nding a NEP for any rank 1
game. Even �nding a symmetric NEP of any rank 1 symmetric game can be
done in polynomial time, Mehta et al. (2014). On the negative side, Mehta
(2014) proved that for games of rank 3 or more, and for symmetric games of
rank 6 or more the problem is PPAD-complete, i.e. of the complexity of �nding
a NEP for a general bimatrix game.
Much better is the situation if we have the rank restriction not on A+B but

on A and/or B. In this case low rank implies small support which may make
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the exhaustive enumeration method a viable choice. Lipton et al. (2003) prove
the following theorem that serves as basis for such a solution.

Theorem 1 (Theorem 4 in Lipton et al.(2003)). Let (x�; y�) be a NEP.
If rank(B) � k, then there exists a mixed strategy x for the row player with
card(Su(x)) � k+1 such that (x; y�) is a NEP. Similarly, if rank(A) � k, then
there exists a mixed strategy y for the column player with card(Su(y)) � k+1
such that (x�; y) is a NEP. Furthermore, the payo¤ both players receive in the
NEP�s (x; y�) and (x�; y) is equal to the payo¤ in the initial NEP (x�; y�).

It is clear that if A + B is negative de�nite, then (3) is polynomially solv-
able. It seems a good try to make the quadratic program tractable by adding a
constant to each entry of A+B. Denote by E the matrix of 1�s.

De�nition 1 A symmetric matrix A is said to be almost positive (negative)
de�nite if there is a constant  such that A+ E is positive (negative) de�nite.

Positive (negative) de�nite matrices are almost positive (negative) de�nite by
simply setting  = 0. There exist, however, almost positive (negative) de�nite
matrices that are not positive (negative) de�nite.

Example 1 Consider the matrix

A =

�
�2 �5
�5 �10

�
which is inde�nite. If we add  = �4 to each entry, then the matrix

A0 =

�
�6 �9
�9 �14

�
is negative de�nite, i.e. A is almost negative de�nite.
It is yet to be explored how almost positive (negative) de�nite matrices can

be characterized in order to recognize and use them in solving the quadratic
program (3). A small step in this direction is the following theorem. Let

A =

�
�a �b
�b �d

�
be an inde�nite matrix, a; b; d > 0.

Theorem 2 For A to be almost negative de�nite it is necessary and su¢ cient
that a+ d > 2b.
Proof Since A is inde�nite detA = ad � b2 < 0: Add now a constant x to

each entry of A to get A0

A0 =

�
�a+ x �b+ x
�b+ x �d+ x

�
:
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For A0 to be negative de�nite it is necessary and su¢ cient that either
(i) �a+ x < 0 and detA0 = (x� a)(x� d)� (x� b)2 > 0; or
(ii) �a+ x > 0 and detA0 = (x� a)(x� d)� (x� b)2 < 0.
Consider case (i). After rearrangement (a+x)(d+x)� (b+x)2 > 0 becomes

ad� b2� (a+ d� 2b)x > 0: (5)

Su¢ ciency. If a+ d > 2b, then from (5) we get that for any

x <
ad� b2
a+ d� 2b < 0

the conditions of (i) hold.
Necessity. If a+d�2b = 0, then obviously (5) cannot hold. If a+d�2b < 0,

then if both conditions of (i) held, then we would have

b2 � ad
2b� a� d < x < a

which is impossible since this would imply (a� b)2 < 0:
The proof for case (ii) goes similarly.�

Corollary 1 If for a symmetric bimatrix game (A;AT ) the matrix A+AT

is almost negative de�nite, then the game has a unique symmetric NEP.

It is not clear whether Theorem 2 can be generalized to n � n matrices.
It seems that having at most one negative (positive) eigenvalue is a necessary
condition.

4. Finding approximate equilibria

Knowing that �nding an exact NEP of a general bimatrix game is hard, at
least all known algorithms run in exponential time, an ever growing attention has
been paid to �nding approximate equilibria in polynomial (or less ambitiously
in subexponential) time. There are, however, various de�nitions of approximate
equilibria. The following is the most simple.

De�nition 2 (�-NEP) For any � > 0 a strategy pro�le (x; y) is an �-NEP
of the m� n bimatrix game (A;B); if for any pure strategy i of the row player
eiAy � xAy+� and for any pure strategy j of the column player xBej � xBy+�.

In an �-NEP no player could increase her payo¤ more than � by unilaterally
changing her strategy. A stronger concept is the �-well supported NEP.

De�nition 3 For any � > 0 a strategy pro�le (x; y) is an �-well supported
NEP of the bimatrix game (A;B); if
(i) for any pure strategy i of the row player
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xi > 0 =) eiAy � ekAy � � for all k = 1; :::;m;

(ii) for any pure strategy j of the column player

yj > 0 =) xBej � xBel � � for all l = 1; :::; n:

The interpretation of an �-well supported NEP is straightforward: each
player plays only approximately best-response pure strategies with positive
probability. Every �-well supported NEP is also an �-NEP but the converse
need not be true.
When speaking of an algorithm running in "polynomial time" we mean that

the running time is a polynomial function of the length of the binary coding
of the problem data and 1

� . Since the error term � is additive, to evaluate and
compare the e¢ ciency of algorithms we have to normalize A and B by adding
constants and multiplying by positive numbers. The accepted standard is the
[0; 1] normalization meaning that all entries of both matrices are in the interval
[0; 1] and at least one entry in both matrices has value 0; and there is another
with value 1:
The currently best polynomial algorithm is due to Tsaknakis and Spirakis

(2008) with � � 0; 3393. This bound is slightly better for symmetric games. For
any � > 0; there is a polynomial algorithm with error term � = 1

3 + � as proven
by Kontogiannis and Spirakis (2011).
It is unknown whether there exists a polynomial-time algorithm for �nding

an approximate NEP of a general bimatrix game. Subexponential-time algo-
rithm do exist, however. The �rst one was given by Lipton at al. (2003) and
later another one by Tsaknakis and Spirakis (2010). The former is based on the
"sampling method". Key to the idea is the k-uniform mixed strategy. x is a
k-uniform strategy if it is the uniform distribution on a multiset S of pure strate-
gies with card(S) = k: The main result of Lipton et al. (2003) is, somewhat
simpli�ed, the following theorem.

Theorem 3 For a [0; 1]-normalized n�n bimatrix game (A;B) for any � > 0
there exists for every k � 12 lnn

�2 a k-uniform �-NEP (x0; y0).

Thus to �nd an �-NEP it is enough to exhaustively check all multisets of
cardinality k, the least integer greater than 12 lnn

�2 : For each multiset, checking

for equilibrium can be done in polynomial time. Since there are
�
n+k�1

k

�2
pairs

of multisets to look at, we have a quasipolynomial nO(lnn) algorithm.
For the less ambitious goal of approximating the payo¤s in an actual NEP,

the necessary support size can be made independent of n.

Theorem 4 (Lipton et al. (2003)) For a [0; 1]-normalized n � n bimatrix
game (A;B), given any NEP (x�; y�) and any � > 0, there exists for every
k � 5

�2 , a pair of k-uniform strategies (x; y), such that
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kxAy � x�Ay�k < �;

kxBy � x�By�k < �:

For games of special structure polynomial algorithms do exist. The compre-
hensive review of Ortiz and Irfan (2017) is a good guide through the jungle of
recent results.
Another line of research concerns relative �-NEP�s, a strategy pro�le in which

the payo¤of each player is at least (1��) times that of the best-response strategy.
We refer to the paper of Feder et al. (2007) for results about relative �-NEP�s.

5. Random bimatrix games

In random games the entries of the payo¤matrices of a bimatrix game (A;B)
are not �xed but are determined by chance governed by a known probability
distribution. They may have special features when compared to their determin-
istic counterparts, mostly they are more tractable. This is no surprise since e.g.
when it comes to computational complexity, worst-case analysis usually relies
on special, sometimes pathological instances very unlikely to occur in practice
or when chance enters the picture.
Seeing the disappointing behavior of NEP�s in deterministic games anything

more tractable in the realm of random games has to be appreciated. As we
saw in the previous section, a step back in precision, i.e. being content with
some sort of approximation, makes life easier, more e¢ cient algorithms (even
polynomial-time) can be devised if we give up exactness and allow for some
error in the payo¤s and/or equilibrium strategies. In random games there is
even more room for gaining some leverage. We accept failure to get an answer
to a problem (e.g. �nding a NEP) if this can only happen with "low probability",
or the success with "high probability". In precise terms, this means that the
probability of failure (success) goes to 0 (1) when the size of the problem (the
number of rows and/or columns of the matrices A,B) goes to 1.
Early work concentrated on determining the probability of a pure NEP,

�rst in a zero-sum game, Goldman (1957), then in a general bimatrix game
Powers (1990), Stanford (1995) and �nally in symmetric bimatrix games Stan-
ford(1996). The ultimate achievement in this respect was the determination of
the (limit) distribution of the number of pure NEP�s.
Another line of research aimed at determining the distribution or at least

the expected value of important characteristics of random games. These re-
sults, beyond their value of their own, can also contribute to the ultimate goal:
devising algorithms that can �nd a NEP (or �-NEP) in polynomial time with
high probability. A milestone in this direction was the paper of Bárány et.al.
(2005). Their main result states that, for �nding at least one exact NEP of a
general random bimatrix game where entries of the matrices are independently
drawn either from a continuous uniform distribution with mean 0 or from a
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standard normal distribution, a Las Vegas algorithm works e¢ ciently. The Las
Vegas algorithm begins with support size 1 and systematically checks for equi-
librium for support sizes 2; 3; :::; n: Finding a NEP is guaranteed but it may take
exponential-time. But by Bárány et al.�s result, with high probability, we need
not go beyond 2 and the search terminates in polynomial time.
Random games have been a subject of many �ne papers lately addressing

structural properties such as e.g. the expected number and distribution of NEP�s
as to their support sizes. Most random bimatrix games under scrutiny are as-
sumed to have matrices whose entries are independently drawn from the same
continuous distribution. When it comes to taking a speci�c distribution the
usual choice is the uniform and the normalized Gaussian distributions. Occa-
sionally, the Cauchy distribution attracts some attention as in Roberts (2006).
Special attention is paid to the asymptotic behavior when the number of pure
strategies goes to in�nity. These properties translate to theoretical computa-
tional issues as well as practical algorithms. The algorithms guarantee either
an exact or approximate NEP.
Much less has been done in the way of conducting experiments to �nd out

how the theory aligns with the experimental data obtained in test problems that
only approximate the conditions the theoretical results are based on. Examples
of experimental work are Faris and Maier (1987), Fearnley et al (2015). There
are natural limits to exactly simulate continuous distributions and in�nitely
many strategies. One has to settle for �nite approximations in both aspects and
evaluating the match (or mismatch) of experimental �ndings and theoretical
results.
In our experiment we focused on symmetric games. When participants in a

game cannot be distinguished and only the number of players taking a particular
course of action counts, symmetry is a salient feature. Typical examples are
congestion games and internet games. The theoretical challenge is that results
for general games cannot automatically be carried over to symmetric games.
A good example is the distribution of pure strategy NEP�s in symmetric and
in the general case. Another distinguishing feature of symmetric games is that
the set of NEP�s for any game can be separated into two classes: symmetric
and non-symmetric. The existence of symmetric NEP�s in a symmetric game
is guaranteed by Nash�s theorem. Nash (1950), realizing the importance of
symmetry, devoted a separate existence theorem to this class of games.
We worked with 500 independently generated random symmetric bimatrix

test problems. Because of symmetry it is enough to generate only one matrix.
All entries were integers drawn uniformly from the interval [0; 100]. This is
a scaled-up approximation to the continuous uniform distribution on the unit
interval [0; 1]. A major di¤erence between the two is that having two identical
entries is not a zero-probability event any more and there is a tendency to have
(slightly) more NEP�s in the discrete case than in the continuous. Distributions,
expected values may well be shifted. Nevertheless, tendencies can be identi�ed,
qualitative statements and conjectures be formulated.
We studied two sets of experimental data. One is where the number of pure

strategies n = 12, the other where n = 15. We used the solver developed by
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Avis et al. (2010) available freely on the internet. The solver determines all
extreme NEP�s. The size limitation is n = 15, this is why we did not go beyond
this number. Due to the fact that the number of NEP�s grows very fast with the
increase of n, even the modest sizes 12 and 15 of the matrices produce several
thousands of NEP�s, more than enough to draw statistical conclusions.
The raw data of the analysis is compiled in six matrices Psym; Pnons; Ptot;

and Rsym; Rnons; Rtot of size 500� 12 and 500� 15, respectively. An entry pij
of Psym is the number of symmetric NEP�s in test problem i with support size
j. Similarly, Pnons contains non-symmetric and Ptot = Psym+Pnons all NEP�s.
Entries of Rsym; Rnons; Rtot are similarly de�ned. The row sums give the total
number of symmetric, nonsymmetric and all NEP�s, respectively, for a test
problem, the column sums indicate the total number of NEP�s of a particular
support size.
Empirical distributions of support sizes in the symmetric, nonsymmetric and

combined cases for n = 12 and n = 15 resemble a Poisson distribution though
�2 tests fail to give convincing evidence. What is common is the unimodal na-
ture of the distributions as can be seen on Figures 1-6 in the Appendix. The
only available theoretical result for the distribution of support size for general
symmetric bimatrix games is due to Kontogiannis and Spirakis (2009). Their
model is based on generating the matrix entries from the standard normal dis-
tribution. They show that the total (symmetric and non-symmetric combined)
support sizes sharply concentrate around 0; 316n asymptotically as n!1. For
n = 12 and n = 15 this means 3; 792 and 4; 74, respectively. This ties in with
empirical data, both empirical distributions peak at support size 4 and 5. As
far as the expected number of NEP�s E(n) is considered, it grows exponentially
but slower than for general non-symmetric bimatrix games, by an asymptotic
factor 1; 1512 i.e. E(n+1) = 1; 1512E(n) for large enough n. In our experiment
the number of NEP�s went up from 17644 to 37904 when the problem size was
increased by 3. This is larger than expected from the theoretical asymptotic
results. No wonder, increasing the size while keeping the range of the discrete
random variables constant increases the probability of getting identical elements
in the matrix thereby giving better chances for the NEP de�ning inequalities
to hold. Moreover, the di¤erence between the uniform and Gaussian distrib-
utions might also be relevant. Unfortunately, no such results are available for
the uniform distribution, let alone its discrete version. It is also worth noting
that the percentage of symmetric equilibria among all NEP�s decreased from
5436
17644 = 0; 3081 to

8978
37904 = 0; 2369 when n went up from 12 to 15.

Analysis of the matrices P and R columnwise gives us information on the
distribution of games having a particular support size. The only support size
where theoretical results are available for comparison is size 1. This is the case
of pure Nash equilibria. Stanford (1996) proves that the number of symmet-
ric NEP�s X occurring in a random symmetric game is asymptotically Poisson
if n ! 1 with mean 1. It is assumed that all entries for the game matrix
are drawn independently from the same but arbitrary continuous distribution.
Interestingly, this is the same limit distribution we get for random general bi-
matrix games, Stanford (1995) and Powers (1990). If Y denotes the number of
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asymmetric NEP�s, then 1
2Y is also Poisson with mean 1

2 : The number of all
pure NEP�s X + Y has a special distribution determined by Stanford (1996).
Based on this distribution, Stanford (1996) calculated the probability that a ran-
dom symmetric bimatrix game has at least one pure NEP and found it 0; 7769,
larger than 0; 6321 obtained for general bimatrix games. We did a �2-test for the
theoretical limit distributions and our empirical distributions. We found that
on usual signi�cance levels we cannot reject the hypothesis that the empirical
distribution stems from the theoretical limit distribution.
What is the situation with support sizes more than 1, in particular with

support size 2? We do not know any anchor, theoretical or empirical. The
following tables summarize the empirical distributions for all support sizes s.
Table 1 (symmetric, n = 12)

s=freq 1 2 3 4 5 6 7 8 9 10 11 12
0 176 136 110 105 126 192 287 377 449 485 496 500
1 180 161 148 124 126 132 125 85 34 14 4 0
2 95 106 118 116 102 85 55 20 11 1 0 0
3 38 47 58 68 65 44 20 14 5 0 0 0
4 10 31 29 37 34 25 9 3 1 0 0 0
5 1 10 19 21 21 12 1 1 0 0 0 0
6 0 6 9 17 12 4 2 0 0 0 0 0
7 0 0 3 4 10 2 0 0 0 0 0 0
8 0 3 4 3 2 3 0 0 0 0 0 0
9 0 0 2 2 0 1 1 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0 0 0 0
11 0 0 1 2 0 0 0 0 0 0 0 0
12 0 0 0 1 0 0 0 0 0 0 0 0
Total 500 500 500 500 500 500 500 500 500 500 500 500

Table 2 (non-symmetric, n = 12)
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y

s=freq 1 2 3 4 5 6 7 8 9 10 11 12
0 299 122 77 93 131 232 336 424 481 498 500 498
1 0 0 0 0 2 0 0 0 0 0 0 2
2 159 158 112 85 96 97 80 46 12 2 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0
4 35 112 98 87 85 75 36 22 2 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 6 64 77 70 52 33 18 7 4 0 0 0
7 0 0 1 0 0 0 0 0 0 0 0 0
8 0 29 63 53 46 21 14 1 1 0 0 0
9 0 1 0 1 0 0 0 0 0 0 0 0
10 0 4 32 31 28 13 7 0 0 0 0 0
11 0 0 0 1 0 0 0 0 0 0 0 0
12 0 6 16 31 27 7 4 0 0 0 0 0
13 0 1 0 0 0 0 0 0 0 0 0 0
14 0 2 15 18 13 9 4 0 0 0 0 0
15 0 0 1 0 0 0 0 0 0 0 0 0
16 0 0 5 11 84 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 2 8 6 5 1 0 0 0 0 0
> 18 0 0 1 11 6 4 0 0 0 0 0 0
Total 500 500 500 500 500 500 500 500 500 500 500 500

Table 3 (total n = 12)
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s=freq 1 2 3 4 5 6 7 8 9 10 11 12
0 90 34 26 33 66 140 244 354 445 483 496 498
1 108 42 25 29 37 61 70 56 27 14 4 2
2 129 67 50 42 30 39 42 25 12 3 0 0
3 86 64 32 23 37 37 33 20 6 0 0 0
4 50 73 40 52 52 46 27 10 2 0 0 0
5 23 52 49 33 26 36 18 19 2 0 0 0
6 11 54 46 32 40 25 13 6 0 0 0 0
7 3 29 38 35 35 16 12 4 2 0 0 0
8 0 30 38 28 27 24 11 5 0 0 0 0
9 0 17 35 27 22 15 3 1 2 0 0 0
10 0 14 34 24 19 10 6 0 2 0 0 0
11 0 5 16 18 24 10 5 0 0 0 0 0
12 0 7 14 25 11 4 4 0 0 0 0 0
13 0 5 16 16 10 6 3 0 0 0 0 0
14 0 3 9 15 8 7 4 0 0 0 0 0
15 0 2 10 12 13 3 1 0 0 0 0 0
16 0 0 7 12 9 3 0 0 0 0 0 0
17 0 1 3 12 8 2 2 0 0 0 0 0
18 0 0 3 5 4 3 1 0 0 0 0 0
> 18 0 1 9 27 22 13 1 0 0 0 0 0
Total 500 500 500 500 500 500 500 500 500 500 500 500

Table 4 (symmetric n = 15)

s=freq 1 2 3 4 5 6 7 8 9
0 166 124 82 73 75 91 147 234 302
1 175 137 116 94 102 108 120 111 112
2 116 117 112 96 97 116 186 74 43
3 36 63 78 79 71 54 61 32 24
4 6 30 42 62 48 50 32 20 7
5 1 14 25 33 25 22 26 14 5
6 0 11 22 18 25 16 11 3 4
7 0 3 11 12 22 17 6 3 3
8 0 1 4 14 10 13 5 3 0
9 0 0 4 7 10 2 1 2 0
10 0 0 2 3 3 1 2 2 0
11 0 0 2 3 5 4 2 2 0
12 0 0 0 2 4 4 0 0 0
13 0 0 0 2 1 0 1 0 0
14 0 0 0 2 1 0 0 0 0
15 0 0 0 0 0 1 0 0 0
16 0 0 0 0 1 0 0 0 0
17 0 0 0 0 0 1 0 0 0
Total 500 500 500 500 500 500 500 500 500
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Table 5 (non-symmetric n = 15)

s=freq 1 2 3 4 5 6 7 8 9
0 292 91 26 19 33 73 167 245 352
1 4 0 0 0 0 2 2 2 1
2 160 110 64 41 45 50 67 83 69
3 2 2 1 1 1 2 2 1 2
4 35 129 72 48 46 72 51 55 32
5 1 2 0 2 1 0 0 1 0
6 6 88 82 56 44 55 38 35 10
7 0 0 0 3 3 0 0 0 0
8 0 38 76 52 57 40 31 20 6
9 0 2 1 2 1 0 0 0 0
10 0 20 71 56 41 31 30 13 10
11 0 0 1 0 5 0 0 0 0
12 0 14 35 41 37 37 19 9 2
13 0 0 0 1 1 3 2 0 0
14 0 1 31 51 32 23 16 7 4
15 0 0 0 1 0 1 1 0 0
16 0 3 8 40 32 20 17 5 4
17 0 0 1 0 0 1 1 0 0
> 17 0 0 29 85 121 89 56 24 8
total 500 500 500 500 500 500 500 500 500

Table 6 (total n = 15)

s=freq 1 2 3 4 5 6 7 8 9
0 91 22 7 8 13 40 88 173 259
1 106 30 8 5 10 21 53 48 68
2 133 52 19 12 21 18 33 43 40
3 76 42 17 11 16 19 28 26 29
4 46 56 35 17 17 24 33 35 28
5 23 48 25 15 16 27 23 27 19
6 19 66 33 26 17 30 20 29 9
7 6 47 30 21 19 20 12 15 10
8 0 43 43 27 24 30 19 16 5
9 0 23 36 23 23 16 16 13 0
10 0 23 37 29 21 28 18 14 3
11 0 13 43 24 24 15 16 4 4
12 0 9 26 26 24 20 11 5 3
13 0 4 27 26 20 14 15 6 3
14 0 8 17 22 20 16 8 4 1
15 0 6 16 24 18 19 13 0 1
16 0 2 22 27 14 13 10 2 2
17 0 1 8 10 19 16 8 2 2
> 17 0 5 51 147 164 114 75 38 14
total 500 500 500 500 500 500 500 500 500
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Interesting observations can be made if we focus on the possible e¢ ciency
of support enumeration (Las Vegas) algorithms . For Las Vegas algorithms to
work we need some (probabilistic) guarantee that by considering only small-size
supports we can produce a NEP with a desired property (symmetry e.g.). To
this end, let us assign to any row of the matrices P and R an integer between 1
and 15 in the following way. Let this number be k if in the particular row the
�rst positive number is in column k. This means that there is a NEP of support
size k but there is no NEP of support size k� 1 or less. Let us call this number
just de�ned minimum-guaranteed support size. Indeed, if we enumerate each
support of size k and check whether it is a NEP of a given property, then it is
guaranteed that at least one NEP of the desired property is found for a given
symmetric bimatrix game We will say that a class of bimatrix games has the
Bárány-Vempala-Vetta (BVV) property of degree k if, with high probability
(tends to 1 if n ! 1) every game in the class has a minimum-guaranteed
support size k: Bárány et al (2005) proved that the class of general bimatrix
games has the BVV property of degree 2. Does the class of symmetric bimatrix
games (or some subclass thereof) also have the BVV property of small degree?
From the matrices Psym and Rsym we get the following statistics
Table 7

s� size n = 12 rel:freq: n = 15 rel:freq
1 324 0; 648 334 0; 666
2 112 0; 224 113 0; 228
3 40 0; 080 34 0; 068
4 18 0; 036 14 0; 028
� 5 6 0; 012 5 0; 01
Total 500 1 500 1

We did a �2 test where the null-hypothesis was that the relative frequencies
in the columns n = 12 and n = 15 come from the same distribution. We got
the statistic �2 = 2; 274. This is much smaller than �20;10 = 7; 779, the reference
value belonging to the 90% signi�cance level and degree of freedom 4. This
suggests that the BVV-property of degree 2 is unlikely to hold since in this
case "high probability" would mean 87; 2 � 89; 4% de�nitely not high enough
keeping in mind that the statistics of support sizes are based on observations
of several thousand NEP�s. Thus the BVV-property of degree 3 or rather 4 can
hold, if any. For degree 3 "high probability" would mean 95; 2� 96; 2% whereas
for degree 4 this probability is 98; 8 � 99%. Of course one can "hope" that
these probabilities get higher, eventually going to 1 as n grows even in the case
of BVV property of degree 2. This seems unlikely in the light of the �2 test
suggesting that a 25% (from 12 to 15) increase in the size of the game does not
lead to a signi�cant increase of the probability of having at least one symmetric
NEP of support size no more than 2. We do not know what exact, theoretically
well supported distributions are behind these empirical distributions. We know
from Stanford (1996), however, that the probability belonging to support size
1 is 1� e�1 = 0; 6321, close to the empirical values 0; 648 and 0; 668 obtainable
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from Table 7. As indicated before, the fact that these numbers are slightly
higher is because we worked with a discrete uniform distribution instead of a
continuous one. Though we do not know the theoretical distribution, we think
that the BVV-property of degree 4 may hold. The BVV-property of degree 4
does hold for a subclass of random symmetric bimatrix games.

Theorem 5 With high probability, there is a symmetric NEP of the sym-
metric game (C;CT ) whose support has no more than 4 points if C is de�ned
as in (4).
Proof By Griemer at al.�s symmetrization technique if (p; q) is a NEP of the

game (A;B) with payo¤s a = pAq and b = pBq, then (�( 1ap;
1
b q); �(

1
ap;

1
b q)) is

a symmetric NEP of the symmetric game (C;CT ) where C is de�ned as in (4).
As Bárány et al. (2005) showed, with high probability, there is a NEP (p; q) of
(A;B) such that the supports of both players are of cardinality no more than
2. This immediately implies, by the construction of C, that the cardinality of
the supports of (�( 1ap;

1
b q); �(

1
ap;

1
b q)) is no more than 4. �

For non-symmetric NEP�s the following statistics were obtained

s� size n = 12 rel:freq: n = 15 rel:freq:
1 231 0; 462 209 0; 666
2 183 0; 366 215 0; 228
3 66 0; 132 66 0; 068
� 4
Total

20
500

0; 040
1

10
500

0; 02
1

The �2 statistic is 10; 598, higher than the critical value at any meaningful
signi�cance level indicating that we have to reject the hypothesis that the two
samples come from the same distribution.
For all NEP�s, symmetric and non-symmetric combined, we have the follow-

ing statistics

s� size n = 12 rel:freq: n = 15 rel:freq:
1 417 0; 834 409 0; 83
2 62 0; 124 80 0; 15
� 3 21 0; 042 11 0; 02
Total 500 1 500 1

The �2 statistic is 10; 141; again pointing towards rejection. The tail of the
distribution with higher n is de�nitely thinner in both the non-symmetrical and
the total case. Thin tails mean that it is unlikely that checking support sizes
for equilibrium up to 3 and 2 for non-symmetric and all NEP�s, respectively is
not enough to �nd at least one NEP.
From these experimental �ndings we set up the conjecture:
For symmetric random bimatrix games the BVV property of degree k holds.

For the symmetric case k = 4, for the non-symmetric case k = 3 and for the
overall case k = 2.
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As a consequence, the Las Vegas algorithm is e¢ cient (runs in polynomial
time with high probability) for �nding at least one symmetric, non-symmetric
and arbitrary NEP, respectively.
Las Vegas algorithms may have a potential to �nd NEP�s for random games

with more general bimatrix games than those with entries of identical distribu-
tions. There are, however, limitations to considering only small support sizes.
Bárány et al (2005) suggest that the range of the Las Vegas algorithm could
be enlarged further if the methodology they developed could be extended to
random bimatrix games whose entries are independent Gauss variables with
non-uniform means. They write: "...add random Gaussians to the entries of
the given payo¤ matrices; an equilibrium of the perturbed game will be an ap-
proximate equilibrium of the original game with high probability, given that
the variance of the Gaussians is small enough". This would require that e.g.
close enough to any completely mixed unique equilibrium point there exists,
with high probability, at least one equilibrium with small support (ideally of
size 2). The following example shows that unless other restrictive assumptions
are made, this is impossible.
Given a square matrix A, the matrix obtained from A by replacing the j-

th column with e ( a vector of all 1�s) is denoted by Aj , whereas the matrix
obtained from A by replacing the i-th row with e is denoted by Ai:

Theorem 6 Milchtaich (2006) A necessary and su¢ cient condition for the
existence and uniqueness of a completely mixed equilibrium for the bimatrix
game (A;B) is that det(Ai) det(Aj) > 0 and det(Bi) det(Bj) > 0 for all i; j 2
f1; :::; ng.

Example 2 Consider a bimatrix game G = (I;�I) where I is the identity
matrix of order n. The unique NEP of this game (which happens to be zero-sum)
is x = 1

ne; y =
1
ne. Take a random perturbation of G by replacing the entries

of the identity matrix with independent Gaussians with mean 1 in the main
diagonal and 0 elsewhere and �xed, small enough variance. Since determinants
of a matrix A are continuous functions of A, all randomly drawn perturbations
of G will satisfy the conditions of Theorem 2 with high probability. Therefore,
with high probability, these games will have unique completely mixed NEP�s
with full-size support, or in other words, it is very unlikely that a random
perturbation can be solved e¢ ciently by the Las Vegas algorithm.

Steps towards covering more general games can be taken if we only want to
�nd approximate NEP�s. Bárány et al.�s (2005) result about the solvability of
general bimatrix games is often quoted as "random bimatrix games are easy".
We have seen that this statement is based on the fact that it is enough to enu-
merate supports of size 2 and then we can be almost sure to have found at least
one NEP. Panagopoulou and Spirakis (2014) subscribe to categorizing random
bimatrix games "easy" but for another reason. They show that the uniform
completely mixed strategy pair is an approximate NEP under very general con-
ditions and the error of approximation goes to 0 as the size of the matrices goes
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to in�nity. Moreover, their results easily carry over to the symmetric case, the
main subject of this paper. We will not state their result in its entire generality
but focus on symmetric games.
Assume that the game matrix A is positively normalized to [0; 1]. All ele-

ments of the matrix A are independently drawn from a distribution whose ex-
pected value is �nite and well de�ned. The distributions need not be identical
as in most models but should satisfy the following condition: the expectations
of the sum of elements in each row (and each column by symmetry) are assumed
to be the same. We adopt the usual de�nition of an �-NEP (see De�nition 2)

Theorem 7 Panagopoulou and Spirakis (2014) Let (A;AT ) be an n � n
random symmetric bimatrix game. Then the completely mixed uniform strategy

pro�le is, with probability at least 1� 2
n , a

q
lnn
n -NEP of (A;A

T ).

For Theorem 7 to be a strong statement n should be really large. For n = 12
e.g. the minimum probability is 56 = 0; 833 � = 0; 455 which is, considering that
A is positively normalized to [0; 1], a weak statement. This is due to the fact
that very little is assumed of the distributions the entries of A are drawn from.
If entries of A are independently drawn from the same normal distribution, a
rather common assumption, then the error term gets signi�cantly smaller.

Example 3 Let each entry of the game matrix A be independently drawn
from the normal distribution N( 12 ;

1
6 ). The expected value and variance are

chosen so that A has entries between 0 and 1 with high probability and thus
it is "almost" positively normalized to [0; 1] and thus �t for comparison. For
the completely mixed strategy pair ( 1ne;

1
ne) to be an �-NEP of the random

symmetric game (A;AT ) the following inequalities should hold

1

n
eiAe � 1

n2
eAe+ �;

1

n
eAej � 1

n2
eAe+ �:

or equivalently

neiAe� eAe � n2�;

neAej � eAe � n2�:

Each entry � of A being an N( 12 ;
1
6 ) random variable and on the left hand sides of

the inequalities there are sums of identical normal variables we have 2n identical
inequalities

n� � � � n2�:
n� is an N( 12n

2; 16n
3
2 ) and � an N( 12n

2; 16n) random variable. Using the formula
for the distribution of the di¤erence of two normal random variables (see e.g.
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Weisstein (1995)) we �nd that the distribution of n��� is N(0; 16n
p
n+ 1): The

probability that all 2n inequalities hold is

Pr(n� � � � n2�)2n = (1
2
+

Z np
n+1

6�

0

1p
2�
e�

t2

2 dt)2n:

If we want this probability to be 1� 2
n we have, for any �xed n, the equation

(1� 2

n
)
1
2n � 1

2
=

Z np
n+1

6�

0

1p
2�
e�

t2

2 dt:

Numerically " can be determined using the standard normal distribution�s table.
For n = 12 and n = 15 we get � = 0; 1217 and 0; 1151, respectively, much better
than what we would have obtained without the assumption of normality using

simply the error term
q

lnn
n . In fact, for n = 12 and n = 15 this is 0; 455 and

0; 4249, respectively. It is clear that �! 0 as n!1.

6 Conclusion

The computational complexity of �nding a Nash equilibrium (NEP) in gen-
eral bimatrix games and symmetric and/or all NEP�s in symmetric bimatrix
games was studied for various classes of games. A new class of games was iden-
ti�ed that can be solved polynomially. An experiment with the sample size of
500 was conducted for random symmetric games of size 12 and 15. Random
entries of the matrices were drawn from a discrete uniform distribution over the
interval [0; 100]. Empirical distributions of support sizes of all extreme NEP�s
were studied mainly to test the hypothesis that a 25% increase in size increases
the critical support size i.e. the size of supports with the property that checking
all supports of maximum this size for equilibrium is enough to �nd a NEP with
high probability. This hypothesis was rejected supporting the conjecture that
critical support sizes are small, 4 for symmetric, 3 for non-symmetric and 2 for
all NEP�s and thus the Las Vegas algorithm of Bárány et al. (2005) works for
symmetric games as well.
Further research may go in various directions. First and foremost, the con-

jecture about small critical sizes for the Las Vegas algorithm should be proved or
disproved and boundaries set within which this kind of method works. Extend-
ing the range of problems where approximate NEP�s can be found in polynomial
time with high probability is also a challenge. It would also be interesting to
see what is the expected number of iterations of the Lemke-Howson algorithm
over random bimatrix games and whether it grows exponentially or not.
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