VÁLLALATI PÉNZÜGYEK
FELADATGYŰJTEMÉNY
ÉS MEGOLDÁSOK

Befektetések és Vállalati Pénzügy Tanszék
 Budapest, 2018
Szerzők:

Walter György: 11., 12. fejezet, Minta tesztsor
Fazakas Gergely: 4., 13. fejezet
Keresztúri Judit Lilla: 7., 8. fejezet
Lovas Anita: 1., 6. fejezet
Németh-Durkó Emília: 3. fejezet
Petróczy Dóra Gréta: 5. fejezet
Pollák Zoltán: 2. fejezet
Vaskövi Ágnes: 9., 10. fejezet

Szerkesztő: Walter György
Lektorálta: Berlinger Edina

Kiadó: Budapesti Corvinus Egyetem
© Befektetések és Vállalati Pénzügy Tanszék
Tartalomjegyzék

1. Szeminárium - Alapszámítások ... 2
2. Szeminárium - Járadékok ... 11
3. Szeminárium - Kötvények .. 22
4. Szeminárium – Részvényárazás .. 31
5. Szeminárium - Kockázat ... 39
6. Szeminárium - CAPM ... 47
7. Szeminárium - Határidős ügyletek ... 56
8. Szeminárium - Opciók .. 64
9. Szeminárium - A vállalati pénzáramlás előrejelzése ... 70
10. Szeminárium - Megtérülési mutatószámok ... 81
11. Szeminárium - Tőkeköltség-számítás .. 91
12. Szeminárium - A tőkeszerkezet megváltoztatása .. 99
13. Szeminárium - Osztalékpolitika .. 108
Minta tesztsor ... 114
1. Szeminárium - Alapszámítások

Tesztek

1. Mekkora a loghozam (az éves folytonos kamatláb), ha az éves effektív hozam 20%?
 a) 22,14%
 b) 21,56%
 c) 20,00%
 d) **18,23%**

2. Mekkora az éves effektív hozama egy olyan betétnek, ami negyedévente fizet kamatot, melynek értéke évi 6%?
 a) 1,5%
 b) 6%
 c) 6,09%
 d) **6,14%**

3. Milyen éves névleges kamatlábát hirdessenek meg egy negyedévente kamatot fizető betétnek, ha azt szeretnék, hogy az éves tényleges (effektív) hozam 6,136% legyen?
 a) 1,5%
 b) 5,85%
 c) 6%
 d) 6,14%

4. Mekkora annak a befektetésnek a hathónapos hozama, amelybe ha most befektet 50 ezer Ft-ot 6 hónap múlva 56 ezer forintot kap.
 a) 6%
 b) **12%**
 c) 24%
 d) 25,44%

5. Egy befektetés éves, bruttó, nominális hozama 12%. A nominális hozamra számított forrásadó nagysága 10%, az éves infláció 5%. Mekkora a befektetés éves nettó reálhozama?
 a) 5%
 b) 5,52%
 c) 5,9%
 d) 6%
Feladatok

1.1. Feladat

Egy betét azt ígéri, hogy ha most befektet 100 forintot, akkor félév múlva 105 forintot kap vissza. Mekkora ennek a betétnek a …

a) 6 hónapra számított hozama?

b) az éves névleges kamatlába?

c) az éves tényleges (effektív) hozama?

1.2. Feladat

Melyik befektetést érdemes választani az alábbi lehetőségek közül?

a) A P befektetés éves kamatozással számítva évi 8% kamatót fizet.

b) A Q befektetés félévenkénti kamatfizetéssel évi 7,9% kamatót fizet.

c) A R befektetés folytonos kamatfizetéssel évi 7,8% kamatót fizet.

Számítsa ki ezeknek a befektetéseknak az értékét 1 és 5 év múlva, a kamatperiódusok szerinti újrabefektetést feltételezve!

P befektetés:

\[C_t = C_0 \cdot (1 + r)^t \]

\[C_1 = C_0 \cdot (1 + r)^1 = 1 \cdot (1 + 0,08) = 1,0800 \]

\[C_5 = C_0 \cdot (1 + r)^5 = 1 \cdot 1,08^5 = 1,4693 \]

Q befektetés:

\[C_t = C_0 \cdot \left(1 + \frac{k}{m}\right)^{m\cdot t} \]

\[C_1 = C_0 \cdot \left(1 + \frac{0,079}{2}\right)^2 = 1,0806 \]

\[C_5 = C_0 \cdot \left(1 + \frac{0,079}{2}\right)^{10} = 1,4731 \]

R befektetés:

\[r_{6\text{hó}} = \frac{105}{100} - 1 = 5\% \]

\[k = 5\% \cdot 2 = 10\% \]

\[r_{eff} = (1 + 5\%)^2 - 1 = 10,25\% \]

\[e^{i0.5} = 1,05 \]

\[i = \ln(1,05) \cdot 2 = 9,76\% \]
\[C_t = C_0 \cdot e^{t \cdot i} \]
\[C_1 = C_0 \cdot e^{0.078} = 1,0811 \]
\[C_5 = C_0 \cdot e^{5 \cdot 0.078} = 1,4770 \]

A folytonos kamatfizetésű R befektetést érdemes választani.

1.3. Feladat

A KiBe Bank által nyújtott Alfa hitel kamatája évi 14,9%, amelyre a bank félévente számolja el a kamatokat. A Béta hitel kamatája évi 14,5%, erre azonban havonta számolják a kamatokat.

a) Mekkora a tényleges hozama a két hitelkonstrukciónak?
b) Melyiket választaná Ön, és melyiket hirdetné meg intenzívebben a bank helyében?

a)
\[r_{Alfa} = \left(1 + \frac{0.149}{2} \right)^2 - 1 = 0.1545 \rightarrow 15,45\% \]

\[r_{Béta} = \left(1 + \frac{0.145}{12} \right)^{12} - 1 = 0.1550 \rightarrow 15,50\% \]

b)
Hitelfelvevőként az „Alfa” a kedvezőbb, hitelynújtóként a banknak a „Béta” hitelt érdemes intenzíven hirdetni.

1.4. Feladat

Egy betét negyedéves kamatfizetést ígér a következő évre. A betét éves névleges kamata 10%.

a) Mekkora a betét negyedévre számított hozama?
b) Mekkora a betét éves tényleges hozama?
c) Ha valaki egy évig benntartja pénzét, akkor 100 forint befektetéssel mennyi pénzt kap vissza egy év múlva?
d) Mekkora a betét éves loghozama?

a)
\[\frac{10\%}{4} = 2,5\% \]

b)
\[1,025^4 - 1 = 10,38\% \]

c)
\[5 \]
\[© Befektetések és Vállalati Pénzügy Tanszék \]
\[110,38 \text{ – at} \]
\[d) \]
\[e^{i0.25} = 1.025 \rightarrow i = \ln(1.025) \cdot 4 = 9,877\% \]

1.5. Feladat

A Vega Bank egyik új betéti termékének éves nélküliszté kamatlába 8\%, és félévente fizet kamatot, amelyet tőkésítenek. A Gamma Bank olyan konstrukciót akar piacra dobni, amelyik negyedéves kamatfizetésű, kamatai tőkésíthetőek, és hozama 1 százalékponttal magasabb, mint a Vega Banké. Hány százalékos nélküliszté kamatlában kell meghirdetni a konstrukciót?

\textit{Vega bank:}
\[r_{Vega} = \left(1 + \frac{0.08}{2}\right)^2 - 1 = 0.0816 \rightarrow 8,16\% \]

\textit{Gamma bank:}
\[r_{Gamma} = \left(1 + \frac{k_{Gamma}}{4}\right)^4 - 1 = 8,16\% + 1\% = 9,16\% \]
\[k_{Gamma} = \left(\sqrt[4]{1.0916} - 1\right) \cdot 4 = 0.0886 \rightarrow 8,86\% \]

1.6. Feladat

Egyik szállítójának 10 millió forinttal tartozik, amely ma esedékes. A szállító hajlandó 1 hónap haladékot adni, de akkor lejáratkor 100 000 forinntal többet kér. Mekkora éves tényleges (effektív) hozama, illetve a loghozama a halasztott fizetésnek?

\[r_{eff} = \left(\frac{10.1}{10}\right)^{12} - 1 = 12,68\% \]
\[r_{log} = 12 \cdot \ln\left(\frac{10.1}{10}\right) = 11,94\% \]

1.7. Feladat

Egy befektetési lehetőség azt igéri, hogyha most befektet 100 ezer forintot, két év múlva 115 ezer forintot kap vissza. Mekkora éves tényleges (effektív) hozamot, illetve mekkora loghozamot ér el ezen a befektetésen?

\[r_{eff} = \sqrt[2]{\frac{115 000}{100 000}} - 1 = 7,238\% \]
\[r_{\text{log}} = \frac{\ln \left(\frac{115e}{100e} \right)}{2} = 6,988\% \]

1.8. Feladat

Barátja egy befektetési lehetőséget ajánl: ma adjon neki 1 millió forintot és két hét múlva visszaadja az 1 milliót meg még egy tízezrest. A barát ígérete kockázatmentesnek tekinthető. Mekkora éves tényleges (effektív) hozama, illetve mekkora a loghozama az ajánlatnak?

\[r_{\text{eff}} = \left(\frac{1,01^{\frac{52}{2}}}{1} \right) - 1 = 29,53\% \]
\[r_{\text{log}} = \ln \left(\frac{1,01^{\frac{52}{2}}}{2} \right) = 25,87\% \]

1.9. Feladat

Egy betétre bankja az ígérete, hogy évi 6%-os névleges kamatot fizet, negyedéves kamatfizetési gyakorisággal. A betét nyitásakor a bank mégis változtat a kondíciókon és áttér a havi kamatfizetésre.

a) Hány forinttal lesz több a számláján egy év múlva az alaphelyzethez képest, ha betétjét 100 millió forinttal nyitotta?

b) Mekkora az NPV-je a havi kamatozású betétnek így, 6% éves névleges kamatláb mellett, ha egyébként a piacon mindenki évi 5,5%-os névleges kamatot fizet a szintén havi kamatozású betétekre?

\[a) \]
\[C_1 = C_0 \cdot \left(1 + \frac{k}{m} \right)^m \]

eredeti: \[C_1 = 100 \text{ millió} \cdot \left(1 + \frac{0,06}{4} \right)^4 = 106,136 \text{ millió} \]

új: \[C'_1 = 100 \text{ millió} \cdot \left(1 + \frac{0,06}{12} \right)^{12} = 106,167 \text{ millió} \]

\[C'_1 - C_1 = 106,167 - 106,136 = 31 \text{ ezer (kerékítve)} \]

\[b) \]
\[r_{\text{piaci}} = \left(1 + \frac{0,055}{12} \right)^{12} - 1 = 0,0564 \rightarrow 5,64\% \]
\[NPV = \frac{106,167 \text{ millió}}{1 + 0,0564} - 100 \text{ millió} = 499 \text{ ezer} \]
1.10. Feladat
Egy ma elhelyezett 1 millió forintos befektetésre a Fixen Fizető Bank Zrt. 1,4 millió forint visszafizetését ígéri 5 év elteltével. Mekkora az éves kamatfizetéssel számított betéti kamatláb? Mekkora a loghozam?

Éves kamatfizetés mellett a hozam megegyezik a kamatlábbal.
Éves kamatfizetéssel számított hozam:
\[C_t = C_0 \cdot (1 + r)^t \]
\[1,4M = 1 \cdot (1 + r)^5 \]
\[r = \sqrt[5]{\frac{1,4M}{1M}} - 1 = 6,96\% \]
Általánosan:
\[r = \sqrt[t]{\frac{C_t}{C_0}} - 1 \]

Loghozam (folytonos kamatszáhitással számított éves betéti kamatláb):
\[C_t = C_0 \cdot e^{t \cdot i} \]
\[1,4M = 1M \cdot e^{5 \cdot i} \]
\[i = \frac{ln \left(\frac{1,4M}{1M} \right)}{5} = 6,73\% \]
Általánosan:
\[i = \frac{ln \left(\frac{C_t}{C_0} \right)}{t} \]

1.11. Feladat
Mekkora éves hozam mellett kell befektetni 1 millió forintot, ha azt szeretnénk, hogy 10 év múlva 2,5 millió forintot érjen? Mekkora éves hozam szükséges akkor, ha csak 500 ezer forintot fektetünk be?

\[C_t = C_0 \cdot (1 + r)^t \]
\[2,5M = 1M \cdot (1 + r)^{10} \]
\[r = \sqrt[10]{\frac{2,5M}{1M}} - 1 = 9,6\% \]

Ha csak 500 eFt-ot fektetünk be:
\[r = 10 \sqrt[10]{\frac{2,5M}{0,5M}} - 1 = 17,46\% \]

(Ez a hozam egyben nem más, mint a belső megtérülési ráta (IRR).

1.12. Feladat

Pistike szülei azt szeretnék, hogy gyermekük 21 éves korában 10 millió forintot kapjon. Mikor kell a szülőknek befektetniük, ha nagyon optimistán évi 15% átlaghozammal kalkulálnak, és egyszeri induló befektetésként

- a) 500 ezer Ft-ot tudnak fizetni?
- b) 1 millió Ft-ot képesek fizetni?
- c) Hogyan változik a fenti b) verzió eredménye, ha évi 20%-os hozammal számolnak?

\[C_t = C_0 \cdot (1 + r)^t \]

\[10M = 0,5M \cdot (1 + 0,15)^t \]

\[20 = 1,15^t \]

\[\ln(20) = \ln(1,15)^t \]

\[\ln(20) = t \cdot \ln(1,15) \]

\[t = \frac{\ln(20)}{\ln(1,15)} = 21,43 \text{ év}, \text{tehát már születés előtt el kell kezdeni a befektetést} \]

Általánosan:

\[t = \frac{\ln(C_t/C_0)}{\ln(1 + r)} \]

\[t = \frac{\ln(10/1)}{\ln(1,15)} = 16,48 \text{ évvel a 21. éves születésnapja előtt kell befektetni.} \]

\[t = \frac{\ln(10/1)}{\ln(1,2)} = 12,63 \text{ évvel a 21. éves születésnapja előtt kell befektetni.} \]

1.13. Feladat

Egy betét éves névleges kamatlába 12%, amelyet havonta, kamatos kamattal írnak jóvá a számlán. A nominális kamatra számított kamatadó nagysága 15%, az éves infláció 5%

- a) Mekkora a betét adózás előtti, nominális hozama?
- b) Mekkora az adózás utáni elérhető hozam, ha adót csak az év végén vonnak le?
- c) A nettó hozamból számítva mekkora a reálhozam?

© Befektetések és Vállalati Pénzügy Tanszék
\[r_{\text{bruttó,nominális}} = \left(1 + \frac{0.12}{12} \right)^{12} - 1 = 0.1268 \rightarrow 12.68\% \]

\[r_{\text{nettó,nominális}} = 12.68\% \cdot (1 - 0.15) = 10.78\% \]

\[r_{\text{nettó,réál}} = \frac{(1 + 0.1078)}{(1 + 0.05)} - 1 = 0.055 \rightarrow 5.5\% \]

1.14. Feladat

Ön beteszi a bankjába 1 millió forint megtakarítását egy 5 éves konstrukcióba. A bank évi 6% hozamot igér, de futamidő közben nem lehet „feltörni” a betétet és kivenni a pénzt.

a) Mennyit kap vissza 5 év múlva?

b) Mennyit ér a betétje két év múlva, ha a bank még mindig évi 6%-os hozamot igér minden betéti konstrukcióra?

c) Mennyit ér a betétje egy évvel a lejárat előtt, ha bank az egy éves betétekre már csak 5% éves hozamot igér?

\[FV = 1 \text{ millió} \cdot (1 + 0,06)^5 = 1 338 225 \text{ Ft} - ot \]

\[PV_{2\text{év}} = \frac{1,338 225}{(1 + 0,06)^3} = 1 123 599 \text{ Ft} - ot \]

\[PV_{4\text{év}} = \frac{1,338 225}{(1 + 0,05)^1} = 1 274 500 \text{ Ft} - ot \]

1.15. Feladat

Egy értékpapír azt ígéri, hogy egy év múlva kifizet 1 millió forintot. Az hasonló kockázatú értékpapírok várható hozama évi 15%.

a) Mennyit ér ma ez az értékpapír?

b) Közben kiderül, hogy nem csak egy év múlva, de két év múlva is fizet az értékpapír újabb 1 millió forintot. Mennyit ér így az értékpapír, ha több kifizetés nem várható?

c) Hogyan változna az fenti kérdések eredménye, ha kiderül, hogy a hasonló kockázat befektetések nagyobb hozamot igérnek, mint 15%?

\[PV(C_1) = \frac{C_1}{1+r} = \frac{1\text{ millió Ft}}{1,15} = 869 565 \text{ Ft-ot} \]
b)

\[PV(CF) = \frac{C_1}{1 + r} + \frac{C_2}{(1 + r)^2} = \frac{1 \text{ millió Ft}}{1,15} + \frac{1 \text{ millió Ft}}{(1,15)^2} = 1,625,709 \text{ Ft} \]

c)

Ha a hozam magasabb, a jelenérték csökken.
2. Szeminárium - Járadékok

Tesztek

1. Fejezze be HELYESEN a következő összefüggést! \(AF(4 \text{ év}; 5\%) = \)
 a) \(DF(1 \text{ év}; 5\%) + DF(2 \text{ év}; 5\%) + DF(3 \text{ év}; 5\%) + DF(4 \text{ év}; 5\%) \)
 b) \(DF(1 \text{ év}; 5\%) \times DF(2 \text{ év}; 5\%) \times DF(3 \text{ év}; 5\%) \times DF(4 \text{ év}; 5\%) \)
 c) \(DF(1 \text{ év}; 5\%) – DF(2 \text{ év}; 5\%) + DF(3 \text{ év}; 5\%) – DF(4 \text{ év}; 5\%) \)
 d) \(DF(4 \text{ év}; 5\%) \)

2. Mennyi a jelenértéke egy 5 tagú, évente esedékes 1 forintos járadéknak, ahol az első kifizetés éppen most esedékes? Az éves hozam 10%.
 a) \(AF(5 \text{ év}; 10\%) \cdot (1,1) \)
 b) \(AF(5 \text{ év}; 10\%) \)
 c) \(AF(5 \text{ év}; 10\%) \cdot DF(1 \text{ év}; 10\%) \)
 d) \(AF(4 \text{ év}; 10\%) \)

3. Önnek egy befektetést ígérnek, ha most befektet 1 millió forintot, a végtelenségig minden év végén 10 000 forintot kap. (Először egy év múlva kap pénzt.) Milyen éves hozama van ennek a befektetésnek?
 a) 1%
 b) 10%
 c) 5%
 d) 15%

4. Mennyi a jelenértéke annak az örökjáradéknak, amelynek első kifizetése (1 000 forint) jövőre esedékes, és ez az összeg a jövőben évente 2%-kal emelkedik. Az éves hozam minden lejáratra 6%.
 a) 25 000 forint
 b) 50 000 forint
 c) 16 667 forint
 d) 10 000 forint

5. Hogyan változik egy annuitás jelenértéke, ha – ceteris paribus – csökken a hozamszint?
 a) Nő
 b) Csökken
 c) Nem változik
 d) Nőhet is és csökkenhet is a piaci szereplők kockázatelutasítási hajlandóságának függvényében

11

© Befektetések és Vállalati Pénzügy Tanszék
Példák

2.1. Feladat
Mennyit ér az a mandulaültetvény, amelynek termése évente átlagban 10 millió forint pénzáramlást eredményez mindenkori tulajdonosának? Az első pénzáramlás 1 év múlva esedékes, és örökké tart. A hasonló kockázatú befektetések várható hozama 8%.

b) Hogyan változna az eredmény, ha az első pénzáramlást csak 5 év múlva kapná meg?
c) Hogyan változna az eredeti kérdés eredménye, ha már most is (0. évben) megkapja a 10 millió forintot?

\[PV(örökkjáradék) = \frac{C_i}{r} = \frac{10 \text{ millió } Ft}{0,08} = 125 \text{ millió } Ft \]

b) 4 évvel toltuk el az eredeti örökkjáradékokat a jövőbe, tehát ennyivel kell visszadiszkontálni:

\[PV(örökkjáradék 5. évtől) = \frac{C_i}{r} \cdot \frac{1}{(1 + r)^4} = \frac{10 \text{ millió } Ft}{0,08} \cdot \frac{1}{(1,08)^4} = 91,88 \text{ millió } Ft \]

c) Még kapott 10 millió forintot, ezt kell hozzáadni az eredeti örökkjáradék jelenértékéhez:

\[PV(örökkjáradék 0. évtől) = \frac{C_i}{r} + 10 M = \frac{10 \text{ MFt}}{0,08} + 10 \text{ MFt} = 135 \text{ millió } Ft \]

2.2. Feladat
Mekkora az elméleti értéke annak a másfél szobás zuglói lakásnak, amelyet havi 130 000 forintért lehet hosszú távon (feltételezések szerint örökké) bérbe adni? A bérbéadás éves hozama legyen évi 6%.

\[1 + r_{évi} = (1 + r_{havi})^{12} \]

\[r_{havi} = (1,06)^{1/12} - 1 = 0,487\% \]

\[PV(örökkjáradék) = \frac{C_i}{r} = \frac{130 000 \text{ Ft}}{0,00487} = 26,7 \text{ millió } Ft (kerekítve) \]
2.3. Feladat

Egy befektető üzlethelyiséget szeretne vásárolni, majd azt hosszú távon bérbe adni. Mekkora a befektető által várt éves hozam, ha egy hosszú távon (feltételezése szerint örökké) fix havi 180 000 forint bérleti díjjal kecsegtető üzlethelyiséget 36 millió forintra értékel?

\[PV(örökkáradék) = \frac{C_i}{r} \]

\[36\,000\,000 = \frac{180\,000}{r_{havi}} \]

\[r_{havi} = \frac{180\,000}{36\,000\,000} = 0,5\% \]

\[r_{éves} = 1,005^{12} - 1 = 6,17\% \]

2.4. Feladat

Tegyük fel, hogy egy gazdaságban egy adott pillanatban a kockázatmentes hozamgörbe vízszintes, vagyis a kockázatmentes hozam minden lejáratra 6%.

a) Számítsa ki az 1, 2, illetve 3 éves diszkontfaktorokat!

b) Számítsa ki a 3, illetve a 2 éves annuitásfaktorokat! Mi az összefüggés az annuitástényezők és az a) feladatrészben kiszámított diszkontfaktorok között?

\[DF_1 = \frac{1}{(1 + r)^1} = \frac{1}{1,06} = 0,9434 \]

\[DF_2 = \frac{1}{(1 + r)^2} = \frac{1}{1,06^2} = 0,8900 \]

\[DF_3 = \frac{1}{(1 + r)^3} = \frac{1}{1,06^3} = 0,8396 \]

\[AF(3; 6\%) = 0,9434 + 0,8900 + 0,8396 = 2,6730 \]

\[AF(2; 6\%) = 0,9434 + 0,8900 = 1,8334 \]

Az annuitás faktor a diszkontfaktorok összege.

2.5. Feladat
Legfeljebb mennyit érdemes adni egy olyan növekvő örökjáradékért, amelynek első kifizetése jövőre 1 000 forint, majd ez az összeg minden évben 3%-kal nő (a hozam minden lejáratra évi 5%)?

\[
PV(\text{növekvő örökjáradék}) = \frac{C_1}{r - g} = \frac{1 000 \text{ Ft}}{0,05 - 0,03} = 50 000 \text{ Ft}
\]

2.6. Feladat

Legfeljebb mennyit érdemes adni egy olyan növekvő örökjáradékért, amelynek első kifizetése 2 év múlva 5 000 forint, majd ez az összeg minden évben 4%-kal nő a végtelenségig (a hozam minden lejáratra évi 6%)?

\[
PV = \frac{C_1}{r - g} \cdot \frac{1}{1 + r} = \frac{5 000 \text{ Ft}}{0,06 - 0,04} \cdot \frac{1}{1,06} = 235 849 \text{ Ft}
\]

2.7. Feladat

Egy örökjáradék betétkönyv eddig 15 000 forint pénzáramlást fizetett minden egyes évben. Mennyit adna ezért az értékpapírrért, ha a befektetők minden lejáratra 12% éves hozammal számolnak, és feltételezzük, hogy a betétkönyv kibocsátója

a) örökre tartani fogja az évi 15 000 forintos kifizetést?

b) már a jövő évétől kezdődően várhatóan minden esztendőben 2%-kal emeli a kifizetés mértékét (első növekedés jövő évben már meg is történik)?

a)

\[
P = \frac{C_i}{r} = \frac{15 000 \text{ Ft}}{0,12} = 125 000 \text{ Ft}
\]

b)

\[
P = \frac{C_1}{r - g} = \frac{15 000 \cdot (1 + 0,02)}{0,12 - 0,02} = 153 000 \text{ Ft}
\]
2.8. Feladat

a) 1,5 millió Ft azonnal.
b) 1,8 millió Ft őt év múlva
c) Évi 80 ezer Ft örök ké (egy év múlva kapja az első összeget).
d) Évi 200 ezer Ft 10 éven át (egy év múlva kapja az első összeget).
e) A következő évben 30 ezer Ft, ami később évi 3%-kal nő.

\[
\begin{align*}
& a) \quad PV(A) = 1,5 \text{ M}\text{Ft} \\
& b) \quad PV(B) = \frac{1,8\text{ M}}{1,05^5} = 1,41 \text{ M}\text{Ft} \\
& c) \quad PV(C) = \frac{C_i}{r} = \frac{0,080\text{ M}}{0,05} = 1,6 \text{ M}\text{Ft} \\
& d) \quad PV(D) = \frac{C_i}{r} \left(1 - \frac{1}{(1 + r)^t}\right) = \frac{0,2\text{ M}}{0,05} \left(1 - \frac{1}{1,05^{10}}\right) = C_i \cdot AF(t; r) = \\
& \quad = 0,2\text{ M} \cdot AF(10; 5\%) = 0,2\text{ M} \cdot 7,7217 = 1,54 \text{ M}\text{Ft} \\
& e) \quad PV(E) = \frac{C_i}{r} \cdot g = \frac{0,030\text{ M}}{0,05 - 0,03} = 1,5 \text{ M}\text{Ft}
\end{align*}
\]

Válasz: A c) pontban szereplő annuitás a legértékesebb nyeremény.

2.9. Feladat

Ön éppen most vett fel 10 millió Ft, 20 év futamidejű jelzáloghitelt évi 8% hozam mellett. A szerződés szerint 20 éven keresztül, évente azonos összeget kell (évente egyszer az év végén) fizetnie, az első részlet egy év múlva esedékes. A hozamgörbe vízszintes.

a) Mekkora lesz az éves fizetési kötelezettsége?
b) Mekkora lesz a jelzáloghitel értéke a második évben, a második éves törlesztőrészlet kifizetését követően?

\[
\begin{align*}
& a) \quad PV(\text{annuitás}) = C_i \cdot AF(t; r) \\
& 10 = C_i \cdot AF(20; 8\%) \\
& C_i = \frac{10}{9,8181} = 1,0185 \text{ M}\text{Ft} \quad (1 018 527 \text{ Ft})
\end{align*}
\]
2.10. Feladat

Ön egy földterület megvásárlásán gondolkodik, amely várakozásai szerint évi 4 millió forint pénzáramlást eredményez az idők végezetéig. A befektetés éves várható hozama minden lejátra 8%.

a) Mennyit ér az Ön számára ez a földterület?

b) A jelenlegi tulajdonos a tárgyalások során kapott egy ajánlatot egy harmadik féltől, aki 3 évre bérbe venné a földterületet, és Ön csak ezután tudná birtokba venni azt. Mennyit adna ilyen feltételek mellett a földterületért (így csak a 4. évtől kezdődően lenne Öné a területből származó pénzáramlás)?

c) Amennyiben az első 3 évben Ön is bérleti szerződésben gondolkodna, mennyit adna maximum ezért a bérleti jogért (az első pénzáramlás a földterületből 1 év múlva esedékes)? Hogyan lehetne ezt kiszámítani az a) és b) feladatrész eredményeinek segítségével?

\[
PV(\text{örökjáradék}) = \frac{C_i}{r} = \frac{4 \text{ millió Ft}}{0,08} = 50 \text{ millió Ft}
\]

\[
PV = \frac{C_i}{r} \cdot \frac{1}{(1 + r)^t} = \frac{4 \text{ millió Ft}}{0,08} \cdot \frac{1}{1,08^3} = 39,69 \text{ millió Ft}
\]

\[
PV(\text{annuitás}) = 4 \cdot AF(3; 8\%) = 4 \cdot 2,5771 = 50 - 39,69 = 10,31 \text{ millió Ft}
\]

2.11. Feladat

Ön az egyik műszaki áruházban kinézett magának egy televíziót 240 000 forintért. Az áruház legfrissebb akciójának keretében a terméket meg lehet vásárolni havonta 10 ezer forintos, 24 havi (kamatmentes) részletre, vagy pedig be lehet váltani rá egy 5%-os árengedményt biztosító kupont. A két kedvezmény nem vonható össze. A hasonló áruvásárlási hitelek havi hozama a példa kedvéért legyen 0,5% minden lejáratra.

a) Melyik akciót érdemes igénybe venni?

b) Az első opció (24 havi kamatmentes részlet) mekkora árengedménynek felel meg?

\[
PV(\text{örökkválasztás}) = C_i \cdot AF(t; r) = 10 000 \cdot AF(24 \text{ hónap}; 0,5\%) = 10 000 \cdot 22,5629 = 225 629 \text{ Ft}
\]
Árkedvezménnyel:
\[240\,000 \cdot 0,95 = 228\,000\, \text{Ft} \]

\[b)\]
\[\frac{240\,000 - 225\,629}{240\,000} = 5,99\% \]

2.12. Feladat

Kovácséknak 5 millió forint megtakarításuk van, ebből szeretnének segíteni egyetemista gyermeküknek, hogy fizetni tudja egyetemi tandíját, valamint megélhetési költségeit. Arra számítanak, hogy gyermekük gond nélkül elvégzi a 3 + 2 éves képzési időszakot, amit a jövő hónapban kezd el. Havonta mekkora állandó összeget tudnak utalni gyermekük számlájára, hogy megtakarításuk végig elég legyen az öt éves támogatásra? A havi hozam minden lejáratra 0,5%.

\[r_{\text{havi}} = 0,5\%, \; t=60 \]

\[PV(\text{annuitás}) = C_i \cdot \frac{1}{r} \left(1 - \frac{1}{(1 + r)^t} \right) \]

\[5\, \text{millió Ft} = C_i \cdot \frac{1}{0,005} \left(1 - \frac{1}{1,005^{60}} \right) \]

\[C_i = \frac{5\, \text{millió Ft}}{51,7256} = 96\,664\, \text{Ft} \]

2.13. Feladat

Bár ezt sosem tudtuk elképzelni, de nyugdíjasok lettünk. Mikkora összeget kellett összegyűjtenünk az önkéntes nyugdíjpénztári számlánkon ahhoz, hogy jövő hónaptól kezdődően havi 50\,000 forinttal tudjuk kiegészíteni állami nyugdíjunkat 20 éven keresztül? A járadékok havi hozama 0,5% minden lejáratra.

\[t = 20 \cdot 12 = 240\, \text{hónap} \]

\[r_{\text{havi}} = 0,5\% \]

\[PV = \frac{C_i}{r} \left(1 - \frac{1}{(1 + r)^t} \right) = \frac{50\,000}{0,005} \left(1 - \frac{1}{1,005^{240}} \right) = 6\,979\,038\, \text{Ft} \]

2.14. Feladat

Ön egy német gyártmányú városi terepjáró megvásárlásában gondolkodik, melyhez 15 millió forint hitelt kell felvennie. A bank a hirdetmény szerint a hitelt 12%-os éves névleges kamatra adjá, és 60 hónap alatt, egyenlő részletekben kell visszafizetni. Mikkora a havi törlesztő részletek nagysága, ha az első részlet a hitel felvételével egyidejűleg esedékes?
\[k = 12\%; \ r_{\text{av}} = \frac{12\%}{12} = 1\% \]

\[PV = \frac{C_i}{r} \left(1 - \frac{1}{(1 + r)^t} \right) \cdot (1 + r) \]

15 millió Ft = \[\frac{C_i}{0,01} \left(1 - \frac{1}{1,0160} \right) \cdot 1,01 \]

\[C_i = 330\,363\,Ft \]

2.15. Feladat

Az Újra Növekedő Zrt. előtt egy 105 millió forintos beruházási javaslat fekszik, amely 110 millió
forintot fizet egy év elteltével.

a) Mekkora a beruházás jelenértéke, illetve nettó jelenértéke, ha a befektetés kockázati
szintjéhez tartozó várható hozam évi 8\%? Érdemes-e a megvalósítani a beruházást?

b) Mekkora a beruházás jelenértéke, illetve nettó jelenértéke, ha a befektetés kockázati
szintjéhez tartozó várható hozam évi 4\%? Érdemes-e a megvalósítani a beruházást?

\[a) \]

\[PV = \frac{110M}{1,08}^1 = 101,85M \]

\[NPV = -105M + 101,85M = -3,15M \]

\[\rightarrow \text{nem érdemes, mert az NPV negatív} \]

\[b) \]

\[PV = \frac{110M}{1,04}^1 = 105,77M \]

\[NPV = -105M + 105,77M = 0,77M \]

\[\rightarrow \text{érdemes, mert az NPV pozitív} \]

2.16. Feladat

Két befektetés közül választhatunk. A 'D' befektetésből a következő év végén 250 ezer forint, a
második év végén 130 ezer Ft, a harmadik év végén 310 ezer forint pénzáramlásra számíthatunk.
Az 'F' befektetésből egy év múlva 250 ezer Ft, majd egy év szünet után a harmadik év végén 450
ezer Ft várható. Az alternatív (hasonló kockázatú) befektetések éves hozama 8\%. Melyik
befektetést választaná, ha mindkettő kezdeti befektetési igénye 450 ezer Ft?

\[PV(D) = \frac{250e}{(1 + 0,08)^1} + \frac{130e}{(1 + 0,08)^2} + \frac{310e}{(1 + 0,08)^3} = 589,02e \]

\[PV(F) = \frac{250e}{(1 + 0,08)^1} + \frac{450e}{(1 + 0,08)^3} = 588,71e \]
\[NPV(D) = PV(D) - C_0(D) = 589,02e - 450e = 139,02e \]
\[NPV(F) = PV(F) - C_0(F) = 588,71e - 450e = 138,71e \]

→ az 'D' befektetést, mert magasabb a nettó jelenértéke, bár nem sokkal

2.17. Feladat

Egy kis japán robogót szeretne vásárolni, amelyet a környéken két kereskedés is áru

sít. Az első helyen nincsen lehetőség részletfizetésre, a robogó ára 560 000 forint. A másik kereskedőnél a jármű ára 600 000 forint, de ennek csupán 20%-át kell azonnal kifizetni, a maradék összeget 24 havi kamatmentes részletre. Az éves tényleges hozam 9,38% minden lejáratra. Melyik kereskedő ajánlata kedvezőbb?

\[r_{havi} = \left(\frac{12}{1,0938} \right)^{1/12} - 1 = 0,007499 \rightarrow 0,75\% \]

\[r_{havi} = 0,75\% \]
\[600\,000 \cdot 0,8 = 480\,000\,Ft \]
\[C_i = \frac{480\,000\,Ft}{24} = 20\,000\,Ft \]
\[PV = 600\,000 \cdot 0,2 + \frac{20\,000}{0,0075} \cdot \frac{1 - \frac{1}{1,0075^{24}}}{1,0075^{24}} = 120\,000 + 437\,783 = 557\,783\,Ft \]

Válasz: A második lehetőség a (kicsit) kedvezőbb.

2.18. Feladat

Kovács Klára (éppen ma 35 éves) jelenleg prémium tanácsadóként dolgozik az egyik hazai nagybank budaiőrsi fiókjában és befektetési termékeket értékesít. Az interneten rátalált egy befektetési tanácsadó képzésre, amelynek segítségével előre léphetne munkahelyén, és privát bankárként a legvagyosabb ügyfelek pénzét kezelhetné. Klára úgy kalkulál, hogy ez minimum havi 10 000 forinttal emelné meg a havi fizetését egészen nyugdíjba meneteléig (jelen állás szerint ez 65 éves korában fog bekövetkezni). Az 1 éves képzés ára 1 000 000 forint, amely most azonnal fizetendő, az első magasabb összegű fizetését pedig a tanfolyam elvégzését követően, 13 hónap múlva kapná. A példa kedvéért a havi hozam minden lejáratra legyen 0,5%.

a) Mennyit érdemes maximum fizetni ezért a képzésért?
b) Megért Klárának beiratkozni a befektetési tanácsadó képzésre?
c) A képzés mekkora havi fizetés növekmény mellett hozná be éppen az árát?

\[a) \]
\[r_{havi} = 0,5\% \]
\[PV = \frac{10\,000}{0,005} \left(1 - \frac{1}{1,005^{360}}\right) \cdot \frac{1}{1,005^{12}} = 10\,000 \cdot 166,79 \cdot \frac{1}{1,005^{12}} = 1\,571\,019\,Ft-ot \]
b)

Válasz: Igen, megéli ezen feltételezések mellett, mert így az NPV kb. 571 ezer forint

c)

\[
1 \text{ millió Ft} = \frac{C_i}{0,005} \left(1 - \frac{1}{1,005^{360}}\right) \cdot \frac{1}{1,005^{12}} = C_i \cdot 157,1
\]

\[C_i = 6 \, 365 \text{ Ft havi fizetés növekedés mellett} \] épenn visszahozza a tanfolyam árát.

2.19. **Feladat**

Egy befektetés évente 5 millió forint pénzáramlást termel 20 éven keresztül.

a) Ha a befektetés kockázatának megfelelő hozam évi 15% minden lejáratra, akkor mekkora ennek a befektetésnek a jelenértéke?

b) Ha mindezt önnek 30 millió forint azonnali befektetésbe kerül, akkor mekkora a befektetés NPV-je? Elfogadná-e a befektetést?

c) Ha kiderült, hogy a befektetés kockázatának megfelelő éves hozam nem is 15% hanem inkább 16% minden lejáratra, akkor hogyan változik meg a b) kérdésben számolt NPV? Elfogadná-e a befektetést?

\[a) \quad AF (15\%, 20 \text{ év}) \cdot 5 = 6,2593 \cdot 5 = 31,2965\]

\[b) \quad -30 + 31,2965 = +1,2965 \quad \text{Igen}\]

c)

\[NPV = -30 + AF (16\%, 20 \text{ év}) \cdot 5 = -30 + 5,9288 \cdot 5 = -0,356 \quad \text{Nem}\]
2.20. Feladat

Egy befektetés a következő két évben évi 10 millió forint pénzáramlást termel, ami a harmadik évétől évi 5%-kal fog növekedni a végtelenségig. A befektetés kockázatának megfelelő éves hozama minden lejáratra 15%. Mekkora a befektetés NPV-je, ha induláskor 90 millió forintot kell kifizetnie?

\[NPV = -90 + \frac{10}{1.15} + \frac{10}{(0.15 - 0.05)} \cdot \frac{1}{1.15} = +5,65 \]

2.21. Feladat

Egy olyan befektetést ajánlanak önnek, hogy ha most befektet a vállalatba 10 millió forintot, öt év múlva a háromszorosát kapja vissza. Mekkora a befektetés IRR-je?

\[NPV = 0 = -10 + \frac{30}{(1 + IRR)^5} \]

\[IRR = \left(\sqrt[5]{\frac{30}{10}} - 1\right) = 0,2457 \rightarrow 24,57\% \]

A befektetés hozama, belső megtérülési rátája (IRR-je) évi 24,57%.
3. Szeminárium - Kötvények

Tesztek

1. Válassza ki a helyes állítást!
 a) Egy többéves, annuitásos hitel visszafizetésénél minden évben azonos tőketörlesztést kell fizetnie.
 b) A fix kamatozású, egyenletes tőketörlesztésű kötvény pénzáramlása minden évben állandó, az éves kamatfizetések egyre nőnek, a törlesztő-részletek egyre csökkennek.
 c) A fix kamatozású, egyenletes tőketörlesztésű kötvény pénzáramlása minden évben állandó, az éves kamatfizetések egyre csökkennek, a törlesztő-részletek egyre nőnek.
 d) A fix kamatozású, egyenletes tőketörlesztésű kötvény éves kamatfizetései és teljes pénzáramlásai is minden évben csökkennek.

 a) 6, 56, 28, 25
 b) 6, 50, 25, 25
 c) 6, 56, 28, 26,5
 d) 6, 25, 28, 56

3. Válassza ki a hamis állítást! A kötvény…
 a) hitelviszonyt megtestesítő értékpapír.
 b) törlesztése lehet szabálytalan.
 c) csak őt évnél hosszabb futamidejű lehet.
 d) futamideje lejárat nélküli is lehet.

4. Tulajdonában van egy annuitásos pénzáramú államkötvény. A pénzpiaci hírekben azt olvassa, hogy – minden egyéb változatlansága mellett – a vízszintes (kockázatmentes) hozamgörbe minden pontjában párhuzamosan lejebb tolldott. Mire számít, milyen változás történik (ha történik) kötvénye árfolyamában?
 a) nő
 b) csökken
 c) nem változik
 d) nőhet is és csökkenhet is a kamatkörnyezet függvényében
5. Egy 100 egység névértékű, végén egy összegben törlesztő, 2 év futamidejű állampapír évente fizet kamatot. Ennek az állampapírnak a kibocsátáskori árfolyama 100 egység, mert kibocsátáskor az éves kamat mértéke 10%, az éves kockázatmentes hozam pedig minden lejáratra szintén 10%. Mennyi lesz az állampapír árfolyama, ha az éves kockázatmentes hozam 8%-ra csökken (minden lejáratra)?

a) 103,57
b) nem változik
c) 100
d) 98,93
Példák

3.1. Feladat

Egy 100 forint névértékű, 4 év futamidejű kötvény évente fizet kamatot. Az éves kamatfizetés mértéke 5%. Írja fel a kötvény pénzáramlását különböző törlesztési struktúrák mellett:

a) végén egy összegben törlesztő
b) egyenletesen törlesztő
c) annuitásos

(Excelben is megoldható)

a)

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Pénzáramlás (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>100</td>
<td>105</td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Fennálló névérték</th>
<th>Pénzáramlás (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>25</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3,75</td>
<td>25</td>
<td>50</td>
<td>28,75</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>25</td>
<td>25</td>
<td>27,5</td>
</tr>
<tr>
<td>4</td>
<td>1,25</td>
<td>25</td>
<td>0</td>
<td>26,25</td>
</tr>
</tbody>
</table>

c)

\[AF(4\text{év}, 5\%) = 3,545951 \]

\[\text{Éves pénzáramlás} = \frac{100}{3,545951} = 28,2 \text{ Ft} \]

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Fennálló névérték</th>
<th>Pénzáramlás (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>23,20</td>
<td>76,80</td>
<td>28,20</td>
</tr>
<tr>
<td>2</td>
<td>3,84</td>
<td>24,36</td>
<td>52,44</td>
<td>28,20</td>
</tr>
<tr>
<td>3</td>
<td>2,62</td>
<td>25,58</td>
<td>26,86</td>
<td>28,20</td>
</tr>
<tr>
<td>4</td>
<td>1,34</td>
<td>26,86</td>
<td>0,00</td>
<td>28,20</td>
</tr>
</tbody>
</table>
3.2. Feladat

Mennyit fizetne ma a fentiekben tárgyalt kötvényekért, ha az elvárt hozam évi 4% minden lejáratra? Válaszát számítással indokolja.

A diszkontált pénzáramok összeadásával megkapjuk az árat.

\[P_a = \frac{5}{1,04} + \frac{5}{1,04^2} + \frac{5}{1,04^3} + \frac{105}{1,04^4} = 103,63 \text{ Ft} - ot \]

\[P_b = \frac{30}{1,04} + \frac{28,75}{1,04^2} + \frac{27,5}{1,04^3} + \frac{26,25}{1,04^4} = 102,31 - ot \]

\[P_c = \frac{28,20}{1,04} + \frac{28,20}{1,04^2} + \frac{28,20}{1,04^3} + \frac{28,20}{1,04^4} = 102,36 - ot \]

3.3. Feladat

Egy 100 forint névértékű, végén egy összegben törlesztő, 4 év futamidejű állampapír évente fizet kamatot. Ennek az állampapírnak a kibocsátáskori árfolyama 100 Ft, mert évente 10% kamatot fizet és az éves kockázatmentes hozam pedig minden lejáratra szintén 10%.

a) Mennyi lesz az állampapír ára, ha az éves kockázatmentes hozam 8%-ra csökken (minden lejáratra)?

b) Mennyi lesz az állampapír ára, ha az éves kockázatmentes hozam 12%-ra nő (minden lejáratra)?

c) Mennyi lesz az állampapír ára, ha a hozamgörbe úgy változik, hogy az egy éves hozam éves szinten 8%, kétéves 9%, hároméves 10%, négyéves hozam éves szinten 11%?

\[
\begin{array}{|c|c|c|c|}
\hline
\text{év} & \text{Kamatfizetés} & \text{Tőketörlesztés} & \text{Pénzáramlás} \\
\hline
1 & 10 & 0 & 10 \\
2 & 10 & 0 & 10 \\
3 & 10 & 0 & 10 \\
4 & 10 & 100 & 110 \\
\hline
\end{array}
\]

\[P_a = \frac{10}{1,08} + \frac{10}{1,08^2} + \frac{10}{1,08^3} + \frac{110}{1,08^4} = 106,62 \text{ Ft} \]

\[P_a = \frac{10}{1,12} + \frac{10}{1,12^2} + \frac{10}{1,12^3} + \frac{110}{1,12^4} = 93,93 \text{ Ft} \]
c)

<table>
<thead>
<tr>
<th></th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Pénzáramlás</th>
<th>r</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8%</td>
<td>9,26</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9%</td>
<td>8,42</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10%</td>
<td>7,51</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11%</td>
<td>72,46</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>100</td>
<td>110</td>
<td>11%</td>
<td>97,65</td>
</tr>
</tbody>
</table>

\[
P_a = \frac{10}{1,08} + \frac{10}{1,09^2} + \frac{10}{1,10^3} + \frac{110}{1,11^4} = 97,65 \, Ft
\]

(Excelben is megoldható)

3.4. Feladat

Egy eredetileg 4 év futamidejű állampapír évente fizet kamatot. Az éves kamatfizetés mértéke 10%, a kötvény a végén egy összegben törleszt. Számolja ki az állampapír árfolyamát az alábbi esetekben, ha az éves kockázatmentes hozam minden lejáratra 8%.

a) 2 évvel a kibocsátás után, még éppen kamatfizetés előtt
b) 2 évvel a kibocsátás után, éppen kamatfizetés után
c) 2,5 évvel a kibocsátás után.

(Excelben is megoldható)

a)

\[
P = 10 + \frac{10}{1,08} + \frac{110}{1,08^2} = 113,57 \, \%
\]

b)

\[
P = \frac{10}{1,08} + \frac{110}{1,08^2} = 103,57 \, \%
\]

c)

\[
P = \frac{10}{1,08^{0,5}} + \frac{110}{1,08^{1,5}} = 107,63 \, \%
\]

3.5. Feladat

A Bóbita kötvény 20 éves lejáratából még 4 év van hátra. A kötvényt 100 Ft névértéken bocsátották ki, évi 10% kamatot fizet az év végén. A kötvény az utolsó két évben 60-40%
megoszlásban törleszt. A hasonló kockázatú és futamidejű kötvényektől elvárt hozam évi 7% a hozamgörbe vízszintes.

a) Írja fel a kötvény pénzáramlását, ha az idei kamatfizetés ma lesz esedékes!
b) Mennyi ma a kötvény fair ára?

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Fennálló névérték</th>
<th>Pénzáramlás (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>40</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

b) A pénzáramok diszkontálva összeadhatók, így az ára jelenértében

\[P = 10 + \frac{10}{1.07} + \frac{10}{1.07^2} + \frac{70}{1.07^3} + \frac{44}{1.07^4} = 118,79 \text{ forint} \]

3.6. Feladat

A Megtanítalak Kft. a felzárkózó tanulók pénzügyi ismereteinek fejlesztésére külön órákat indít lelkes oktatókkal. A diákok számára az órák ingyenesek, az oktatók bérének kigazdálkodása azonban problémákba ütközött, ezért a tanév közeledte miatt hitelt vesz fel a vállalat. Összesen 2 millió forint hitelt kapnak. A hitelt 4 év alatt kell visszafizetni, évi 5% kamat mellett. A pénzáramlásokat az alábbi táblázat tartalmazza forintban:

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Fennálló névérték</th>
<th>Pénzáramlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000</td>
<td>500</td>
<td>1500</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>500</td>
<td>1000</td>
<td>575</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>500</td>
<td>500</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>500</td>
<td>0</td>
<td>525</td>
</tr>
</tbody>
</table>

a) Törlesztés szerint milyen típusú a hitel?
b) Érdemes felvenni a hitelt, ha az éves hozam 6% minden lejáratra? Mennyi a hitel nettó jelenértéke a hitelfelvőnek?

\[a) \text{ Egyenletesen törlesztő, fix kamatozású} \\
\[b) \text{ Persze, hogy érdemes, hiszen csak 5\% kamatot fizetünk, miközben a piaci hozam 6\%.} \]

\[A \text{ hitel jelenértéke: } P = \frac{600}{1.06} + \frac{575}{1.06^2} + \frac{550}{1.06^3} + \frac{525}{1.06^4} = 1955,43 \text{ Ft} \]
A hitel nettó jelenértéke: $2000 - 1955,43 = +44,57$ vagyis ebből is látszik, hogy mikért is érdemes felvenni. A piaci hozam magasabb, mint ami mellett a diákok kapják a hitelt. Ez lényegében kamattámogatás.

3.7. Feladat

A Bond kötvény minden év szeptember 20-án fizet kamatot. 100 nappal a kamatfizetés után a kötvény bruttó árfolyama 110,25%. Mennyi a kötvény nettó árfolyama, ha a kötvény kamata évi 5%, és az elvárt hozam évi 3% minden lejáratra?

\[P_{\text{nett}} = P_{\text{bruttó}} - \text{Felhalmozott kamat} = 110,25\% - \frac{100}{365} \cdot 5\% = 108,88\% \]

3.8. Feladat

Egy kötvényt ma bocsátottak ki 3 éves futamidővel, melynek névértéke 100 ezer forint. A kötvényről és pénzáramairól az alábbiakat tudjuk:

<table>
<thead>
<tr>
<th>év</th>
<th>Kamatfizetés</th>
<th>Tőketörlesztés</th>
<th>Fennálló névérték</th>
<th>Pénzáramlás</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>32,03</td>
<td>67,97</td>
<td>36,03</td>
</tr>
<tr>
<td>2</td>
<td>2,7</td>
<td>33,32</td>
<td>34,65</td>
<td>36,03</td>
</tr>
<tr>
<td>3</td>
<td>1,4</td>
<td>34,65</td>
<td>0,00</td>
<td>36,03</td>
</tr>
</tbody>
</table>

a) Törlesztés szerint milyen típusú a kötvény? Miért?
b) Mekkora kamatot fizet?
c) Milyen áron bocsátották ki a kötvényt, ha a hasonló kockázatú és futamidejű kötvényektől az éves hozam 6% minden lejáratra?

a) Annuitásos kötvény, a pénzáramok állandók.
b) 4%-ot, a táblázatból kiovasható. 100/36,03=2,77, ez a 3 éves 4% melletti annuitásfaktornak felel meg.
c) A pénzáramok diszkontálva összeadhatók, így az ára jelenértékben

\[P = \frac{36,03}{1,06} + \frac{36,03}{1,06^2} + \frac{36,03}{1,06^3} = 96,31 \text{ ezer forint} \]
3.9. Feladat

Az egy, két, illetve három év múlva lejáró diszkontkincstárjegyek árfolyama rendre 93,46%; 87,34% és 83,96%

a) Határozza meg az elvárt hozamokat!
b) Egy évvel ezelőtt kibocsátott 4 év futamidejű államkötvény évente egyszer 15% kamatot fizet és lejáratkor egy összegben törleszt. Az első év után járó kamatot éppen ma fogják kifizetni. Határozza meg a kötvény bruttó és nettó árfolyamát!
c) Mennyit kell a kötvényért fizetni, ha névértéke 1 millió forint?

\[P = DF = \frac{1}{(1 + r)^t} \]

\[0,9346 = \frac{1}{(1 + r)} \rightarrow r_1 = 7\% \]

\[0,8734 = \frac{1}{(1 + r)^2} \rightarrow r_2 = 7\% \]

\[0,8396 = \frac{1}{(1 + r)^3} \rightarrow r_3 = 6\% \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>Fennálló névérték (év elején)</th>
<th>Tökötörleszt</th>
<th>Kamatfizetés</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100 \cdot 0,15 = 15</td>
<td>0 + 15 = 15</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>100 \cdot 0,15 = 15</td>
<td>0 + 15 = 15</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>100 \cdot 0,15 = 15</td>
<td>0 + 15 = 15</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>100 \cdot 0,15 = 15</td>
<td>100 + 15 = 115</td>
</tr>
</tbody>
</table>

\[P_{\text{bruttó}} = 15 + 15 \cdot \frac{1}{(1 + r_1)} + 15 \cdot \frac{1}{(1 + r_2)^2} + 115 \cdot \frac{1}{(1 + r_3)^3} = \]

\[= 15 + 15 \cdot 0,9346 + 15 \cdot 0,8734 + 115 \cdot 0,8396 = 138,67\% \]

\[P_{\text{nettó}} = P_{\text{bruttó}} - \text{Felhalmozott kamat} = 138,67 - 15 = 123,67\% \]

c) \(138,67\% \cdot 1 \ 000 \ 000 = 1 \ 386 \ 700 \ Ft - ot \)

3.10. Feladat

Egy eredetileg 4 év futamidejű állampapír évente fizet kamatot. Az éves kamat mértéke 5%, a végén egy összegben törleszt.

a) Számolja ki az állampapír árfolyamát, ha az éves kockázatmentes hozamok az első évre 5%, a második évre 5%, a harmadik évre 6%, a negyedik évre 7%!
b) Számolja ki az árfolyamot éppen egy évvel a lejárat előtt (kamatfizetés után), ha időközben a hozamgörbe nem változott!

\[
P = \frac{5}{1,05} + \frac{5}{1,05^2} + \frac{5}{1,06^3} + \frac{105}{1,07^4} = 93,60 \% \\
\]

\[
P = \frac{105}{1,05} = 100,00 \%
\]
4. Szeminárium – Részvényárazás

Tesztek

1. Válassza ki a HAMIS állítást az osztalékdiszkontálási modellt tekintve!
 a) A részvény reális árfolyama a jövőbeli várhatóan osztalékok és a várható eladási ár
 diszkontálásával kapható meg.
 b) A részvény reális árfolyama a jövőbeli egy részvényre jutó adózott nyereségek
 diszkontálásával kapható meg.
 c) Nagyon hosszú távon szemléltve a részvény árát az osztalékok sorozata határozza meg.
 d) A részvény árfolyamát a vállalat tevékenységének várható hozama is befolyásolja.

2. Válassza ki a HELYES állítást az osztalékdiszkontálási modellt tekintve!
 a) Egy részvény osztalékhozama az egy részvényre jutó osztalék és a névérték hányadosa.
 b) Egy részvény EPS-e az egy részvényre jutó üzeméredmény nagysága.
 c) Az osztalékkifizetési ráta a társaság kifizetett osztalékának és adózott eredményének
 az aránya.
 d) A sajáttőke-arányos eredmény nem lehet negatív érték.

3. Válassza ki a HAMIS állítást!
 a) A P/E ráta nevezőjében az egy részvényre jutó adózott eredmény található.
 b) A P/E ráta számlálójában az egy részvényre jutó profit van.
 c) A P/E ráta annál nagyobb, minél nagyobb a részvény növekedési lehetőségeinek értéke
 (ceteris paribus).
 d) A P/E rátát vállalatértékeléshez is használják.

4. Válassza ki a HELYES állítást az osztalékdiszkontálási modellt tekintve!
 a) A fenntartható osztalék-növekedési ütem annál nagyobb, minél nagyobb a vállalat
 osztalék-kifizetési rátája (ceteris paribus)
 b) A fenntartható osztalék-növekedési ütem annál nagyobb, minél nagyobb a részvénytől
 elvárt hozam (ceteris paribus).
 c) A fenntartható osztalék-növekedési ütem annál nagyobb, minél több pénzt forgat
 vissza a tevékenységébe (ceteris paribus).
 d) Sokszor hosszútávon is meghaladja a vállalat növekedési üteme a részvényeitől elvárt
 hozamot.

5. Egy vállalat nem fizet osztalékok, nyereségét minden évben teljes mértékben újra befekteti. A
 részvények várható hozama évi 15%, a saját tőke arányos nyereség évi 20%. Mennyivel nő a
 vállalat egy részvényre jutó nyeresége évről évre?
 a) 20%-kal
 b) 0%-kal
 c) 15%-kal.
 d) 0,15 · 0,2 = 3%-kal
Példák

4.1. Feladat

A GGG vállalat részvénye jövőre 500 Ft osztalékot fizet. Az elemzők szerint az osztalék évente 4%-kal fog emelkedni. A vállalat részvényeinek várható hozama a piaci adatok alapján éves szinten 14%.

a) Mekkora a részvény értéke az osztalékdiszkontálási modell alapján?

b) Mekkora a részvény osztalékhozama?

\[
DIV_1 = 200 \text{ Ft} \\
g = 4\% \\
r = 14\%
\]

a)
\[
P_0 = \frac{DIV}{r-g} = \frac{500}{0.14-0.04} = 5000 \text{ Ft}
\]

b)
\[
DY = \frac{DIV_1}{P_0} = \frac{500}{5000} = 10\%
\]

4.2. Feladat

Egy részvény a mai napon és még két éven át évi 500 Ft osztalékot fizet. A harmadik év végén az elemzők azt várják, hogy 10%-kal magasabb osztalékot fizet, és ezt az éves növekedési ütemet ezután várhatóan tartani is tudják. Mekkora a reális árfolyam, ha a részvény várható hozama évi 20%?

\[
DIV_{0,1,2} = 500 \text{ Ft} \\
g = 10\% \\
r = 20\%
\]

\[
P_0 = 500 + \frac{500}{1.2} + \frac{500}{(0.2^0.1) \cdot 1.2} = 5083.3 \text{ Ft}
\]

4.3. Feladat

Az ABC ZRt. osztalékpolitikája előre jól rögzített. Terveik szerint a holnapi napon 100, a következő évben 120, a második évben 130 Ft osztalékot fognak fizetni részvényekért. A fő részvényes várakozása szerint közvetlenül a második éves osztalék felvétele után 2000 Ft-os áron vételi ajánlattal fog elni egy versenytársnak számító vállalat. A részvénytől elvárt hozam évi 10%.

Az adók hatásától tekintsen el!

a) Mekkora a részvény realis árfolyama az osztalékdiszkontálási modell alapján?

b) Mekkora a „cum dividend” és „ex dividend” árfolyam?
Megjegyzés: Csak akkor lehet a vételi ajánlat pénzáramlását (2 év múlva 2000 Ft-ot) a 10%-kal diszkontálni, ha a feltételezzük, hogy ennek kockázata az osztalékpénzáramlás kockázatával megegyezik. Ha nem, akkor meg kell találni a megfelelő diszkontrátát.

4.4. Feladat

Az XY Nyrt. következő éves várható osztaléka 150 Ft részvényenként. Az elemzők várakozásai szerint a részvényenkénti osztalék a későbbiekben évi 9%-kal fog emelkedni minden évben beláthatatlan ideig. A részvénytől elvárt hozam évi 15%.

a) Mekkora a részvény árfolyama az osztalékdiszkontálási modell alapján?

b) Mekkora a részvény osztalékozama, ha az a) pontban kiszámolt árfolyamon forog a tőzsden? Vesse ezt össze a részvény várható hozamával!

4.5. Feladat

A Nagyonnövekszünk ZRt. a következő három évben a vállalat méretének növelésére fókuszál. Terveik szerint a következő három évben minimális, részvényenkénti 100 Ft osztaléket fognak fizetni, de utána, a negyedik évétől kezdve, évi 10%-kal tervezik növelni a fizetendő osztalék szintjét a végtelenségig. A részvények várható hozama évi 20%.

a) Ha valaki a 3. év végén, a harmadik évi osztalék felvételé után tervezi eladni részvényeit, mekkora lesz a jelenlegi információk alapján akkor az árfolyam?

b) Mekkora a részvény reális árfolyama jelenleg?

4.6. Feladat

A Közmű Zrt. vállalat számára az állami szabályozás 10% éves sajáttöke-arányos nyereséget biztosít. A vállalat egy részvényre jutó nyeresége az éppen lezárt üzleti évben 100 Ft volt. A
vállalat vezetése, egyetértésben a tulajdonosokkal, úgy döntött, hogy kihasználja a kedvező befektetési és általános bővítési lehetőségeket, és idén valamint az elkövetkező három évben nem fizet osztalékot, minden nyereséget visszaforgatnak a tevékenységbe. Négy év múlva a vállalat visszatér a hagyományos osztalékpoltikájához, és a nyereség 80%-át osztalékként minden évben kifizeti. A közmű tevékenység kockázatának megfelelő várható hozam a piaci adatok alapján évi 8%. Számítsa ki a részvény árfolyamát az osztalékdiszkontálási modell segítségével!

\[ROE = 10\% \]
\[EPS_0 = 100 \text{ Ft} \]
\[DIV_{0,1,2,3} = 0 \text{ Ft} \]
\[dp_4 = 80\% \]
\[r = 8\% \]

<table>
<thead>
<tr>
<th></th>
<th>0.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dp)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80%</td>
</tr>
<tr>
<td>(g_t = ROE_t \cdot (1 - dp_t))</td>
<td>0,1 \cdot (1 - 0) = 10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>0,1 \cdot (1 - 0,8) = 2%</td>
</tr>
<tr>
<td>(EPS_t = EPS_{t-1} \cdot (1 + g_{t-1}))</td>
<td>100</td>
<td>100 \cdot 1,1 = 110</td>
<td>110 \cdot 1,1 = 121</td>
<td>133,1</td>
<td>146,41</td>
</tr>
<tr>
<td>(DIV_t = EPS_t \cdot dp_t)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>146,41 \cdot 0,8 = 117,13</td>
</tr>
</tbody>
</table>

\[
P_0 = \frac{117,13}{0,08 - 0,02} \cdot \frac{1}{1,08^3} = 1550 \text{ Ft}
\]

4.7. Feladat

A Mindentbele ZRT. frissen alakult, 10 millió Ft saját tőkével. Az üzleti előrejelzések szerint a vállalat évi 15%-os sajáttőke-arányos megtérüléssel (ROE) tud hosszútávon üzemelni. A vállalat meghatározó tulajdonosai az eredmény 40%-át kívánják kiosztani osztaléként, és remélik, hogy sikerü legyőzniük a kistulajdonosokat, akik az eredménynek ezzel szemben csak az eredmény 30%-át szeretnének a cégben tartani.

a) Mekkora a következő éves várható eredmény? Milyen eredménykategóriáról beszélünk?
b) A nagytulajdonosok elképzelése szerint mikkora a következő évre tervezett kifizetető osztalék, a következő évre tervezett visszaforgatott eredmény (eredménytartalékhoz való hozzáállulás) és a hosszútávon fenntartható osztalék-növekedési ütem?
c) Mekkora a következő évre tervezett kifizetető osztalék, a következő évre tervezett visszaforgatott eredmény (eredménytartalékhoz való hozzáállulás) és a hosszútávon fenntartható osztalék-növekedési ütem a kistulajdonosok elképzelése szerint?
d) Kinek van igaza az osztalék kifizetés arányának kérdésében?

a) \(E(arnings)_1 = 10 \cdot 0,15 = 1,5 \text{ millió forint} \); Adózás utáni eredmény

© Befektetések és Vállalati Pénzügy Tanszék
b) \[\sum DIV_1 = E_1 \cdot dp = 1,5 \cdot 0,4 = 0,6 \text{millió forint} \]
\[PB_1 = E_1 \cdot (1 - dp) = 1,5 \cdot (1 - 0,4) = 0,9 \text{ millió forint} \]
\[g = ROE \cdot (1 - dp) = 0,15 \cdot 0,6 = 0,09 \]

c) \[\sum DIV_1 = E_1 \cdot dp = 1,5 \cdot 0,7 = 1,05 \text{millió forint} \]
\[PB_1 = E_1 \cdot (1 - dp) = 1,5 \cdot (1 - 0,3) = 0,45 \text{millió forint} \]
\[g = ROE \cdot (1 - dp) = 0,15 \cdot 0,3 = 0,045 \]

d) Attól függ van-e a vállalat előtt olyan befektetés, amelybe visszaforgatva az eredményt nagyobb hozamot tud elérni, mint a piacon az ilyen kockázatú befektetés elvárt (várható) hozama. Ha nincsen, ki kell fizetni osztalékként. Ha van, érdemes visszaforgatni.

4.8. Feladat

A Duplacsavar NyRt.-t frissen alapították, 50 millió Ft-os saját tőkével. A tulajdonosok számításai szerint évi 10%-os sajáttőke-arányos eredménnyel (ROE) lehet hosszú távon tervezni. Megállapodásuk szerint az eredmény 60%-át fogják osztalékként felosztni, először az éppen egy év múlvára tervezett osztalékfizetéskor. A tervek szerint ezt az osztalékpolitikát fogják fenntartani a végtelenségig. A Duplacsavar iparágaiban az elvárt hozam évi 12%.

a) Mekkora a következő évre várt osztalék és a fenntartható növekedési ütem?

b) Mekkora a tulajdonosok elképzelése szerint a társaság reális értéke az osztalékdiskontálási modell alapján? Miért tér el az alapításkori saját tőke értékétól?

c) Alternatíváknál az merült fel, hogy az eredmények csak a 20%-át osszák ki osztalékként, és inkább intenzívebben növekedjenek. Mekkora lenne így a társaság reális értéke? Magyarázza meg, miért kapott a b) eredményétől eltérő értéket!

d) Mennyi lenne a saját tőke értéke, ha minden évben a teljes eredményt kifizetnék osztalékként?

\[\sum DIV_1 = (50M \cdot 0,1) \cdot 0,6 = 3M(Ft) \]
\[g = 0,1 \cdot 0,4 = 0,04 \]

\[PV = \frac{3M}{0,12 - 0,04} = 37,5M(Ft) \]

\emph{ROE kisebb r-nél}, vagyis a társaság jövedelmezősége alacsonyabb a piaci elvárt hozamnál. Ez azt jelenti, hogy negatív NPV-jű befektetésekből fektet, értéket rombol.

c) \[\sum DIV_1 = (50M \cdot 0,1) \cdot 0,2 = 1M(Ft) \]
\[g = 0,1 \cdot 0,8 = 0,08 \]
\[PV = \frac{1M}{0,12 - 0,08} = 25M(Ft) \]

\emph{A társaság még több pénzt öl a negatív NPV-jű befektetésekből, az érték tovább esik. Ha csak 10%-os ROE-ra képes a cégt, miközben 12% az elvárt hozam, a céget nem érdemes működtetni.}

d) \[\sum DIV_1 = (50M \cdot 0,1) \cdot 1 = 5M(Ft) \]
\[g = 0,1 \cdot 0 = 0\% \]

\[PV = \frac{5M}{0,12} = 41,66 \text{M} (\text{Ft}) \]

Így lett még a cégérték a legmagasabb, de így is kevesebb, mint amit befektettünk.

4.9. Feladat

A Semmi Zü r ZRt.-t idén alapították, 10.000 db, egyenként 1000 Ft névértékű részvénnyel, ezek kibocsátási ára 4000 Ft volt. A társaság várható sajáttőke-arányos eredménye (ROE) 15%, és az eredmény 80%-át fogják osztalékként kiosztani. Abban a befektetők egyetértenek, hogy a társaságtól elvárt hozam évi 12%.

a) Mekkora az alapításkori sajáttőke, a következő éves várható eredmény és a teljes várható osztalék nagysága?

b) Mekkora az egy év múlvai várható egy részvényre jutó eredmény és osztalék nagysága?

c) Mekkora a fenntartható osztalék növekedési ütem és egy részvény reális árfolyama az osztalékdiszkontálási modell alapján?

d) Miért tér el a részvény reális árfolyama a kibocsátáskori értéktől?

e) Ha a részvény a c) pontban meghatározott áron forog a tőzsdén kívüli piacon, akkor mikkora a részvény osztalékhozama? Miként függ ez össze a részvénytől elvárt hozammal?

f) Mekkora a részvény PVGO-ja?

g) Alacsonyabb vagy magasabb osztaléket érdemes fizetni? Miért?

\[a) \textit{Equity} = 10.000 \cdot 4000 = 40 \text{M} (\text{Ft}) \]
\[\textit{Earnings}_1 = 40M \cdot 0,15 = 6 \text{M} (\text{Ft}) \]
\[\sum \text{DIV}_1 = 6M \cdot 0,8 = 4,8 \text{M} (\text{Ft}) \]

\[b) \textit{EPS}_1 = \frac{E_1}{N} = \frac{6 \text{millió}}{10000} = 600 \text{ Ft} \]
\[\text{DIV}_1 = \textit{EPS}_1 \cdot dp = 600 \cdot 0,8 = 480 \text{ Ft vagy} \]
\[\text{DIV}_1 = \frac{\text{DIV}(\text{teljes})}{N} = \frac{4,8 \text{ millió}}{10000} = 480 \text{ Ft} \]

\[c) g = 0,15 \cdot 0,2 = 0,03 \]
\[PV = \frac{480}{0,12-0,03} = 5333 (\text{Ft}) \]

\[d) \text{A vállalat jövedelmezősége (15%) magasabb, mint a tőle elvárt hozam (12%), pozitív NPV-jű projektekbe fekteti a visszaforgatott eredményt.} \]

\[e) DY = \frac{\text{DIV}_1}{PV} = \frac{480}{5333} = 0,09 \]
\[r = 0,12 = DY + g = 0,09 + 0,03 \]

\[f) PVGO = PV - \frac{\textit{EPS}_1}{r} = 5333 - \frac{600}{0,12} = 333 (\text{Ft}) \]

© Befektetések és Vállalati Pénzügy Tanszék
g) **Alacsonyabb**, a pozitív PVGO (ROE nagyobb r-nél) miatt érdemesebb kevesebb osztalékok fizetni, ha továbbra is tudják tartani az r-nél magasabb ROE-t.

4.10. Feladat

A Csodajó ZRt.-t idén alapították, 25.000 db, egyenként 1000 Ft névértékű részvénnyel, ezek kibocsátási ára 2000 Ft volt. A társaság várható sajáttöke-arányos eredménye 8%, és az eredmény 60%-át fogják osztalékként kiosztani. Abban a befektetők egyetértenek, hogy a társaságtól elvárt hozam évi 10%.

a) Mekkora az alapításkori sajáttöke, a következő éves várható eredmény és a teljes várható osztalék nagysága?

b) Mekkora az várható egy részvényre jutó eredmény és osztalék nagysága?

c) Mekkora a fenntartható növekedési ütem és egy részvény reális árfolyama?

d) Miért tér el a részvény reális árfolyama a kibocsátáskori értéktől?

e) Mekkora a részvény osztalékozama, ha a piacon ténylegesen a c) pontban meghatározott áron forog? Miként függ ez össze a részvénytől elvárt hozammal?

f) Alacsonyabb vagy magasabb osztalékok érdemes fizetni? Miért?

g) A fenti osztalékpolitikával mekkora a részvény P/E rátája?

a) \[\text{Equity} = 25.000 \cdot 2000 = 50M (Ft) \]
\[Earnings_1 = 50M \cdot 0,08 = 4M (Ft) \]
\[\sum DIV_1 = 4M \cdot 0,6 = 2,4M (Ft) \]

b) \[EPS_1 = \frac{4M}{25000} = 160 (Ft) \]
\[DIV_1 = 160 \cdot 0,6 = \frac{2AM}{25000} = 96 (Ft) \]

c) \[g = 0,08 \cdot 0,4 = 0,032 \]
\[PV = \frac{96}{0,10-0,032} = 1411,8 (Ft) \]

d) A vállalat jövedelmezősége (ROE) alacsonyabb, mint a tőle elvárt hozam, ezért a PVGO várhatóan negatív lesz.

e) \[DY = \frac{DIV_1}{PV} = \frac{96}{1411,8} = 0,068 = 6,8\% \]
\[r = 0,10 = DY + g = 0,068 + 0,032 \]

f) \[PVGO = PV - \frac{EPS_1}{r} = 1411,8 - \frac{160}{0,10} = -188,2 (Ft) \]

g) **Magasabb**, a negatív PVGO (ROE kisebb r-nél) miatt érdemesebb több osztalékok fizetni, és csak a 10% feletti hozamot hozó befektetésekbe visszaforgatni a nyereséget.

h) \[\frac{P}{E} = \frac{PV}{EPS_1} = \frac{1411,8}{160} = 8,82 \]
4.11. Feladat

Az FFG ZRt.-t idén alapították, 30 millió Ft induló tőkével. A társaságnak 12.000 darab részvénye van forgalomban. A társaság várható sajáttőke-arányos eredménye 20%, és az eredmény 40%-át fogják osztalékként kiosztani. Abban a befektetők egyetértenek, hogy a társaságtól elvárt hozam évi 16%.

Mekkora a következő éves várható eredmény és a teljes várható osztalék nagysága?

a) Mekkora az egy részvényre várható eredmény és osztalék nagysága? Mit jelent a „forgalomban lévő részvények” kifejezés?

b) Mekkora a fenntartható növekedési ütem és egy részvény reális árfolyama?

c) Mekkora a részvény osztalékhozama, ha a részvény ténylegesen a c) pontban meghatározott áron forog? Vesse össze a kapott értéket a részvénytől elvárt hozammal!

d) Mekkora a részvény PVGO-ja?

e) Alacsonyabb vagy magasabb osztalékot érdemes fizetni? Miért?

f) A fenti osztalékpolitikával mekkora a részvény P/E rátája?

a) \(Earnings_1 = 30M \cdot 0.2 = 6M(Ft) \)
\[\sum DIV_1 = 6M \cdot 0.4 = 2.4M(Ft) \]

b) \(EPS_1 = \frac{6M}{12000} = 500(Ft) \)
\[DIV_1 = 500 \cdot 0.4 = \frac{2AM}{12000} = 200(Ft) \]

Forgalomban lévő részvények: melyek nem a társaság saját tulajdonában állnak.

c) \(g = 0.20 \cdot 0.6 = 0.12 \)
\[PV = \frac{200}{0.16-0.12} = 5000(Ft) \]

e) \(DY = \frac{200}{5000} = 0.04 \)
\[r = 0.16 = DY + g = 0.04 + 0.12 \]

e) \(PVGO = PV - \frac{EPS_1}{r} = 5000 - \frac{500}{0.16} = 3125(Ft) \)

f) Alacsonyabb, a pozitív PVGO (ROE nagyobb r-nél) miatt érdemesebb többet újra befektetni.

h) \(P_E = \frac{5000}{500} = 10 \)
5. Szeminárium - Kockázat

Tesztek

1. Melyik állítás igaz? A hatékony portfóliók…
 a) adott kockázat mellett maximális hozamot biztosítanak.
 b) azon befektetések, amelyeket erősen hatékony piacokon fektetnek be.
 c) minden esetben a csak kockázatos eszközt tartalmaznak.
 d) minden olyan kombináció, amely legalább negyven éértékpapírt tartalmaz

2. A befektetők csak az alábbi portfóliókba fektethetik vagyonukat:

<table>
<thead>
<tr>
<th>Portfólió</th>
<th>Várható hozam</th>
<th>Szórás</th>
</tr>
</thead>
<tbody>
<tr>
<td>'X'</td>
<td>10%</td>
<td>18%</td>
</tr>
<tr>
<td>'Y'</td>
<td>12%</td>
<td>18%</td>
</tr>
<tr>
<td>'Z'</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Ezek alapján melyik portfólió hatékony?
 a) mindhárom
 b) 'X'
 c) 'Y'
 d) 'Z'

3. A portfóliónkban csak kétféle részvény szerepel, 'A', amelynek várható hozama 12% és 'B' amelynek várható hozama 20%. Mennyi a portfólió várható hozama, ha pénzünk felét 'A', másik felét 'B' részvénybe fektettük?
 a) 14%
 b) 20%
 c) 16%
 d) 11%

4. Vegyünk egy két, kockázatos elemből álló portfóliót. Melyik esetben változik lineárisan a portfólió szórása a súlyok függvényében?
 a. Ha a két befektetés hozama között 0,5 a korrelációs együttható.
 b. Ha az egyik befektetésnek 0 a várható hozama.
 c. Ha a két befektetés hozama között +1 a korrelációs együttható.
 d. Ha a két befektetés hozama között 0 a korrelációs együttható.

5. Az alábbiak közül melyiket nem választaná egy kockázatkerülő befektető?
 a. Két, azonos várható hozamú befektetés közül a kisebb kockázatút.
 b. Két, azonos kockázatú befektetés közül, aminek nagyobb a várható hozama.
 c. Két, azonos várható hozamú befektetés közül a nagyobb kockázatút.
 d. Két, azonos várható hozamú befektetés közül azt, amely hozamának alacsonyabb a szórása.
Példák

5.1. Feladat

A befektetők kizárólag az alábbi portfóliók egyikébe fektethetik vagyonukat:

<table>
<thead>
<tr>
<th>Portfólió</th>
<th>Várható hozam %</th>
<th>Hozam szórása %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>30</td>
</tr>
</tbody>
</table>

Mely portfóliók hatékonyak?

'C'-nél jobb 'B'. 'B'-nél jobb 'D'. 'A'-nál jobb 'E'. Így 'D' és 'E' portfóliók a hatékonyak.

5.2. Feladat

Ön kétféle befektetést tart. 1000 db kockázatmentes állampapírt, amelyek árfolyama 8000 Ft/db, hozama évi 5%. Illetve 2000 db részvényt, amely jelenlegi árfolyama 3000 Ft/db, de a hozama bizonytalan. A részvény estében az egy év múlva lehetséges árfolyamokat az alábbi táblázat szemlélteti:

<table>
<thead>
<tr>
<th>Teljesítmény</th>
<th>Valószínűség</th>
<th>Árfolyam egy év múlva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szuper</td>
<td>30%</td>
<td>5000 Ft</td>
</tr>
<tr>
<td>Jó</td>
<td>50%</td>
<td>3500 Ft</td>
</tr>
<tr>
<td>Gyenge</td>
<td>20%</td>
<td>1250 Ft</td>
</tr>
</tbody>
</table>

a) Mekkora a részvény várható árfolyama?
b) Mekkora a részvény éves várható hozama?
c) Mekkora a portfólió éves várható hozama?
a) \[E(S_1) = 0,3 \cdot 5000 + 0,5 \cdot 3500 + 0,2 \cdot 1250 = 3500 \text{ Ft/db} \]

b) \[r = \frac{E(S_1)}{S_0} - 1 = \frac{3500}{3000} - 1 = 0,1666 = 16,66\% \]

c) \[w_A = \frac{1000 \cdot 8000}{1000 \cdot 8000 + 2000 \cdot 3000} = \frac{4}{7} \]
\[w_R = \frac{2000 \cdot 3000}{1000 \cdot 8000 + 2000 \cdot 3000} = \frac{3}{7} \]
\[E(r_p) = \sum_i w_i \cdot r_i = w_A \cdot r_A + w_R \cdot r_R = \frac{4}{7} \cdot 0,05 + \frac{3}{7} \cdot 0,1666 = 0,1 = 10\% \]

Megjegyzés: a későbbi feladatokban sok esetben a várható érték jelölését, \(E(x) \), már elhagyjuk.

5.3. Feladat

A „Banán” és a „Vanília” részvények hozamainak variancia-kovariancia mátrixa a következő:

<table>
<thead>
<tr>
<th></th>
<th>Banán</th>
<th>Vanília</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banán</td>
<td>144</td>
<td>54</td>
</tr>
<tr>
<td>Vanília</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

a) Mekkora a két részvény kockázata (hozamának szórása) és a hozamuk korrelációja?
b) Mekkora annak a portfóliónak a kockázata, mely 60%-ban a „Banán”, 40%-ban a „Vanília” részvényből áll?

\[\sigma_B = \sqrt{144} = 12 \]
\[\sigma_V = \sqrt{81} = 9 \]
\[COV_{B,V} = \rho_{B,V} \cdot \sigma_B \cdot \sigma_V \] és ebből kifejezve a korr. együtthatót
\[\rho_{B,V} = \frac{COV_{B,V}}{\sigma_B \cdot \sigma_V} = \frac{54}{\sqrt{144} \cdot \sqrt{81}} = \frac{54}{108} = 0,5 \]

\[\sigma_p^2 = w_B^2 \cdot \sigma_B^2 + w_V^2 \cdot \sigma_V^2 + 2 \cdot \rho_{B,V} \cdot \sigma_B \cdot \sigma_V \cdot w_B \cdot w_V = \]
\[= w_B^2 \cdot \sigma_B^2 + w_V^2 \cdot \sigma_V^2 + 2 \cdot COV_{B,V} \cdot w_B \cdot w_V \]
\[= 0,6^2 \cdot 144 + 0,4^2 \cdot 81 + 2 \cdot 54 \cdot 0,6 \cdot 0,4 = 90,72 \]
\[\sigma_p = \sqrt{90,72} = 9,52 \ (9,52\%) \]
5.4. Feladat

Egy részvény mai ára 2000 Ft. Egy év múlva az árfolyam 20% valószínűséggel 4000 Ft, 40% valószínűséggel 3000 Ft és 40% valószínűséggel 1000 Ft. Lehetősége van kockázatmentes hitel felvételére 5%-os hozam mellett.

a) Mekkora a részvény jövő évi várható árfolyama? Mekkora a részvény várható hozama?

b) Mekkora a befektetésének várható hozama, ha saját pénze mellé még kétszer annyi hitelt vesz fel, és ezt mind a részvénybe fektetné?

\[
E(S_1) = 0,2 \cdot 4000 + 0,4 \cdot 3000 + 0,4 \cdot 1000 = 2400
\]

\[
E(r) = \frac{E(S_1)}{S_0} - 1 = \frac{2400}{2000} - 1 = 20\%
\]

\[r_{SP} = \sum w_i \cdot r_i = w_R \cdot r_R + w_H \cdot r_H = \frac{1}{2} \cdot 20\% - \frac{2}{1} \cdot 5\% = 50\%
\]

5.5. Feladat

Az 'A' értékpapír várható hozama 10%, kockázata (hozamának szórása) 5%. A 'B' értékpapír várható hozama 25%, kockázata 20%. A két részvény hozama közötti korrelációs együttható –1. Ön 10 millió forintot kíván befektetni. Mekkora lesz 10 millió forintos befektetésének várható hozama és a hozam szórása, ha

a) 3 millió forintot fektet az 'A' és 2 millió forintot a 'B' részvénybe?

b) 8 millió forintot fektet az 'A' és 2 millió forintot a 'B' részvénybe? Magyarázza meg a kapott eredményt!

\[w_A = \frac{3}{10} = 0,3
\]

\[w_B = \frac{7}{10} = 0,7
\]

\[r_p = \sum w_i \cdot r_i = w_A \cdot r_A + w_B \cdot r_B = 0,3 \cdot 10\% + 0,7 \cdot 25\% = 20,5\%
\]

\[\sigma_p^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot \rho_{AB} \cdot \sigma_A \cdot \sigma_B \cdot w_A \cdot w_B =
\]

\[= 0,3^2 \cdot 0,05^2 + 0,7^2 \cdot 0,2^2 + 2 \cdot (-1) \cdot 0,05 \cdot 0,2 \cdot 0,3 \cdot 0,7 = 0,0156
\]

\[\sigma_p = \sqrt{0,0156} = 0,125\ (12,5\%)
\]

\[w_A = \frac{8}{10} = 0,8
\]

© Befektetések és Vállalati Pénzügy Tanszék
\[w_B = \frac{2}{10} = 0,2 \]

\[r_p = \sum_i w_i \cdot r_i = w_A \cdot r_A + w_B \cdot r_B = 0,8 \cdot 10\% + 0,2 \cdot 25\% = 13\% \]

\[\sigma^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot \rho_{AB} \cdot \sigma_A \cdot \sigma_B \cdot w_A \cdot w_B = \]
\[= 0,8^2 \cdot 0,05^2 + 0,2^2 \cdot 0,2^2 + 2 \cdot (-1) \cdot 0,05 \cdot 0,2 \cdot 0,8 \cdot 0,2 = 0 \]

\[\sigma_p = \sqrt{0} = 0 \ (0\%) \]

A kockázat itt 0, tehát ez is egy kockázatmentes befektetés. Ez éppen az az egyetlen pont, ahol -1-es korrelációs együtthatónál érintjük az \(y \) tengelyt, vagyis pontosan a két értékpapír szórásának arányában fektetünk be (20:5 és 0,8:0,2).

5.6. Feladat

A portfóliójában az alábbi két részvény van, melyekről a következőket tudjuk:

<table>
<thead>
<tr>
<th>Részvény</th>
<th>Szórás</th>
<th>Darab</th>
<th>Árfolyam</th>
<th>Hozam</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>25%</td>
<td>3 000</td>
<td>2 000</td>
<td>10%</td>
</tr>
<tr>
<td>'B'</td>
<td>30%</td>
<td>4 000</td>
<td>1 000</td>
<td>40%</td>
</tr>
</tbody>
</table>

a) Mekkora az egyes részvények súlya a portfóliójában?
b) Mennyi portfóliójának várható hozama?
c) Milyen határok között lehet portfóliójának szórása a korreláció függvényében? Milyen korrelációk mellett veszi fől a portfólió szórása a maximális és a minimális értékét?
d) Felvesz 1 millió Ft kockázatmentes hitelt évi 5% kamatra, és az összes pénzét inkább az 'A' részvénybe fekteti. Mekkora a saját pénze várható hozama?

\[
a) \quad w_A = \frac{3000 \cdot 2000}{3000 \cdot 2000 + 4000 \cdot 1000} = 0,6 \]
\[
w_B = \frac{4000 \cdot 1000}{3000 \cdot 2000 + 4000 \cdot 1000} = 0,4 \]
\[
b) \quad r_p = \sum_i w_i \cdot r_i = w_A \cdot r_A + w_B \cdot r_B = 0,6 \cdot 10\% + 0,4 \cdot 40\% = 22\% \]
\[
c) \quad \text{maximum } \rho = 1 \text{ esetén} \]
\[
\sigma_{\text{max}}^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot \rho_{\text{max}} \cdot \sigma_A \cdot \sigma_B \cdot w_A \cdot w_B = \]
\[
= 0,6^2 \cdot 0,25^2 + 0,4^2 \cdot 0,3^2 + 2 \cdot 1 \cdot 0,25 \cdot 0,3 \cdot 0,6 \cdot 0,4 = 0,0729 \]
\[
\sigma_{\text{max}} = \sqrt{0,0729} = 0,27 \ (27\%) \]
minimum ρ = -1 esetén

\[
\sigma_{\text{min}}^2 = w_A^2 \cdot \sigma_A^2 + w_B^2 \cdot \sigma_B^2 + 2 \cdot \rho_{\text{min}} \cdot \sigma_A \cdot \sigma_B \cdot w_A \cdot w_B = \\
= 0,6^2 \cdot 0,25^2 + 0,4^2 \cdot 0,3^2 + 2 \cdot (−1) \cdot 0,25 \cdot 0,3 \cdot 0,6 \cdot 0,4 = 0,0009
\]

\[
\sigma_{\text{min}} = \sqrt{0,0009} = 0,03 \ (3\%)
\]

d) Eddigi pénze: 3000 \cdot 2000 + 4000 \cdot 1000 = 10 000 000 Ft

Ehhez vesz fel még 1 millió Ft hitelt, és az egészet ‘A’ részvénybe teszi.

Így a súlyok:

\[
w_A = \frac{11}{10} = 1,1 \\
w_H = \frac{-1}{10} = -0,1
\]

\[
r_{SP} = \sum_i w_i \cdot r_i = w_A \cdot r_A + w_H \cdot r_H = 1,1 \cdot 10\% - 0,1 \cdot 5\% = 10,5\%
\]

5.7. Feladat

Ön kétféle értékpapírba (állampapír és MESE részvény) fektethet be. Saját megtakarítása 2 millió forint, de a vásárláshoz igénybe vesz még 1 millió Ft értékben kedvező kamatozású, 4%-os hitelt is. Az így rendelkezésre álló 3 millió forintból a következőket teszi:

- 1 millió Ft értékben egyéves kockázatmentes állampapírt vesz, amelynek hozama évi 5%;
- 2 millió Ft értékben pedig a MESE részvényeket vesz, amelynek értéke 60%-os valószínűsséggel 0,5 millió Ft, 40%-os valószínűsséggel 6 millió Ft lesz.

a) Mekkora a MESE részvény várható árfolyama? Mekkora a várható hozama?

b) Mekkora a két befektetése várható hozama?

c) Mekkora a teljes befektetésének várható hozama? Hogyan változna az eredmény, ha kiderül, hogy mégsem kap kedvezményes hitelt, és így a hitelre a piaci kamatot, évi 15%-ot kell fizetnie?

\[
a) \quad E(S_1) = 0,6 \cdot 0,5 M Ft + 0,4 \cdot 6 M Ft = 2,7 M Ft
\]

\[
b) \quad E(r_M) = \frac{S_1}{S_0} - 1 = \frac{2,7 M Ft}{2 M Ft} - 1 = 35\%
\]

\[
c) \quad r_p = \sum_i w_i \cdot r_i = w_A \cdot r_A + w_M \cdot r_M = \frac{1}{3} \cdot 5\% + \frac{2}{3} \cdot 35\% = 25\%
\]

\[
c) \quad r_{SP} = \sum_i w_i \cdot r_i = w_P \cdot r_P + w_H \cdot r_H = \frac{2}{2} \cdot 25\% - \frac{1}{2} \cdot 4\% = 35,5\%
\]
ha a hitel nem kedvezményes:

\[r_{SP} = \sum w_i \cdot r_i = w_p \cdot r_p + w_H \cdot r_H = \frac{2 + 1}{2} \cdot 25\% - \frac{1}{2} \cdot 15\% = 30\% \]

Mivel drágult a hitel, csökkent a portfólió hozama, bár még mindig 25% felett van, hiszen a kamat még így is kisebb, mint a 25% hozam, amibe befektettük a hitelt. A kockázatról most nem beszélünk, de ne feledjük, az is nő.

5.8. Feladat

Önnek 8 millió Ft saját pénze van, ami mellé 2 millió Ft kockázatmentes 5% kamatozású hitelt vett fel. A 10 millió Ft-ot két részvényből álló portfólióba fekteti be. 6 millió Ft-ot ’X’ részvénybe tesz, melynek várható hozama 15%, kockázata (hozamának szórása) 8%. 4 milliót pedig ’Y’ részvénybe, melynek várható hozama 20%, kockázata (hozamának szórása) 12%. A két részvény hozama közötti korreláció 0,7.

a) Mekkora a portfólió várható hozama és szórása?

\[r_p = \sum w_i \cdot r_i = w_X \cdot r_X + w_Y \cdot r_Y = \frac{6}{10} \cdot 15\% + \frac{4}{10} \cdot 20\% = 17\% \]

\[\sigma_p^2 = w_X^2 \cdot \sigma_X^2 + w_Y^2 \cdot \sigma_Y^2 + 2 \cdot \rho_{X,Y} \cdot \sigma_X \cdot \sigma_Y \cdot w_X \cdot w_Y \]

\[= 0,6^2 \cdot 0,08^2 + 0,4^2 \cdot 0,12^2 + 2 \cdot 0,7 \cdot 0,08 \cdot 0,12 \cdot 0,6 \cdot 0,4 = 0,0078 \]

\[\sigma_p = \sqrt{0,0078} = 0,0885 \ (8,85\%) \]

b) Mekkora a befektetésének várható hozama és szórása?

\[r_{SP} = \sum w_i \cdot r_i = w_p \cdot r_p + w_H \cdot r_H = \frac{10}{8} \cdot 17\% - \frac{2}{8} \cdot 5\% = 20\% \]

Kockázatmentes és a kockázatos eszközök közötti korreláció 0. Kockázatmentes eszköz kockázata szintén 0.

\[\sigma_{SP}^2 = w_p^2 \cdot \sigma_p^2 + w_H^2 \cdot \sigma_H^2 + 2 \cdot \rho_{P,H} \cdot \sigma_p \cdot \sigma_H \cdot w_p \cdot w_H = 1,25^2 \cdot 0,0885^2 + (-0,25)^2 \cdot 0^2 + 2 \cdot 0 \cdot 0,0885 \cdot 0 \cdot 1,25 \cdot (-0,25) = 1,25^2 \cdot 0,0885^2 = 0,0122 \]

\[\sigma_{SP} = \sqrt{0,0122} = 0,1105 \ (11,05\%) \ (vagyis \sigma_{SP} = w_p \cdot \sigma_p) \]

5.9. Feladat

Az X és Y részvények hozamainak varancia-kovariancia mátrixa a következő:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>169</td>
<td>84</td>
</tr>
<tr>
<td>Y</td>
<td>99</td>
<td>84</td>
</tr>
</tbody>
</table>
Mekkora annak a portfóliónak a kockázata amelyik 70%-ban X és 30%-ban Y részvényből áll?

\[\sigma_p^2 = w_X^2 \cdot \sigma_X^2 + w_Y^2 \cdot \sigma_Y^2 + 2 \cdot COV_{X,Y} \cdot w_X \cdot w_Y = \\
= 0,7^2 \cdot 169 + 0,3^2 \cdot 99 + 2 \cdot 84 \cdot 0,7 \cdot 0,3 = 127 \]
\[\sigma_p = \sqrt{127} = 11,27 \text{ (11,27%)} \]

5.10. Feladat

Egy portfólióban 50 db KACSA részvény van, amelynek árfolyama 2000 Ft és 150 db CSIBE részvény, amelynek árfolyama 1500 Ft. A KACSA részvény várható hozama 15%, szórása 30%, a CSIBE részvény várható hozama 12%, szórása 20%. Mekkora a portfólió várható hozama? Milyen tartományban lehet a szórása?

\[w_K = \frac{50 \cdot 2000}{50 \cdot 2000 + 150 \cdot 1500} = 0,31 \]
\[w_C = \frac{150 \cdot 1500}{50 \cdot 2000 + 150 \cdot 1500} = 0,69 \]
\[r_p = \sum_i w_i \cdot r_i = w_K \cdot r_K + w_C \cdot r_C = 0,31 \cdot 15\% + 0,69 \cdot 12\% = 12,93\% \]

maximum \(\rho = +1 \) esetén

\[\sigma_{\text{max}}^2 = w_K^2 \cdot \sigma_K^2 + w_C^2 \cdot \sigma_C^2 + 2 \cdot \rho_{\text{max}} \cdot \sigma_K \cdot \sigma_C \cdot w_K \cdot w_C = \\
= 0,31^2 \cdot 0,3^2 + 0,69^2 \cdot 0,2^2 + 2 \cdot 1 \cdot 0,3 \cdot 0,2 \cdot 0,31 \cdot 0,69 = 0,0534 \]
\[\sigma_{\text{max}} = \sqrt{0,0534} = 0,231 \text{ (23,1%)} \]

minimum \(\rho = -1 \) esetén

\[\sigma_{\text{min}}^2 = w_K^2 \cdot \sigma_K^2 + w_C^2 \cdot \sigma_C^2 + 2 \cdot \rho_{\text{min}} \cdot \sigma_K \cdot \sigma_C \cdot w_K \cdot w_C = \\
= 0,31^2 \cdot 0,3^2 + 0,69^2 \cdot 0,2^2 + 2 \cdot (-1) \cdot 0,3 \cdot 0,2 \cdot 0,31 \cdot 0,69 = 0,00202 \]
\[\sigma_{\text{min}} = \sqrt{0,00202} = 0,045 \text{ (4,5%)} \]
6. Szeminárium - CAPM

Tesztek

1. Melyik állítás igaz a bétával kapcsolatban?
 a) A piaci portfólió átlagos bétája 0.
 b) A kockázatmentes eszköz bétája 0.
 c) Egy negatív bétájú eszköz hozama mindig negatív.
 d) A tőkepiaci egyenes a béták függvényében mutatja a várható hozamokat.

2. Válassza ki a helyes állítást! Ha egy befektetést a CAPM modell alapján vizsgálunk, ábrázoljuk a béta-várható hozam térben, és azt látjuk, hogy értékpapír-piaci egyenes alatt helyezkedik el, akkor a befektetés…
 a) alulértékel.
 b) felülvértekelt.
 c) jól értékel.
 d) árfolyama nőni fog.

3. Válassza ki a hamis állítást! A tőkepiaci árfolyamok modellje (CAPM) feltételezi, hogy
 a) a befektetők homogén várakozásokkal rendelkeznek.
 b) a befektetőket alapvetően az a piaci kockázat érdekli, amit diverzifikációval nem tudnak kiküszöbölni.
 c) a befektetők azonos mértékben kockázatkerülők.
 d) a hitelnyújtás és a hitelfelvétel azonos kamatláb mellett történik.

4. A CAPM-modell alapján, ha egy befektetés bétája 1,5 és a piaci portfólió várható hozama 10%, a kockázatmentes hozam 5%, akkor, ha a piaci hozam 1%-ponttal emelkedik, akkor a befektetés várható hozama…
 a) 1,5 %-kal emelkedik.
 b) 1,5%-ponttal emelkedik.
 c) 1,5%-kal csökken.
 d) 1,5%-ponttal csökken.

5. Mekkora annak a befektetésnek a hozama, amelynek bétája 1,2, ha a piaci portfólió várható hozama 8%, hozamának szórása 9%, a kockázatmentes hozama 2%?
 a) 9,2%
 b) 10,4%
 c) 11,6%
 d) 13,5%
Feladatok

6.1. Feladat

Az árfolyamadatok elemzését követően rendelkezésére állnak az 'A' és a 'B' részvény, valamint a piaci portfólió variancia-kovariancia mátrixa, amely a következő:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Piac</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>36</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>64</td>
<td>43</td>
</tr>
<tr>
<td>Piac</td>
<td>25</td>
<td>43</td>
<td>81</td>
</tr>
</tbody>
</table>

a) Határozza meg a részvények, valamint a piaci portfólió hozamának szórását!
b) Mekkora a részvények és a piaci portfólió bétája?
c) Mekkora a részvények CAPM szerinti várható hozama, ha a kockázatmentes hozam 3% és a piaci portfólió várható hozama 7%?

\[\begin{aligned}
\sigma_A &= \sqrt{36} = 6 \text{ (6\%)} \\
\sigma_B &= \sqrt{64} = 8 \text{ (8\%)} \\
\sigma_M &= \sqrt{81} = 9 \text{ (9\%)} \\
\beta_i &= \frac{\text{COV}_{i,M}}{\sigma_M^2} \\
\beta_A &= \frac{\text{COV}_{A,M}}{\sigma_M^2} = \frac{25}{81} = 0,31 \\
\beta_B &= \frac{\text{COV}_{B,M}}{\sigma_M^2} = \frac{43}{81} = 0,53 \\
\beta_M &= \frac{\text{COV}_{M,M}}{\sigma_M^2} = \frac{81}{81} = 1 \\
\end{aligned} \]

c) \[\begin{aligned}
E(r_f) &= 3\% \\
E(r_M) &= 7\% \\
E(r_i) &= r_f + \beta_i (E(r_M) - r_f) \\
E(r_A) &= r_f + \beta_A (E(r_M) - r_f) = 0,03 + 0,31 \cdot (0,07 - 0,03) = 4,23\% \\
E(r_B) &= r_f + \beta_B (E(r_M) - r_f) = 0,03 + 0,53 \cdot (0,07 - 0,03) = 5,12\% \\
\end{aligned} \]
6.2. Feladat

Az Ön feladata két részvény várható hozamának meghatározása. Az Ön számára rendelkezésre áll a két részvény, a piaci portfólió, valamint a kockázatmentes eszköz variancia-kovariancia mátrixa. A kockázatmentes hozam 2%, a piaci portfólió várható hozama 11%. A CAPM feltevései fennállnak.

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>L</th>
<th>Market</th>
<th>Kock. mentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>121</td>
<td>57,2</td>
<td>72,6</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>57,2</td>
<td>64</td>
<td>38,4</td>
<td>0</td>
</tr>
<tr>
<td>Market</td>
<td>72,6</td>
<td>38,4</td>
<td>144</td>
<td>0</td>
</tr>
<tr>
<td>Kock. mentes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a) Határozza meg a két részvény (’K’ és ’L’) közötti korrelációs együtthatót!
b) Határozza meg a két részvény és a kockázatmentes eszköz bétáját!
c) Mekkora a két részvény várható hozama?

\[
\begin{align*}
COV_{i,j} & = \sigma_i \cdot \sigma_j \cdot \rho_{i,j} \\
\sigma_K & = \sqrt{121} = 11 \ (11\%) \\
\sigma_L & = \sqrt{64} = 8 \ (8\%) \\
\rho_{K,L} & = \frac{COV_{K,L}}{\sigma_K \sigma_L} = \frac{57.2}{11 \cdot 8} = 0.65 \\

\beta_K & = \frac{COV_{K,M}}{\sigma_M^2} = \frac{72.6}{144} = 0.5 \\
\beta_L & = \frac{COV_{L,M}}{\sigma_M^2} = \frac{38.4}{144} = 0.27 \\
\beta_{Kock,M} & = \frac{COV_{Kock,M,M}}{\sigma_M^2} = \frac{0}{144} = 0 \\

E(r_K) & = r_f + \beta_K (E(r_M) - r_f) = 0.02 + 0.5 \cdot (0.11 - 0.02) = 6.54\% \\
E(r_L) & = r_f + \beta_L (E(r_M) - r_f) = 0.03 + 0.27 \cdot (0.11 - 0.02) = 4.4\%
\end{align*}
\]

6.3. Feladat

Egy részvény bétája 1.2, a várható osztalék hosszútávú növekedési üteme évi 4%. A piaci portfólió várható hozama évi 8%, a kockázatmentes befektetések hozama évi 2%. A CAPM feltevései fennállnak.

a) Határozza meg a részvény várható hozamát!
b) Mekkora a részvény árfolyama, ha az idei 2000 Ft osztalékot ma fogják kifizetni?
6.4. Feladat

Egy portfólióban 300 db ’Q’ részvény és 750 db ’S’ részvény van. ’Q’ árfolyama 2000 Ft, jövő évi várható osztalék 150 Ft, a várható osztalék növekedési üteme évi 6%. ’S’ árfolyama 800 Ft, várható osztalék 200 Ft, növekedési ütem 4%. A piaci portfólió várható hozama évi 14%, a kockázatmentes kamatláb évi 3%.

a) Mekkora a portfólió várható hozama? Az osztalékdiszkontálási modellt használja!
b) Mekkora a portfólió bétája?

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mennyiség</td>
<td>300 db</td>
<td>750 db</td>
</tr>
<tr>
<td>P</td>
<td>2000 Ft</td>
<td>800 Ft</td>
</tr>
<tr>
<td>Érték</td>
<td>600 000 Ft</td>
<td>600 000 Ft</td>
</tr>
<tr>
<td>w</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>DIV₁</td>
<td>150 Ft</td>
<td>200 Ft</td>
</tr>
<tr>
<td>g</td>
<td>6%</td>
<td>4%</td>
</tr>
</tbody>
</table>

\[
E(r_M) = 14\%
\]

\[
r_f = 3\%
\]

\[
E(r_Q) = r_f + \beta_Q (E(r_M) - r_f) = 0,02 + 1,2 \cdot (0,08 - 0,02) = 9,2\%
\]

\[
E(r_S) = r_f + \beta_S (E(r_M) - r_f) = 0,02 + 1,2 \cdot (0,08 - 0,02) = 9,2\%
\]

\[
DIV_0 = 2000 Ft
\]

\[
DIV_1 = 2000 \cdot (1 + 0,04) = 2080 Ft
\]

\[
P_0 = DIV_0 + \frac{DIV_1}{r - g} = 2000 + \frac{2080}{0,092 - 0,04} = 42 000 Ft
\]
\[\beta_p = 1,66 \]

6.5. Feladat

Két részvény ('I' és 'T'), valamint az \(M \) piaci portfólió hozamainak kovariancia mátrixa a következő:

<table>
<thead>
<tr>
<th></th>
<th>(M)</th>
<th>(I)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>100</td>
<td>110</td>
<td>70</td>
</tr>
<tr>
<td>(I)</td>
<td>144</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td></td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

A piaci portfólió várható hozama 11%, az 'I' értékpapír várható hozama 11,6%.

a) Mekkora annak a portfóliónak a kockázata (hozamának szórása), ahol a portfólió értékének 60%-át az 'I', 40%-át az 'T' értékpapírba fektették?

b) Mekkora az 'T' értékpapír várható hozama a CAPM szerint?

c) Az 'T' értékpapír hozamának varianciája hány százalékban adódik az értékpapír egyedi kockázatából?

\[E(r_M) = 11\% \]
\[E(r_I) = 11,6\% \]

a) \[
\sigma_p^2 = w_I^2 \cdot \sigma_I^2 + w_T^2 \cdot \sigma_T^2 + 2 \cdot \rho_{I,T} \cdot \sigma_I \cdot \sigma_T \cdot w_I \cdot w_T = \\
\sigma_I^2 = w_I^2 \cdot \sigma_I^2 + w_T^2 \cdot \sigma_T^2 + 2 \cdot COV_{I,T} \cdot w_I \cdot w_T = \\
= 0,6^2 \cdot 144 + 0,4^2 \cdot 196 + 2 \cdot 96 \cdot 0,6 \cdot 0,4 = 129,28 \\
\sigma_p = \sqrt{129,28} = 11,37 \ (11,37\%) \\
\]

b) \[
E(r_T) = r_f + \beta_T (E(r_M) - r_f) \rightarrow \text{de } r_f \text{ nincs (közvetlenül) megadva} \\
E(r_I) = r_f + \beta_I (E(r_M) - r_f) \\
0,116 = r_f + \frac{110}{100} (0,11 - r_f) \\
0,116 - 0,121 = r_f - \frac{110}{100} \cdot r_f \\
r_f = 5\% \\
E(r_T) = 0,05 + \frac{70}{100} \cdot (0,11 - 0,05) = 9,2\% \\
\]

c) \[
\sigma_i^2 = \beta_i^2 \cdot \sigma_M^2 + \sigma_e^2 (i) \\
\]
\[
\sigma_e^2(T) = \sigma_T^2 - \beta_T^2 \cdot \sigma_M^2 = 196 - \left(\frac{70}{100}\right)^2 \cdot 100 = 147
\]
\[
\frac{\sigma_e^2(T)}{\sigma_T^2} = \frac{147}{196} = 0.75 \rightarrow 75\%
\]

6.6. Feladat

Az Ön portfóliójában 450 'D' és 1000 'F' részvény van. A papírokról a következőket tudja:

<table>
<thead>
<tr>
<th>Név</th>
<th>Árfolyam</th>
<th>Várható hozam</th>
<th>Részvény kockázat (σ)</th>
<th>Piaci kockázat (β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2000 Ft</td>
<td>14,1%</td>
<td>25% 1,3</td>
<td>196 0,6</td>
</tr>
<tr>
<td>F</td>
<td>1100 Ft</td>
<td>9,2%</td>
<td>18% 0,6</td>
<td>196 0,6</td>
</tr>
</tbody>
</table>

A két értékpapír hozama közötti korrelációs együttható \(\rho = 0,7 \), a piaci portfólió kockázata 20%.

a) Mekkora annak az Ön portfóliónak összes kockázata?

b) Mekkora annak az Ön portfóliónak egyedi kockázata?

c) Mekkora a kockázatmentes hozam?

a) \[
w_D = \frac{450 \cdot 2000}{450 \cdot 2000 + 1000 \cdot 1100} = 0,45
\]
\[
w_F = 1 - 0,45 = 0,55
\]
\[
\sigma_p^2 = w_D^2 \cdot \sigma_D^2 + w_F^2 \cdot \sigma_F^2 + 2 \cdot \rho_{D,F} \cdot \sigma_D \cdot \sigma_F \cdot w_D \cdot w_F =
\]
\[
= 0,45^2 \cdot 0,25^2 + 0,55^2 \cdot 0,18^2 + 2 \cdot 0,7 \cdot 0,25 \cdot 0,18 \cdot 0,45 \cdot 0,55 = 0,038
\]
\[
\sigma_p = \sqrt{0,038} = 0,195 \rightarrow 19,5\%
\]

b) \[
\beta_p = w_D \cdot \beta_D + w_F \cdot \beta_F = 0,45 \cdot 1,3 + 0,55 \cdot 0,6 = 0,915
\]
\[
\sigma_p^2 = \beta_p^2 \cdot \sigma_M^2 + \sigma_e^2(P)
\]
\[
\sigma_e^2(P) = \sigma_p^2 - \beta_p^2 \cdot \sigma_M^2 = 0,038 - 0,915^2 \cdot 0,2^2 = 0,004511
\]
\[
\sigma_e = \sqrt{0,004511} = 6,72\%
\]

c) \[
E(r_i) = r_f + \beta_i (E(r_M) - r_f)
\]
I. \[0,141 = r_f + 1,3 \cdot (E(r_M) - r_f)\]
II. \[0,092 = r_f + 0,6 \cdot (E(r_M) - r_f) \rightarrow 0,6 \cdot 1,3\]
II. \[0,199 = 2,167 \cdot r_f + 1,2 \cdot (E(r_M) - r_f)\]
II. I. \[0,0583 = 1,167 \cdot r_f \rightarrow r_f = 4,999\% \sim 5\%\]
6.7. Feladat

Önnek két befektetése van. Az ’K’ befektetés értéke 1,5 M Ft, bétája 0,6. Az ’L’ befektetés értéke 2,5 M Ft, bétája 1,1. A kockázatmentes hozam 4%, a piaci kockázati prémium évi 8%.

a) Mekkora ’K’, ’L’ és a portfóliója várható hozama, ha a CAPM teljesül?
b) Mekkora a portfólió átlagos bétája?

\[
\begin{align*}
& a) \\
w_K &= \frac{1500}{4000} = 0,375 \\
w_L &= 0,625 \\
\beta_K &= 0,6 \\
\beta_L &= 1,1 \\
r_f &= 4\% \\
E(M) - r_f &= 8\% \\
E(r_K) &= r_f + \beta_K (E(M) - r_f) = 0,04 + 0,6 \cdot 0,08 = 8,8\% \\
E(r_L) &= r_f + \beta_L (E(M) - r_f) = 0,04 + 1,1 \cdot 0,08 = 12,8\% \\
E(p) &= w_K \cdot E(r_K) + w_L \cdot E(r_L) = 0,375 \cdot 8,8\% + 0,625 \cdot 12,8\% = 11,3\% \\
& b) \\
\beta_P &= w_K \cdot \beta_K + w_L \cdot \beta_L = 0,375 \cdot 0,6 + 0,625 \cdot 1,1 = 0,91
\end{align*}
\]

6.8. Feladat

A ’T’ részvény kockázata (hozamának szórása) 18%, bétája 1,2. Az ’S’ részvény kockázata 32%, bétája 2,3. A két részvény hozamának korrelációs együthatója 0,7. A piaci portfólió kockázata 12%, várható hozama 14%, a kockázatmentes hozam 4%. Tegyük fel, hogy a CAPM feltevései teljesülnek.

a) Mekkora annak a portfóliónak a kockázata és várható hozama, amelyet úgy hozunk létre, hogy a vagyon 30%-át a ’T’ részvénybe és 70%-át a ’S’ részvénybe fektetjük?
b) Jól diverzifikált-e az így kialakított porfólió? Válaszát indokolja!

\[
\begin{align*}
& a) \\
\sigma_P^2 &= w_T^2 \cdot \sigma_T^2 + w_S^2 \cdot \sigma_S^2 + 2 \cdot \rho_{TS} \cdot \sigma_T \cdot \sigma_S \cdot w_T \cdot w_S = \\
&= 0,3^2 \cdot 0,18^2 + 0,7^2 \cdot 0,32^2 + 2 \cdot 0,7 \cdot 0,18 \cdot 0,32 \cdot 0,3 \cdot 0,7 = 0,07 \\
\sigma_P &= \sqrt{0,07} = 0,2646 \rightarrow 26,46\%
\end{align*}
\]
\[E(r_T) = r_f + \beta_T(E(r_M) - r_f) = 0,04 + 1,2 \cdot 0,1 = 16\% \]
\[E(r_S) = r_f + \beta_S(E(r_M) - r_f) = 0,04 + 2,3 \cdot 0,1 = 27\% \]
\[r_p = w_T \cdot r_T + w_S \cdot r_S = 0,3 \cdot 16 + 0,7 \cdot 27 = 23,7 \]

vagy
\[\beta_p = w_T \cdot \beta_T + w_S \cdot \beta_S = 0,3 \cdot 1,2 + 0,7 \cdot 2,3 = 1,97 \]
\[E(r_p) = r_f + \beta_p(E(r_M) - r_f) = 0,04 + 1,97 \cdot 0,1 = 23,7\% \]

\[b) \]

Egy portfólió akkor hatékony, ha csak piaci kockázata van (nincs egyedi kockázata)
\[\sigma_p^2 = \beta_p^2 \cdot \sigma_M^2 + \sigma_e^2(P) \]
\[\sigma_p^2 = 0,07 \]
\[\beta_p^2 \cdot \sigma_M^2 = 1,97^2 \cdot 0,12^2 = 0,056 \]
\[\rightarrow nem hatékony, nem jól diverzifikált, mert a piaci kockázata (0,056) kisebb, mint a teljes kockázat (a portfólió variancia, ami 0,07), tehát maradt még benne egyedi kockázat is. \]

6.9. Feladat
Az Ön portfóliójában a piaci portfólió és a kockázatmentes befektetés szerepel, a pénze 75%-át piaci portfólióban és a 25%-át pedig kockázatmentes befektetésben tartja. A kockázatmentes hozam évi 2%, a piaci portfólió várható hozama évi 8%, a piaci portfólió hozamának szórása 10%.

a) Mekkora az Ön portfóliójának összes kockázata?
b) Mekkora az Ön portfóliójának a bétája?
c) Hatékony-e az Ön portfóliója? Miért?

\[a) \]
\[\sigma_p^2 = w_i^2 \cdot \sigma_i^2 + w_j^2 \cdot \sigma_j^2 + 2 \cdot \rho_{i,j} \cdot \sigma_i \cdot \sigma_j \cdot w_i \cdot w_j = \]

A kockázatmentes szórása 0 és a kockázatmentes korrelációja is 0.
\[\sigma_p = \sigma_M \cdot w_M = 0,1 \cdot 0,75 = 0,075 \rightarrow 7,5\% \]

\[b) \]
\[\beta_p = w_{Kock,M} \cdot \beta_{Kock,M} + w_{Piaci} \cdot \beta_{Piaci} = 0,25 \cdot 0 + 0,75 \cdot 1 = 0,75 \]

\[c) \]

Hatékony portfólió: csak piaci kockázata van.
A piaci portfólió hatékony, a kockázatmentes portfólió is hatékony.

Ezért az ebből álló kételemű portfólió is hatékony.
6.10. Feladat

A piaci portfólió, a ’G’ és a ’J’ részvény hozamának variancia-kovariancia mátrixa a következő:

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>196</td>
<td>176.4</td>
<td>67.2</td>
</tr>
<tr>
<td>J</td>
<td>176.4</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>67.2</td>
<td>172.8</td>
<td>144</td>
</tr>
</tbody>
</table>

A piaci portfólió várható hozama 12%, az a kockázatmentes hozam évi 5%. Tegyük fel, hogy a CAPM feltevései teljesülnek.

a) Mekkora annak a portfóliónak a bétája és várható hozama, amely a pénz felét a ’G’ és a másik felét a ’J’ részvénybe fekteti?

b) Hogyan hozható létre egy hatékony portfólió, aminek a bétája megegyezik a fenti portfólióéval? Mekkora ennek a hatékony portfóliónak a szórása és várható hozama?

\[\beta_P = w_G \cdot \beta_G + w_J \cdot \beta_J = 0,5 \cdot 0,47 + 0,5 \cdot 1,2 = \frac{5}{6} = 0,833 \]

\[E(r_P) = r_f + \beta_P(E(r_M) - r_f) = 0,05 + \frac{5}{6}(0,12 - 0,05) = 10,83\% \]

|\(\sigma_M = 12\% \|
|\(\sigma^2_P = \beta^2_P \cdot \sigma^2_M + \sigma^2_E(P) \), hiszen nincs egyedi kockázat

\[\sigma_P = \beta_P \cdot \sigma_M = 0,833 \cdot \sqrt{144} = 10 \]

Kockázatmentes eszközből (melynek bétája 0) és piaci portfólióból (ami hatékony, és amelynek bétája 1) összerakva hozható létre. A kettő kombinációja hatékony portfóliók egyenesét adja. Ami ezen van, az hatékony.

Piaci portfólió súlya: amekkora a hatékony portfólió bétája, azaz 0,833.

Kockázatmentes eszköz súlya: 1 - 0,833 = 0,167 (as a súlyok összege 1)

Tehát pénzünk 0,833%-át a piaci portfólióba tesszük, a maradékot kockázatmentes eszközbe, és így szórása és hozama a portfóliónak:

\[\sigma_P = 0,833 \cdot 12 = 10: r_P = 0,833 \cdot 12 + 0,167 \cdot 5 = 10,83 \]

És ez hatékony portfólió.
7. Szeminárium - Határidős ügyletek

Tesztek

1. Válassza ki a helyes állítást!
 a) A futures termék esetében soha sem létezik tényleges fizikai leszállítás.
 b) A forward termék esetében napi elszámolás van.
 c) A forward termék esetében általában a szereplők a pozíciót futamidő végéig megtartják.
 d) A forward termék tőzsdei termék.

2. Mekkora az 1 év múlva kezdődő egyéves határidős hozam, ha az 1 éves spot effektív hozam évi 10% és a 2 éves spot effektív hozam évi 11%?
 a) 12%
 b) 11%
 c) 9%
 d) 9,9%

3. Egy osztalékot nem fizető részvény árfolyama 100 forint, mennyi az egy éves határidő árfolyama, ha a kockázatmentes hozamgörbe 5%-on vízszintes?
 a) 105
 b) 100
 c) 110
 d) 102

4. Válassza ki, melyik befektető típus nem létezik a pénzügyi szaknyelvben?
 a) Arbitrazsör
 b) Fedezeti ügyletkötő
 c) Spekuláns
 d) Árdiktáló

5. Hogyan viszonyul egymáshoz az euro forintban kifejezett határidős és azonnali árfolyama, ha a forint hozamgörbe éves szinten 2%, míg az euro hozamgörbe éves szinten 1%, mindkettő vízszintes?
 a) Az euro forintban kifejezett határidős árfolyama magasabb, mint az azonnali árfolyama.
 b) Az euro forintban kifejezett határidős árfolyama alacsonyabb, mint az azonnali árfolyama.
 c) Az euro forintban kifejezett határidős árfolyama egyenlő az azonnali árfolyammal.
 d) Nem lehet tudni, ezek alapján az euro forintban kifejezett határidős árfolyama lehet alacsonyabb is és magasabb is, mint az azonnali árfolyama.
Példák

7.1. Feladat

Mennyi egy részvény egy éves határidős árfolyama és a várható árfolyama, ha a részvény (amely egy évig osztaléktot biztosan nem fizet) árfolyama 1000 Ft, a várható hozam évi 30%, az egy éves kockázatmentes effektív hozam évi 10%?

\[F = 1000 \cdot 1,1 = 1100 \quad (a \ várható \ hozam \ itt \ nem \ kell!) \]

\[E(S) = 1000 \cdot 1,3 = 1300 \]

7.2. Feladat

Mennyi az egy éves határidős árfolyama annak a részvénynek, amelyik fél év múlva biztosan fizet 200 Ft osztalékot, jelenlegi árfolyama 1000 Ft, a várható hozam évi 30%, a kockázatmentes effektív hozam évi 10% minden lejáratra?

\[F = \left(1000 - \frac{200}{1,1^{0.5}} \right) \cdot 1,1 = 890,24 \]

7.3. Feladat

A kockázatmentes effektív hozam minden lejáratra évi 8%. Egy a végén egy összegben törlesztő államkötvény névleges kamata 10%, 10 év lejáratú, pillanatnyi bruttó árfolyama 113,42%. (Az árfolyamok közvetlenül kamatfizetés után értendők). Mennyi a kötvény egy éves határidős árfolyama ha

a) évente van kamatfizetés?

b) ha félévente van kamatfizetés?

Mivel a kötvény határidős ügylet futamideje közben kamatot fizet, így az időszakra eső kamatok jelenértékétől meg kell tisztitani (korrigálni) a prompt árfolyamot. Ezzel az alaptermék egy olyan kötvény lesz, amely mintha a futamidő végén indulna csak, és benne tisztán a határidős hozamok tükröződnek.

\[a) \ F = \left(113,42 - \frac{10}{1,08} \right) \cdot 1,08 = 112,5\% \]

\[b) \ F = \left(113,42 - \frac{5}{1,08^{0.5}} - \frac{5}{1,08^{1}} \right) \cdot 1,08 = 112,3\% \]
7.4. Feladat

Mennyi a kétéves határidős árfolyama annak a részvénynek, amelyik pontosan egy év múlva biztosan fizet 100 Ft osztalékot, jelenlegi árfolyama 2000 Ft, a várható hozam évi 10%, a kockázatmentes effektív hozam évi 5% minden lejáratra?

\[A \text{ két éves határidős árfolyam: } \]
\[F = \left(2000 - \frac{100}{1,05^1} \right) \cdot 1,05^2 = 2100 \]

7.5. Feladat

Határozza meg annak a kockázatos kötvénynek az egy éves határidős árfolyamát, amelynek a bruttó árfolyama a mai napon 101,12%, az éves névleges kamatlába 4%, és negyedévente fizet kamatot! A kötvénynek ma lesz az adott negyedévi kamatfizetése. A kötvénytől elvárt hozamgörbe 4%-on vízszintes, a kockázatmentes hozamgörbe 2%-on vízszintes. Mekkora a korrigált prompt árfolyam és a reális egy éves határidős árfolyam?

\[\text{Korrigált prompt árfolyam: } \]
\[S^* = S - PV (\text{kapott jövedelmek}) = 101,12 - \left(1 + \frac{1}{1,02^{0,25}} + \frac{1}{1,02^{0,5}} + \frac{1}{1,02^{0,75}} \right) = 97,15 \]

\[\text{Reális határidős árfolyam: } \]
\[F = S^* \cdot (1 + r_f)^1 = 97,15 \cdot 1,02 = 99,09 \]

7.6. Feladat

Egy annuitásos pénzáramlással rendelkező kötvényt ma bocsátottak ki. A kötvény névleges kamatlába évi 5%, amit évente fizet. A kötvény futamideje 8 év. A kockázatmentes hozamgörbe 5%-on vízszintes. Határozza meg a kötvény 1 éves határidős árfolyamát a következő kamatfizetés előtti időpontra!

\[S = 100, \text{azért mert } r = k \rightarrow P = NÉ \]
\[F = S^* \cdot (1 + r_f)^1 = 100 \cdot 1,05^1 = 105 \]

7.7. Feladat

Egy annuitásos pénzáramlással rendelkező kockázatmentes kötvényt ma bocsátottak ki. A kötvény éves névleges kamatlába 5%, a fizetés évente történik, a kötvény futamideje 8 év. A
kockázatmentes effektív hozamgörbe 6%-on vízszintes. Határozza meg a kötvény 2 éves határidős árfolyamát kamatfizetés utáni időpontra!

\[
AF(\text{Bév}, 5\% - \text{névleges kamatláb}) = \frac{1}{k} \left(1 - \frac{1}{1 + k}^t\right) = \frac{1}{0,05} \left(1 - \frac{1}{1 + 0,05}^8\right) = 6,4632
\]

\[
CF = \frac{\text{né}}{AF(\text{8 év, k=5\%})} = \frac{100}{6,4632} = 15,4722 \text{ a kötvény éves CF-ja 8 éven keresztül.}
\]

\[
AF(\text{Bév}, 6\%) = \frac{1}{r} \left(1 - \frac{1}{1 + r}^t\right) = \frac{1}{0,06} \left(1 - \frac{1}{1 + 0,06}^8\right) = 6,2098
\]

\[
P = CF \cdot AF(\text{8 év, 6\%}) = 15,4722 \cdot 6,2098 = 96,08 \text{ a kötvény kibocsátáskori árfolyama}
\]

Korrigált prompt árfolyam:

\[
S^* = S - PV(\text{kapott jövedelmek}) = 96,08 - \left(\frac{15,4722}{1,06} + \frac{15,4722}{1,06^2}\right) = 67,7134
\]

Paritásos határidős árfolyam:

\[
F = S^* \cdot (1 + r_f)^2 = 67,7134 \cdot 1,06^2 = 76,0828
\]

7.8. Feladat

a) Mennyi a fél éves és az egyéves határidős árfolyama a dollárnak forintban kifejezve, ha a spot árfolyam 280 USD/HUF, a dollár effektív hozam évi 1%, míg a forint effektív hozam évi 3% minden lejáratra. A betéti és a hitelkamatok példánkban megegyeznek.

b) Mit tenne, ha \(t = 1\) év mellett a piacon az egy éves határidős árfolyam \(F = 290\) lenne, azaz magasabb, mint az Ön által kiszámított egyensúlyi határidős árfolyam?

c) Mit tenne, ha \(t = 1\) év mellett a piacon az egy éves határidős árfolyam \(F = 270\) lenne, azaz alacsonyabb, mint az Ön által kiszámított egyensúlyi határidős árfolyam?

\[
a) \quad F_{USDHUF} = S_{USDHUF} \cdot \frac{(1 + r_{HUF})^t}{(1 + r_{USD})^t}
\]

\[
F_1 = 280 \cdot \frac{1,03}{1,01} = 285,54 \text{ USD/HUF}
\]

\[
F_{0,5} = 280 \cdot \frac{1,03^{0.5}}{1,01^{0.5}} = 282,76 \text{ USD/HUF}
\]

b)
$F_{\text{piaci}} > F_{\text{elmélet}} \rightarrow \text{határidős piacon eladok, prompt veszek szintetikusan:}\)

$SF \USD \text{ + (USD betét + USD prompt vétel + HUF hitelfelvétel)}$

Ha a fent kiszámolt F_1-nél magasabb a határidős árfolyam, mondjuk 290 HUF, akkor például 281,5534 HUF hitel felvételével 4,3 HUF biztos azonnali haszonra tehetünk szert a következő módon:

Hitelbe felveszünk 281,5534 HUF-t. Ebből 277,2272 HUF összeget átváltjuk spot árfolyamon dollárba, majd 0,9901 USD betétben 1%-on lekötjük egy évre. Év végén kapunk 1 $-t, erre az összegre (még ma) kötünk határidős eladást, azaz 290 USDHUF árfolyamon tudjuk, ahhoz, hogy 290 HUF hitelt kelljen törlesztenünk egy év múlva. Vagyis ma 281,5534 HUF hitel tudunk felvenni, azaz a 281,5534 és a 277,2272 közötti különbség a nyereségünk a félreárazáson.

c)

$F_{\text{piaci}} < F_{\text{elmélet}} \rightarrow \text{határidős piacon veszek, prompt eladok szintetikusan:}\)

$LF \USD \text{ + (USD hitel + USD prompt eladás + HUF betét)}$

Ha a fent kiszámolt F_1-nél alacsonyabb a határidős árfolyam, mondjuk 270 HUF, akkor például 262,1359 HUF betét elhelyezésével 15,1 HUF biztos azonnali haszonra tehetünk szert a következő módon:

A 277,2272 HUF összeget kapok, ha most spot árfolyamon átváltok 0,9901 USD-t, amelyet 0,9901 USD hitel felvételből finanszírozok. Egy év múlva vissza kell fizetnem az 1 $-t, erre az összegre (még ma) kötünk határidős vétel, azaz 270 USDHUF árfolyamon tudunk egy év
múlva 1 dollárt venni. Ahhoz, hogy legyen egy év múlva 270 HUF-om, berakok most a betétbe 262,1359 forintot. Az arbitrázs nyereségem a 277,2272 és a 262,1359 különbsége, azaz amennyiért ma tudok egy dollárt venni, és amennyit be kell raknom a forintbetétbe egy évre kamatozní.

7.9. Feladat

a) Mennyi a kétéves határidős árfolyama az eurónak forintban kifejezve, ha a spot árfolyam 320 EURUF, az euró hozam évi 2%, míg a forint hozam évi 3% minden lejáratra. A betéti és a hitelkamatok példánkban megegyeznek.

b) Mit tenne, ha t = 2 év mellett a piacon az egy éves határidős árfolyam F= 335 lenne, azaz magasabb, mint az Ön által kiszámított egyensúlyi határidős árfolyam?

c) Mit tenne, ha t = 2 év mellett a piacon az egy éves határidős árfolyam F= 321 lenne, azaz alacsonyabb, mint az Ön által kiszámított egyensúlyi határidős árfolyam?

\[
F_{EURHF} = S_{EURHF} \cdot \frac{(1 + r_{HUF})^t}{(1 + r_{EUR})^t}
\]

\[
F_2 = 320 \cdot \frac{1.03^2}{1.02^2} = 326,310 EURHUF
\]

b)

\[
F_{piaci}>F_{elméleti} \rightarrow \text{határidős piacon eladok, prompt veszek szintetikusan:}
\]

\[
SF EUR + (EUR betét + EUR prompt vétel + HUF hitelfelvétel)
\]

c)

\[
F_{piaci}<F_{elméleti} \rightarrow \text{határidős piacon veszek, prompt eladok szintetikusan:}
\]

\[
LF EUR + (EUR hitel + EUR prompt eladás + HUF betét)
\]

7.10. Feladat

Ön egy magyarországi gyárteleppel rendelkező vállalat. Euróban kell beszereznie minden negyedévben első napján az alapanyagokat (mennyisége, értéke előre ismert), mit tenne, hogy a deviza kockázatát fedezze?

Határidős piacon (forward vagy futures) fedezem a devizakitetttségemet, mert egy esetleges forint gyengülés következtében az alapanyagok árai megemelkedhetnek függetlenül az alapanyagár ár változásától. Megoldás: határidős deviza vétel

7.11. Feladat

Ön egy magyarországi gyárteleppel rendelkező vállalat. Euróban fog minden eladása realizálódni minden negyedév első napján, mit tenne, hogy ezeket a bevételeket fedezze?
Határidős piac (forward vagy futures) fedezem a devizakitetségemet, mert egy esetleges forint erősödés következtében a bevételem forintban kifejezett értéke csökkenhet. Megoldás: határidős deviza eladás

7.12. Feladat
A hozamgörbe 4%-on vízszintes. Számítsa ki az egy- és két év múlva induló egyéves határidős hozamokat, valamint az egy év múlva induló kétéves határidős hozamot (\(f_2, f_3, f_3\))!

\[
f_2 = \frac{(1 + r_2)^2}{(1 + r_1)} - 1 = \frac{1.04^2}{1.04} - 1 = 4\% \\
2f_3 = \frac{(1 + r_3)^3}{(1 + r_2)^2} - 1 = \frac{1.04^3}{1.04^2} - 1 = 4\% \\
f_3 = \sqrt{\frac{(1 + r_3)^3}{(1 + r_1)}} - 1 = \sqrt{\frac{1.04^3}{1.04}} - 1 = 4\%
\]

7.13. Feladat
Az egy-, két- és hároméves spot hozamok rendre 2%, 2,5% és 3% éves szinten. Állapítsa meg az \(f_2, f_3, f_3\) értékeit éves szinten!

\[
r_1 = 2\% \\
r_2 = 2,5\% \\
r_3 = 3\% \\

f_2 = \frac{(1 + r_2)^2}{(1 + r_1)} - 1 = \frac{1.025^2}{1.02} - 1 = 3\% \\
2f_3 = \frac{(1 + r_3)^3}{(1 + r_2)^2} - 1 = \frac{1.03^3}{1.025^2} - 1 = 4,01\% \\
f_3 = \sqrt{\frac{(1 + r_3)^3}{(1 + r_1)}} - 1 = \sqrt{\frac{1.03^3}{1.02}} - 1 = 3,5\%
\]

7.14. Feladat
Az egy-, két- és hároméves diszkontkincstárjegyek árfolyama rendre 97%, 93% és 88%. Számítsa ki az egy- és két év múlva induló egyéves diszkontkincstárjegyek határidős hozamait (\(f_2, f_3\)), valamint az egy év múlva induló kétéves határidős hozamot (\(f_3\))!
\[DF_t = \frac{1}{(1 + r)^t} \]

\[(1 + r)^t = \frac{1}{DF_t} \]

\[1_f^2 = \frac{(1 + r_2)^2}{(1 + r_1)} - 1 = \frac{1}{DF_2} - 1 = \frac{DF_1}{DF_2} - 1 = \frac{0.97}{0.93} - 1 = 4,31\% \]

\[2_f^3 = \frac{(1 + r_3)^3}{(1 + r_2)^2} - 1 = \frac{1}{DF_3} - 1 = \frac{DF_2}{DF_3} - 1 = \frac{0.93}{0.88} - 1 = 5,68\% \]

\[3_f^3 = \sqrt[3]{\frac{(1 + r_3)^3}{(1 + r_1)^1}} - 1 = \sqrt[3]{\frac{1}{DF_3}} - 1 = \sqrt[3]{\frac{DF_1}{DF_3}} - 1 = \sqrt[3]{\frac{0.97}{0.88}} - 1 = 4,99\% \]
8. Szeminárium - Opciók

Tesztek

1. Válassza ki a helyes állítást!
 a) Az LP opciós jelölés vételi kötelezettséget jelent.
 b) Az SP pozícióval rendelkező személynek vételi joga van.
 c) Az LC pozícióval rendelkező személy egy eladási jog eladója.
 d) Az SC pozíció eladási kötelezettséget jelent.

2. Melyik opció pozíciófüggvényét látja az alábbi ábrán?
 a) SC (short call)
 b) LP (long put)
 c) SP (short put)
 d) LC (long call)

3. Mennyi a maximális vesztesége, ha kiírt egy vételi opciót?
 a) az opciós díj
 b) 0
 c) az alaptermék ára
 d) végtelen

4. Ön egy hónappal ezelőtt vásárolt egy fél év futamidejű K=400-as kötési árfolyamú eladási jogot 200 forintért (az opció európai típusú). Jelenleg a részvény árfolyama S=150. Válassza ki a helyes állítást!
 a) az opciót azonnal lehívom, és realizálom a nyereséget
 b) az opció időértékét nem lehet meghatározni, mert már nyereséges
 c) az opciót egy short put pozícióval tudom lezárni
 d) az opció már elértékeltelenedett

5. Ön kiírt egy K=110-es kötési árfolyamú eladási opciót! Melyik pozícióval rendelkezik?
 a) LC (long call)
 b) SC (short call)
 c) LP (long put)
 d) SP (short put)
Példák

8.1. Feladat

Ön egy részvényre vásárolt egy egyéves vételi jogot. A vételi jog kötési árfolyama 250 forint, a részvény pillanatnyi árfolyama 200 forint, a kifizetett opciós díj 14 Ft. A hozamgörbe 7%-on vízszintes.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!

b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségküszöbe?

c) Hány forintos árfolyamtól éri meg lehívni az opciót? Ki dönti el, hogy lehívják az opciót?

d) A kifizetett opciós díjban mekkora az időérték és a belső érték nagysága?

e) Tegyük fel, hogy egy év múlva a lejáratkor az azonnali árfolyam S = 255 volt. Hány forint nyereséggel zárta a pozícióját? Érdemes volt-e lehívni az opciót?

![Diagram](image.png)

8.2. Feladat

Ön egy részvényre eladott (kiírt) egy kétéves vételi opciót. A vételi jog kötési árfolyama 200 forint, a részvény pillanatnyi árfolyama 210 forint, a kifizetett opciós díj 20 Ft. A hozamgörbe 5%-on vízszintes.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!

b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségküszöbe?

c) Hány forintos árfolyamtól éri meg lehívni az opciót? Ki dönti el, hogy lehívják az opciót?

d) Az opciós díjban mekkora az időérték és a belső érték nagysága?

e) Ha lejáratkor az azonnali árfolyam S = 195 volt, hány forint nyereséggel zárta a pozícióját?
8.3. Feladat

Ön egy részvényre vásárolt egy egyéves eladási jogot. Az eladási jog kötési árfolyama 250 forint, a részvény pillanatnyi árfolyama 244 forint, a kifizetett opciós díj 10 Ft. Az effektív hozamgörbe 10%-on vízszintes.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!
b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségküszöbe?
c) Hány forintos árfolyamtól éri meg lehívni az opciót? Hány forintos árfolyamtól élne lejáratkor az opciós jogával?
d) Az opciós díjban mekkora az időérték és a belső érték nagysága?
e) Ha lejáratkor az azonnali árfolyam S=255 volt, hány forint nyereséggel zárta a pozícióját? Érdemes-e lehívni az opciót?

a) szaggatott vonal a nyereség-, folytonos vonal pozíciófüggvény
b) \(c_T = c_0 \cdot (1 + r)^t = 20 \cdot 1,05^2 \approx 22 \)
max nyereség = 22 Ft
max veszteség = végtelen
nyereségküszöb: \(S=200+22 = 222 \)
c) 200 felett, de én egy eladási kötelezett (SC) vagyok, nem én döntöm el a lehívást, hiszen a vételi jog megvásárlója (LC) dönt
d) belső érték = \(\max\{S_T - K; 0\} = \max\{210 - 200; 0\} = 10 \) (ennyit érne, ha most lehívhatnánk)
időérték = \(p - \) belső érték = 20 - 10 = 10
e) nyereség = \(22 - \max\{195 - 200; 0\} = 22 \)
\emph{nem hívátak le az opciót}, az egész opciós díj megmaradt
8.4. Feladat

Ön egy részvényre eladott/kifírt egy kétéves eladási opciót. Az eladási jog kötési árfolyama 100 forint, a részvény pillanatnyi árfolyama 120 forint, a kifizetett opciós díj 10 Ft. A hozamgörbe 5%-on vízszintes.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!

b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségküszöbe?

c) Hány forintos árfolyamtól éri meg lehívni az opciót? Ki dönti el, hogy lehvívják az opciót?

d) Az opciós díjban mekkora az időérték és a belső érték nagysága?

e) Ha lejáratkor az azonnali árfolyam S=99 volt, hány forint nyereséggel zárta a pozícióját? Érdemes-e ekkor lehívni az opciót?

\[a) \text{ szaggatott vonal a nyereség-}, \]
\[\text{folytonos vonal pozíciófüggvény} \]
\[b) \quad p_T = p_0 \cdot (1 + r)^t = 10 \cdot 1,05^2 = 11,025 \approx 11 \]
\[\text{max nyereség} = 11 \text{ Ft} \]
\[\text{max veszteség} = -89 \text{ Ft} \]
\[\text{nyereségküszöb:} \ S = 89 \text{ Ft} \]
\[c) \quad 100 \text{ alatt, de én egy vételi kötelezett (SP) vagyok, nem én döntőm el a lehívást, hiszen az eladási jog megvásárlója (LP) dönti ezt el} \]
\[d) \quad \text{belső érték} = \max\{K - S_T; 0\} = \max\{100 - 120; 0\} = 0 \]
\[\text{időérték} = p - \text{belső érték} = 10 - 0 = 10 \]
\[e) \quad \text{nem mi döntjük el, de a jogosult le fogja hívni} \]
\[\text{nyereség} = 11 - \max\{100 - 99; 0\} = +10 \]
\[\text{marad az opciós díjból, amit kaptunk} \]

8.5. Feladat

Ön ma vesz egy X részvényre szóló, 100 Ft kötési árfolyamú vételi opciót 8 forintért, és egy ugyanezen részvényre szóló, 100 Ft kötési árfolyamú eladási opciót 3 forintért. Mindkét opció európai típusú, lejáratuk 1 év. A hozamgörbe évi 10% minden lejáratra.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!

b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségküszöbe?

c) Hány forintos árfolyamtól realizálna profitot a pozícióval?

\[d) \quad \text{Melyik opciót hívják le, ha lejáratkor az árfolyam 105? Mekkora lenne ekkor az Ön nyeresége (vesztesége)?} \]

© Befektetések és Vállalati Pénzügy Tanszék
8.6. Feladat

Ön ma vesz egy X részvényre szóló, 200 Ft kötési árfolyamú vételi opciót 17 forintért, és elad egy ugyanezen részvényre szóló 220 Ft kötési árfolyamú vételi opciót 12 forintért. Mindkét opció európai típusú, lejáratuk 1 év. A hozamgörbe évi 2%.

a) Rajzolja fel az opció pozíciófüggvényét és nyereségfüggvényét!

b) Mekkora az Ön számára az opció maximális nyeresége és vesztesége, illetve hol van a nyereségkészülebe?

c) Hány forintos jövőbeni árfolyamtól realizálna profitot a pozíció tartása esetén?

c\(_T(200)\) = \(c_0 \cdot (1 + r)^t\) = 17 \cdot 1,02 = 17,34
c\(_T(220)\) = \(c_0 \cdot (1 + r)^t\) = 12 \cdot 1,02 = 12,24

a) szaggatott vonal a nyereség-,
folytonos vonal pozíciófüggvény
b) \(c_T + p_T = (c_o + p_0) \cdot (1 + r)^t\) = 11 \cdot 1,1 = 12,1 Ft
max nyereség = végigelen
max veszteség = -12,1 Ft
nyereségkészüle: \(S=100\pm12,1\)

c) 87,9 alatt, és 112,1 felett
d) A call opciót lehívnák, a put-ot nem. A két opciós díjból, amit kifizettünk, valamennyi visszajött. A Nyereség =
\(-12,1+(105-100)=-7,1\) vagyis veszteséggel zártunk
8.7. Feladat (szorgalmi)

Egy X részvényre szóló, 200 Ft kötési árfolyamú egy éves európai vételi opció 27 forint, a részvény árfolyama 210 Ft, a hozamgörbe évi 2%. Mennyi egy azonos kötési árfolyamú, futamidejű eladási opció ára?

\[
\text{put-call paritás alapján:}
\]
\[
P + S = c + PV(K)
\]
\[
p = 27 + \frac{200}{1,02} - 210 = 13,08 \text{ Ft}
\]
9. Szeminárium - A vállalati pénzáramlás előrejelzése

Tesztek

1. Válassza ki a helyes állítást! A vállalat tárgyidőszaki pénzáramlását – minden egyéb változatlanul mellett – növeli…
 a) a költségek növekedése.
 b) a vevőállomány növekedése.
 c) a szállítóállomány növekedése.
 d) az amortizációs kulcsok csökkentése.

2. Válassza ki a helyes állítást! A nettó forgótőke értékét növeli
 a) a rövid lejáratú kötelezettségek állományának növekedése.
 b) a szállítóállomány növekedése.
 c) a vevőállomány csökkenése.
 d) a félkésztermék-készletek állományának növekedése.

3. Egy vállalkozás vevőkövetelései 50 millió forinttal, készletei 150 millió forinttal nőttek, a szállítóállomány 40 millió forinttal csökkent az utolsó számviteli évben. Mennyivel változott a nettó forgótőke értéke?
 a) 60 millió forinttal csökkent
 b) 140 millió forinttal nőtt
 c) 160 millió forinttal csökkent
 d) 240 millió forinttal nőtt

4. Miben különbözik az eredménykimutatás alábbi két sora: EBIT és EBITDA?
 a) Az EBIT az adózás előtti eredmény, az EBITDA pedig az adózott eredmény.
 b) Az EBIT az üzemi eredmény, az EBITDA pedig az adózott eredmény.
 c) Az EBIT tartalmazza minden pénzügyi művelet eredményét, az EBITDA még nem.
 d) Az EBIT-ben már levonásra került az amortizáció is az EBITDA-hoz képest.

5. Az amortizáció
 a) a vállalat működése során tényleges pénzkiáramlást mutat.
 b) soha sem befolyásolja a vállalat pénzáramlását.
 c) az adóalapot csökkenti, így következtetve növelheti az adózás utáni pénzáramlást.
 d) összege minden évben azonos, hacsak a vállalat nem vásárol új tárgyi eszközt a működéshez.
Példák

9.1. Feladat

Projektvállalatának egyszerűsített mérleg és eredménykimutatása a következő táblázatokban látható. Készítsé el a vállalat tárgyévi pénzáramlás kimutatását a beszámoló alapján!

Mérleg (adatok millió forintban)

<table>
<thead>
<tr>
<th>ESZKÖZÖK</th>
<th>Bázisév</th>
<th>Tárgyév</th>
<th>FORRÁSOK</th>
<th>Bázisév</th>
<th>Tárgyév</th>
</tr>
</thead>
<tbody>
<tr>
<td>befektetett eszközök</td>
<td>100</td>
<td>144</td>
<td>Saját tőke</td>
<td>120</td>
<td>176</td>
</tr>
<tr>
<td>tárgyi eszközök</td>
<td>100</td>
<td>144</td>
<td>jegyzett tőke</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>forgó eszközök</td>
<td>30</td>
<td>42</td>
<td>eredménytartalék</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>készletek</td>
<td>8</td>
<td>4</td>
<td>Adózott eredmény</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td>Vevő követelések</td>
<td>10</td>
<td>18</td>
<td>Kőtelezettségek</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>pénzeszközök</td>
<td>12</td>
<td>20</td>
<td>Szállítók</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ESZKÖZÖK ÖSSZESEN</td>
<td>130</td>
<td>186</td>
<td>FORRÁSOK ÖSSZESEN</td>
<td>130</td>
<td>186</td>
</tr>
</tbody>
</table>

Eredménykimutatás (adatok millió forintban)

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Tárgyév</th>
</tr>
</thead>
<tbody>
<tr>
<td>Értékesítés nettó árbevétele</td>
<td>150,0</td>
</tr>
<tr>
<td>ráfordítások</td>
<td>63,5</td>
</tr>
<tr>
<td>amortizáció</td>
<td>25,0</td>
</tr>
<tr>
<td>üzemi tevékenység eredménye</td>
<td>61,5</td>
</tr>
<tr>
<td>Pénzügyi eredmény</td>
<td>0</td>
</tr>
<tr>
<td>Adózás előtti eredmény</td>
<td>61,5</td>
</tr>
<tr>
<td>Adó (9%)</td>
<td>5,5</td>
</tr>
<tr>
<td>Adózott eredmény</td>
<td>56,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Tárgyév</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ árbevétel</td>
<td>150,0</td>
</tr>
<tr>
<td>- költség, ráfordítás</td>
<td>-63,5</td>
</tr>
<tr>
<td>EBITDA</td>
<td>86,5</td>
</tr>
<tr>
<td>- amortizáció</td>
<td>-25,0</td>
</tr>
<tr>
<td>EBIT</td>
<td>61,5</td>
</tr>
<tr>
<td>- adó</td>
<td>-5,5</td>
</tr>
<tr>
<td>NOPLAT</td>
<td>56</td>
</tr>
<tr>
<td>+ amortizáció</td>
<td>25</td>
</tr>
<tr>
<td>- Δ vevők</td>
<td>-8</td>
</tr>
<tr>
<td>- Δ készletek</td>
<td>+4</td>
</tr>
<tr>
<td>+ Δ szállítók</td>
<td>0</td>
</tr>
<tr>
<td>Működési CF (OCF)</td>
<td>+56 + 21 = 77</td>
</tr>
<tr>
<td>- tárgyi eszköz beszerzés / CAPEX</td>
<td>-69</td>
</tr>
</tbody>
</table>
9.2. Feladat

Néhány egyetemista hallgató közös vállalkozás beindításán gondolkozik. Segítsen nekik a vállalat elindításához szükséges CF terv előállításában! A CF terv az első három hónapra vonatkozóan havi bontásban! A bevételek és a ráfordítások egy hónapon belül egyenletesen merülnek fel. Tételezzük fel, hogy a társsági adót is havonta kell fizetni.

A cég külföldi hallgatók számára főg programokat szervezi Magyarországon. A társaság létrehozásához számlítógépet és egyéb irodai eszközöket kell vásárolni készpénzért 5 millió forint értékben az indulás előtt. A tervezett havi árbevétel 3,0 millió forint, a havi ráfordítások értéke 1,5 millió forint lesz. Készletek vásárlására nincs szükség. A vevők azonnal fognak fizetni, de a cég úgy tervezi, hogy a szállítóknak a ráfordításokat 30 nap késéssel fogják csak átutalni. A társasági adó 10%, az éves amortizációs kulcs 20%.

(Excelben megoldható)

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>- Költség, ráfordítás</td>
<td>-1,5</td>
<td>-1,5</td>
<td>-1,5</td>
<td></td>
</tr>
<tr>
<td>EBITDA</td>
<td>0</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>-0,08</td>
<td>-0,08</td>
<td>-0,08</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>0</td>
<td>1,42</td>
<td>1,42</td>
<td>1,42</td>
</tr>
<tr>
<td>- Adó</td>
<td>-0,142</td>
<td>-0,142</td>
<td>-0,142</td>
<td></td>
</tr>
<tr>
<td>NOPLAT</td>
<td>0</td>
<td>1,28</td>
<td>1,28</td>
<td>1,28</td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>- Δ Készletek</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Működési CF (OCF)</td>
<td>0</td>
<td>2,86</td>
<td>1,36</td>
<td>1,36</td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés / CAPEX</td>
<td>-5,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beruházási CF (CAPEX)</td>
<td>-5,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-5,00</td>
<td>2,86</td>
<td>1,36</td>
<td>1,36</td>
</tr>
</tbody>
</table>

9.3. Feladat

Az Energo cég egy új, hosszú energetikai projektbe kezd, egy kisebb erőművet épít, amely felépülése után villamos áramot állít elő és ad el 10 éves szerződést kötve az átvevővel. A projekt beindításához 500 millió forint társgyi eszköz beruházásra van szükség. Az eszközök a későbbiekben 10%-os lineáris kulcsal amortizálhatók. 10 év múlva a technológia fejlődése miatt (is) a tárgyi eszközök váratlanul értéktelelővé válnak, és újabb beruházásra lesz szükség. A projekt árbevétele a tervek szerint az első évben 200 millió forint lesz, amely évi 10 millióval emelkedik.
A nyersanyagként szolgáló energiahordozó éves költsége a bevételek 50%-a. Emellett a projektet évi 10 millió forint általános működési költség is terheli. A társasági adókulcs 10%. A projekt beindításához nettó forgótőke befektetésre nincsen szükség, az éves árbevétel várhatóan még az aktuális évben befolyik, míg a ráfordításokat is adott évben kifizetik. A projektet saját tőkéből finanszírozzák. A projekt tőkeköltsége (kockázatának megfelelő várható hozama) évi 12%.

a) Írja fel a projekt szabad cash flow-ját!
b) Számítsa ki a projekt NPV-jét!
c) A projekt IRR-jéről mit tud elmondani? (következő szeminárium)

(Excelen megoldható)

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árbevétel</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Nyersanyag költség</td>
<td>-100</td>
<td>-105</td>
<td>-110</td>
<td>-115</td>
<td>-120</td>
<td>-125</td>
<td>-130</td>
<td>-135</td>
<td>-140</td>
<td>-145</td>
<td></td>
</tr>
<tr>
<td>Ált. költség, ráfordítás</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>EBITDA</td>
<td>0</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>EBIT</td>
<td>0</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Adó</td>
<td>-4,0</td>
<td>-4,5</td>
<td>-5,0</td>
<td>-5,5</td>
<td>-6,0</td>
<td>-6,5</td>
<td>-7,0</td>
<td>-7,5</td>
<td>-8,0</td>
<td>-8,5</td>
<td></td>
</tr>
<tr>
<td>NOPLAT</td>
<td>0</td>
<td>36,0</td>
<td>40,5</td>
<td>45,0</td>
<td>49,5</td>
<td>54,0</td>
<td>58,5</td>
<td>63,0</td>
<td>67,5</td>
<td>72,0</td>
<td>76,5</td>
</tr>
<tr>
<td>Amortizáció</td>
<td>50</td>
</tr>
<tr>
<td>Δ Vevők</td>
<td>0</td>
</tr>
<tr>
<td>Δ Készletek</td>
<td>0</td>
</tr>
<tr>
<td>Δ Szállítók</td>
<td>0</td>
</tr>
<tr>
<td>Működési CF (OCF)</td>
<td>0</td>
<td>86,0</td>
<td>90,5</td>
<td>95,0</td>
<td>99,5</td>
<td>104,0</td>
<td>108,5</td>
<td>113,0</td>
<td>117,5</td>
<td>122,0</td>
<td>126,5</td>
</tr>
<tr>
<td>Tárgyi eszköz beszerzés</td>
<td>-500</td>
<td>0</td>
</tr>
<tr>
<td>Beruházási CF (CAPEX)</td>
<td>-500</td>
<td>0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-500</td>
<td>86,0</td>
<td>90,5</td>
<td>95,0</td>
<td>99,5</td>
<td>104,0</td>
<td>108,5</td>
<td>113,0</td>
<td>117,5</td>
<td>122,0</td>
<td>126,5</td>
</tr>
<tr>
<td>PV</td>
<td>-500</td>
<td>76,79</td>
<td>72,15</td>
<td>67,62</td>
<td>63,23</td>
<td>59,01</td>
<td>54,97</td>
<td>51,12</td>
<td>47,46</td>
<td>43,99</td>
<td>40,73</td>
</tr>
</tbody>
</table>

\[r = 12\% \]
\[NPV = 77,06 \]
\[IRR = 15,39\% \]

Mivel pozitív az NPV és csak egy pozitív IRR megoldás van, az IRR biztosan nagyobb 12%-nál. Excel célérték kereséssel kiszámíthatjuk pontosan az IRR értékét, ez 15,39% lesz.
9.4. Feladat

Írja fel a projekt nettó pénzáramlását a következő három évre! Negatív eredménynél számoljon adó-visszaigényléssel!

(Excelben megoldható)

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td>50</td>
<td>80</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>- Anyag jellegű ráfordítások</td>
<td>-25</td>
<td>-29</td>
<td>-35</td>
<td></td>
</tr>
<tr>
<td>- Szem. jellegű ráfordítások</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>EBITDA</td>
<td>0</td>
<td>15</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>0</td>
<td>-18</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>- Adó</td>
<td>1,8</td>
<td>-0,8</td>
<td>-1,2</td>
<td></td>
</tr>
<tr>
<td>NOPLAT</td>
<td>0</td>
<td>-16,2</td>
<td>7,2</td>
<td>10,8</td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>-12,5</td>
<td>-7,5</td>
<td>-2,5</td>
<td></td>
</tr>
<tr>
<td>- Δ Készletek</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Működési CF (OCF)</td>
<td>-10,0</td>
<td>4,3</td>
<td>32,7</td>
<td>41,3</td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés / CAPEX</td>
<td>-99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beruházási CF (CAPEX)</td>
<td>-99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-109</td>
<td>4,3</td>
<td>32,7</td>
<td>41,3</td>
</tr>
</tbody>
</table>

Vevőállomány | 12,5 | 20 | 22,5 |
Készletállomány | 10 | 10 | 10 | 10
9.5. Feladat

Barátjától jó áron vásárolhat egy nagyobb lakást a Ráday utcában. Úgy dönt, kihasználja a lehetőséget és kis cégén keresztül megvásárolja a 70 nm-es felújítandó lakást, hogy azt Airbnb kiadással hasznosítsa. Tervei szerint a lakást két kisebb lakásra bontja, felújítja, berendezi, és regisztrálja az airbnb.com-on.

A lakás megvásárlása, felosztása és felújítása 35 millió forint egyszeri beruházást igényel, mely a későbbiekben 5%-os lineáris kulcsal amortizálható. A piacon reális bérleti díj az első évben 5 millió forint lesz, a második évben ez 5,5 millió forintro emelhető (tovább már nem emelkedik). A fenntartási költségek az első évben 1,2 millió forintot tesznek ki, a második évben pedig várhatóan 1,5 millió forintro emelkednek és azon a szinten állandósulnak. A bérbeadáshoz fogyóeszközöket is be kell szereznie (készlet), 0,5 millió forint értékben tervez megvásárlást az első évben, majd ez a forgótőke igény azonos szinten tartható a teljes bérbeadási időszakban. Vevői – a bérbeadási struktúrából adódóan – azonnal fizetnek, költségei készpénznél kerülnek fel. A projekthez nem vesz igénybe külső finanszírozást. A társasági nyereségadó kulcsa 10%.

a) Írja fel a projekt pénzáramlását az első három évre!

b) A 3. év végén jelentkezik egy ingatlanpiaci befektető, aki megvásárolná a projektjét. Mekkora árat tart reálisnak, ha akkor a lakáspiaci/bérleti hozamok várhatóan 8% körül lesznek?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td>5,0</td>
<td>5,5</td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>- Fenntartási ktg</td>
<td>-1,2</td>
<td>-1,5</td>
<td>-1,5</td>
<td></td>
</tr>
<tr>
<td>EBITDA</td>
<td>3,8</td>
<td>4,0</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>-1,75</td>
<td>-1,75</td>
<td>-1,75</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>2,05</td>
<td>2,25</td>
<td>2,25</td>
<td></td>
</tr>
<tr>
<td>- Adó</td>
<td>-0,205</td>
<td>-0,225</td>
<td>-0,225</td>
<td></td>
</tr>
<tr>
<td>NOPLAT</td>
<td>1,845</td>
<td>2,025</td>
<td>2,025</td>
<td></td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
<td></td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>- Δ Készletek</td>
<td>-0,5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Működési CF</td>
<td>3,095</td>
<td>3,775</td>
<td>3,775</td>
<td></td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés / CAPEX</td>
<td>-35,0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Beruházási CF = CAPEX</td>
<td>-35,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-35,0</td>
<td>3,095</td>
<td>3,775</td>
<td>3,775</td>
</tr>
<tr>
<td>Forgóeszközök</td>
<td>0</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

b) *Feltételezzük, hogy a 3. évtől örökjáradékként értelmezhető a cash flow:*
NPV \[= \frac{3,775}{0,08} = 47,1875 \text{ millió forint a maximum ár, amiért érdemes a lakást megvenni.}\]

9.6. Feladat

Egy olaj- és gázipari vállalat új palagáz kitermelési lehetőséget fontolgat. A lelőhely feltárásának költsége összesen 100 millió dollár, melynek 20%-a a termelés beindítását megelőzően, a fennmaradó 80% pedig várhatóan az első és második évben egyenlő arányban merül fel. A vállalat számviteli politikája alapján a beruházásokat 50 év alatt írja le lineáris értékcsökkenési leírással. A palagáz projekt a 2. évtől kezdődően termel árbevételt, ebben az évben a bevétel 20 millió dollár lesz, mely minden évben 10%-kal emelkedik. A működési költség várhatóan az árbevétel 50%-a lesz. A nettó forgótőkétől tekintsünk el. A projekt kedvező adózású országban valósul meg, ahol a társasági adó kulcsa 5%. (Veszteség esetén adott évben nincs adóvisszatérítés.)

a) Írja fel a projekt pénzáramlását az első három évre!

b) Tételezzük fel, hogy a 3. évet követően a cash flow növekvő tagú örökjáradékként viselkedik (tehát először az 4. évben növekszik), ahol \(g = 10\% \). Megéri a beruházást megvalósítani? Az alternatív beruházások elvárt hozama 15%.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Megnevezés} & 0 & 1 & 2 & 3 \\
\hline
\text{+ Árbevétel} & 0 & 0 & 20 & 22 \\
\text{- Működési ktg} & 0 & 0 & -10 & -11 \\
\hline
\text{EBITDA} & 0 & 0 & 10 & 11 \\
\text{- Amortizáció 1} & 0 & -0,4 & -0,4 & -0,4 \\
\text{- Amortizáció 2} & 0 & 0 & -0,8 & -0,8 \\
\text{- Amortizáció 3} & 0 & 0 & 0 & -0,8 \\
\hline
\text{EBIT} & 0 & -0,4 & 8,8 & 9,2 \\
\text{- Adó} & 0 & 0 & -0,44 & -0,46 \\
\text{NOPLAT} & 0 & -0,4 & 8,36 & 8,74 \\
\text{+ Amortizáció} & 0 & 0,4 & 1,2 & 1,8 \\
\text{- Δ Vevők} & 0 & 0 & 0 & 0 \\
\text{- Δ Készletek} & 0 & 0 & 0 & 0 \\
\text{+ Δ Szállítók} & 0 & 0 & 0 & 0 \\
\hline
\text{Működési CF} & 0 & 0 & 9,56 & 10,54 \\
\text{+ Tárgyi eszköz beszerzés / CAPEX} & 0 & -20 & -40 & -40 & 0 \\
\text{Beruházási CF = CAPEX} & 0 & -20 & -40 & -40 & 0 \\
\text{FCFF = OCF + CAPEX} & 0 & -20 & -40 & -30,44 & 10,54 \\
\hline
\end{array}
\]

\(A \text{ 3. évben induló örökjáradék jelenértéke:} \)

\[PV = \frac{10,54}{0,15 - 0,1} = 210,8 \text{ millió forint} \]

\(A \text{ teljes projekt nettó jelenértéke figyelembe véve az örökjáradékot is:} \)
NPV = \(-20 - \frac{40}{1.15} - \frac{30.44}{1.15^2} + \frac{210.8}{1.15^2}\) = 81, 6
Tehát ez alapján megéri megvalósítani a projektet.

9.7. Feladat

Barátjával egy startup vállalkozás beindítását fontolgatják, melyben – gamifikáció alapuló – vállalati pénzügy oktatócég piacra dobását tervezik. A startup cég egyszerű üzleti modellel indul: évente 6000 db e-társasjátékot fognak értékesíteni, darabját 10.000 forintért. A társasjátékok anyagköltsége az egységár 10%-a lesz, míg a munkaerő költség további 20%-ot tesz ki. Kezdő anyagkészletre is szükség van, mely induláskor 500 ezer forint lesz, ezt az anyagkészlet állományt állandó szinten kívánják tartani. A társasjátékok összeállításához egy kis raktárhelyiségre is szükségük van, ennek éves bérleti díja 1,5 millió forint, mely a bérleti szerződés szerint évente 250 ezer forinttal indexálódik. Üzleti modelljükben évi 600 ezer forint árbevétel növekedéssel számoljának. Vevőiknek 60 nap fizetési haladékot adnak (elsősorban intézményi felvásárlókra számítanak), szállítóikat azonnal kifizetik. Az adókulcs 10%.

a) Írja fel a projekt pénzáramlását az első három évre!

b) Mennyiért tudják startup vállalkozásukat értékesíteni szakmai befektetőnek a 3. év végén, ha feltételezzük, hogy a 3. évet követően a cash flow növekvő tagú örökjáradék ként viselkedik (tehát először a 4. évben növekszik), a vállalkozás növekedési üteme hosszú távon fenntartható (g=10%). A hasonló kockázatú startup vállalkozásoktól elvárt hozam 30%.

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td>0</td>
<td>60,0</td>
<td>60,6</td>
<td>61,2</td>
</tr>
<tr>
<td>- Anyagköltség</td>
<td>0</td>
<td>6</td>
<td>6,06</td>
<td>6,12</td>
</tr>
<tr>
<td>- Munkaerő költség</td>
<td>0</td>
<td>12</td>
<td>12,12</td>
<td>12,24</td>
</tr>
<tr>
<td>- Raktár bérleti díj</td>
<td>0</td>
<td>1,5</td>
<td>1,75</td>
<td>2,00</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0</td>
<td>40,5</td>
<td>40,67</td>
<td>40,84</td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EBIT</td>
<td>0</td>
<td>40,5</td>
<td>40,67</td>
<td>40,84</td>
</tr>
<tr>
<td>- Adó</td>
<td>0</td>
<td>-4,05</td>
<td>-4,067</td>
<td>-4,084</td>
</tr>
<tr>
<td>NOPLAT</td>
<td>0</td>
<td>36,45</td>
<td>36,603</td>
<td>36,756</td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>0</td>
<td>-10,0</td>
<td>-0,1</td>
<td>-0,1</td>
</tr>
<tr>
<td>- Δ Készletek</td>
<td>-5,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Működési CF</td>
<td>-5</td>
<td>26,45</td>
<td>36,503</td>
<td>36,656</td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés / CAPEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beruházási CF = CAPEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-5</td>
<td>26,45</td>
<td>36,503</td>
<td>36,656</td>
</tr>
<tr>
<td>Vevőállomány</td>
<td>0</td>
<td>10,0</td>
<td>10,1</td>
<td>10,2</td>
</tr>
<tr>
<td>Anyagkészlet állomány</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
A 4. évben induló örökjáradék 3. évi értéke, azaz a projekt eladási ára a 3. év végén:

\[PV = \frac{36,656 \cdot 1,1}{0,3 - 0,1} = 201,61 \text{ millió forint} \]

9.8. Feladat

A SuperFit Kft. új fitneszterem létesítését fontolgatja egy vidéki nagyvárosban, ehhez Önt kéri fel a pénzügyi tervezésre. A tulajdonos a következő adatokat adjja:

- tervezett árbevétel: 100 millió forint/év, mely 20%-kal növekszik a terem felfutásának első éveiben;
- költséghányad: 60%;
- egyszeri beruházási igény: 200 millió forint, eszközeit 10 év alatt lineáris kulccsal írja le;
- működéshez szükséges forgóeszközök az indulás időpontjában: 8 millió forint, ami évente 2 millió forinttal nő;
- vevői azonnal fizetnek majd, szállítóival szemben viszont sikerült 60 nap fizetési haladékot elérnie;
- a társasági adókulcs 15%.

a) Írja fel a projekt pénzáramlását az első 5 évre!

b) Az első 5 éves működési időszakot tekintve megéri-e a beruházást megvalósítani, ha a fitnesz ágazat bétája 0,85, a kockázatmentes hozam 4%, a piaci hozam 8%?

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td></td>
<td>100</td>
<td>120</td>
<td>144</td>
<td>172,8</td>
<td>207,36</td>
</tr>
<tr>
<td>- Működési költségek</td>
<td>0</td>
<td>-60</td>
<td>-72</td>
<td>-86,4</td>
<td>-103,68</td>
<td>-124,42</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0</td>
<td>40</td>
<td>48</td>
<td>57,6</td>
<td>69,12</td>
<td>82,94</td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>0</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>EBIT</td>
<td>0</td>
<td>20</td>
<td>28</td>
<td>37,6</td>
<td>49,12</td>
<td>62,94</td>
</tr>
<tr>
<td>- Adó</td>
<td>0</td>
<td>-3</td>
<td>-4,2</td>
<td>-5,64</td>
<td>-7,37</td>
<td>-9,44</td>
</tr>
<tr>
<td>NOPLAT</td>
<td>0</td>
<td>17</td>
<td>23,8</td>
<td>31,96</td>
<td>41,75</td>
<td>53,50</td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- Δ Forgóeszközök</td>
<td>-8</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>2,4</td>
<td>2,88</td>
<td>3,46</td>
</tr>
<tr>
<td>Működési CF (OCF)</td>
<td>-8</td>
<td>45</td>
<td>43,8</td>
<td>52,36</td>
<td>62,63</td>
<td>74,96</td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés / CAPEX</td>
<td>-200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beruházási CF (CAPEX)</td>
<td>-200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>-208</td>
<td>45</td>
<td>43,8</td>
<td>52,36</td>
<td>62,63</td>
<td>74,96</td>
</tr>
</tbody>
</table>

| Szállítóállomány | 0 | 10 | 12 | 14,4 | 17,28 | 20,74 |
| Forgóeszköz állomány | | 8 | 10 | 12 | 14 | 16 | 18 |
\[r = r_f + \beta (r_m - r_f) = 4\% + 0.85 \cdot (8\% - 4\%) = 7.4\% \]

\[NPV = -208 + \frac{45}{1,074} + \frac{43.8}{1,074^2} + \frac{52.36}{1,074^3} + \frac{62.63}{1,074^4} + \frac{74.96}{1,074^5} = 13,667 \]

Megéri megvalósítani.

9.9. Feladat

A GYV vállalat egyszerűsített mérlege és eredménykimutatása a következő táblázatokban látható.

a) Mekkora lesz a vállalati EBITDA értéke?
b) Mekkora lesz a pénzeszközök állománya a tárgyévben?
c) Készítse el a vállalat részletes cash flow kimutatását!

Mérleg

<table>
<thead>
<tr>
<th>ESZKÖZÖK (MFT)</th>
<th>Bázis év</th>
<th>Tárgy év</th>
<th>FORRÁSOK</th>
<th>Bázis év</th>
<th>Tárgy év</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befektetett eszközök</td>
<td>1000</td>
<td>1440</td>
<td>Saját tőke</td>
<td>1200</td>
<td>1800</td>
</tr>
<tr>
<td>Tárgyi eszközök</td>
<td>1000</td>
<td>1440</td>
<td>Jegyzett tőke</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Forgó eszközök</td>
<td>300</td>
<td>460</td>
<td>Eredménytartalék</td>
<td>800</td>
<td>1100</td>
</tr>
<tr>
<td>Készletek</td>
<td>80</td>
<td>50</td>
<td>Adózott eredmény</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>Vevő követelések</td>
<td>100</td>
<td>190</td>
<td>Kőtelezettségek</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Pénzeszközök</td>
<td>120</td>
<td>...</td>
<td>Szállító kőtelezettségek</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ESZKÖZÖK ÖSSZESEN</td>
<td>1300</td>
<td>1900</td>
<td>FORRÁSOK ÖSSZESEN</td>
<td>1300</td>
<td>1900</td>
</tr>
</tbody>
</table>

Eredménykimutatás

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Tárgy év</th>
</tr>
</thead>
<tbody>
<tr>
<td>Értékesítés nettő árbevétele</td>
<td>2000</td>
</tr>
<tr>
<td>Ráfordítások</td>
<td>1000</td>
</tr>
<tr>
<td>Amortizáció</td>
<td>250</td>
</tr>
<tr>
<td>Üzemi tevékenység eredménye</td>
<td>750</td>
</tr>
<tr>
<td>Pénzügyi eredmény</td>
<td>0</td>
</tr>
<tr>
<td>Adózás előtti eredmény</td>
<td>750</td>
</tr>
<tr>
<td>Adó (20%)</td>
<td>150</td>
</tr>
<tr>
<td>Adózott eredmény</td>
<td>600</td>
</tr>
</tbody>
</table>

a) **EBITDA = 1000** (Üzemi t. eredmény + Amortizáció, vagy másik oldalról lásd CF levezetés c) pontban)
b) **Pénzeszközök = 220**
<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Tárgy év</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Árbevétel</td>
<td>2000,0</td>
</tr>
<tr>
<td>- Költség, ráfordítás</td>
<td>-1000,0</td>
</tr>
<tr>
<td>EBITDA</td>
<td>1000,0</td>
</tr>
<tr>
<td>- Amortizáció</td>
<td>-250,0</td>
</tr>
<tr>
<td>EBIT</td>
<td>750,0</td>
</tr>
<tr>
<td>- Adó</td>
<td>-150,0</td>
</tr>
<tr>
<td>NOPLAT</td>
<td>600,0</td>
</tr>
<tr>
<td>+ Amortizáció</td>
<td>250</td>
</tr>
<tr>
<td>- Δ Vevők</td>
<td>-90</td>
</tr>
<tr>
<td>- Δ Készletek</td>
<td>+30</td>
</tr>
<tr>
<td>+ Δ Szállítók</td>
<td>0</td>
</tr>
<tr>
<td>Működési CF</td>
<td>+790</td>
</tr>
<tr>
<td>- Tárgyi eszköz beszerzés/</td>
<td>-1440</td>
</tr>
<tr>
<td>CAPEX</td>
<td>(1000+250)</td>
</tr>
<tr>
<td></td>
<td>= -690</td>
</tr>
<tr>
<td>Beruházási CF = CAPEX</td>
<td>-690</td>
</tr>
<tr>
<td>FCFF = OCF + CAPEX</td>
<td>+100</td>
</tr>
</tbody>
</table>
10. Szeminárium - Megtérülési mutatószámok

Tesztek

1. Válassza ki a helyes állítást! A jövedelmezőségi indexszel csak akkor érdemes két beruházási döntés között választani,
 a) ha a két projekt egymást nem zárja ki.
 b) ha a két projekt egymást kizárja, és mindkettőt bármikor megismételhetjük.
 c) ha a két projekt egymást kizárja, és szűk kapacitás számunkra a befektethető tőkemennyiség.
 d) ha a két projekt egymást kizárja, és szűk kapacitás számunkra a befektetési időtartam.

2. Válassza ki a HAMIS állítást!
 a) A megtérülési idő nem veszi figyelembe a pénzáramlások időértékét.
 b) A diszkontált megtérülési idő mutató nem veszi figyelembe a projektek megtérülését követően esedékes pénzáramlások értékét.
 c) A projekt IRR-je több értékét is felvehet.
 d) A jövedelmezőségi index a nettó jelenérték szabályal mindig azonos sorrendet állít fel a projektek között.

3. Válassza ki a HAMIS állítást!
 a) Az IRR csak emelkedő hozamgörbével kalkulál.
 b) Ha egy projekt IRR-je az elvárt hozamával azonos, a projekt nettó jelenértéke nulla.
 c) Az IRR értéke a pénzáramlás függvényében negatív és pozitív is lehet.
 d) Az IRR mutató értéke egyes esetekben több értékét is felvehet.

4. Egy eszközvásárlás után a pénzáramlás minden évben pozitív lesz. A reálbefektetés IRR-jét számolva egy pozitív megoldást kap. Ha az IRR magasabb, mint a befektetés kockázatának megfelelő várható hozama, akkor…
 a) … a befektetés NPV-je pozitív.
 b) … a befektetés NPV-je negatív.
 c) … a befektetés NPV-je nulla.
 d) … a befektetés NPV-je lehet pozitív is és negatív is.

5. Válassza ki az IGAZ állítást!
 a) Az IRR nem használható arra, hogy döntsünk egy a befektetés megvalósításáról.
 b) Ha az IRR nulla, akkor a projektet el kell fogadni.
 c) Az IRR az az érték, amely mellett a pénzáramlást diszkontálva az NPV=0.
 d) Az IRR mutató jobb mutató, mint az NPV.
Példák

10.1. Feladat

A „Megtérülések” Zrt. négy lehetséges projektet tárgyal, amelynek várható pénzáramlását a következő táblázat foglalja össze:

<table>
<thead>
<tr>
<th>Projekt</th>
<th>Évek</th>
<th>0.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>-14</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>-16</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>-12</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>-7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mindegyik projektnak a kockázathoz tartozó várható éves hozama a becslések szerint évi 15%.

a) Értékelje és állíts fel sorrendet az egyes beruházási javaslatokat
 - megtérülési idő,
 - diszkontált megtérülési idő,
 - nettó jelenérték
 - és jövedelmezőségi index
 - IRR alapján!

b) Mely beruházásokat valósítaná meg, ha egyszerre többet is kivitelezhet, de összesen csak 10, 20, illetve 40 M£t áll rendelkezésére?

c) Mit tudna elmondani a projektekről (anélkül, hogy újraszámolna mindent), ha egy új piaci becslés szerint a projektek sokkal kockázatosabbak, és a hasonló kockázathoz tartozó várható éves hozam 26%?

(Excelben megoldható)

\[
\text{Mutatók:}
\]

\[
P_{PA} = 2 \text{ év} \\
P_{PB} = 3 - 4 \text{ év} \\
P_{PC} = 3 \text{ év} \\
P_{PD} = 3 - 4 \text{ év}
\]

2. \(NPV = -C_0 + \sum PV \)

\[
NPVA = -14 + \frac{10}{1.15^1} + \frac{4}{1.15^2} = -14 + 8.70 + 3.02 = -2.28
\]

© Befektetések és Vállalati Pénzügy Tanszék
\[NPV_B = -16 + \frac{8}{1,15^1} + \frac{3}{1,15^2} + \frac{4}{1,15^3} + \frac{9}{1,15^4} = -16 + 6,96 + 2,27 + 2,63 + 5,15 = 1,00 \]

\[NPV_C = -12 + 4 \times AF(7 \text{ év}, 15\%) = -12 + 4 \times 4,1604 = 4,64 \]

\[NPV_D = -7 + 2 \times AF(10 \text{ év}, 15\%) = -7 + 2 \times 5,0188 = 3,04 \]

\[DPP_A = 14 = \frac{10}{1,15^1} + \frac{4}{1,15^2} \Rightarrow \text{nem térül meg} \]

Többi projekt esetében kumulált diszkontált pénzáramokat számolunk, és figyeljük, hol (melyik évben) vált át a pénzáram negatívbol pozitív előjelűvé. Ide be lehetne tenni ezt a táblázatot is.

\[DPP_B = 3 - 4 \text{ év} \]

\[DPP_C = 4 - 5 \text{ év} \]

mivel annuitás, az annuitás táblázattal is közelítőleg megoldható:

\[12 = 4 \times AF(7 \text{ év}, 15\%) \]

4-5 év között (15\% mellett) lesz az annuitásfaktor 3

\[DPP_A = 5 - 6 \text{ év} \]

mivel annuitás, az annuitás táblázattal is közelítőleg megoldható:

\[7 = 2 \times AF(10 \text{ év}, 15\%) \]

5-6 év között (15\% mellett) lesz az annuitásfaktor 3,5

4. IRR: excelben számoljuk a BMR függvényel.

\[IRR_A = 0\% \]

\[IRR_B = 18,0\% \]

\[IRR_C = 27,1\% \]

mivel annuitás, az annuitás táblázattal is közelítőleg megoldható:

\[12 = 4 \times AF(7 \text{ év}, ?\%) \]

kb. 27\%-nál (7 év mellett) lesz az annuitásfaktor 3

\[IRR_D = 25,7\% \]

mivel annuitás, az annuitás táblázattal is közelítőleg megoldható:

\[7 = 2 \times AF(10 \text{ év}, ?\%) \]

25-26% között (10 évnél) lesz az annuitásfaktor 3,5
Összefoglalva az eredmények:

<table>
<thead>
<tr>
<th>PV(projektek)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-14</td>
<td>8,70</td>
<td>3,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-16</td>
<td>6,96</td>
<td>2,27</td>
<td>2,63</td>
<td>5,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-12</td>
<td>3,48</td>
<td>3,02</td>
<td>2,63</td>
<td>2,29</td>
<td>1,99</td>
<td>1,73</td>
<td>1,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-7</td>
<td>1,74</td>
<td>1,51</td>
<td>1,32</td>
<td>1,14</td>
<td>0,99</td>
<td>0,86</td>
<td>0,75</td>
<td>0,65</td>
<td>0,57</td>
<td>0,49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI (PP)</th>
<th>DMI (DPP)</th>
<th>NPV</th>
<th>PI</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-2,28</td>
<td>-0,16</td>
<td>0%</td>
</tr>
<tr>
<td>3-4</td>
<td>3-4</td>
<td>1,00</td>
<td>0,06</td>
<td>18,0%</td>
</tr>
<tr>
<td>3</td>
<td>4-5</td>
<td>4,64</td>
<td>0,39</td>
<td>27,1%</td>
</tr>
<tr>
<td>3-4</td>
<td>5-6</td>
<td>3,04</td>
<td>0,43</td>
<td>25,7%</td>
</tr>
</tbody>
</table>

b) Mi adja a legmagasabb összes NPV-t?

10 MFt: D
20 MFt: D + C
40 MFt: D + C + B

10.2. Feladat

9.3 feladat - folytatás

 c) A projekt IRR-jéről mit tud elmondani?

\[r = 12\% \]
\[NPV = 77,06 \]
\[IRR = 15,39\% \]

Mivel pozitív az NPV és csak egy IRR megoldás lehet, az IRR biztosan nagyobb 12%-nál. Excel célérték kereséssel kiszámíthatjuk pontosan az IRR értékét, ez 15,39% lesz.

10.3. Feladat

9.4 feladat - folytatás

 b) A projekt tőkeköltsége 20%. Határozza meg az NPV és PI értékeket! Elfogadjuk-e ezek alapján a projektet?
FCFF = OCF + CAPEX

<table>
<thead>
<tr>
<th></th>
<th>-109</th>
<th>4,3</th>
<th>32,7</th>
<th>41,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV(CF)</td>
<td>-109</td>
<td>3,583</td>
<td>22,708</td>
<td>23,900</td>
</tr>
</tbody>
</table>

\(r = 20\% \)
\(NPV = -58,81 \)
\(PI = -0,5395 \)

Nem fogadjuk el a projektet a negatív nettó jelenérték alapján. De ez csak 3 év előrejelzése volt, ha folytatódik, van még esély hogy pozitív NPV-je legyen.

10.4. Feladat

9.5 feladat - folytatás

- c) Számítsa ki a Ráday utcai kislakások hasznosítására a megtérülési idő és diszkontált megtérülési idő mutatókat (feltételezve, hogy a 3. évet követően a szabad cash-flow örökké viselkedik)! Használja a fent megadott 8%-os hozamot a diszkontáláshoz!
- d) Számítsa ki a projekt jövedelmezőségi indexét és adjon közelítő becslést az IRR értékére (20 éves befektetési időtartamot tekintve)!

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCFF</td>
<td>-35</td>
<td>3,095</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
<td>3,775</td>
</tr>
<tr>
<td>PV(FCFF)</td>
<td>-35</td>
<td>2,866</td>
<td>3,236</td>
<td>2,997</td>
<td>2,775</td>
<td>2,569</td>
<td>2,379</td>
<td>2,203</td>
<td>2,040</td>
<td>1,888</td>
<td>1,749</td>
</tr>
</tbody>
</table>

Megtérülési ideje: 9 és 10 év között

Diszkontált megtérülési ideje: 18 és 19 év között

20 évre:

\(NPV = 1,434 \) millió forint
\(PI = 0,041 \) (=1,434/35)

Mivel az NPV a vizsgált 20 éves befektetési időtávon pozitív, ezért az IRR magasabb, mint 8%.

Excel célértékkeresővel kiszámítható, hogy az **IRR értéke 8,537%**.

10.5. Feladat

Gasztro vállalkozása két befektetési lehetőség közül választhat, azonban rendelkezésére álló szabad forrásaira tekintettel csak az egyiket valósíthatja meg. Mindkét befektetés 100 millió forint egyösszegű beruházást igényel, és

- a vendéglátóipari beruházás 4 év futamidejű, az első és második évben 25-25 millió forint szabad cash-flow-t, a harmadik és negyedik évben 35-35 millió forint CF-t eredményez.
a szállodaipari beruházás 5 év futamidejű, az első évben még nem termel CF-t, a második évben 50 millió forintot, a harmadik, negyedik és ötödik évben pedig 25-25 millió forint szabad cash-flow-t termel.

A pénzáramlásokat ezúttal reál értelemben jeleztük előre, a befektetések éves reálhozama minden lejáratra 6%.

Számítsa ki és rangsorolja a két befektetést NPV, jövedelmezőségi index és nyereség egyenértékes alapján!

Étterem

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>-100</td>
<td>25</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>-100</td>
<td>23,58</td>
<td>22,25</td>
<td>29,39</td>
<td>27,72</td>
<td>2,94</td>
</tr>
</tbody>
</table>

Jövedelmezőségi index:

$$\text{PI} = \frac{\text{NPV}}{|C_0|} = \frac{2,94}{100} = 0,0294$$

Nyereség egyenértékes:

$$N^* = \frac{\text{NPV}}{AF(t; r)} = \frac{2,94}{AF(4\text{év}; 6\%)} = \frac{2,94}{3,4651} = 0,85$$

Szálloda

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>-100</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>-100</td>
<td>0,00</td>
<td>44,50</td>
<td>20,99</td>
<td>19,80</td>
<td>18,68</td>
<td>3,97</td>
</tr>
</tbody>
</table>

Jövedelmezőségi index:

$$\text{PI} = \frac{\text{NPV}}{|C_0|} = \frac{3,97}{100} = 0,0397$$

Nyereség egyenértékes:

$$N^* = \frac{\text{NPV}}{AF(t; r)} = \frac{3,97}{AF(5\text{év}; 6\%)} = \frac{3,97}{4,2124} = 0,943$$

Mindhárom megtérülési mutató alapján a szálloda beruházást érdemes választani.

Ugyanakkor meg kell jegyezni, hogy a nyereség egyenértékes csak akkor releváns, ha azt feltételezzük, hogy a két befektetés lejárta után (4. ill. 5. év után) ugyanilyen feltételekkel újra indíthatjuk a befektetési ciklust, reál-értélemben ugyanekkora összegeket fektetünk majd be, és ugyanez a reál-CF fog belőlük származni. És ez a ciklus a végtelenségig tart mindkét projektnél.
10.6. Feladat

Egy járműalkatrész gyártó vállalkozás kelet-magyarországi terjeszkedését tervezi. Ehhez két beruházási alternatíva került (reál pénzáramlásban előrejelezve) a döntéshozók elé:

1. a Felni üzem létrehozásának egyszeri költsége 50 millió forint, majd az első évtől kezdődően 10 éven át évi 10 millió forint szabad cash-flow-t termel,

2. a Kuplung üzem egyszeri beruházási költsége lényegesen alacsonyabb, mivel a vállalkozás meglévő, de jelenleg kihasználatlan eszközeinek felújításával és egy új telephelyre telepítésével beindítható a tevékenység. Így mindössze 10 millió forint egyszeri ráfordítást igényel, majd a várható szabad cash-flow a 3. évtől 3 millió forint lesz, mely évente 500 ezer forinttal növekszik, és 5 éven keresztül tartható fenn.

a) Hasonlítsa össze a két beruházást NPV, PI, megtérülési idő és nyereség egyenértékes alapján, ha az elvárta hozam a járműalkatrész gyártási iparágban reál értelemben évi 8%.

b) Mit tenne, ha 10, 50 illetve 60 millió forint állna rendelkezésre a beruházás(ok) megvalósítására?

<table>
<thead>
<tr>
<th>Felni</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>-50</td>
<td>10</td>
</tr>
<tr>
<td>PV</td>
<td>-50</td>
<td>9.26</td>
<td>8.57</td>
<td>7.94</td>
<td>7.35</td>
<td>6.81</td>
<td>6.30</td>
<td>5.83</td>
<td>5.40</td>
<td>5.00</td>
<td>4.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kuplung</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>PV</td>
<td>-10</td>
<td>0.00</td>
<td>0.00</td>
<td>2.38</td>
<td>2.57</td>
<td>2.72</td>
<td>2.84</td>
<td>2.92</td>
</tr>
</tbody>
</table>

a)

NPV

Felni:

\[NPV = -50 + 10 \cdot AF(10év; 8\%) = -50 + 10 \cdot 6,7101 = 17,101 \]

Kuplung:

\[NPV = -10 + \frac{3.0}{1,08^3} + \frac{3.5}{1,08^4} + \frac{4.0}{1,08^5} + \frac{4.5}{1,08^6} + \frac{5.0}{1,08^7} = 3,43 \]

PI

Felni:

\[PI = \frac{17,101}{50} = 0,342 \]

Kuplung:

\[PI = \frac{3,43}{10} = 0,343 \]

Jövedelmezőségi mutató alapján a két beruházás megegyezik.
Megtérülési idő
Felni: \(MI = 5 \) év
Kuplung: \(MI = 5 \) év

Megtérülési idő alapján is megegyezik a két beruházás.

Nyerésegegyenértékes
Felni:
\[
N^* = \frac{NPV}{AF(10\text{év}; \; 8\%)} = \frac{17,101}{6,7101} = 2,549
\]
Kuplung:
\[
N^* = \frac{NPV}{AF(7\text{év}; \; 8\%)} = \frac{3,43}{5,2064} = 0,659
\]

Nyerésegegyenértékes alapján elmondható, hogy a Felnigyártás évente 2,549 millió forintot, míg a Kuplunggyártás évente 0,659 millió forintot hoz annuitás jellegű pénzáramlásként átszámítva.

Ugyanakkor itt is meg kell jegyezni, hogy a nyereség egyenértékes csak akkor releváns, ha azt feltételezzük, hogy a két befektetés lejárta után (10. ill. 7. év után) ugyanilyen feltételekkel újra indíthatjuk a befektetési ciklust, reál-értelemben ugyanakkor összegeket fektetünk majd be, és ugyanez a reál-CF fog belőlük származni. És ez a ciklus a végtelenségig tart mindkét projektnél.

b)
Ha korlátos a befektethető összeg, akkor
- 10 millió forint esetén: a Kuplung beruházást valósítja meg a vállalkozás, hiszen nettó jelentértéke pozitív
- 50 millió forint esetén: csak a Felni beruházást érdemes megvalósítani
- 60 millió forint esetén: mindkét beruházást érdemes megvalósítani, hiszen mindkettőnek pozitív az NPV-je, PI-jük pedig megegyezik.

10.7. Feladat
Egy kockázati tőke befektető 500 millió forintot fektetett be az egyik startup cégbe.

a) Mekkora exit árat kell elérnie 5 év múlva, ha a befektetéseinek elvárt IRR-je minimum 25%?

b) Tegyük fel, hogy az a) pontban kiszámított exit ár reális. Hogyan változik az IRR, ha kiderül, hogy a tervek szerint még 100 millió forintot be kell várhatóan fektetni a 2. év végén is?

c) Tekintve a b) kérdést, milyen exit ár kellene, ha tartani szeretné az eredeti 25%-os IRR-t?

(A kockázati tőke az exit előtt semmilyen cégből származó CF bevétellel nem számol.)
a) exit ár: $500 \cdot 1,25^5 = 1526$ millió forint

b) csökkenni fog, Excellel számítva 21,9\% lesz az új IRR

$$IRR = 21,9\%$$

<table>
<thead>
<tr>
<th>Év</th>
<th>Felvásárlás</th>
<th>Átszervezés, csökkentett működés</th>
<th>Végkielégítések, csökkentett működés</th>
<th>Új struktúra felfuttatása</th>
<th>Tervezett normál működés</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-150</td>
<td>250</td>
<td>-80</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) exit ár: $500 \cdot 1,25^5 + 100 \cdot 1,25^3 = 1721$ millió forint

10.8. Feladat

Egy telekommunikációs cég versenytársának felvásárlására készül. A felvásárlást követően összeolvadást és jelentős szervezeti átstrukturálást tervez az új tulajdonos, ez számos alkalmazott elbocsátásával jár. A végkielégítések kifizetése a 2. évben várható. Elemzői várakozások alapján a következő két évben így alakul az újonnan létrejövő vállalat cash-flow-ja:

<table>
<thead>
<tr>
<th>Év</th>
<th>Felvásárlás</th>
<th>Átszervezés, csökkentett működés</th>
<th>Végkielégítések, csökkentett működés</th>
<th>Új struktúra felfuttatása</th>
<th>Tervezett normál működés</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-150</td>
<td>250</td>
<td>-80</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) A felvásárló cég szigorú befektetési politikája miatt az elemzőknek az első két évre kell belső megtérülési rátát számolniak a projekt értékeléséhez. Hogyan számítják az IRR-t? Milyen problémákat jelent ez az értékelésnél?

b) A felvásárló cég befektetési politikájában rögzített minimális hozamelvárás 10\%. Milyen döntést fog hozni a menedzsment, belevágnak a felvásárlásba (az előző pontban kiszámított IRR alapján)?

$$-150 + \frac{250}{1+IRR} - \frac{80}{(1+IRR)^2} = 0$$

$$150 \cdot IRR^2 + 50 \cdot IRR - 20 = 0$$

$$IRR_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-50 \pm \sqrt{2500 + 12000}}{300}$$

$$IRR_1 = 23,47\%$$

$$IRR_2 = -56,8\%$$

b)
Mivel 10%-os hozamszintnél az NPV pozitív (-56,8% és 23,47% között pozitív), ezért érdemes belevágni a beruházásba.
11. Szeminárium - Tőkeköltség-számítás

Tesztek

1. Válassza ki a helyes állítást! A vállalati tőkeköltség…
 a) a vállalat részvényesei által elvárt hozam.
 b) a kötvényesek és a részvényesek által elvárt hozamok harmonikus átlaga.
 c) tőkéletes piacon megegyezik a vállalat eszközeinek várható hozamával.
 d) a részvényesek által elvárt hozamnál jellemzően magasabb.

2. Egy vállalat eszközeinek 60%-át saját tőke, 40%-át kockázatmentes hitelből finanszírozza. A kockázatmentes hiteleinek hozama 8%. A részvények bétája 1,2. Mekkora a vállalat eszközeinek bétája tőkéletes piaci körülmények között?
 a) nem meghatározható
 b) 0,8
 c) 1,2
 d) 0,72

3. Egy vállalkozást piaci összértékének 40%-ában kockázatmentes hitelből finanszíroznak. A vállalat eszközeinek bétája a becslések szerint 1,5. Mekkora a részvények bétája mindezek alapján? (Tételezzük fel, hogy a piacok tőkéletesek.)
 a) 1,50
 b) 3,75
 c) 2,50
 d) 0,90

4. Válassza ki a helyes állítást! Ha egy holding egy új üzletágba való beruházást fontolgat, akkor…
 a) az új üzletág tőkeköltségével kell számolnia.
 b) a holding tőkeköltségével kell számolnia.
 c) a holding részvényeinek hozamával kell számolnia
 d) a holding eszközeinek hozamával kell számolnia.

5. Válassza ki a helyes állítást! Ha egy holding egy általános kapacitásnövelő, minden üzletágat (a holdingban meglévő súlyarányban) egyaránt érintő beruházást fontolgat, akkor…
 a) az egyik üzletág tőkeköltségével kell számolnia.
 b) a holding tőkeköltségével kell számolnia.
 c) a holding részvényeinek hozamával kell számolnia
 d) a legkisebb üzletági tőkeköltséggel kell számolnia.
Példák

11.1. Feladat

Egy közszolgáltató vállalat piaci értékének 60%-át idegen forrásból, 40%-át saját tőkéből finanszírozzák. A cég idegen forrásainak éves hozama 7%, a saját tőkétől évi 20% hozamot vár el a piac. Mekkora a cég eszközeinek várható hozama, ha tökéletes tőkepiacot tételezünk fel?

\[
\frac{D}{V} = 0.6 \\
\rho_D = 7\% \\
\rho_E = 20\%
\]

\[
\rho_A = \frac{D}{V} \cdot \rho_D + \frac{E}{V} \cdot \rho_E = 0.6 \cdot 7\% + 0.4 \cdot 20\% = 12.2\
\]

11.2. Feladat

Egy vállalat eszközeinek piaci értéke 100. A vállalatot 40%-ban kockázatmentes hitelből, 60%-ban saját tőkéből finanszírozzák. A hitel hozama évi 5%. A piaci portfólió várható hozama 15%, a saját tőke bétája 0,7. Mekkora a vállalat tőkeköltsége és eszközeinek bétája tökéletes piaci feltételek mellett?

\[
\frac{D}{V} = 0.4 \\
\rho_D = \gamma_f = 5\% \\
\rho_M = 15\% \\
\beta_E = 0.7
\]

\[
\rho_E = \gamma_f + \beta_E(r_M - \gamma_f) = 0.05 + 0.7 \cdot (0.15 - 0.05) = 12\% \\
\rho_V = \frac{r_A}{\rho_A} = \frac{D}{V} \cdot \rho_D + \frac{E}{V} \cdot \rho_E = 0.4 \cdot 5\% + 0.6 \cdot 12\% = 9.2\% \\
\rho_A = \gamma_f + \beta_A(r_M - \gamma_f) \\
0.092 = 0.05 + \beta_A(0.15 - 0.05) \\
\beta_A = 0.42
\]
11.3. Feladat

Egy vállalat eszközeinek piaci értéke 100. A vállalatot 20%-ban banki hitelből, 15%-ban vállalati kötvénnyel, 25%-ban elsőbbségi részvénnyel és a maradék értékben törzsrészvénnyel finanszírozzák. A banki hitel hozama évi 5%. A vállalati kötvények éves hozama 6%. Az elsőbbségi részvénnyek éves hozama 15%, míg a törzsrészvénynyek hozama évi 20%.

a) Tökéletes piacot tekintve milyen tőkeköltséggel kellene a vállalat eszközeit (vagyis az eszközeiből származó CF-t) értékelni?

b) Milyen tőkeköltséggel kellene közvetlenül a vállalat törzsrészvényeit, vagyis a törzsrészvényekből származó CF-t értékelni?

\[
\begin{align*}
a) & \quad D_1 \text{ bankihitel}/V = 0,2 \\
& \quad r_{D_1 \text{ bankihitel}} = 5\% \\
& \quad D_2 \text{ kötvény}/V = 0,15 \\
& \quad r_{D_2 \text{ kötvény}} = 6\% \\
& \quad E_1 \text{ elsőbbségi}/V = 0,25 \\
& \quad r_{E_1 \text{ elsőbbségi}} = 15\% \\
& \quad E_2 \text{ törzs}/V = 1-0,25-0,15-0,2=0,4 \\
& \quad r_{E_2 \text{ törzs}} = 20\% \\

& \quad r_V = r_A = \frac{D_1}{V} \cdot r_{D_1} + \frac{D_2}{V} \cdot r_{D_2} + \frac{E_1}{V} \cdot r_{E_1} + \frac{E_2}{V} \cdot r_{E_2} \\
& \quad = 0,20 \cdot 5\% + 0,15 \cdot 6\% + 0,25 \cdot 15\% + 0,40 \cdot 20\% = 13,65\% \\

& \text{Ezzel értékeljük a vállalat eszközeiből származó szabad CF-t.}

& b) A törzsrészvények CF-ját a törzsrészvény hozamával, vagyis 20%-kal diszkontáljuk.

11.4. Feladat

Egy vállalat részvényeinek piaci értéke 1600 millió Ft. Emellett a vállalat 400 millió forint hitelt is felvett 7% éves hozam mellett. A kockázatmentes hozam évi 5%, a vállalat részvényeinek bétája 1,5, a piaci kockázati prémium 8%. Tökéletes piacot feltételezünk.

a) Mekkora a vállalat tőkeköltsége?

b) Mekkora a vállalat hiteleinek bétája?

c) Mekkora a vállalat eszközeinek bétája?

\[
\begin{align*}
a) & \quad E = 1600 \text{ MFt}
\end{align*}
\]
\[D = 400 \text{ MFt} \]
\[\beta_E = 1.5 \]
\[r_M - r_f = 8\% \]
\[r_f = 5\% \]
\[r_D = 7\% \]

\[r_E = r_f + \beta_E (r_M - r_f) = 5\% + 1.5 \cdot 8\% = 17\% \]
\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E = \frac{400}{1600+400} \cdot 7\% + \frac{1600}{1600+400} \cdot 17\% = 15\% \text{ a tőkeköltség} \]

b) \[r_D = r_f + \beta_D (r_M - r_f) = 5\% + \beta_D \cdot 8\% = 7\% \]
\[\beta_D = 0.25 \]

c) \[\beta_A = \frac{D}{V} \cdot \beta_D + \frac{E}{V} \cdot \beta_E = \frac{400}{1600+400} \cdot 0.25 + \frac{1600}{1600+400} \cdot 1.5 = 1.25 \]

és ez a CAPM alapján is kijön \[r_A = 15\% = 5\% + 1.25 \cdot 8\% \]

11.5. Feladat

Egy vállalatot kizárólag saját tőkéből és banki hitelekből finanszíroznak. A hiteleinek aránya a forrásokon belül 30%. A hitelek bétája 0,3. A vállalat eszközeinek bétája 1,25. A piaci portfólió várható hozama évi 15%, a kockázatmentes hozam évi 5% minden lejáratra.

a) Mekkora a saját tőke bétája és várható hozama?
b) Mekkora a hitelek várható hozama?
c) Mekkora a vállalat eszközeinek várható hozama?

\[\beta_A = \frac{D}{V} \cdot \beta_D + \frac{E}{V} \cdot \beta_E = \frac{400}{1600+400} \cdot 0.3 + \frac{1600}{1600+400} \cdot 1.25 = 1.657 \]
\[r_E = r_f + \beta_E (r_M - r_f) = 5\% + 1.657 \cdot (15\% - 5\%) = 21.57\% \]

b) \[r_D = r_f + \beta_D (r_M - r_f) = 5\% + 0.3 \cdot (15\% - 5\%) = 8\% \]

c)
\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E = 0,3 \cdot 8\% + 0,7 \cdot 21,57\% = 17,5\% \]

11.6. Feladat

Egy holding vállalat három leányvállalatot tulajdonol, amelyek az A, B és C iparághoz tartoznak. A teljes holdingon belül a leányvállalatok piaci értéke a teljes holding értékének 30\%, 50\% és 20\%-a. Az A, B, C iparágakban tevékenykedő hasonló vállalatok saját tőkéjének bétája nagyon eltérő, rendre 1,2, 0,8 és 1,1. Ezen vállalatok bankhitelből és saját forrásból finanszírozzák tevékenységüket, ahol a hitelek aránya piaci értéken számolva 30, 50, illetve 60\%. A hitelek kockázatmentesek. A kockázatmentes hozam évi 5\%, a piaci portfólió kockázati prémiuma 10\%. A CAPM feltevései teljesülnek.

a) Számítsa ki a holding tőkeköltségét!

\[r_D = r_f = 5\% \]
\[r_M - r_f = 10\% \]

\begin{tabular}{|c|c|c|c|c|}
\hline
 & \(w_i \) & \(\beta_E \) & \(D/V \) & \(r_D=r_f \) \\
\hline
A & 30\% & 1,2 & 30\% & 5\% \\
B & 50\% & 0,8 & 50\% & 5\% \\
C & 20\% & 1,1 & 60\% & 5\% \\
\hline
\end{tabular}

\[r_{EA} = r_f + \beta_E (r_M - r_f) = 0,05 + 1,2 \cdot 0,1 = 17\% \]
\[r_{EB} = 0,05 + 0,8 \cdot 0,1 = 13\% \]
\[r_{EC} = 0,05 + 1,1 \cdot 0,1 = 16\% \]
\[r_{AA} = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E = 0,3 \cdot 0,05 + 0,7 \cdot 0,17 = 13,4\% \]
\[r_{AB} = 0,5 \cdot 0,05 + 0,5 \cdot 0,13 = 9\% \]
\[r_{AC} = 0,6 \cdot 0,05 + 0,4 \cdot 0,16 = 9,4\% \]
\[r_{AH} = w_A r_{AA} + w_B r_{AB} + w_C r_{AC} = 0,3 \cdot 0,134 + 0,5 \cdot 0,09 + 0,20 \cdot 0,094 = 10,4\% \]

b)

\[r_{AHolding} = \frac{D}{V} \cdot r_{DHolding} + \frac{E}{V} \cdot r_{EHolding} = 0,2 \cdot 5\% + 0,8 \cdot r_{EHolding} = 10,4\% \]
\[r_{EHolding} = 11,75\% \]
\[r_{EHolding} = 11,75\% = r_f + \beta_{EHolding} (r_M - r_f) = 5\% + \beta_{EHolding} \cdot 10\% \]
\[\beta_{EHolding} = 0,675 \]
11.7. Feladat

Tegyük fel, hogy a CAPM feltételei teljesülnek. Az TSZA Holdingnak három különálló ágazata van:

| Az ágazatok eszközértéke a teljes holding piaci értékének százalékában |
|-----------------|-----------------|
| Takács | 50% |
| Szakács | 30% |
| Asztalos | 20% |

A piaci portfolió várható hozama 15%, a kockázatmentes hozam 5%. A holding tevékenységét (piaci értéken számolva) 20%-ban finanszírozzák, amelynek éves hozama 7%. Az egyes részlegek tőkeköltségét az alábbi ágazati versenytárs vállalatok adataiból becsülték:

<table>
<thead>
<tr>
<th>Becsült eszköz-béta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taki Nyrt.</td>
</tr>
<tr>
<td>Szaki Nyrt.</td>
</tr>
<tr>
<td>Aszti Nyrt.</td>
</tr>
</tbody>
</table>

a) Határozza meg az egyes részlegek várható hozamát!
b) Becsülje meg a holding egészének eszköz-bétáját és tőkeköltségét!
c) Mekkora a holding részvényeinek és hiteleinek bétája és várható hozama?

\[
\begin{align*}
\beta_{AH} &= w_{A1}\beta_{A1} + w_{A2}\beta_{A2} + w_{A3}\beta_{A3} = 0.5 \cdot 1.1 + 0.3 \cdot 1.2 + 0.2 \cdot 0.8 = 1.07 \\
r_{AH} &= r_f + \beta_{AH}(r_M - r_f) = 5\% + 1.07 \cdot (15\% - 5\%) = 15.7\% \\
&\text{(vagy a hozamok súlyozva)}
\end{align*}
\]

\[
r_{M} = 15\% \\
r_{f} = 5\% \\
r_{AH} = r_{f} + \beta_{AH}(r_{M} - r_{f}) = 5\% + 1.07 \cdot (15\% - 5\%) = 15.7\% \\
\]

b) \[
\beta_{AH} = w_{A1}\beta_{A1} + w_{A2}\beta_{A2} + w_{A3}\beta_{A3} = 0.5 \cdot 1.1 + 0.3 \cdot 1.2 + 0.2 \cdot 0.8 = 1.07
\]

c) áttérünk a forrás oldalra

\[
r_{DH} = 7\% \quad (\text{feladatleírásban szerepel}) \\
r_{AH} = \frac{D}{V} \cdot r_{DH} + \frac{E}{V} \cdot r_{EH} \\
15.7\% = 0.2 \cdot 7\% + 0.8 \cdot r_{EH}
\]
\[r_{EH} = 17.875\% \]
\[r_{EH} = r_f + \beta_E (r_M - r_f) \]
\[17.875\% = 5\% + \beta_E (10\%) \]
\[\beta_{EH0} = 1.2875 \]
\[7\% = 5\% + \beta_{DHO} (10\%) \]
\[\beta_{EH0} = 0.2 \]

11.8. Feladat

Az XY Holding két fő ágazatban tevékenykedik, amelynek piaci értéke a teljes holdingon belül a következő:

<table>
<thead>
<tr>
<th></th>
<th>Értéke a holding piaci értékének százalékában</th>
</tr>
</thead>
<tbody>
<tr>
<td>X ágazat</td>
<td>60%</td>
</tr>
<tr>
<td>Y ágazat</td>
<td>40%</td>
</tr>
</tbody>
</table>

A kockázatmentes hozam évi 5%, a piaci portfóliótól várható hozama 15%. A CAPM feltételei teljesülnek. A holding tevékenységét 30%-ban hitelből finanszírozza, amelynek bétája 0,3.

Az egyes részlegek tőkeköltségét az alábbi piaci versenytársak adataiból becsülték:

<table>
<thead>
<tr>
<th></th>
<th>Becsült részvény béta</th>
<th>Becsült hitel béta</th>
<th>Tőkeáttétel (D/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xilo Nyrt.</td>
<td>0.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Yoyo Nyrt.</td>
<td>1.1</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

a) Mennyi az egyes részlegek várható hozama (tőkeköltsége)?
b) Becsülje meg a holding egészének, részvényeinek, hiteleinek várható hozamát!

\[r_f = 5\% \]
\[r_M = 15\% \]
\[D/V = 0.3 \text{ (holding)} \]
\[r_D = 0.3 \text{ (holding)} \]

a)
\[\beta_A = \frac{D}{V} \cdot \beta_D + \frac{E}{V} \cdot \beta_E \]
\[\beta_{AX} = 0.3 \cdot 0.2 + 0.7 \cdot 0.6 = 0.48 \]
\[\beta_{AY} = 0.4 \cdot 0.2 + 0.6 \cdot 1.1 = 0.74 \]
\[\text{(átlagos holding eszközbéta 60%-40% súllyal, } \beta_{AHO} = 0.584) \]
\[r_A = r_f + \beta_A (r_M - r_f) \]
\[r_{AX} = 0.05 + 0.48 \cdot (0.15 - 0.05) = 9.8\% \]
\[r_{Ay} = 0,05 + 0,74 \cdot (0,15 - 0,05) = 12,4\% \]

\[r_{Ay} = 0,05 + 0,74 \cdot (0,15 - 0,05) = 12,4\% \]

\[b) \]

eszköz oldalról becsülve:
\[r_{AHo} = w_X r_{AX} + w_Y r_{AY} = 0,6 \cdot 9,8\% + 0,4 \cdot 12,4\% = 10,84\% \]

(és ez a holding eszközbétája (0,584) és a CAPM alapján is kijön)
\[r_{DHo} = r_f + \beta_D (r_M - r_f) = 0,05 + 0,3 \cdot (0,1) = 8\% \]

áttérve forrásoldalra:
\[10,84\% = 0,3 \cdot 8\% + 0,7 \cdot r_{EHo} \]
\[r_{EHo} = 12,06\% \text{ (kerékitve)} \]
12. Szeminárium - A tőkeszerkezet megváltoztatása

Tesztek

1. Mit mond ki Miller-Modigliani első tétele?
 a) Rögzített beruházási politika mellett a finanszírozás soha nem hat a vállalat értékére.
 b) Hatékony piacon és rögzített beruházási politika mellett a finanszírozás nem hat a vállalat értékére.
 c) Tökéletes piacon és társasági adók mellett a tőkeszerkezet nem hat a vállalat értékére.
 d) Tökéletes piacon és rögzített beruházási politika mellett a tőkeszerkezet nem hat a vállalat értékére.

2. „Tökéletes piacon, rögzített beruházási politika mellett az eladósodottság növekedésével a saját tőke várható hozama nő.” Milyen téttelt fogalmaztunk meg?
 a) Miller Modigliani I. tétel
 b) radikális jobboldal tétele
 c) Saját-tőkeszerkezet tétele
 d) Miller-Modigliani II. tétel

3. Melyik állítás nem igaz Modigliani-Miller (MM) I. tételére vonatkozóan!
 a) tökéletes tőkepiacot feltételezünk
 b) minden az eszközoldaltól függ
 c) a beruházási döntések adottak
 d) a befektetők kockázatkeresés

4. Válassza ki a helyes állítást!
 a) Tökéletes piacon a növekvő tőkeáttétel csökkenti a részvények várható hozamát.
 b) Tökéletes piacon a tőkeáttétel növelése változatlan eszközoldal mellett csökkenti az egy részvényre jutó nyereséget.
 c) Tökéletes piacon a tőkeáttétel növelése változatlan eszközoldal mellett növelheti az egy részvényre jutó várható nyereséget.
 d) Modigliani-Miller szerint a részvények elvárt hozama a tőkeszerkezettől független.

5. A Miller-Modigliani tételek feltételei mellett, tökéletes piacon egy vállalat növeli eladósodottságát, vagyis hitelt vesz fel, és ebből részvényeket vásárol vissza. Melyik állítás igaz?
 a) A részvények bétája nő.
 b) A részvények árfolyama nő.
 c) Az eszközök elvárt hozama nő.
 d) Az eszközök bétája nő.
Példák

12.1. Feladat

A Kedvenc NyRt. tökéletes piacon működik, évi nyeresége (egyben szabad pénzáramlása) stabilan 1000 millió Ft. A vállalat tőkeköltsége 10%. A vállalatot teljesen saját tőkéből finanszírozzák. Van egy 1000 millió Ft beruházást igénylő lehetőség, amely évi 80 millió Ft örökjáradeket hoz, ugyanakkora kockázattal, mint amely a vállalkozás egészére ma is jellemző. A vállalat házi bankja hajlandó évi 5%-os hozam mellett megfinanszírozni a beruházást (a hitelállományt ezután a vállalat folyamatosan fenntartja).

a) Érdemes-e megvalósítani a beruházást?

b) Ha megvalósítják, mekkora a vállalat piaći értéke a beruházás előtt és után? Mekkora a részvényesek vagyonának értéke a beruházás előtt és után?

\[CF_i = 1000 \text{ MFt} \]
\[r = 10\% \]
\[E/V = 100\% \]
\[C_0 = -1000 \text{ MFt} \]
\[C_i = 80 \text{ MFt} \]
\[r_D = 5\% \]

a)

\[NPV = -1000 \text{ MFt} + \frac{80 \text{ MFt}}{0,1} = -200 \text{ MFt} \]

NPV negatív, nem érdemes megvalósítani a beruházást

b)

Előtte:

\[V = \frac{1000 \text{ MFt}}{0,1} = 10000 \text{ MFt} \]

Utána:

\[V = 10000 \text{ MFt} + \frac{80 \text{ MFt}}{0,1} = 10800 \text{ MFt} \]

Előtte:

\[E = V_{elötte} = 10000 \text{ MFt} \]

Utána:

\[E = V_{utána} - D = 10800 \text{ MFt} - 1000 \text{ MFt} = 9800 \text{ MFt} \]

A vállalat teljes értéke 800-val (PV(CF)-vel) nő. De a részvényesek vesztenek 200-at (NPV). Hiába rossz a beruházás, ezt az új finanszírozó (itt hitelező) tudja, hiszen jól informált, az ő vagyona nem csökken, vagyis 1000 lesz (C_0). Ugyanez lenne a helyzet, ha új részvénykibocsátással finanszíroznának az induló 1000-et. Akkor az új részvényeseknek maradna 1000 az értéke, a régi részvényesek veszítenének 200-at. Nem érdemes megvalósítni a beruházást!
12.2. Feladat

Egy teljes egészében saját tőkéből finanszírozott vállalat eszközeinek bétája jelenleg 1,8, az eszközök tőkeköltsége évi 20%, a tőkepiac tőkéletes. Mekkora lesz a részvények várható hozama és bétája, ha a részvények 25%-át kockázatmentes örökkáradék kötvényre cseréli fel a vállalat, amelynek kamatozása évi 5%?

\[
D/V_{ előző} = 0\%
\]
\[
\beta_A = 1,8
\]
\[
r_A = 20\%
\]
\[
D/V_{ utána} = 25\%
\]
\[
r_D = 5\%
\]
\[
\beta_D = 0 \text{ (kockázatmentes)}
\]
\[
r_E = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E
\]
\[
0,20 = 0,25 \cdot 5\% + 0,75 \cdot r_E
\]
\[
r_E = 25\%
\]
\[
\beta_A = \frac{D}{V} \cdot \beta_D + \frac{E}{V} \cdot \beta_E
\]
\[
1,8 = 0,25 \cdot 0 + 0,75 \cdot \beta_E
\]
\[
\beta_E = 2,4
\]

12.3. Feladat

Az Agresszív NyRt tőkéletes piacon működik, teljes egészében saját tőkéből finanszírozózik. A részvényesek a jelenlegi részvényárfolyam alapján 15% hozamot várhatnak el. A vállalat radikálisan megváltoztatja tőkeszerkezetét, és visszavásárolja részvényeinek felét és ezt a forrást évi 6% elvárt hozamú kötvénykibocsátással finanszírozza.

a) Mekkora lesz a részvények és a hitelek várható hozama az újrafinanszírozás után?

b) Hogyan változik meg a részvények hozama, ha kiderül, hogy a piacon csak évi 8% hozam mellett lehet hitelt felvenni?

\[
E/V = 100\%
\]
\[
r_E = r_A = 15\%
\]
\[
r_D = 6\%
\]
\[
D/V_{ utána} = 50\%
\]
\[
a)
\]
\[r_D = 6\% \]
\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E \]
\[15\% = 0,5 \cdot 6\% + 0,5 \cdot r_E \]
\[r_E = 24\% \]

A hitelek várható hozama természetesen a 6\% lesz, marad.

\[b) \]
\[r_D = 8\% \]
\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E \]
\[15\% = 0,5 \cdot 8\% + 0,5 \cdot r_E \]
\[r_E = 22\% \] *(a részvények várható hozama az a)-hoz képest csökkent, a hitelek kockázatosabbak lettek, és a részvénnyestől nagyobb kockázatot vettek át a hitelezők)*

12.4. *Feladat*

A Nyugalom ZRt tökéletes piacon működik, jelenleg 40\%-ban hitelből és 60\%-ban saját tőkéből finanszírozzák. A részvényesek a jelenlegi részvényárfolyam alapján 20\% hozamot várának el, a hitelek bétája 0,2. A kockázatmentes hozam évi 6\%, a piaci kockázati prémium értéke 10\%. A vállalat új tulajdonosai konzervatív szemléletűek, és elhatározzák, hogy új részvénnyibocsátásból finanszírozva minden hitelt visszafizetnek. Hogyan változik a részvények hozama és bétája az újrafinanszírozás után?

Előtte:
\[D/V = 40\% , E/V = 60\% \]
\[\beta_D = 0,2 \]
\[r_D = 6\% + 0,2 \cdot 10\% = 8\% \]
\[r_E = 20\% = 6\% + \beta_E \cdot 10\% \]
\[\beta_E = 1,4 \]
\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E \]
\[r_A = 0,4 \cdot 8\% + 0,6 \cdot 20\% = 15,2\% \]
\[\beta_A = \frac{D}{V} \cdot \beta_D + \frac{E}{V} \cdot \beta_E \]
\[\beta_A = 0,4 \cdot 0,2 + 0,6 \cdot 1,4 = 0,92 \]

Utána

100\% saját tőke, vagyis a részvények hozama és kockázata az eszközökkel egyezik meg.
\[r_A = r_E = 15,2\% \]
\[\beta_A = \beta_E = 0,92 \]

A részvények kockázata csökkent, a béta és a hozam is csökkent.

12.5. Feladat

A Stabilitás NyRt. tökéletes piacon működik. Tisztán saját tőkéből, törzsrészvényből finanszírozzák. A várható éves szabad pénzáramlás örökkáradék jellegű, évi 300 millió Ft, ami egyben a vállalat éves eredménye. 100 ezer részvény van forgalomban. A piaci információk alapján jelenleg a vállalat részvényeinek bétája 0,8, a részvények várható éves hozama 12,5%.

A vállalat menedzsmentje azon vitázik, hogy miként változik a vállalat P/E mutatója, ha az eszközök értékének 40%-ának megfelelő kockázatmentes hitelt vesz fel a piacon elérhető hozamszinten, évi 8%-on, majd ebből részvényeket vásárol vissza.

a) Számítsa ki, hogyan változna a tranzakció után a részvények várható hozama, a részvények összesített piaci értéke (piaci kapitalizáció) és a P/E ráta.

b) Hogyan változik az NyRt. eszközeinek értéke?

\[\begin{align*}
E/V &= 100\% \\
\beta_E &= 0,8 \\
r_E &= 12,5\% \\
FCF &= 300 \text{ millió Ft (MFt)} \\
100 \text{ ezer db részvény} \\
r_D &= r_f = 8\% \\
D/V_{uij} &= 40\% \\
\end{align*} \]

\[b) \]

\[r_A = \frac{D}{V} \cdot r_D + \frac{E}{V} \cdot r_E \]
\[0,125 = 0,4 \cdot 0,08 + 0,6 \cdot r_E \]

\[r_E = 15,5\% \]

\[V = \frac{300 \text{ MFt}}{0,125} = 2400 \text{ MFt} \]

\[P_{előtte} = \frac{2400 \text{ MFt}}{100 \text{ edb}} = 24000 \text{ Ft} \]

A vállalat eszközeinek értéke nem változik utána sem (2 400 MFt) de már lesz hitel (960 MFt) és az új saját tőke már csak 60 ezer darab részvényből áll.

\[E_{utána} = 2400 \cdot 0,6 = 1440 \text{ MFt} \]

\[D = 960 \text{ MFt} \]

\[P_{utána} = \frac{1440 \text{ MFt}}{60 \text{ edb}} = 24000 \text{ Ft}, \text{tehát nem változik} \]

\[EPS_{előtte} = \frac{300 \text{ MFt}}{100 \text{ edb}} = 3000 \text{ Ft} \]

103© Befektetések és Vállalati Pénzügy Tanszék
\[\frac{P}{E_{\text{elötte}}} = \frac{24\,000\,\text{Ft}}{3\,000\,\text{Ft}} = 8 \]

Hitelfelvétel után:

teljes fizetett éves kamat = \(D \cdot k = 960\,\text{MFt} \cdot 8\% = 76,8\,\text{MFt} \)

Teljes „Earnings” (saját tőke új cash flow-ja, FCFE) = 300\,\text{MFt} – 76,8\,\text{MFt} = 223,2\,\text{MFt}

\[\frac{\text{EPS}_{\text{utána}}}{60\,\text{ed}b} = \frac{223,2\,\text{MFt}}{3\,720\,\text{Ft}} = 3,720\,\text{Ft} \]

\[\frac{P}{E_{\text{utána}}} = \frac{24\,000\,\text{Ft}}{3\,720\,\text{Ft}} = 6,45 \]

És ami a legszebb, hogy az árfolyamot megkapjuk úgy is, hogy az új \(\text{EPS-t} \) diszkontáljuk (örökjáradék szerűen) az új részvény hozammal:

\[P_{\text{utána}} = \frac{3\,720\,\text{Ft}}{0,155} = 24\,000\,\text{Ft} \]

Vagyis bár nőtt az egy részvényre jutó cash-flow, de éppen ennek megfelelően nőtt a részvény kockázata is és a hozama is, így az árfolyam nem változik (\(P/E \) csökkeni fog).

b)

A vállalat eszközeinek értéke nem változik

\[V_{\text{elötte}} = E_{\text{elötte}} = 2400\,\text{MFt} \]

\[V_{\text{utána}} = E_{\text{utána}} + D = 1440 + 960 = 2400\,\text{MFt} \]

12.6. Feladat

Egy középvállalat szeretné átalakítani meglévő tőkeszerkezetét. A táblázat kitöltésével mutassa meg, hogyan változnak meg a vállalat főbb adatai, mutatói a tőkeszerkezet változásának köszönhetően! A tökéletes piacot és örökkáradékszerű pénzáramlást feltételezzen!

<table>
<thead>
<tr>
<th></th>
<th>Eredeti</th>
<th>Új</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eladósodottság</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>Részvények értéke</td>
<td>2000,\text{millió Ft}</td>
<td></td>
</tr>
<tr>
<td>Hitelek értéke</td>
<td>0,\text{Ft}</td>
<td>400,\text{millió Ft}</td>
</tr>
<tr>
<td>Hitelek kamatlába</td>
<td>-</td>
<td>6%</td>
</tr>
<tr>
<td>Kifizetett kamat</td>
<td>0,\text{Ft}</td>
<td></td>
</tr>
<tr>
<td>Eredmény / Szabad CF a részvényesnek (FCFE)</td>
<td>360,\text{millió Ft}</td>
<td></td>
</tr>
<tr>
<td>Részvények száma</td>
<td>1,\text{millió db}</td>
<td>800,\text{ezer db}</td>
</tr>
<tr>
<td>EPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egy részvény árfolyama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{P}{E})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Részvényesek elvárt hozama</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>WACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eredeti</td>
<td>Új</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Eladósodottság</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>Részvények értéke</td>
<td>2000 M Ft</td>
<td>$(1) 2000 \cdot 0,8 = 1600 \text{M}\text{Ft}$</td>
</tr>
<tr>
<td>Hitelek értéke</td>
<td>0 Ft</td>
<td>400 M Ft</td>
</tr>
<tr>
<td>Hitelek kamatlába</td>
<td>-</td>
<td>6%</td>
</tr>
<tr>
<td>Kifizetett kamat</td>
<td>0 Ft</td>
<td>$(2) 400 \cdot 0,06 = 24 \text{M}\text{Ft}$</td>
</tr>
<tr>
<td>Eredmény / Szabad CF a részvényesnek (FCFE)</td>
<td>360 M Ft</td>
<td>$(3) 360 - 24 = 336 \text{M}\text{Ft}$</td>
</tr>
<tr>
<td>Részvények száma</td>
<td>1 millió darab</td>
<td>800 ezer db</td>
</tr>
<tr>
<td>EPS</td>
<td>$(4) \frac{360 \text{M}\text{Ft}}{1 \text{M} \text{db}} = 360 \text{Ft}$</td>
<td>$(5) \frac{336 \text{M}\text{Ft}}{800 \text{e} \text{db}} = 420 \text{Ft}$</td>
</tr>
<tr>
<td>Egy részvény árfolyama</td>
<td>$(6) \frac{2000 \text{M}\text{Ft}}{1 \text{M} \text{db}} = 2000 \text{Ft}$</td>
<td>$(7) \frac{1600 \text{M}\text{Ft}}{800 \text{e} \text{db}} \text{vagy} \frac{420 \text{Ft}}{0,21} = 2000 \text{Ft}$</td>
</tr>
<tr>
<td>P/E</td>
<td>$(8) \frac{2000 \text{Ft}}{360 \text{Ft}} = 5,56$</td>
<td>$(9) \frac{2000 \text{Ft}}{420 \text{Ft}} = 4,76$</td>
</tr>
<tr>
<td>Részvényesek elvárt hozama</td>
<td>18%</td>
<td>$(10) 18% = 0,2 \cdot 6% + 0,8 \cdot r_E$</td>
</tr>
<tr>
<td>WACC</td>
<td>18%</td>
<td>18%</td>
</tr>
</tbody>
</table>

12.7. Feladat

Egy KKV szeretné átalakítani meglévő tőkeszerkezetét. Eredményét örökkváradékszerűen termeli. A táblázat kitöltésével mutassa meg, hogyan változnak meg a vállalat főbb adatai, mutatói a tőkeszerkezet változásának köszönhetően! A tökéletes piac feltételezzen! A kockázatmentes kamatláb 6%, a piaci kockázati prémium pedig 10%.

<table>
<thead>
<tr>
<th>Eredeti</th>
<th>Új</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eladósodottság</td>
<td>0%</td>
</tr>
<tr>
<td>Részvények értéke</td>
<td>100 millió Ft</td>
</tr>
<tr>
<td>Hitelek értéke</td>
<td>0 Ft</td>
</tr>
<tr>
<td>Hitelek kamatlába</td>
<td>-</td>
</tr>
<tr>
<td>Kifizetett kamat</td>
<td>0 Ft</td>
</tr>
<tr>
<td>Eredmény / Szabad CF a részvényesnek (FCFE)</td>
<td></td>
</tr>
<tr>
<td>Részvények száma</td>
<td>100 ezer db</td>
</tr>
<tr>
<td>EPS</td>
<td>200</td>
</tr>
<tr>
<td>Egy részvény árfolyama</td>
<td></td>
</tr>
<tr>
<td>P/E</td>
<td></td>
</tr>
<tr>
<td>Részvények várható hozama (r_E)</td>
<td></td>
</tr>
<tr>
<td>WACC</td>
<td></td>
</tr>
<tr>
<td>β_E</td>
<td></td>
</tr>
<tr>
<td>β_V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eredeti</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Eladósodottság</td>
<td>0%</td>
</tr>
<tr>
<td>Részvények értéke</td>
<td>100 millió Ft</td>
</tr>
<tr>
<td>Hitelek értéke</td>
<td>0 Ft</td>
</tr>
<tr>
<td>Hitelek kamatlába</td>
<td>-</td>
</tr>
<tr>
<td>Kifizetett kamat</td>
<td>0 Ft</td>
</tr>
<tr>
<td>Eredmény / Szabad CF a részvényesnek (FCFE)</td>
<td>100 e db \cdot 200 = 20 M Ft</td>
</tr>
<tr>
<td>Részvények száma</td>
<td>100 ezer db</td>
</tr>
<tr>
<td>EPS</td>
<td>200</td>
</tr>
<tr>
<td>Egy részvény árfolyama</td>
<td>\frac{100 M Ft}{100 e db} = 1000 Ft</td>
</tr>
<tr>
<td>P/E</td>
<td>\frac{1000 Ft}{200 Ft} = 5</td>
</tr>
<tr>
<td>Részvények várható hozama ((r_E))</td>
<td>\frac{200 Ft}{r_E} = 1000 Ft</td>
</tr>
<tr>
<td>WACC</td>
<td>20%</td>
</tr>
<tr>
<td>(\beta_E)</td>
<td>20% = 6% + \beta_E \cdot (10%)</td>
</tr>
<tr>
<td>(\beta_V)</td>
<td>\beta_E = \beta_V = 1,4</td>
</tr>
</tbody>
</table>

12.8. Feladat

MMA és MMB vállalatok tökéletes piacon működnek, tevékenységük, kockázatuk megegyezik, csak tőkeszerkezetük eltérő. Éves kamatfizetés előtti eredményük 100. MMA-nak nincsen hitele, míg MMB-nek 20% hitele (kötvénye) van, amire évente 10 millió forint kamatot fizet.

a) Mekkora egy olyan tulajdonos jövedelme aki MMA-ból 10%-ot birtokol?

b) Hogyan tudna ugyanakkor éves jövedelmet előállítani egy befektető MMB forrásaiból (saját tőke és hitel) vásárolva?

c) Mekkora egy olyan tulajdonos jövedelme, aki MMB saját tőkéjéből 10%-ot vásárol?

d) Hogyan tudna ugyanakkor éves jövedelmet előállítani egy befektető MMA-ba befektetve?

\[
Jövedelem = 0,1 \cdot 100 = 10
\]
b)

Vegyen meg 10% saját tőkét, és adjon 10% hitelt (vásároljon meg kötvényt) MMB-ből. Ezzel MMB 10%-át birtokolja és jövedelme szintén 10 lesz.

\[\text{Jövedelem} = 0,1 \cdot (100 \text{ kamat} f. \text{előtti eredmény} - 10 \text{ kamat}) + 0,1 \cdot 10 \text{ kamat} = 9 + 1 = 10 \]

c)

\[\text{Jövedelem} = 0,1 \cdot (100 - 10) = 9 \]

d)

Vegyen meg 10% saját tőkét MMA-ból, és emellett az MMB hiteleinek 10%-ának megfelelően vegyen fel hitelt is. Ezzel lényegében ugyanakkora hányadát birtokolja MMA eszközeinek, mint az MMB befektetésnél és jövedelme szintén 9 lesz.

\[\text{Jövedelem} = 0,1 \cdot 100 - 0,1 \cdot 10 \text{ kamat} = 10 - 1 = 9 \]
13. Szeminárium - Osztalékpolitika

Tesztek

1. Válassza ki a helyes állítást! Tökéletes piacon, ha a vállalat egy adott évben növeli osztalékát
 a) ez növeli részvényesei összvagyonát.
 b) ez csökkenti részvényesei összvagyonát.
 c) ez nem változtatja részvényesei vagyoni helyzetét.
 d) ez növeli a vállalati sajáttőke értékét.

2. Válassza ki a helyes állítást! Ha tökéletes piacon egy társaság részvényeinek egy részét egy
 adott tulajdonostól a reális piaći áron visszavásárolja és megsemmisíti azokat, akkor
 a) a többi részvényes vagyona csökkenni fog.
 b) a társaság saját tőkéje változatlan marad.
 c) az összes részvényes vagyona változatlan marad.
 d) a piacon maradó részvények árfolyama növekedni fog.

3. Válassza ki a helyes választ! Az részvényosztalék fizetése (melyet a vállalat nem saját
 részvényből old meg)
 a) tökéletes piacon növeli a részvényesek vagyonát.
 b) tökéletes piacon növeli a vállalati saját tőke értékét.
 c) tökéletes piacon növeli a részvények darabszámát.
 d) tökéletes piacon növeli a részvény árfolyamát.

4. Válassza ki a helyes állítást! A részvényesek és a vállalat menedzsmentje
 a) között szimmetrikus az informáltság.
 b) azonos érdekek szerint döntenek: minden körülmény között mindkettő célja a tulajdonosi
 érték maximalizálása.
 c) között egy megbízó – ügynök kapcsolat húzódik, a részvényesek a menedzsment
 ügynökei.
 d) kapcsolatában a részvényesek érdekeit jól védi, ha minél kevesebb szabad pénzt
 hagynak a menedzsment kezében.

5. Válassza ki a helyes állítást! Annak a vállalatnak érdemes sok osztalékot fizetnie, amelyiknek
 a) tulajdonosai stratégiai, hosszú távú növekedésben gondolkodó befektetők.
 b) vonzó befektetési lehetőségei vannak.
 c) a társasági adókulcsa magas.
 d) befektetői magasabb árfolyamnyereség-adókulcsal rendelkeznek, mint amekkora az
 osztalékadó-kulcsuk.
Példák

13.1. Feladat

A Szokványos NyRt. tökéletes piacon működik. Alaptökéjét 20.000 darab, egyenként 1000 Ft névértékű részvény alkotja, ezek piacli árfolyama jelenleg 3000 Ft. A vállalatvezetés a mai nap a következőket jelenti be: az éves osztalékot a várakozással ellentétben nem 300, hanem 600 forintban fogják megállapítani, és az osztalékfizetést követően minden részvényes kap minden egyes részvénye után még egy ingyenes 1000 Ft névértékű osztalékrészvényt.

a) Hogyan változtatják meg az egyes hírek a részvény árfolyamát?
b) Mekkora volt a kiinduló helyzetben és mekkora lett a bejelentések követően a társaság alaptőkéjének nagysága és saját tőkéjének piaci értéke?
c) Hogyan kellett volna részvényeket aprózni, hogy a kiinduló állapotból indulva ugyanilyen részvényárfolyamhoz jussunk? Mekkora lenne ez esetben a társaság alaptőkéje, saját tőkéjének piaci értéke és egy részvény névértéke?

<table>
<thead>
<tr>
<th>Időpont:</th>
<th>Most</th>
<th>Hír</th>
<th>Osztalék</th>
<th>Osztalékrészvény</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darabszám</td>
<td>20 000</td>
<td>20 000</td>
<td>20 000</td>
<td>40 000</td>
</tr>
<tr>
<td>Árfolyam (Ft)</td>
<td>3000</td>
<td>3000</td>
<td>2400</td>
<td>1200</td>
</tr>
<tr>
<td>Névérték</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Saját tőke értéke (millió forint)</td>
<td>60</td>
<td>60</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Alaptőke (millió forint)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

a) Lásd táblázat.
b) Lásd táblázat.
c) 1200/3000 vagyis 2:5 aprózás. 50.000 db részvényünk lenne.
 A 20 millió forint alaptőke marad, 1000 Ft-ról 400 Ft-ra csökkenné egy részvény névértéke.
 A társaság kapitalizációja 60 millió forint lenne, hiszen nem fizettek ki 12 millió forint osztalékt.

13.2. Feladat

A SokSikert NyRt. alaptőkéje 50 millió forint, melyet 1000 Ft névértékű részvények alkotnak. A társaság piacli kapitalizációja 75 millió forint. A kisbefektetők még nem tudják, hogy a nagytulajdonok megegyeztek abban, hogy rendkívüli osztalékot fognak fizetni, részvényenként 300 forintot, és utána felaprózzák a részvényeket 1:4 arányban. Minden egyébben a tökéletes piacl feltételezései fennállnak.

Töltsze ki a lenti táblázatot!
Időpont: Most Hír nyilvánosságra kerül Osztalék-kifizetés Felaprózás
Darabszám … … … …
Árfolyam … … … …
Saját tőke értéke 75 millió Ft … … … …
Alaptőke 50 millió Ft … … … …

<table>
<thead>
<tr>
<th>Időpont:</th>
<th>Most</th>
<th>Hír nyilvánosságra kerül</th>
<th>Osztalék-kifizetés</th>
<th>Felaprózás*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darabszám</td>
<td>50.000 =50M Ft/1000 Ft</td>
<td>50.000</td>
<td>50.000</td>
<td>200.000</td>
</tr>
<tr>
<td>Árfolyam</td>
<td>$P_0 = \frac{75M}{50000} = 1500$ Ft</td>
<td>1500 Ft</td>
<td>1200 Ft (-300 Ft / részvény)</td>
<td>1200/4=300 Ft</td>
</tr>
<tr>
<td>Saját tőke értéke (millió forint)</td>
<td>75</td>
<td>75</td>
<td>60 (összesen 15 millió forint osztalék kifizetésre kerül)</td>
<td>60</td>
</tr>
<tr>
<td>Alaptőke (millió forint)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

*A felaprózással új sorozatot bocsátanak ki, a részvények névértéke 250 Ft-ra esik, a teljes alaptőke változatlan marad.

13.3. Feladat

A Kishal ZRt. tőkéletes piacon tevékenykedik. Összesen 100.000 darab részvénye van, ezek piaci értéke jelenleg 1300 forint/darab. A társaság kistulajdonosai ragaszkodnak ahhoz, hogy részvényenként a szokásos 300 forint osztalékot megkapják. A fő tulajdonosok ugyanakkor megállapodtak abban, hogy a már halaszthatatlannak ítélt felújításokat elvégzik a cégnél, melynek tőkeigénye 20 millió forint. Miután sem az osztalékfizetésre, sem a beruházásra nincs forrásuk, új részvények kibocsátását tervezik. Az új részvényekre osztalék nem fog járni, jóllehet, először kerül sor a részvénykibocsátásra, és csak utána az osztalék tényleges kifizetésére.

a) Hány darab részvényt, milyen áron szükséges kibocsátani?
b) Mekkora a társaság kapitalizációja jelenleg, a hírek bejelentését követően, a részvénykibocsátáskor, az osztalékfizetés után, illetve a beruházást követően?
c) Hány darab részvényt és milyen áron szükséges kibocsátani akkor, ha az új részvényesek ragaszkodnának ahhoz, hogy ők is kapják meg a 300 Ft-os részvényenkénti osztalékot?
a) Összes tőkeigény: 300 * 100.000 + 20 M = 50 millió forint

Kibocsátási árfolyam: **1000 Ft**

Darabszám: \(\frac{50M}{1000} = 50.000 \text{ db} \)

Amíg nem fizetik ki a régi részvényesek osztalékát, két különböző sorozat lehetséges csak, hiszen a régi részvényeseknek a cum dividend, az új részvényeseknek az ex dividend árfolyam érvényes. Az osztalék kiírását követően ezek összevonhatóak.

b)

<table>
<thead>
<tr>
<th>Időpont</th>
<th>Most</th>
<th>Hírek</th>
<th>Részvénykibocsátás</th>
<th>Osztalékfizetés után</th>
<th>Beruházás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darab</td>
<td>100.000</td>
<td>100.000</td>
<td>150.000</td>
<td>150.000</td>
<td>150.000</td>
</tr>
<tr>
<td>Árfolyam</td>
<td>1300 Ft</td>
<td>1300 Ft</td>
<td>régi részvények 1300 Ft de az új részvények 1000 Ft</td>
<td>1000 Ft</td>
<td>1000 Ft</td>
</tr>
<tr>
<td>Kapitalizáció (millió forint)</td>
<td>130</td>
<td>130</td>
<td>180</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

c) Így a kibocsátás történhetne a régi részvénysorozatban és a régi részvényesekkel megegyező cum dividend árfolyamon.

Hány darab részvény szükséges ezúttal? Az alábbi egyenletet kell megoldani:

\[
Te\text{ljes tőkeigény} = (100.000 + x) \times 300 + 20M = 1300 \times x
\]

\[
30M + 300x + 20M = 1300x
\]

\[
x = \frac{50M}{1000} = 50.000 \text{ db}
\]

Természetesen ugyanannyi részvényt kell bevonni, az új részvényesek saját maguknak finanszírozzák az extra osztalékot azzal, hogy 1300 Ft-os cum dividend áron jutnak a részvényekhez.

13.4. Feladat

Az Indefault Co. 50 millió dollár hitelt vett fel egy éve, és ezt most egyösszegben kellene törölni. Ugyanakkor a törlesztés mellett egy 10 millió dolláros beruházást is végre kellene hajtaniuk, és ráadásul a részvényesek is szeretnének 200 dollár osztalékot kapni részvényenként. A társaság azonban pénzeszközökkel nem rendelkezik, ezért tőkeemelésre kényszerül, minden fenti akciót ebből szeretnének finanszírozni. A tőkeemelés után azonnal törleszteni kell a hitelt, az osztaléket csak ezek után tudják kiírni. Jelenleg 30.000 darab részvényük van, ezek árfolyama a jelen helyzetben 3200 dollár darabonként. A tökéletes piac feltételezései fennállnak. Az új részvényesek osztaléket nem fognak kapni.

a) Hány darab részvény kibocsátásával kell számolni, és milyen árfolyamon?

b) Mekkora a társaság kapitalizációja jelenleg, a tőkeemelés után, a hitel törlesztése után és az osztalékkiírását követően?

c) Mekkora a társaság eszközeinek piaci értéke jelenleg, a tőkeemelés után, a hitel visszafizetését követően, illetve az osztalékkiírását után?
a) *A tőkeigény:* 50 M dollár + 10M dollár + 30.000*200 = 66 millió dollár
Az árfolyam *ex dividend*, azaz 3200 – 200 = **3000** dollár.
A darabszám tehát \(\frac{66M}{3000} = \frac{22.000}{1000} = 22.000 \)

b) és c)

<table>
<thead>
<tr>
<th>Időpont</th>
<th>Jelenleg</th>
<th>Tőkeemelés</th>
<th>Hitel törlesztése</th>
<th>Osztaléfkifizetés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darabszám</td>
<td>30.000</td>
<td>52.000</td>
<td>52.000</td>
<td>52.000</td>
</tr>
<tr>
<td>Árfolyam (dollár)</td>
<td>3200</td>
<td>3200 és 3000</td>
<td>3200 és 3000</td>
<td>3000</td>
</tr>
<tr>
<td>Kapitalizáció (millió dollár)</td>
<td>96</td>
<td>162 = 96+ 66</td>
<td>162 M dollár</td>
<td>162-6 (osztalék) =156</td>
</tr>
<tr>
<td>Hitel (millió dollár)</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eszközérték (millió dollár)</td>
<td>146</td>
<td>212</td>
<td>162</td>
<td>162-6 (pénzeszközök,osztalék) =156</td>
</tr>
</tbody>
</table>

13.5. Feladat

A Superb Co. tökéletes tőkepiacon tevékenykedik, eszközeinek összértéke 150 millió dollár. Összesen 50.000 darab részvényük van, ezek árfolyama jelenleg 2500 dollár darabonként. A részvényesek 500 dollár osztalék kifizetéséről döntöttek. A piac azonban még nem tud arról, hogy egy ígéretes, 20 millió dollár NPV-jű projekt kedvéért a vezetőség egy 60 millió dolláros tőkebevonásról is döntött, ezt holnap jelentik be. Sajnos, a társaságnak pénztartalékai csak az osztalék kifizetésére elegendőek, az osztalék kifizetése meg is fog történni a tőkeemelés és a beruházás elindulása előtt.

a) Mekkora a részvény árfolyama a hírek bejelentése után, az osztalék kifizetése után illetve a tőkeemelést követően?
b) Hány darab részvényt szükséges kibocsátani?
c) Mekkora a társaság kapitalizációja és eszközeinek piaci értéke az egyes időpontokban?
a) *A hírek közül az új beruházás pozitív hír, a piac egyből beépíti az árfolyamokba, a saját tőke az NPV-vel nő.*

<table>
<thead>
<tr>
<th>Időpontok</th>
<th>Jelenleg</th>
<th>Döntés osztalékról</th>
<th>Hír a beruházásról</th>
<th>Osztalék-kifizetés</th>
<th>Tőkeemelés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darab</td>
<td>50.000</td>
<td>50.000</td>
<td>50.000</td>
<td>50.000</td>
<td>75.000 (50e+25e új)</td>
</tr>
<tr>
<td>Árfolyam</td>
<td>2500</td>
<td>2500</td>
<td>2500+20M/50e=2900</td>
<td>2900-500=2400</td>
<td>2400</td>
</tr>
<tr>
<td>Kapitalizáció (millió dollár)</td>
<td>125</td>
<td>125</td>
<td>145 (+20 NPV)</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>Eszközők piaci értéke (millió dollár)</td>
<td>150</td>
<td>150</td>
<td>150+20 (NPV)=170*</td>
<td>170-25 =145*</td>
<td>205* (=145+60)</td>
</tr>
<tr>
<td>Hitel</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

b) *A tőkeigény csak 60 millió dollár, a kibocsátási árfolyam már az ex dividend árfolyam, azaz 2400 dollár. Így 60M/2400= 25 000 darab részvényt kell kibocsátani*

c) *Lásd táblázat*

* NPV= -C₀ + PV(CF), azaz 20M = -60M + 80M. Amíg nincsen tényleges finanszírozás, csak a hír, addig a -C₀ az eszközőoldalon jelenik meg. Vagyis az eszközők a PV(CF)-C₀ értékké, vagyis az NPV-vel (20M) nőnek. Amikor új finanszírozó belép a tőkeemeléssel, ez az új részvényeseknél jelenik meg (60M, vagyis a C₀). Az induló állapothoz képest az eszközők 150M értékét növeli a 80 M szabad CF jelenérték (PV(CF)) és csökkenti a 25 M osztalék, így lesz a végén 205M.*
Minta tesztsor

1. Ön megvásárol egy értékpapírt 94,7-ért, ami négy év múlva 160-at ígér. Mekkora a befektetés éves belső megtérülési rátája (IRR)?
 a) csak iterációval lehetne kiszámolni
 b) 13,8%
 c) 14%
 d) 69%

 \[
 94,7 = \frac{160}{(1 + IRR)^4}
 \]
 \[IRR = 14\%
 \]

2. Mekkora az éves loghozam, ha az éves effektív hozam 10%?
 a) 10,23%
 b) 10,51%
 c) 9,53%
 d) 2,3%

 \[
 e^{yt} = (1 + r)^t
 \]
 \[y = \ln(1 + r) = \ln(1,1) = 9,53\%
 \]

3. Mennyit fizetne azért a növekvő örökjáradékért, aminek kifizetése jövőre 1 millió Ft és ez az összeg minden évben 3%-kal nő, ha a hozamgörbe vízszintes és a hozam minden lejáratra évi 6%?
 a) 16,67 millió forintot
 b) 17,16 millió forintot
 c) 33,33 millió forintot
 d) 34,33 millió forintot

 \[
 PV = \frac{C_1}{r - g} = \frac{1}{0,06 - 0,03} = 33,33 \text{ millió Ft}
 \]

4. Mekkora annak a befektetésnek a jelenértéke, amely 1 éven keresztül havi 1000 Ft-ot fizet, ha az éves effektív hozam 20% és a hozamgörbe vízszintes?
 a) 1000 Ft * AF (12; 1,53%)
 b) 1000 Ft * AF (12; 1%)
 c) 1000 Ft * AF (12; 1,66%)
 d) 1000 Ft * AF (12; 20%)

 \[
 r_{havi} = \sqrt[12]{(1 + r_{éves})} - 1 = 1,53\%
 \]
5. Mikor egyezik meg egy kamatszelvényes kötvény nettó és bruttó árfolyama az alábbiak közül?
 a) kamatfizetés után közvetlenül
 b) kamatfizetés előtt közvetlenül
 c) a futamidő során teljesen véletlenül
 d) soha

 \[P_{\text{nett}} = P_{\text{brutt}} - \text{Felhalmozott kamat} \]
 ha Felhalmozott kamat = 0

6. Egy vállalat jövő évi egy részvényre jutó nyeresége 100. Az osztalékkifizetési rátaja 60%. Az osztalék évente 5%-kal nő minden évben. A részvény kockázatának megfelelő éves várható hozama évi 20%. Mekkora a részvény árfolyama az osztalékdiszkontálási modell alapján?
 a) 666,66
 b) 400
 c) 240
 d) 266,66

 \[\text{EPS}_1 = 100 \]
 \[dp = 60\% \]
 \[P_0 = \frac{\text{DIV}_1}{r - g} = \frac{100 \cdot 0,6}{0,2 - 0,05} = 400 \]

7. Lehet-e a PVGO negatív?
 a) nem, hiszen lehetőségről van szó
 b) igen, ha rossz befektetésekbe forgatja vissza a vállalat a nyereségét, ahelyett, hogy osztalékként kifizetné
 c) igen, ha az osztalék nem nő megfelelő ütemben
 d) nem, hiszen akkor az árfolyam is negatív lenne

 \[P_0 = PV(g = 0) + PVGO \]
 \[P_0 = \frac{\text{EPS}_1}{r} + PVGO \]

8. Lehet-e két kockázatos eszközből álló portfólió kockázatmentes?
 a) igen, minden esetben, ha a korrelációs együttható -1
 b) igen, egy speciális súlyozással, ha a korrelációs együttható -1
 c) soha, hiszen csak egy kockázatmentes eszköz van
 d) negatív kovariancia esetén néhány esetben
9. Mi egy értékpapír egyedi (nem szisztematikus) kockázata?
 a) ami semmilyen módon nem tüntethető el, és a portfólió kockázatát a végén meghatározza
 b) ami diverzifikációval csökkenthető, eltüntethető
 c) a piac mozgására reagáló kockázat
 d) az egyedi befektetések hozamának szórása

10. Melyik állítás nem igaz a CAPM-re?
 a) tökéletes piacot feltételez
 b) a béta az egyedi és piaci kockázat mérőszáma
 c) a befektetések egyensúlyban az értékpapír-piaci egyenesen találhatóak
 d) a piaci portfólió minden kockázatos eszközt tartalmaz

11. Mít lehet mondani a következő befektetésről, ha a CAPM feltételei fennállnak? A befektetés bétája 1,5; a piaci portfólió várható hozama évi 15%, a kockázatmentes hozam évi 10%. Az árfolyamból kiszámított várható hozama a részvénynek évi 20%.
 a) Érdemes eladni.
 b) Túl magas a bétája.
 c) Alulárazott.
 d) Túl alacsony a piacon megfigyelhető hozama.

\[r_i = r_f + \beta_i (r_M - r_f) = 0,1 + 1,5 \cdot (0,15 - 0,1) = 17,5\% \]

12. Mely opció pozíciós diagramját látja?

 a) egy vételi jog
 b) egy eladási jog
 c) egy vételi kötelezettség
 d) egy eladási kötelezettség
13. Ha Ön megvásárol egy részvényre szóló vételi opciót, mekkora az Ön maximális vesztesége (a kamat legyen 0%)?
 a) az opciós díj
 b) végtelen
 c) a volatilitástól függ
 d) 0, hiszen a kamatláb 0%

14. Az euro árfolyama a spot piacon 300 Ft/euro. A forint tényleges hozama minden lejáratra évi 4%, az euro tényleges hozama minden lejáratra évi 1%. Mekkora az euro féléves forward árfolyama?
 a) 300 \times \frac{1.04}{1.01}
 b) 300 \times \frac{1.01}{1.04}
 c) 300 \times \frac{1.04^{0.5}}{1.01^{0.5}}
 d) 300 \times \frac{1.01^{0.5}}{1.04^{0.5}}

\[F_{H/K} = S_{H/K} \cdot \frac{(1 + r_H)^t}{(1 + r_K)^t} = 300 \cdot \frac{(1 + 0.04)^{0.5}}{(1 + 0.01)^{0.5}} \]

15. Egy beruházás 100-ba kerül és évi 20 örökjáradék pénzáramlást biztosít, évi 10% hozam mellett. Mekkora a megtérülési ideje?
 a) 5 év
 b) 10%
 c) Csak iterációval lehet kiszámítani
 d) +100

16. Mit mond ki a Miller-Modigliani első tétele?
 a) Rögztíttet beruhzási politika mellett a finanszirozás nem hat a vállalat értékére.
 b) Hatékony piacon és rögztíttet beruhzási politika mellett a finanszirozás nem hat a vállalat értékére.
 c) Tököletes piacon és rögztíttet beruhzási politika mellett a tőkeszerkezet nem hat a vállalat értékére.
 d) Tököletes piacon és társasági adók mellett a tőkeszerkezet nem hat a vállalat értékére.

17. „A nagy osztalékkifizetés rontja a vállalat értékét.” Melyik osztalékméleti irány fő kijelentését fogalmaztuk meg?
 a) Jobboldal
 b) Radikális bal
 c) Középutasok
 d) Lintner elmélete
18. Mi a vállalat WACC értéke tökéletes piacon?
 a) A vállalat részvényeinek súlyozott átlagos tőkeköltsége
 b) A vállalat súlyozott átlagos tőkeköltsége, ami megegyezik az eszközöinek súlyozott átlagos hozamával
 c) A vállalat súlyozott átlagos tőkeköltsége, ami megegyezik a vállalat saját tőke elemeinek súlyozott átlagos hozamával
 d) Mindhárom fenti megfogalmazás helyes

19. Tegyük fel, hogy a Miller-Modigliani világ van érvényben. Egy vállalat tőkeszerkezeté megváltozik, a tőkeáttétele nő, hitelből részvényeket vásárol vissza. Igaz-e, hogy a részvényesek jobban jártak, hiszen az EPS növekedett?
 a) Nem igaz, hiszen az EPS nem nőtt, hanem csökkent.
 b) Nem igaz, hiszen bár az EPS nőtt, a részvény kockázata és várható hozama is ennek megfelelően nőtt.
 c) Igaz, hiszen egy részvényre nagyobb CF jut.
 d) Igaz, hiszen a CF is nőtt miközben a vállalati tőkeköltség pedig nem változott.

20. Mi a gyengén hatékony piac definíciója?
 a) Az árfolyam volatilitása gyengén korrelál az elemzők várakozásaival.
 b) A piaci árfolyamok minden múltbeli információt tükröznek.
 c) A bennfentes információk csak gyengén tükröződnek az árakban.
 d) Az adók miatt a piac nem tökéletes.

Három szintje van:
 - **Gyenge:** a múltbeli információk tükröződnek az árfolyamban. (technikai elemzéssel nem lehet a vállalt kockázat által indokolt fölötti extraprofitot elélni)
 - **Közepes:** a nyilvános információk tükröződnek az árfolyamban. (sem technikai, sem fundamentális elemzéssel nem lehet a vállalt kockázat által indokolt fölötti extraprofitot elélni)
 - **Erős:** a bennfentes információk tükröződnek az árfolyamban. (még bennfentes kereskedéssel sem lehet a vállalt kockázat által indokolt fölötti extraprofitot elélni)