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Abstract 
 

This study investigates the extent to which herding towards the market consensus for Russian 

stocks is driven by fundamental and non-fundamental factors. We find evidence that investors 

on the Moscow Exchange herd without any reference to fundamentals during unanticipated 

financial crises coupled with high uncertainty, in falling markets, and during days with extreme 

upward oil price movements. The results indicate that companies with less transparent 

information environment, proxied by company size and the number of analysts following the 

company, are more prone to herding driven by non-fundamental factors. This herding 

behaviour temporarily impedes the incorporation of all relevant fundamental information into 

stock prices and diverts the market from its efficient state. In contrast, in periods of high 

liquidity and on days of international sanction announcements during the Ukrainian crisis 

herding behaviour is merely driven by fundamentals. In Russia, macroeconomic news releases 

induce both information-related herding and herding without any reference to fundamentals. 

These results suggest that motives of investors herding behaviour vary under specific market 

conditions and share characteristics. 
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1. Introduction 

Investors’ herding behaviour may manifest itself in a variety of ways. The diverse 

manifestations have resulted in a number of definitions of herding behaviour. Herding is 

defined as a situation in which investors ignore their own beliefs and imitate either the observed 

decision of their peers or movements in the market, for example, by Bikchandani & Sharma 

(2001) or Hwang & Salmon (2004). In this case the emphasis is placed on mimicking others 

instead of making investment decisions based on own beliefs and information. In a broader 

sense, herding can be defined as a pool of investors trading in the same direction over a period 

of timedefinition used, among others, by Nofsinger & Sias (1999) and Chiang & Zheng 

(2010). In this case the emphasis is put on the correlation in trades resulting either from 

interactions between investors or from a behavioural convergence to the market consensus. We 

follow this broader definition and define herding as a process where investors simultaneously 

trade in the same direction, either due to imitating each other or due to converging to the 

averagedefinition similar to Galariotis, Rong & Spyro (2015), and Galariotis, Krokida & 

Spyrou (2016). 

Depending on the motives trading in the same direction, investors’ herding behaviour may be 

intentional or spurious (unintentional). As defined by Bikchandani & Sharma (2001), 

intentional herding derives from a strong willingness of investors to replicate the actions of 

others in the market. This type of herding presupposes that investors suppress their ideas and 

beliefs and purposefully mimic decisions of others following some market consensus. Investors 

herd intentionally when they wish to profit from such behaviour in the form of a positive 

externality, either informational or professional (Gavriilidis, Kallinterakis & Ferreira, 2013; 

Guney, Kallinterakis & Komba, 2017). In contrast, spurious herding can be defined as a 

situation when investors take similar actions after receiving similar information (Bikchandani 

& Sharma, 2001). If market participants are exposed to identical information, they 

independently make similar investment decisions. The similarity in decision making is 

enhanced by similar educational and professional qualification of traders, the similar indicators 

used for analytical purposes, converging regulations, and characteristic trading being popular 

among institutional investors (Gavriilidis et al., 2013; Guney et al., 2017). 

Spurious herding reflects rational behaviour of economic actors; investors act simultaneously 

on the information received. Intentional herding may be rational and irrational. According to 

Devenow & Welch (1996), irrational herding arises from psychological factors: investors 

might feel more safe and secure when following the crowd. De Long, Shleifer, Summers & 

Waldmann (1990) suggest that irrational herds might also arise among unsophisticated 

investors who incorrectly interpret external information. These investors centre their trading 

behaviour around pseudo-signalsin effect, around noise. Shleifer & Summers (1990) argue 

that such signals usually spread fast among unsophisticated traders and lead them to herd on 

non-fundamental information. Rational herding, as summarized by Bikchandani & Sharma 

(2001), is likely to stem from information asymmetry, reputation concerns and compensation 

concerns. Information-based intentional herding, or information cascades, occurs when 

investors operate in an imperfect information environment. As investors face difficulties in 

interpreting the imperfect data, they try to infer private information from the behaviour of their 

peers and, hence, herd. Among others, Zhou & Lai (2009) find empirical evidence of 

information-based herding in Hong Kong. Reputational herding is observed when an 

investment manager lacks knowledge and skills or has high reputation concerns (Graham, 

1999). Mimicking the behaviour of others may benefit such manager as it helps avoiding poor 

relative performance. Most recently, Casavecchia (2016) found empirical evidence of 
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reputational herding in a sample of US mutual funds. Compensation-based herding may occur 

if investment fund managers are remunerated based on their performance relative to their peers 

(Bikchandani & Sharma, 2001; Gümbel, 2005; Hedesström, Gärling, Andersson & Biel, 2015). 

Although mimicking the investment decision of other fund managers limits the maximum 

compensation, at the same time it provides an insurance against low remuneration: poor 

performance relative to the benchmark can be avoided. 

Finally, herding might reflect investment decisions driven by fundamental information and 

non-fundamental factors. In the former case investors react to company fundamentals in a 

correlated way, while in the latter one investors suppress private information and mimic the 

behaviour of others without any reference to fundamentals.  

The typology of herding is shown in Figure 1. Spurious herding, being generated by rational 

investors as a result of information processing, is based on company fundamentals in most 

cases. However, if fundamental information is corrupted by noise, interpreted wrongly or not 

available at all (e.g., for cryptocurrencies), in the short term spurious herding might be driven 

by non-fundamental factors. Intentional herding may reflect rational or irrational behaviour of 

economic actors, with investment decisions being based on fundamental or non-fundamental 

information. For example, herding is intentional, rational and based on fundamentals when 

non-sophisticated investors mimic the behaviour of ‚smart’ traders (information-based 

herding). Compensational and reputational herding might be driven by both fundamental and 

non-fundamental factors, depending on the information content of the investment decisions of 

the fund manager being copied. When investors blindly follow other traders, they herd 

intentionally and irrationally; the copied trading strategies may or may not have reference to 

company fundamentals. Blindly following the behaviour of investors trading without any 

reference to the fundamentals is a behaviour being typical in bubbles and crashes. 

Figure 1: Typology of herding 

 

Herding based on non-fundamental factors may be considered as a sign of market’s 

informational inefficiency. Herding investors do not build their investment decisions on 

information available in the market, and hence prevent stock prices from reflecting the most 

recently published information (Hwang & Salmon, 2004; Gavriilidis et al., 2013). As a result, 

if investors trading on company fundamentals cannot offset trades of investors trading without 
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any reference to fundamentals the market moves towards inefficiency; the informational 

cascade prevents the market from aggregating information of numerous individuals 

(Bikhchandani, Hirshleifer & Welch, 1992). Rational investors may intentionally amplify these 

deviations by conducting transactions ahead of feedback traders (De Long et al, 1990). In the 

extreme, herd behaviour can dominate the market and the mispricing can lead to bubbles 

followed by crashes (Avery & Zemsky, 1998). In contrast, herding based on fundamental 

factors does not reflect market inefficiency, investors reallocate their assets independently and 

rationally on the basis of new fundamental information (Hwang & Salmon, 2004).  

We aim at testing for herding towards the market consensus on the Moscow Exchange, while 

differentiating between herding based on fundamental information and non-fundamental 

factors. Differentiating empirically between the two cases of common movements in the market 

is of major importance; in one case the correlated actions of traders let the market divert from 

its efficient state, in the other the simultaneous decisions of investors reflect an efficient 

reallocation of assets. 

Not long ago, researches developed methods for detecting herding behaviour. A method for 

deciphering empirically whether investors herd towards the market consensus was proposed 

by Hwang & Salmon (2004), and Chang et al. (2000). Hwang & Salmon (2004) argue that 

there is a significant variance in observed equity betas despite the conventional asset-pricing 

models’ assumptions of beta being constant. By looking at asset betas the authors postulate that 

any observed beta can be decomposed into the “true” equilibrium beta and some contagion 

factor, which arises due to behavioural anomalies, such as herding. In contrast, Chang et al. 

(2000) investigates the dispersion of returns around their cross-sectional average. Low 

dispersion signals that market participants follow correlated trading patterns around the market 

consensus while discarding their prior heterogeneous information and beliefs. Galariotis et al. 

(2015) extend the methodology of Chang et al. (2000) by adding the well-known Fama & 

French (1993, 1995) factors to the model with the aim of controlling for fundamental 

information. The authors decompose cross-sectional deviation of returns to deviations due to 

reaction to relevant fundamental information and deviations due to correlated action of 

investors driven by non-fundamental factors. They build their model on the assumption that 

size, book-to-market, and momentum factors from Fama & French (1993, 1995) display 

changes in common risk factors while valuing stocks. In particular, they estimate a regression 

where return deviations from the market consensus is the dependent variable and the three 

factors and the excess returns of the market are the independent variables. Then the residuals 

from this regression are used as a proxy for return deviations due to non-fundamental 

information. This study follows the approach of Galariotis et al. (2015), considering the 

suggestions of Dang & Lin (2016).  

We also aim at identifying factors associated with investors’ herding behaviour. To the best of 

our knowledge, for the first time in the literature, we systematically differentiate between 

factors enhancing herding based on fundamental versus non-fundamental factors. Although 

previous studies indicate that investors exhibit herding behaviour with a higher probability 

under specific market conditions or share characteristics, they fail to decipher whether herding 

towards the market consensus is a correlated reaction to fundamental information or imitation 

without reference to fundamentals. For example, it is well documented that herding formation 

displays asymmetric patterns when conditioned upon different market states characterized by 

returns, volatility or liquidity of the market. Although the evidence is mixed, vast amount of 

studies report about more pronounced herding behaviour during periods of financial turmoil, 

negative market returns, high liquidity and high volatility (Chang et al., 2000; Tan, Chiang, 
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Mason & Nelling, 2008; Zhou & Lai, 2009; Chiang & Zheng, 2010; Demirer, Kutan & Chen, 

2010; Economou et al., 2011, 2015; Gavriilidis et al., 2013; Lam & Qiao, 2015; Mobarek, 

Mollah, Keasey, 2014; Galariotis et al., 2015; Guney at al., 2017). A few studies show the 

impact of important macroeconomic news announcements (Galariotis et al., 2015); the amount 

and quality of information being available about companies (Thirikwa, 2015; Özsu, 2015; 

Chong, Liu & Zhou. 2017); and large oil price fluctuations for resource-exporting countries 

(Balcilar, Demirer & Hammoudeh, 2014; Demir & Solakoglu, 2016) on herding. (See section 

2 for a more detailed discussion.) Only a few studies in the vast literature on herding 

differentiate whether investors herd on fundamental or non-fundamental information under 

these specific market conditions (Hwang & Salmon, 2004; Galariotis et al., 2015; Dang & Lin, 

2016). We aim at filling this gap in the literature and investigate whether investors’ herding 

behaviour is driven by fundamental or non-fundamental information during rising and falling 

markets; during periods of high and low liquidity; during financial turmoil; during news 

announcements related to either sanctions against Russia due to Crimea’s annexation or key 

macroeconomic data; in poor and rich information environment; and during days of large oil 

price fluctuations. Although it is reasonable to conjecture that investors react to fundamentals 

in a correlated way on days of important macroeconomic news releases, whereas they may herd 

on non-fundamental factors during periods of high uncertainty (financial turmoil, falling 

markets, companies with less transparent information environment), these relationships were 

never tested systematically in the literature before.  

This study offers three main contributions to the existing body of literature. First of all, we 

provide empirical evidence of herding behaviour on the Moscow Exchange, a stock market 

never assessed in the literature despite having a leading position in global context. As of 

December 2017, the Moscow Exchange was the 3rd largest exchange both in fixed income and 

in derivatives, among top 25 exchanges by equity trading volume and the 12th largest exchange 

by market capitalization (Moscow Exchange, 2017). The growth potential of the Moscow 

Exchange is also remarkable; in 2016 the market capitalization of this exchange, denominated 

in USD, grew the fastest (WFE, 2017). The Moscow Exchange has received an increased 

attention from international investors over the past years, most probably due to the low 

correlation with global markets offering diversification benefits (Moscow Exchange, 2017). 

Recently, the number of exchange traded funds maintaining significant exposure to stocks 

listed in Russia has also increased significantly (ETFdb, 2017). Another reason for 

investigating investors’ herding behaviour on the Moscow Exchange is related to Russia’s 

unique characteristics; this economy is not comparable to any other economies. Russia, being 

one of the world’s largest economies, is substantially different geographically, economically, 

politically and culturally from any other economies, including the members of the BRICS 

countries (Brazil, Russia, India, China, South-Africa)uniquity worth investigating. 

Moreover, investors’ herding behaviour is expected to be more pronounced in Russia than in 

many other emerging markets for two reasons. On the one hand, the Russian stock exchange is 

a market with relatively poor investor protection and prevailing information asymmetry, high 

exposure to international capital flows, fragile market microstructure, and non-sophisticated 

small stockholders (Economou et al., 2011; Corcoran, 2013; Iwasaki, 2014; Moscow 

Exchange, 2017). On the other hand, Russia has faced a period of austere political and 

economic challenges lately, attracting the attention of the leading economies and international 

organizations, accompanied by growing investor uncertainty. As argued by a number of 

researchers, such economic developments hamper financial markets and make the formation 

of herding more likely to occur (Christie & Huang, 1995; Bikchandani & Sharma, 2001). 
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As a second contribution we show the importance of distinguishing between herding based on 

fundamental information and herding without any reference to fundamentalsthe distinction 

made only in a few studies in the vast literature on herding (Hwang & Salmon, 2004; Galariotis 

et al., 2015; Dang & Lin, 2016). Although we find no evidence of investors exhibiting herding 

behaviour on the Moscow Exchange overall, we find empirical evidence of herding driven by 

non-fundamental factors. If we hadn’t separated herding based on fundamental information 

from herding based on non-fundamental factors in the Russian stock market, we would have 

erroneously reported no herding behaviour at all. For investors, distinguishing between herding 

behaviour based on fundamental versus non-fundamental factors is critical, the former being 

an efficient way of reacting to a new piece of information and not leading to asset mispricing. 

Moreover, this distinction may also provide a potential explanation for the contradicting 

evidence on herding (see section 2 for details). Although studies examining herding cover 

different markets, use different methodologies and/or sample periods, the evidence is 

sometimes contradicting even if similar settings are compared. It may well be the case that 

investors herd either around fundamental or non-fundamental information only, and in one 

study the effect is strong enough to document herding overall, while weak in the other with 

cancelling out effects being dominant. 

Thirdly, we contribute to the literature by identifying factors associated with herding. Some of 

the factors on which herding is conditioned are widely researched in the literature (e.g., 

financial turmoil, periods of negative market returns), while for others the evidence is scant 

(liquidity, important news releases, information environment, oil price fluctuations). However, 

even for determinants being widely researched, herding driven by fundamental information is 

not separated from herding driven by non-fundamental factors. We provide novel evidence of 

herding during periods of high-liquidity, macroeconomic news announcements and extreme oil 

price fluctuations. We show that herding during periods of high liquidity is driven by 

fundamental factorsit is a rational response of investors to changes in information without 

distorting the market. Moreover, we find that investors in Russia herd both on fundamental and 

non-fundamental factors during days of macroeconomic news releases; some of the investors 

react in a correlated way to fundamental information, while others, most probably 

unsophisticated investors trade without any reference to company fundamentals. Thus, during 

macroeconomic news releases asset prices may deviate from their fundamental values in 

Russia. We also document that investors on the Moscow Exchange exhibit herding behaviour 

driven by non-fundamental factors on days of extreme upward oil price movements. 

The findings of this study are relevant for investors with positions in MICEX-traded stocks, 

especially taking into account a renewed interest in Russian stock market worldwide 

(Namatalla & Gokoluk, 2016; Platt & Bullock, 2016). While making their asset allocation 

decisions on the Moscow Exchange, investors should bear in mind herding behaviour driven 

by non-fundamental information, especially during days of negative market returns and during 

periods of market turmoil and uncertainty. This behavioural bias is likely to cause asset 

mispricing preventing the market from revealing the fair value of assets and undermining 

market efficiency. As a result, profitable trading opportunities might emerge on the one hand 

(Hwang & Salmon, 2004; Tan et al., 2008), while suboptimal portfolio optimization decision 

might be made on the other, causing reduction in social welfare (Economou et al., 2011). 

Herding driven by non-fundamental factors adversely impacts portfolio diversification as well. 

If the dispersion of returns around their cross-sectional average is lower, then investors need 

more assets for reaching the same level of portfolio diversification. In addition to investors, our 

findings are relevant for regulatory bodies supervising the Russian financial market. If 

investors on the Moscow Exchange regularly exhibit herding behaviour without any reference 
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to the fundamentals, it may well be the case that they face obstacles to obtain information and 

are, hence, forced to herd. By establishing a more transparent market environment (strict and 

enforceable disclosure requirements) and enhancing investors’ trust, investors may exhibit less 

herding behaviour without any reference to fundamentals, which in turn may create more 

incentives to invest in Russian companies and contribute to the overall development of the 

Moscow Exchange. Moreover, regulators should bear in mind that investors trading in a 

correlated way may undermine financial stability and enhance endogenous risk (Bikchandani 

& Sharma, 2001; Demirer & Kutan, 2006). Finally, our findings are relevant for researches 

investigating behavioural biases in emerging markets, as it provides novel evidence of factors 

associated with herding and shows that the informational background of investors herding 

behaviour vary under specific market conditions and share characteristics. Theoretical models 

that attempt to capture herding shall consider this behavioural pattern. 

The remainder of the study is structured as follows. Section 2 briefly reviews the relevant 

literature. Section 3 presents the methodology and data used in this paper. Section 4 presents 

and discusses the empirical findings and highlights limitations of the current study. Section 5 

concludes the paper. 

 

2. Evidence of herding: a short review 

Empirical evidence of herding towards the market is mixed, even when assessing the same 

market. Chang, Cheng & Khorana (2000) investigate herding towards the market in the US, 

Hong Kong, Japan, Taiwan, and South Korea. The authors find strong evidence of herding in 

emerging markets of South Korea and Taiwan, weak evidence in Japan and no evidence in the 

US and Hong Kong. In contrast, Hwang & Salmon (2004), by employing a different method, 

find evidence of herding in both up and down markets in the US and South Korean markets. 

At the same time, Galariotis et al. (2015) find no evidence of herding, neither fundamental, nor 

non-fundamental driven, in the US and in the UK on a regular basis. Demirer et al. (2010) 

conclude that investors exhibit no herding behaviour in China, while Tan et al. (2008) report 

evidence of herd behaviour for Chinese dual-listed stocks. In India, Garg & Jindhal (2014) find 

no evidence of herding during 2000-2012, while Poshakwale & Mandal (2014) report about 

herding behaviour during 1997-2012. Chiang & Zheng (2010) carry out a comprehensive study 

of herding on the sample of 18 advanced and emerging economies all over the world. The 

authors find no evidence of herding in the US and Latin American markets; whereas investors 

in the Asian markets exhibit a certain degree of herding behaviour in both up and down stages. 

Filip, Khan, Hassairi & Viviani (2011) study four developed European markets – France, UK, 

Germany and Italy – and conclude that investors exhibit herding behaviour in all of them. 

Pochea & Pece (2015) find herd behaviour in CEE countries, except for Poland and Romania. 

The general conclusion is that herding effects are more pronounced in emerging markets 

compared to developed ones; the less transparent information environment urges investors to 

infer information by tracking their peers’ actions. This conclusion is strongly supported by 

recent evidence from frontier markets; authors unambiguously report that investors mimic their 

peers’ trade and herd due to the poor quality of the information environment (Balcilar, Demirer 

& Hammoudeh, 2013; Balcilar et al., 2014; Guney et al., 2017). 

Herding formation displays asymmetric patterns conditional upon different market states 

characterized by returns, volatility or liquidity. The most widely tested herding asymmetry is 

related to rising and falling markets. In bearish markets, investors aim at avoiding larger losses 

and they herd on the sell side. In bullish markets, investors may herd on the buy side: due to 
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the optimistic sentiment in the market, investors do not want to fall behind their peer investors 

and follow them with the ultimate aim of profiting from the upward market trend (De Long et 

al., 1990). Numerous studies show that herding behaviour is more pronounced during periods 

of negative market returns (Chang et al., 2000; Zhou & Lai, 2009; Chiang & Zheng, 2010; 

Demirer et al., 2010; Economou et al., 2011; Mobarek et al., 2014), most probably due to 

investors’ risk aversion. Studies reporting about stronger herding during up markets include, 

among others, Tan et al. (2008) and Economou  et al. (2015). 

Much less evidence is available whether volatility and liquidity affect the dispersion of returns 

asymmetrically, with the governing mechanism being also disputed. Economou et al. (2011) 

argues that periods of market turmoil are generally coupled with high volatility and high trading 

volume, periods where investors face uncertainties and may prefer following the market 

consensus. In contrast, Gavriilidis et al. (2013) argue that high liquidity attracts more informed 

investors, which in turn facilitates the copying behaviour of uninformed investors. Regarding 

liquidity, not even the causality is clear: as herding implies a significant number of investors 

trading in the same direction, this behavioural bias might lead to increased liquidity. The 

relationship between market-wide herding and market liquidity has been investigated only in a 

few studies. Tan et al. (2008) find that local investors exhibit herding behaviour in periods of 

high liquidity in China. Similar conclusions are drawn by Lam & Qiao (2015) for Hong Kong 

and by Gavriilidis et al. (2013) for Spain. Economou et al. (2011) report about mimicking 

during days of high trading volume only for Spain out of four European markets. By looking 

at the liquidity of stocks, Galariotis et al. (2016) find evidence of herding for high liquidity 

stocks in each developed market studies. Overall, they also find that when liquidity rises the 

tendency of investors to herd around the market consensus increases. In contrast, Mobarek et 

al. (2014) find evidence of herding effect in Ireland and Norway during low volume trading 

periods. The evidence on asymmetric herding behaviour conditioned on market volatility is 

mixed as well. Blasco, Corredor & Ferreruela (2012) report that intraday herding increases 

with volatility in the Spanish market. Tan et al. (2008), Economou et al. (2011), and Gavriilidis 

et al. (2013) also find that herding effects are more pronounced on days with high volatility. In 

contrast, Guney et al. (2017) find evidence of herding during both high and low volatility 

periods in each frontier market studied, while Mobarek et al. (2014) document the same for 

three out of eleven European countries. The mixed findings are in line with the diverse 

underlying mechanisms: if high volatility is related to an increased information flow than 

uninformed investors may profit from mimicking the trade of their informed peers (Gavriilidis 

et al., 2013); whereas in low-volatility environment herding is facilitated by observing the 

market consensus easily (Guney et al., 2017). 

Several factors might be associated with herding. Periods of financial turmoil, believed to be 

accompanied by higher uncertainty, are one of the most widely tested factors. As argued by 

Christie & Huang (1995), herd formation is more likely in extreme market conditions as 

investors are eager to follow the market consensus. The majority of studies report that investors 

exhibit herding behaviour in financial crises coupled with high uncertainty (Chiang & Zheng, 

2010; Klein, 2013; Galariotis et al., 2015; Economou et al., 2015; Mobarek et al., 2014; Guney 

at al., 2017). For example, Galariotis et al. (2015) find that herding is pronounced during the 

subprime crisis in the US and during Asian crisis of 1997-1998 in the UK. Similarly, Chiang 

& Zheng (2010) document herding behaviour in the crisis country of origin, and claim that 

large, contagious crises might trigger herding activity in stock exchanges which normally do 

not exhibit it (such as the US and Latin-America). For Europe, Mobarek et al. (2014) report 

that during normal times herding is not significant, but during crises investors herd. In contrast, 
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some other papers find either less pronounced or no evidence of herding during turmoil (Baur, 

2006; Khan et al., 2011; Economou et al., 2011, Demir & Solakoglu, 2016). 

A couple of recent papers test for herding when essential macroeconomic information is 

released. Investors may react similarly when key macroeconomic indicators are published, and 

hence herd towards the consensus. Galariotis et al. (2015) investigate the impact of important 

news announcements on herding and find some evidence of this phenomenon for both the US 

and the UK. US investors exhibited herding behaviour due to natural reaction to fundamental 

information during the Asian and Russian crises, while during the subprime crises investor 

exhibited herding behaviour without any reference to fundamentals. On days of important 

macroeconomic news releases UK investors reacted similarly to fundamental information and 

exhibited herding behaviour only during the Dotcom bubble. Investors exhibit herding 

behaviour around US news announcements in some European countries (Belgacem & Lahiani, 

2013). Interestingly, investors in Belgium, Finland and Ireland only herd on US news releases 

and do not exhibit herding behaviour with respect to any domestic factor (Belgacem & Lahiani, 

2013).  

Company-specific determinants might also be associated with investors’ herding behaviour. 

For instance, it is widely believed that the amount and quality of information about a particular 

company affects its price. In less transparent information environment market participants 

might engage in herd behaviour due to lack of confidence in their abilities and loss in reputation 

if they underperform their peers (Bikchandani & Sharma, 2001). One of the proxies used to 

capture information availability is the size of the company: the larger the company, the easier 

it should be to obtain credible information. Although among institutional investors it is widely 

documented that size is a key determinant of herding (Guney et al., 2017), the market-wide 

empirical evidence is scant and mixed. Chang et al. (2000) find no impact of size on herding 

patterns, while Thirikwa (2015) and Özsu (2015) report that small market capitalization is 

associated with larger amount of herding behaviour. In contrast, Chong et al. (2017) detect herd 

behaviour for portfolios with a larger number of analyst following in Chinafor heavily 

followed stocks investors rather follow the analysts than their own beliefs.  

For resource-exporting countries, oil price might be considered as one of the potential herding 

determinants. Balcilar et al. (2014) find that the price of oil, as a component of the global factor, 

governs the transition to herding states in the Gulf Arab stock markets. Demir & Solakoglu 

(2016) show that herding in Qatar is driven by oil returns and oil return volatility. To the 

authors’ knowledge, no studies are published on countries outside the Arabian Gulf. 

 

3. Methodology 

3.1 Detecting herding towards the market 

In order to detect herding towards the market on the Moscow Exchange, we employ the method 

proposed by Chang et al. (2000) and latter modified by Galariotis et al. (2015) and Dang & Lin 

(2016). The intuition behind the herding measure developed by Chang et al. (2000) is that low 

dispersion of returns around their cross-sectional average signals that market participants 

follow correlated trading patterns around the market average (used as a proxy for market 

consensus) while discarding their prior heterogeneous information and beliefs. The dispersion 

of returns, similar to Chang et al. (2000), is measured by the cross-sectional absolute deviation 

of returns (CSAD) as defined in Eq.1: 
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𝐶𝑆𝐴𝐷𝑡 =
1

𝑁
∑ |𝑅𝑖,𝑡 − 𝑅𝑚,𝑡|

𝑁

𝑖=1

, 
(1) 

where N is the number of stock in the market portfolio, Ri,t is the observed stock return of asset 

i on day t, and Rm,t is the cross-sectional average return on day t. 

 

Chang et al. (2000) show that standard asset-pricing models predict the relationship between 

the CSAD and the returns of equally-weighted market portfolio to be positive and linear. 

However, as argued by the authors, herd behaviour around the market consensus during 

extreme price movements converts the linear relation into a non-linear one. Following Chang 

et al. (2000), the non-linear framework for investigating the relationship between the market 

average and individual asset return dispersions is specified as follows:  

 

 𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝜖𝑡,  (2) 

where β0 is the constant, β1 and β2 are coefficients, and εt is the error term on day t. In Eq. 2 the 

non-linearity in the relationship is captured by the squared market return (R2
m,t). If there is no 

herding, Eq. 2 assumes β1 to be positive and β2 to equal zero. Negative and statistically 

significant 𝛽2 indicates herding. In case of herding the cross-sectional dispersion of individual 

asset returns is not proportional to market returns as suggested by standard asset pricing 

models; instead, the change is substantially less than a proportional change. In all regressions 

heteroskedastic and autocorrelation consistent co-variances are obtained by using the 

estimators as defined by Newey and West (1987). 

The herding measure of Chang et al. (2000), however, does not distinguish between herding 

driven by fundamental and non-fundamental information. With the aim of differentiating 

between these two forms of herding, both Galariotis et al. (2015) and Dang & Lin (2016) 

decompose variations in CSAD based on fundamental and non-fundamental drivers. As argued 

by the authors, the variation in CSAD explained by the fundamental factors capture herding on 

fundamental information. The fundamental factors include the small minus big factor, the high 

minus low factor and momentum factor as proposed by Fama & French (1993, 1995) and 

Carhart (1997). In contrast, the unexplained part of the variation represents herding without 

any reference to fundamentals. Galariotis et al. (2015) use real values for SMB, HML and 

MOM, whereas Dang & Lin (2016) use their absolute values arguing that this modification 

significantly improves the model fit. 
 

In this study the decomposition of CSAD, in line with Dang & Lin (2016), is specified as follows: 

 

 𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽 1
 |𝑅𝑚,𝑡 − 𝑅𝑓| + 𝛽 2

 |𝐻𝑀𝐿𝑡| + 𝛽 3
 |𝑆𝑀𝐵𝑡| + 𝛽 4

 |𝑀𝑂𝑀𝑡| + 𝜀𝑡 (3) 

 𝐶𝑆𝐴𝐷𝑡,𝑁𝑂𝑁−𝐹𝑈𝑁𝐷 = 𝜀𝑡, (4) 

 𝐶𝑆𝐴𝐷𝑡 = 𝐶𝑆𝐴𝐷𝑡,𝐹𝑈𝑁𝐷 + 𝐶𝑆𝐴𝐷𝑡,𝑁𝑂𝑁−𝐹𝑈𝑁𝐷 (5) 

where Rm,t is market return on day t, Rf is a risk-free rate, HML is a high-minus-low factor, SMB 

is a small-minus-big factor; MOMt is a momentum factor; 𝜀𝑡 is an error term. As there are no 

data readily available on the fundamental factors for Russia, HML and SBM factors are 

constructed in line with Fama & French (1993, 1995), whereas MOM is calculated as suggested 
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by Carhart (1997). Due to changes in market capitalization and book-to market ratio, HML and 

SMB portfolios are rebalanced annually. Momentum portfolios are rebalanced monthly. 

Finally, in order to detect herding towards the market due to fundamental and non-fundamental 

factors, regressions are specified as denoted in Eq. 6 and 7. Similar to Eq. 2. negative and 

statistically significant 𝛽2 indicates herding. 

 𝐶𝑆𝐴𝐷𝑡,𝐹𝑈𝑁𝐷 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝜖𝑡  (6) 

 𝐶𝑆𝐴𝐷𝑡,𝑁𝑂𝑁−𝐹𝑈𝑁𝐷 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝜖𝑡  (7) 

Similar to other studies, we also investigate whether return’s dispersion follow different 

patterns in up and down markets (Chang et al., 2000; Zhou & Lai, 2009; Chiang & Zheng, 

2010; Demirer et al., 2010; Economou et al., 2011; Mobarek et al., 2014). In the empirical tests 

we follow the approach of Chiang and Zheng (2010) and introduce a dummy variable in a 

single model. This approach is claimed to be more robust than the approach of Tan  et al. (2008) 

who split the sample into two and estimate separate models for the subsamples (Economou et 

al., 2011). The asymmetric herding behaviour conditional on the market returns is tested using 

Eq. 8:  

 
𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1𝐷𝑈|𝑅𝑚,𝑡

 | + 𝛽2𝐷𝑈𝑅𝑚,𝑡
2 + 𝛽3𝐷𝐷|𝑅𝑚,𝑡

 |+𝛽4𝐷𝐷𝑅𝑚,𝑡
2 𝜖𝑡,  (8) 

where dummy variable Du = 1 if 𝑅𝑚,𝑡
  >0 and DD = 1 if 𝑅𝑚,𝑡

  <0. Eq. 8 is estimated for both the 

fundamental and non-fundamental components of CSAD, revealing the underlying 

mechanisms of herding if present. Negative and statistically significant 𝛽2 or 𝛽4 coefficients 

imply herding during up or down days, respectively. 

We further investigate the asymmetric pattern of herding formation by comparing investors’ 

behaviour on high versus low liquidity days. Two liquidity measures capturing different 

dimensions of liquidity are used: trading volume and Amihud (2002) illiquidity measure. 

Trading volume is related to the depth and breadth of the market, while the widely used Amihud 

illiquidity measure, considered as reliable proxy of the price impact, captures the depth and 

thinness of the market (Goyenko, Holden & Trzcinka, 2009). The model estimated is as 

follows: 

𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝛽3𝐷𝐿𝑅𝑚,𝑡
2 +𝛽4𝐷𝐻𝑅𝑚,𝑡

2 + 𝜖𝑡   (9) 

When liquidity is measured by the trading volume, dummy variable DL=1 if trading volume 

falls into the lower 25th percentile, and 0 otherwise; and DH=1 if trading volume falls into the 

upper 25th percentile, and 0 otherwise. When the Amihud (2002) illiquidity measure is used, 

dummy variable DL=1 if the Amihud measure falls into the upper 25th percentile, and 0 

otherwise; and DH=1 if the Amihud measure falls into the lower 25th percentile, and 0 

otherwise. (Note that the Amihud illiquidity measure is high when the market’s liquidity is 

low; while the measure is low when the market’s liquidity is high.) Negative and statistically 

significant 𝛽3 or 𝛽4coefficients imply herding during low or high liquidity days, respectively. 
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3.2 Testing factors associated with herding towards the market 

The empirical evidence on herding towards specific markets is vast. Much less evidence is 

available on factors associated with herding, with only a couple of studies differentiating 

between herding based on fundamental and non-fundamental factors (see Section 2 for details). 

This study investigates the role of three groups of determinants that might foment herding on 

the Moscow Exchange: calendar effects related to crises and major macroeconomic and 

political news releases; company’s information environment; and oil prices. In each 

specification listed below variations in CSAD are decomposed into fundamental and non-

fundamental parts (Eq. 3 to 5). 

First, we examine whether herding effects are more pronounced during crisis periods and on 

days of important macroeconomic and political news releases. Financial crises being 

accompanied by higher uncertainty have been shown to be critical for herding in some but not 

all capital markets (Chiang & Zheng, 2011; Galariotis et al., 2015; Khan et al., 2011; 

Economou et al., 2015; Mobarek et al., 2014; Guney et al., 2017). In particular, we test the 

effects of three major crisis periods: the subprime crisis of 2008, Crimea annexation, and the 

aftermath of Crimea’s annexation (see Section 3.3 for details on the crisis periods). For each 

crisis period we estimate the regression specified in Eq. 10: 

 𝐶𝑆𝐴𝐷𝑡
𝐶 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡

 |𝐶 + 𝛽2𝑅𝑚,𝑡
2 𝐶

+ 𝜖𝑡 , (10) 

where CSADt
C

 represents cross-sectional absolute deviation of returns during the crisis period, 

and 𝑅𝑚,𝑡
 𝐶is the market return during the period of the economic turmoil. A negative and 

statistically significant 𝛽2 coefficient implies herding towards the market during the crisis 

period. 

Among calendar effects we also test whether herding effects are more pronounced on days of 

sanctions announcements and important macroeconomic news releases (see Section 3.3 for 

details on announcements). In the literature the impact of news announcements on herding is 

scant (Galariotis et al., 2015; Belgacem & Lahiani, 2013). Newey & West (1987) HAC 

estimators requires the regression variables to be evenly distributed over timethis 

requirement is not satisfied due to the dummy variables introduced for the announcement days. 

Thus, instead of Eq. 10 we estimate the following models: 

  𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 +𝛽3𝐷𝑆𝑅𝑚,𝑡
2 𝜖𝑡  (11) 

 𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 +𝛽3𝐷𝑀𝑅𝑚,𝑡
2 𝜖𝑡 (12) 

where dummy variable DS=1 for days of sanctions announcements, and 0 otherwise; DM=1 for 

days of important macroeconomic announcements, and 0 otherwise. A negative and 

statistically significant 𝛽3 coefficient in each regression reflects herding towards the market 

during announcement days. 

Secondly, we investigate whether herding effects are more pronounced for companies with less 

transparent information environment. We use two proxies for the information environment: 

market capitalization and number of analysts following the company. As argued previously, 

both the size of the company and the number of analysts following the company might 

positively correlate with the ease of obtaining company-specific information (Thirikwa, 2015; 

Özsu, 2015; Chong et al., 2017). The smaller the company or the lower the number of analysts 
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following the company, the harder to obtain relevant information and thus the more probable 

herding is.  

Sample companies are split into quartiles based on the proxy used for the information 

environment. The model specified in Eq. 13 is then estimated for each four sub-portfolios: 

 𝐶𝑆𝐴𝐷𝑝𝑜𝑟𝑡 𝑖.,𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝜖𝑡  (13) 

where CSADport i.,t is the cross-sectional absolute deviation of returns of portfolio i. A negative 

and statistically significant 𝛽2 coefficient implies herding towards the market within a given 

portfolio. 

Finally, we assess whether herding effects are more pronounced on days of large oil price 

fluctuations. Russia is the third largest total petroleum and other liquid producer in the world 

(IEA, 2017); on the Moscow Exchange oil and gas corporations account for 32.6% of the total 

market capitalization (Table 1). Hence, fluctuations in oil prices may have a pronounced impact 

on the Russian financial market and might be associated with herding. We test for this market-

wide herding effect using the following specification: 

 𝐶𝑆𝐴𝐷𝑡 = 𝛽0 + 𝛽1|𝑅𝑚,𝑡
 | + 𝛽2𝑅𝑚,𝑡

2 + 𝛽3𝐷𝑈,5%𝑅𝑚,𝑡
2 +𝛽4𝐷𝐿,5%𝑅𝑚,𝑡

2 +  𝜖𝑡,  (14)   

where dummy variable DU,5%=1 for days when the change in oil price falls into the upper 5th 

percentile, and 0 otherwise; 𝐷𝐿,5%=1 for days when the change in oil price falls into the lower 

5th percentile, and 0 otherwise. As a robustness check, we also set the threshold at the first 

percentile. Negative and statistically significant 𝛽3 or 𝛽4coefficients reflect herding on the 

Moscow Exchange during days of extreme up or down oil price movements, respectively. 

 

3.3 Data and descriptive statistics 

The sample consists of daily closing prices for 120 individual stocks listed on the Moscow 

Exchange constituting 85.7% of the total market capitalization (Table 1). The dataset covers 

the period from 01/04/2008 to 30/12/2015; with total number of 1842 daily observations for 

each stock. Observations for 2016 were excluded due to lack of reliable data on book-to-market 

ratio required for calculating SMB, HML and momentum factors. 

For each company in the sample daily data on stock prices, market capitalization, book-to-

market ratio, trading volumes, number of shares outstanding and number of analysts tracking 

a particular company are extracted from Thomson Reuters Datastream. Daily closing Brent 

crude oil prices are extracted from the same database. The daily returns on MICEX value-

weighted composite index is considered as the market return, and the 1-month zero-coupon 

bond of Russian Central Bank is referred as the risk-free return. 
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Table 1. Description of companies in the sample by size and industry 

 

Market size of the companies as of December 30, 2015. Data for average market capitalization are in millions of 

Russian roubles. 

Special attention is paid to three important macroeconomic and geopolitical events that 

negatively affected the Russian economy: 1) subprime crisis of 2008; 2) the days of Crimea 

annexation; 3) the aftermath of Crimea’s annexation. In Russia, the most severe period of the 

subprime crisis took place during the period of 12/05/2008-30/12/2008the period of interest 

in this study. In this period the MICEX Index, a value-weighted composite index of the 50 most 

liquid Russian stocks, fell cumulatively by more than 50%. The period of Crimea annexation 

is defined from 20/02/2014 to 18/03/2014from the first day of the Russian military operation 

against Ukraine to the date of signing the Treaty on Accession of the Republic of Crimea to 

Russia (Grant, 2015). During the days of Crimea annexation, the Moscow stock market 

plummeted by 10.8%. The period from 19/03/2014 to 30/12/2016 (end of the sample period) 

is regarded as a Russian crisis starting from 2014 triggered by US and European sanctions after 

Crimea’s annexation and being characterized by high uncertainty. 

The data about sanction announcements and important macroeconomic news releases are 

collected manually from the Financial Times Economic Calendar (Financial Times, 2017). For 

international events, we document dates of important international meetings and forums such 

as G7, G20 and BRIC; releases of OECD Economic Outlook reports; and dissemination of 

OPEC monthly oil market reports. For Russia-specific events, we look at the dates of key 

interest rate announcements by the Central Bank of Russian Federation; announcements about 

sovereign debt rating changes; announcements about GDP growth rate and retail sales growth; 

and key releases about real wages dynamics, unemployment, trade balance and inflation 

(consumer and producer price index development). 

Table 2 reports the descriptive statistics of the market return and CSAD measure for the 

annually-rebalanced equally-weighted market portfolio. The level of return dispersion ranges 

from a low of 0.16% to 9.19%. Table 2 also includes descriptive statistics of the CSAD measure 

for eight sub-portfoliossample companies were divided into quartiles based on the number 

of analysts following a company and market capitalization. The higher the number of analyst 
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following the companies, the lower the dispersion of returns is, on average. Similarly, the 

higher the market capitalization, the lower the CSAD measure. Augmented Dickey-Fuller tests 

show that the returns on the equally-weighted market portfolio and CSAD measures are 

stationary.  

Table 2. Descriptive statistics of returns on equally-weighted portfolios and CSAD 

 

*** significant at 1% level 

 

4. Results and discussion 

4.1 Herding towards the Moscow Exchange and its asymmetries 

Table 3 presents the results from the equal-weighted estimations of Eq. 6-8 regarding herding 

towards the market. Overall, investors on the Moscow Exchange do not exhibit herding 

behaviour. When we distinguish between herding based on fundamental and non-fundamental 

factors, we find evidence of market-wide herding without any reference to fundamentals on the 

Moscow Exchange during the sample period, while no evidence is found for herding based on 

fundamental factors. We also test whether there is an asymmetric relationship between cross-

sectional returns’ deviation and market returns, distinguishing between up and down markets. 

The results in Table 3 show that return’s dispersion follow different patterns in up and down 

markets; herding driven by non-fundamental factorss is only prevalent on days with negative 

market returns. We find no evidence of herding based on fundamental factors neither in up nor 

in down markets. Thus, herding behaviour is much more likely to be encountered on days with 

negative market returns, being driven by non-fundamental factors.  

Table 4 presents herding behaviour on days with high and low liquidity by estimating the model 

specified in Eq. 9. When liquidity is captured by the Amihud (2002) illiquidity measure, on 

overall, investors exhibit herding behaviour in periods of high liquidity driven by fundamental 

factors. When liquidity is measured by the trading volume, although no evidence of herding is 
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found on overall in periods of high liquidity, investors herd based on fundamental information 

during these days as well. In periods of low liquidity, no herding is observed, neither 

fundamental nor non-fundamental. 

Table 3. Estimates of herding behaviour overall, and in up and down markets  

 

* significant at 10% level, ** significant at 5% level, *** significant at 1% level.  

Table 4. Estimates of herding behaviour on days with high versus low liquidity  

 

* significance at 10% level, ** significance at 5% level, *** significance at 1% level. 

Although evidence of herding is mixed, investors in emerging markets exhibit more herding 

behaviour than investors in developed markets (see Section 2). In contrast to other less 

developed markets (Chang et al., 2000; Chiang & Zheng, 2010; Tan et al., 2008; Poshakwale 

& Mandal, 2014; Pochea & Pece, 2015), Russia’s emerging economy seems to be an 

exceptionoverall, we do not find evidence of herding formation. Thus, in the sample period 

the Russian stock market shares the same characteristics as the world’s largest and most 

profound financial markets, such as the US and the UK, where investors exhibit herding 

behaviour only occasionally (Chang et al., 2000; Chiang & Zheng, 2010; Galariotis et al., 

2015).  

Although we find no evidence of herding in total, the Russian stock market exhibits market-

wide herding driven by non-fundamental factors over the sample period. This herding 

formation is more pronounced during down markets, similar to many other studies (Chang et 

al., 2000; Zhou & Lai, 2009; Chiang & Zheng, 2010; Demirer et al., 2010; Economou et al., 

2011). The sample period includes a few crisis periods when the market fell substantially. In 

these periods of high uncertainty investors try to infer some information about future by 

following the market (Christie & Huang, 1995). Herding driven by non-fundamental factors on 

days with negative market returns might reflect the disposition effect an average investor is 

much more reluctant to realize losses than to realize gains (Shefrin & Statman, 1985). Thus, 

during down markets several investors might prefer holding their assets despite deteriorating 

fundamentals, and in doing so, herd. We find no evidence of herding during up markets. 

McQueen, Pinegar & Thorley (1996) argue that small stocks usually react slowly to good news. 

In equally-weighted market portfolios – portfolios constructed in this study – small 

capitalization stocks are overrepresented. This underreaction to good news for stocks being 

adj. R
2

adj. R
2

Total herding 0.0129 0.6395 0.3331 0.496 0.0134 0.4878 6.9204 -0.5816 -0.0901 0.518

p-value 0.000*** 0.000*** 0.765 0.000*** 0.000*** 0.000*** 0.000*** 0.918

Fundamental herding 0.0145 0.4420 1.5212 0.581 0.0149 0.3157 6.7214 0.4040 1.1193 0.604

p-value 0.000*** 0.000*** 0.062** 0.000*** 0.000*** 0.000*** 0.000*** 0.789

Non-fundamental herding -0.0015 0.1976 -1.1881 0.048 -0.0015 0.1721 0.1991 0.1776 -1.2095 0.05

p-value 0.000*** 0.000*** 0.052** 0.000*** 0.009*** 0.916 0.004*** 0.053**

Full sample Up market Down market

                    
 

                      
          

            

adj. R
2

adj. R
2

Total herding (CSAD) 0.0127 0.7126 -1.0874 1.1182 -7.8767 0.515 0.0131 0.6049 -0.0728 4.7573 0.6758 0.509

p-value 0.000*** 0.000*** 0.564 0.458 0.000*** 0.000*** 0.000*** 0.930 0.000*** 0.622

Fundamental herding 0.0145 0.4534 2.3293 -0.9771 -5.2418 0.592 0.0144 0.4705 1.2829 2.1359 -2.3237 0.597

p-value 0.000*** 0.000*** 0.181 0.506 0.000*** 0.000*** 0.000*** 0.094* 0.233 0.011**

Non-fundamental herding -0.0017 0.2592 -3.4168 2.0953 -2.6351 0.063 -0.0012 0.1345 -1.3557 2.6215 2.995 0.064

p-value 0.000*** 0.000*** 0.001*** 0.012** 0.134 0.000*** 0.003*** 0.004*** 0.167 0.011**

Liquidity
Amihud measure Volume measure
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overrepresented in the sample may result in lower dispersion of returns in up markets, and thus 

no herding. 

Herding formation displays asymmetric patterns conditioned on the liquidity of the market. 

This finding is in line with several previous studies (Tan et al., 2008; Gavriilidis et al., 2013; 

Lam & Qiao, 2015; Galariotis et al., 2016)investors exhibit herding behaviour in periods of 

high liquidity. Nevertheless, those studies do not distinguish between herding driven by 

fundamental and non-fundamental information. As shows in this study, on the Moscow 

Exchange herding during periods of high liquidity is driven by fundamental factors and, hence, 

should not lead to asset mispricinga result being robust to alternative liquidity measures. 

When a new piece of information is released, investors adjust their positions accordingly and 

practically simultaneously, which is believed to cause higher-than-average liquidity on the 

market.  

 

4.2 Herding and calendar effects  

Table 5 presents the results from the estimations of Eq. 10-12 regarding herding during three 

crisis periods (panel A) and on announcement days of sanctions and important macroeconomic 

news releases (panel B). Investors on the Moscow Exchange exhibited herding behaviour 

during the subprime crisis and Crimea’s annexation, while no such behaviour is observed in 

the aftermath of Crimea’s annexation. Although the herding behaviour, if present, is driven by 

non-fundamental factors; investor’s fear might have been, at least partly, driven by 

fundamentals (negative β2 coefficients in regressions on fundamental herding during Crimea’s 

annexation and in its aftermath). 

We find robust evidence that macroeconomic news releases (e.g., key interest rate, GDP 

growth, unemployment rate announcements) affect the cross-sectional dispersion of returns 

(panel B). Herding is driven by both fundamental and non-fundamental factors (significant and 

negative β2 coefficients). Moreover, herding driven by fundamental factors is encountered on 

days of sanctions announcements. Investors, however, do not exhibit herding behaviour an 

overall and on non-fundamental factors during sanction announcements. 
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Table 5. Estimates of herding behaviour during market turmoil periods (panel A) and during 

major macroeconomic and political news releases (panel B) 

 

* significant at 10% level, ** significant at 5% level, *** significant at 1% level.  

Several authors reported that investors exhibit herding behaviour in financial crises coupled 

with high uncertainty (Chiang & Zheng. 2010; Klein, 2013; Galariotis et al., 2015; Economou 

et al., 2015; Mobarek et al., 2014; Guney et al., 2017). In the Russian stock market periods of 

high uncertainty and turmoil was also associated with herding. The market-wide herding 

observed during the subprime crisis and Crimea’s annexation was driven by non-fundamental 

factors. Both crises, being fully unexpected, provoked a huge spike in uncertainty. In such 

uncertain environment, as suggested by the literature, investors in MICEX-traded companies 

mimicked each other’s behaviour. In contrast, if the crisis was anticipated and was less intense, 

such as the aftermath of Crimea’s annexation (the Russian crisis of 2014-2015), no evidence 

of herding is foundthe lower the level of uncertainty, the less probable herding is. 

When sanctions were introduced, the fundamentals changed: either at aggregate market level 

and for specific companies (some sanctions were targeted specifically at shareholders and top 

managers of large Russian corporations). As sanctions were announced publicly, all investors 

became fully informed at the same time, and after careful considerations might have made 

similar investment decisions. Thus, the evidence of herding based on fundamentals during the 

days of sanctions announcements is in line with the notion of rational investors. 

Similar to sanctions, important macroeconomic news releases might also change investors’ 

expectations about the future state of the Russian economy and financial market. As a result of 

rational reactions to common news, we find herding based on company fundamentals during 

the days of macroeconomic news releasesfinding being in line with Galariotis et al. (2015). 

At the same time, we also find evidence of market-wide herding without any reference to 

fundamentals on the days of important macroeconomic news releases. Unsophisticated 

investors, willing to trade on macroeconomic news, but lacking either knowledge or skill to 

Panel A adj. R
2 Panel B adj. R

2

Subprime crisis 0.0187 0.9469 -3.0565 0.546 Sanctions 0.0129 0.6343 0.3699 7.3222 0.498

p-value 0.000***0.000*** 0.037** p-value 0.000*** 0.000*** 0.739 0.131

Crimea annexation 0.0128 0.601 -2.231 0.879

p-value 0.000***0.000***0.008*** Macronews 0.0131 0.6055 1.5793 -4.7007 0.509

Russian crisis 0.0155 0.1347 22.7955 0.509 p-value 0.000*** 0.000*** 0.282 0.000***

p-value 0.000*** 0.138 0.000***

Subprime crisis 0.0167 0.5656 0.4866 0.604 Sanctions 0.0145 0.4444 1.5044 -3.3468 0.581

p-value 0.000***0.000*** 0.627 p-value 0.000*** 0.000*** 0.066* 0.001***

Crimea annexation 0.0136 0.3874 -0.2011 0.923

p-value 0.000***0.000*** 0.646 Macronews 0.0146 0.4184 2.3855 -3.2601 0.593

Russian crisis 0.0151 0.3782 -1.4763 0.216 p-value 0.000*** 0.000***0.009***0.000***

p-value 0.000***0.000*** 0.473

Subprime crisis 0.0019 0.3813 -3.5431 0.052 Sanctions -0.0015 0.1899 -1.135 10.669 0.054

p-value 0.43 0.001***0.001*** p-value 0.000*** 0.000***0.060** 0.015**

Crimea annexation -0.0008 0.2136 -2.03 0.107

p-value 0.613 0.011** 0.004*** Macronews -0.0015 0.1871 -0.806 -1.4406 0.05

Russian crisis 0.0003 -0.2435 24.2718 0.245 p-value 0.000*** 0.001*** 0.308 0.038**

p-value 0.377 0.002***0.000***

Total herding (CSAD)

Fundamental herding (CSADFUND)

Non-fundamental herding (CSADNON-FUND)
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analyse them, might infer it from the market. The excessive tendency of traders being unable 

to interpret fundamental information bias market behaviour and lead to a formation of herds 

driven by non-fundamental factors among investors. 

 

4.3 Herding and information environment  

To test whether herding effects are more pronounced for companies with less transparent 

information environment, we conduct a series of tests on portfolios split by market 

capitalization and the number of financial analysts following a company. Table 6 shows the 

results from the estimations of Eq. 13 for the four portfolios split by market capitalization. We 

find no evidence of herding towards the market, except for portfolio 2investors exhibit 

herding behaviour without any reference to fundamentals when trading relatively small stocks 

compared to market average. Herding behaviour follows the same pattern when portfolios are 

split by the number of analysts tracking the companies: herding prevails only in stocks with 

relatively smaller number of analysts (portfolio 2) being driven by non-fundamental factors. 

Although herding behaviour exhibit the same pattern when different proxies for the information 

environment is used, the composition of the sub-portfolios is diverse: the overlap of shares in 

portfolio 2 split either by market capitalization or the number of analysts following the 

company is only 33%. 

Table 6. Estimates of herding behaviour portfolios formed by market capitalization 

* significance at 10% level, ** significance at 5% level, *** significance at 1% level. 

Table 7. Estimates of herding behaviour for portfolios formed by number of analysts tracking 

a company 

* significance at 10% level, ** significance at 5% level, *** significance at 1% level. 

Thus, investors exhibit herding behaviour without any reference to fundamentals more likely 

in stocks in the second quartile: smaller capitalization stocks and stocks with only a few number 

of analysts. Interestingly, no herding is found in portfolios consisting of the smallest stocks and 

stocks with the lowest analyst coverage. Several investors may be disinterested in stocks in the 

fourth quartile: their liquidity is lower, and information is harder to obtain. Rational investors 

Adj. R
2

Adj. R
2

Adj. R
2

Portfolio 1 (least analysts) 0.0168 0.6296 1.0969 0.318 0.0185 0.4404 1.5646 0.634 -0.0016 0.1893 -0.4667 0.025

p-value 0.000*** 0.000*** 0.475 0.000*** 0.000*** 0.029* 0.001*** 0.023** 0.743

Portfolio 2 0.0124 0.7951 -0.3884 0.385 0.0148 0.4834 2.0184 0.514 -0.0024 0.3117 -2.4068 0.044

p-value 0.000*** 0.000*** 0.847 0.000*** 0.000*** 0.092* 0.000*** 0.000*** 0.03**

Portfolio 3 0.0126 0.5966 0.2594 0.356 0.0139 0.4230 1.2391 0.567 -0.0014 0.1736 -0.9798 0.024

p-value 0.000*** 0.000*** 0.823 0.000*** 0.000*** 0.085* 0.000*** 0.002*** 0.197

Portfolio 4 (most analysts) 0.0107 0.5202 0.5163 0.349 0.0116 0.4114 1.2093 0.583 -0.0009 0.1088 -0.6930 0.012

p-value 0.000*** 0.000*** 0.064 0.000*** 0.000*** 0.073* 0.007*** 0.057** 0.471

Portfolios by # of 

analysts following

Total herding Fundamental herding Non-fundamental herding

                    
                     

                     
 

Adj. R
2

Adj. R
2

Adj. R
2

Portfolio 1 (lowest) 0.0157 0.7204 1.0340 0.362 0.0178 0.4788 2.0045 0.536 -0.0020 0.2417 -0.9705 0.035

p-value 0.000*** 0.000*** 0.594 0.000*** 0.000*** 0.08* 0.000*** 0.000** 0.340

Portfolio 2 0.0136 0.7515 -1.0089 0.362 0.0158 0.4454 1.5485 0.565 -0.0022 0.3061 -2.5574 0.0403

p-value 0.000*** 0.000*** 0.355 0.000*** 0.000*** 0.069* 0.000*** 0.000*** 0.002***

Portfolio 3 0.0126 0.5626 0.3260 0.309 0.0140 0.3871 1.2282 0.580 -0.0014 0.1755 -0.9022 0.022

p-value 0.000*** 0.000*** 0.727 0.000*** 0.000*** 0.066* 0.000*** 0.003*** 0.310

Portfolio 4 (highest) 0.0102 0.5087 1.1166 0.379 0.0107 0.4490 1.2778 0.599 -0.0005 0.0597 -0.1613 0.006

p-value 0.000*** 0.000*** 0.403 0.000*** 0.000*** 0.066* 0.114 0.295 0.845

Portfolios by Mcap
Total herding Fundamental herding Non-fundamental herding
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– possessing adequate knowledge of the market or some private information – might trade these 

stocks. At the same time, companies in the second quartile are larger, receive wider attention 

both from analysts and from the public, and hence, more prone to investors’ mimicking 

behaviour. As relatively little information is available about these companies on the market, 

less sophisticated investors might prefer mimicking others. For large capitalization stocks and 

equities with high analyst coverage, the problem of asymmetric information is less 

pronouncedno evidence of herding is found. These findings highlight that market-wide 

herding patterns differ from the herding behaviour of institutional investors. Institutional 

investors herd towards stocks of the smallest and largest capitalization segment, the former 

being driven by informational predicament, the later by benchmark herding or regulatory 

restrictions, as summarized by Guney et al. (2017). 

 

4.4 Herding and oil price fluctuations 

Finally, we test whether herding effects are more pronounced on days of large oil price 

fluctuations. Table 8 reports the estimates for the regression model as described in Eq. 14. 

While we find no evidence of herding in overall and based on fundamental information, 

investors exhibit herding behaviour without any reference to fundamentals when oil prices 

increase drasticallychange in oil price falls into either the upper 1st or 5th percentile. 

Investors, however, do not mimic their peers on days of extreme downward oil price 

movements. 

Table 8. Estimates of herding behaviour on days with large oil price fluctuations 

 
* significant at 10% level, ** significant at 5% level, *** significant at 1% level. 

The finding that investors mimic the behaviour of others during extreme upward oil price 

movements might be related to the investment decisions of unsophisticated investors. When 

unsophisticated investors face significant positive daily price changes, they might interpret this 

signal as an indication of further price growth and buy stocks. Positive feedback traders taking 

similar positions when oil prices increase substantially as well as anticipatory trading by 

rational speculators might also induce herding (De Long et al., 1990). 

adj. R
2

Extreme 1% movement 0.0131 0.6267 -0.0291 6.7554 2.441 0.5053

p-value 0.000***0.000*** 0.976 0.001*** 0.031**

Extreme 5% movement 0.0129 0.6522 -1.0847 4.3587 1.4927 0.5041

p-value 0.000***0.000*** 0.407 0.000*** 0.212

Extreme 1% movement 0.0146 0.4243 1.3418 10.9057 0.5234 0.6135

p-value 0.000***0.000*** 0.079* 0.000*** 0.676

Extreme 5% movement 0.0145 0.4627 -0.8921 7.5563 2.5346 0.6254

p-value 0.000***0.000*** 0.378 0.000*** 0.087*

Extreme 1% movement -0.0016 0.2025 -1.3709 -4.1503 1.9171 0.0577

p-value 0.000***0.000*** 0.022 0.047** 0.128

Extreme 5% movement -0.0016 0.1896 -0.1927 -3.1976 -1.0418 0.0565

p-value 0.000***0.000*** 0.896 0.071* 0.412

Non-fundamental herding (CSADNON-FUND)

Total herding (CSAD)

Fundamental herding (CSADFUND)
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On the other hand, we find no evidence of herding during extreme downward oil price 

movements. This asymmetry might be explained by the fact that Russian oil companies, while 

being public, are largely controlled and supported by the governmentstate subsidies enable 

them to absorb large oil price shocks. Moreover, Fadeeva (2015) reports that Russian oil 

companies suffered relatively little from the recent oil price dropstheir revenues are 

denominated mostly in US dollars, while their costs arise in Russian roubles which was 

devalued significantly after Crimea’s annexation. 

 

4.5 Limitations 

This study has a number of limitations. First of all, the results of this study are valid for Russia 

only and cannot be generalized. Empirical evidence suggests that herding is a country, culture 

and time-specific phenomenon. Russia, being one of the world’s largest economies, is 

substantially different geographically, economically, politically and culturally from any other 

economies, including the members of the BRICS countries. Russia’s unique characteristics 

does not allow for including additional sample countries to arrive at more generalizable results 

or to test the robustness of the results. Secondly, this study is especially relevant for investors 

interested in returns denominated in Russian roublesthe local currency return on the Moscow 

Exchange. Investors with returns denominated in another currency are exposed to foreign 

exchange risk and should interpret the results with caution. Thirdly, due to data limitations, the 

sample period did not include the most recent yearat the time of the research the quality of 

the book-to-market ratio reported in the Thomson Reuters Datastream for 2016 was inadequate. 

Book-to-market ratios are required for constructing SMB, HML and momentum factors; and 

thus, for differentiating between herding driven by fundamental and non-fundamental factors. 

Fourthly, in the absence of official governmental database about macroeconomic news 

releases, we extract information from Financial Times Economic Calendar (Financial Times, 

2017). This resource covers the dates of important macroeconomic announcements for Russia 

starting only from 2011. As investors exhibit similar patterns of herding behaviour across time 

on days of news announcements, our results may be generalized to the beginning of the sample 

period as well. Finally, herding is considered as a short-term phenomenon and daily stock 

returns are used. Investors, however, may exhibit herding behaviour over longer time horizons.  

 

5. Conclusions  

In this study we investigated the existence of herding towards the market on the Moscow 

Exchangea type of investor behaviour manifested in correlated action of traders and resulting 

in lower-than-efficient dispersion of asset returns. In this research, herding based on 

fundamentals is differentiated from herding driven by non-fundamental factors, an analysis less 

frequently done in the literature, allowing for a more comprehensive understanding of this 

behavioural bias.  

On overall, investors on the Moscow Exchange do not exhibit herding behaviour. Nevertheless, 

we find empirical evidence of herding driven by non-fundamental factors. This mimicking 

behaviour is more pronounced on days with negative market returns. In periods of high 

liquidity, herding behaviour is merely driven by fundamentalsinvestors make similar 

decisions independently in response to changes in fundamentals. This study also investigated 

the role of several determinants that might foment herding on the Moscow Exchange. Empirical 
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evidence of factors being associated with herding is summarized in Table 9. Overall, investors 

exhibit herding behaviour during the subprime crisis and Crimea’s annexation, and during days 

of important macroeconomic news releases. During periods of market turmoil and increased 

uncertainty herding behaviour is merely driven by non-fundamental factors. On days of 

macroeconomic news releases investors exhibit herding behaviour both on fundamental and on 

non-fundamental information. We do not find convincing evidence of herding being more 

pronounced for companies with less transparent information environment proxied either by 

company’s size or by the number of analysts following the company. Nevertheless, small 

stocks with fewer analysts might be more prone to herding behaviour. Additionally, investors 

exhibit herding behaviour without any reference to fundamentals when oil prices increase 

drastically, but no similar pattern is observed when oil prices decrease significantly. 

Table 9. Summary of empirical results 

 

Our findings contribute to the existing body of evidence on herding in several ways. First of 

all, we document herding behaviour on the Moscow Exchange, a stock market never assessed 

in the literature despite being the 12th largest exchange by market capitalization (Moscow 

Exchange, 2017). In this way we contribute to the literature on herding in emerging markets. 

In contrast to other emerging markets (Tan et al., 2008; Chang et al., 2000; Chiang & Zheng, 

2010; Poshakwale & Mandal, 2014; Pochea & Pece, 2015), Russia’s economy seems to be an 

exceptionoverall, we do not find evidence of herding formation. Investors at the Russian 

stock market, despite of being in a development stage, exhibit the same herding behaviour as 

investors at the world’s largest and most liquid markets such as the US or the UK (Chang et 

al., 2000; Chiang & Zheng, 2010; Galariotis et al., 2015). 

Secondly, we highlight the importance of distinguishing between herding on fundamental 

information and non-fundamental factors. Huge majority of papers assessing herding in 

financial markets does not distinguish between herding based on fundamental and non-

Total herding 

(CSAD)

Fundamental herding 

(CSADFUND) 

Non-fundamental herding              

(CSADNON-FUND)

Overall No No Yes

Up-days No No No

Down-days No No Yes

Low liquidity (Amihud measure) No No No

High liquidity (Amihud measure) Yes Yes No

Low liquidity (Volume measure) No No No

High liquidity (Volume measure) No Yes No

Subprime crisis Yes No Yes

Crimea's annexation Yes No Yes
Russian crisis No No No

Sanctions announcements No Yes No

Companies with least analysts No No Yes (portfolio 2)

Companies with most analysts No No No

Smaller companies No No Yes (portfolio 2)

Larger companies No No No

Oil price extreme up No No Yes

Oil price extreme down No No No

Macroeconomic announcements Yes Yes Yes
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fundamental factors (e.g., Chong et al., 2017; Mobarek et al., 2014; Guney et al., 2017), which 

may lead to biased results. In the Russian stock market, when herding based on fundamental 

factors is not separated from herding based on non-fundamental factors, no herding behaviour 

is detected. However, decomposing herding into fundamental and non-fundamental 

components suggests a different conclusion: we find empirical evidence of herding behaviour 

without any reference to fundamentals. Not breaking herding down to its different components 

leads to erroneously assuming no herding behaviour and thus no asset mispricing. For 

investors, separating fundamental herding from non-fundamental herding is critical herding 

without any reference to fundamentals disrupts the incorporation of all relevant fundamental 

information into stock prices in the short run, while herding driven by fundamental factors is 

not coupled with asset mispricing. 

Thirdly, we add to the existing body of literature by identifying factors associated with herding. 

For example, we show that periods of high liquidity are indeed associated with herding, 

supporting the scant evidence from the literature (Tan et al., 2008; Gavriilidis et al., 2013; Lam 

& Qiao, 2015; Galariotis et al., 2016). At the same time, we provide novel evidence that herding 

during periods of high liquidity is driven by similar reaction to changes in fundamentalsit is 

a rational response of investors to changes in information with no asset mispricing. Moreover, 

we find evidence that in Russia macroeconomic news releases induce both information-related 

herding and herding without any reference to fundamentals, the former enhancing efficient 

outcomes, while the later undermining itasset prices may deviate from their fundamental 

values. Although Galariotis et al. (2015) find among US investors that the release of key 

macroeconomic data leads to herding driven by fundamental factors regardless of the 

investment style, this finding does not hold for Russia. It may well be the case that in emerging 

markets characterised by opaque information environment, in addition to investors reacting 

similarly to the same set of fundamental information, significant number of unsophisticated 

investors are present who mimic the trade of their peers having no reference to fundamentals. 

Finally, we show that on the Moscow Exchange investors exhibit herding behaviour without 

any reference to fundamentals on days of extreme upward oil price movementsevidence 

being scant with respect to oil price changes. 

The results reported in this study have implications for investor on the Moscow Exchange. 

While deciding the distribution of investments among asset classes and within asset classes, 

investors should consider that prices might deviate from their fundamental values when 

investors herd on non-fundamental information. This behavioural bias related mispricing is 

more probable during periods of market turmoil and uncertainty, and in falling markets. 

Extreme upward oil price movements and macroeconomic news also make herding driven by 

non-fundamental factors and thus price distortion more likely. As a result, portfolio 

diversification and portfolio optimization are adversely impacted, and may lead to reduction in 

social welfare (Economou et al., 2011). From a regulatory viewpoint, policy makers should 

assure that all relevant information is fully and freely available to the investors. In emerging 

markets, with Russia being no exception, investors might mimic their peers due to difficulties 

in obtaining information. If the market is transparent and protects investors’ interest, economic 

agents may herd less without any reference to fundamentals, which enhances the price 

discovery process. The enhanced price discovery attracts investors, boosting both the stock 

market and the economy. Finally, our findings are relevant for researches studying behavioural 

biases in emerging markets; they should consider the varying motives of investors herding 

behaviour under specific market conditions and share characteristics. 
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In this last paragraph we suggest areas for future research. Firstly, as the results of this study 

are valid for Russia only and cannot be generalized, there is a need for further studies 

investigating the extent to which herding towards the market consensus is motivated by 

fundamental information and by non-fundamental factors. Secondly, to the best of the authors’ 

knowledge no study assesses how foreign and local decomposition of investors affects herding. 

Data is difficult to obtain with the effect being ambiguous. On the one hand, the less know-

how of foreign investors increases the probability of imitating either the decision of their peers 

or movements in the market. On the other hand, foreign traders are most probably large 

institutional investors and perform deeper due-diligence. Thirdly, the fragmentation of 

companies’ investor base might also be associated with herding behaviouranother 

determinant worth investigating. Fourthly, the relationship between information environment 

and market-wide herding may also be tested in more rigorously. Fifthly, there is a need to 

specify and empirically quantify buy versus sell herding measures. Although herding formation 

displays asymmetric patterns conditional upon different market states characterized by returns, 

volatility or liquidity, this phenomenon may be related to taking long or short positions. Finally, 

in this study herding is considered as a short-term phenomenon and daily stock returns are 

used. Investors, however, may exhibit herding behaviour over longer time horizonsfuture 

research might aim at investigating this pattern.  
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