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Abstract

In this paper the problem of sharing the cost of emission in supply
chains is considered. We focus on allocation problems that can be de-
scribed by rooted trees, called cost-tree problems, and on the induced
transferable utility cooperative games, called upstream responsibility
games (Gopalakrishnan et al., 2017).

The Shapley value (Shapley, 1953) is probably the most popular
value for transferable utility cooperative games. In Radványi (2018)
we showed that Shapley (1953)’s and Young (1985)’s axiomatizations
of the Shapley value are valid on the class of upstream responsibility
games.

According to Gopalakrishnan et al. (2017) we introduce some pol-
lution related properties and we relate them to the axioms from the
TU games literature.

Keywords: Upstream responsibility games; Cost sharing; Emis-
sion; Supply chain; Shapley value; Rooted tree; Axiomatization of the
Shapley value.

JEL Classification: C71.

1 Introduction

In this paper we consider cost sharing problems given by rooted trees, called
cost-tree problems. We assign transferable utility (henceforth TU) coopera-
tive games (henceforth games) to these cost sharing problems. Particularly,
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we consider energy supply chains with a motivated dominant leader, who
has the power to assign the suppliers responsibilities for both direct and in-
direct emissions. The induced games are called upstream responsibility games
(Gopalakrishnan et al., 2017).

For an example consider a supply chain where we look at the responsibility
allocation of greenhouse gas (GHG) emission among the firms in the chain.
One of the main questions is how to share the costs related to the emission
among the firms. The supply chain and the related firms (or any other actors)
can be represented by a rooted tree.

The root of the tree represents the end product produced by the supply
chain. The root is connected to only one node which is the leader of the
chain. Each further node represents one firm, and the edges of the rooted tree
represent the producing process among the firms with the related emissions.
Our goal is to share the responsibility of the emission while embodying the
principle of upstream emission responsibility.

In this paper we rely on the TU game model of Gopalakrishnan et al.
(2017), called GHG Responsibility-Emissions and Environment (GREEN)
game. Gopalakrishnan et al. use the Shapley value (Shapley, 1953) as an al-
location method, consider some pollution related properties that an emission
allocation rule should meet, and provide several axiomatizations as well.

In this paper we translate the axioms used in the cost sharing literature
related to allocation of greenhouse gas emission in supply chains (Gopalakr-
ishnan et al., 2017) to the language of transferable utility cooperative games.
We also consider the characterizations of the Shapley pollution allocation
rule provided by Gopalakrishnan et al. (2017) and show that two of them are
equivalent or impling Young’s axiomatization of the Shapley value.

The setup of this paper is as follows: in the next section we introduce the
concept of upstream responsibility games and characterize the class of them.
In Section 3 we present Shapley (1953)’s and Young (1985)’s axiomatizations
of the Shapley value, which work on the class of upstream responsibility
games. In Section 4 we introduce the properties relying on the pollution
problem and relate them to the TU games terminologies. We conclude our
results by comparing the characterizations of Gopalakrishnan et al. (2017)
to Young’s axiomatization.
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2 Upstream Responsibility Games

2.1 Preliminaries

Notions, notations : #N is for the cardinality of set N , and 2N denotes the
class of all subsets of N . A ⊂ B means A ⊆ B, but A 6= B. A ] B stands
for the union of disjoint sets A and B.

A graph is a pair G = (V,E), where the elements of V are called vertices
or nodes, and E stands for the ordered pairs of vertices, called edges or arcs.
A rooted tree is a graph in which any two vertices are connected by exactly one
path, and one vertex has been designated the root denoted as node root. In
the case of a supply chain consisting several entities, which are cooperating in
the production of a final product, the manufacturing process can be modeled
with a directed rooted tree. The set of nodes V represents the entities,
henceforth players, and a directed arc emanating from node i towards root
represents the activity by player i contributing to the manufacturing of the
final product. We assume that only one node emanates arc enters the root,
this emanates from node 1 which node represents the end consumer.

The tree-order is the partial ordering on the vertices of a rooted tree with
i ≤ j, if the unique path from j to the root passes through i. The chain is a
rooted tree such that any vertices i, j ∈ V , i ≤ j or j ≤ i. That is, a chain
is a rooted tree with only one ”branch”. For any pair e ∈ E, e = ij means
e is an edge between vertices i, j ∈ V such that i ≤ j. For each i ∈ V , let
Si(G) = {j ∈ V : j ≥ i}, that is, for any i ∈ V , i ∈ Si(G). For each i ∈ V
let Pi(G) = {j ∈ V : j ≤ i}, that is, for any i ∈ V , i ∈ Pi(G). Moreover,
for any V ′ ⊆ V , let (PV ′(G), EV ′) be the sub-rooted-tree of (V,E), where
PV ′(G) = ∪i∈V ′Pi(G) and EV ′ = {ij ∈ E : i, j ∈ PV ′(G)}.

Let c : E → R+, c and (G, c) are called cost function and cost-tree
respectively. An interpretation of cost tree (G, c) might be as follows: there
is a given product which is produced by a supply chain. V = N ∪ {root},
N denotes the set of all entities of the supply process. Node 0, the root
denotes the end-consumer, and the leaf nodes represents the most upstream
members (that is, firms, etc.) of the supply chain. We assume that only one
arc emanates form the root and this emanates from the node 1. Each edge
e ∈ E is associated with a process in the supply chain emitting a pollution
c(e). Let ei denote the unique edge in the tree T emanating from node i (in
the direction of the root). In this case c(ei) represents the direct pollution
associated with ei, the directly created pollution by node (firm) i. Moreover,
i also can be responsible for the pollution of other processes in the chain.
For each node i, Ei denotes the set of edges whose associated pollution is the
direct or indirect responsibility of node i.
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Let N 6= ∅, #N <∞, and v : 2N → R be a function such that v(∅) = 0.
Then N , v are called set of players, and transferable utility cooperative game
(henceforth game) respectively. The class of games with player set N is
denoted by GN .

A game v ∈ GN is convex, if for all S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪
T ) + v(S ∩ T ), moreover, it is concave, if for all S, T ⊆ N , v(S) + v(T ) ≥
v(S ∪ T ) + v(S ∩ T ).

The dual of game v ∈ GN is game v̄ ∈ GN such that for all S ⊆ N ,
v̄(S) = v(N)− v(N \ S). It is well known that the dual of a convex game is
a concave game and vice versa.

Let v ∈ GN and i ∈ N , and v′i(S) = v(S ∪ {i}) − v(S), where S ⊆ N .
The vector v′i is called player i’s marginal contribution function in game v.
Alternatively, v′i(S) is player i’s marginal contribution to coalition S in game
v.

Let v ∈ GN , the players i, j ∈ N are equivalent in game v, i ∼v j, if for
all S ⊆ N such that i, j /∈ S, v′i(S) = v′j(S).

Let N and T ∈ 2N \ ∅, and for all S ⊆ N , let

uT (S) =

{
1, if T ⊆ S,
0 otherwise.

The game uT is called unanimity game on coalition T .
In this paper we use the duals of the unanimity games. For any T ∈ 2N \∅

and for all S ⊆ N ,

ūT (S) =

{
1, if T ∩ S 6= ∅,
0 otherwise.

It is clear that every unanimity game is convex, and the duals of the
unanimity games are concave.

Henceforth, we assume that in the considered cost-tree problems there
are at least two players, that is, #V ≥ 3 and #N ≥ 2.

Next we introduce the notion of upstream responsibility game (URG)
(Gopalakrishnan et al., 2017). Let (G, c) be a cost-tree, representing a supply
chain, and N be the set of the members of the chain, henceforth players (the
vertices but the root). We denote by aj the pollution associated with arc
j. Let c({i}) denote the total pollution emission that player i is directly or
indirectly responsible for. Ei represents the set of edges whose associated
pollution is the direct or indirect responsibility of player i, c({i}) = a(Ei) ≡∑

j∈Ei aj. For every S ⊆ N let ES denote the collection of edges whose
associated pollution is the direct or indirect responsibility of the players in
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S, thus ES = ∪i∈SEi and the pollution which S is directly or indirectly
responsible for is c(S) = a(ES) ≡

∑
j∈ES aj.

The class of upstream responsibility games with player set N is denoted
by GNUR. Let GG denote the subclass of upstream responsibility games induced
by cost-tree problems on the (specific) rooted tree G.

Definition 1 (Upstream Responsibility Game). For any cost-tree (G, c), let
N = V \ {root} be the player set, and for any coalition S (the empty sum is
0) let the upstream responsibility game be defined as follows

v(G,c)(S) =
∑
j∈ES

aj .

The next example is an illustration of the above definition.

Example 2. Consider the cost-tree in Figure 1, where the rooted tree G =
(V,E) is as follows, V = {root, 1, 2, 3}, E = {root1, 12, 13}, and E1 =
{e1, e2, e3}, E2 = {e2}, E3 = {e3}. Then the cost (pollution) function c is
defined as c(root1) = a1 = 2, c(12) = a2 = 4 and c(13) = a3 = 1.

Figure 1: The cost-tree (G, c)

The upstream responsibility game is v(G,c) = (0, 7, 4, 1, 7, 7, 5, 7), that is,
v(G,c)(∅) = 0, v(G,c)({1}) = 7, v(G,c)({2}) = 4, v(G,c)({3}) = 1, v(G,c)({1, 2}) =
7, v(G,c)({1, 3}) = 7, v(G,c)({2, 3}) = 5 and v(G,c)(N) = 7.

From now on we assume that for any rooted tree G the associated pollu-
tions sets are as follows Ei = Pi(G), i ∈ V \ {root}.

In the papers Márkus et al. (2011) and Radványi (2018) we characterized
the classes of airport games and upstream responsibility games. The class
of airport games is denoted by GNA and the class of upstream responsibility
games by GNUR. In the following we list such results from the above mentioned
two papers that we will use in this paper.
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First, we take an obvious observation, for any rooted tree G, GG is a cone,
that is for any α ≥ 0, αGG ⊆ GG. Since union of cones is also a cone, both
GNA and GNUR are cones.

Lemma 3. For any rooted tree G, GG is a cone, therefore, GNA and GNUR are
cones.

Lemma 4. For any chain G, and player i ∈ N , ūPi(G) ∈ GG. Therefore,
{ūT}T∈2N\{∅} ⊂ GNA ⊂ GNUR.

Lemma 5. For any rooted tree G, GG ⊂ cone {ūPi(G)}i∈N . Therefore, GA ⊂
GNUR ⊂ cone {ūT}T∈2N\{∅}.

The following example is an illustration of the above result.

Example 6. Consider the upstream responsibility game of Example 2. Then
P1(G) = {1}, P2(G) = {1, 2} and P3(G) = {1, 3}. Furthermore, αP1(G) = 2,
αP2(G) = 4 and αP3(G) = 1. Finally, v(G,c) = 2ū{1} + 4ū{1,2} + ū{1,3} =∑

i∈N αPi(G)ūPi(G).

Further corollaries of Lemmata 4 and 5 are the followings.

Lemma 7. GNA is not a convex set, moreover GNUR is not convex either.

The following corollary has a key role in Young (1985)’s axiomatization
of the Shapley value on the classes of airport and upstream responsibility
games. It is well-known that the duals of the unanimity games are linearly
independent vectors in R2N−1. From Lemma 5, for any rooted tree G and
v ∈ GG, v =

∑
i∈N αPi(G)ūPi(G), where weights αPi(G) are well-defined, that is,

those are uniquely determined. The following lemma says that for any game
v ∈ GG, if we erase the weight of any basis vector (the duals of the unanimity
games), then we get a game belonging to GG.

Proposition 8. For any rooted tree G and v =
∑

i∈N αPi(G)ūPi(G) ∈ GG, for
each i∗ ∈ N ,

∑
i∈N\{i∗} αPi(G)ūPi(G) ∈ GG. Therefore, for any airport game

v =
∑

T∈2N\{∅} αT ūT and T ∗ ∈ 2N \ {∅}, it holds that
∑

T∈2N\{∅,T ∗} αT ūT ∈
GNA , and for any upstream responsibility game v =

∑
T∈2N\{∅} αT ūT and T ∗ ∈

2N \ {∅}, it holds that
∑

T∈2N\{∅,T ∗} αT ūT ∈ GNUR.

The following example is an illustration of the above result.

Example 9. Consider the upstream responsibility game of Example 2, and
take player 2. Then

c′(e) =


2, if e = 01,
0, if e = 12,
1, if e = 13.
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Moreover,
∑

i∈N\{i∗} αPi(G)ūPi(G) = 2ū{1} + ū{13} = v(G,c′) is an upstream
responsibility game.

Finally, an obvious observation:

Lemma 10. Every upstream responsibility game is concave.

Proof. The duals of the unanimity games are concave games, hence by Lemma
5 every upstream responsibility game is concave. �

To sum up the above results we conclude as follows:

Corollary 11. The class of airport games is a union of finitely many convex
cones, but it is not convex, and it is a proper subset of the class of upstream
responsibility games. The class of upstream responsibility games is also a
union of finitely many convex cones, but is not convex either, and it is a
proper subset of the finite convex cone spanned by the duals of the unanim-
ity games, therefore every upstream responsibility game is concave, so every
airport game is concave too.

3 Solutions for upstream responsibility games

In this section we propose solutions for upstream responsibility games.
A solution on set A ⊆ GN ψ is a set-valued mapping ψ : A � RN , that

is, a solution assign a set of allocations to each game. In the following, we
define two solutions.

Let v ∈ GN and

piSh(S) =


#S!(#(N \ S)− 1)!

#N !
, if i /∈ S,

0 otherwise.

Then φi(v) the Shapley value (Shapley, 1953) of player i in game v is the piSh
expected value of v′i. In other words

φi(v) =
∑
S⊆N

v′i(S) piSh(S) . (1)

Furthermore, let φ denote the Shapley value.
It is obvious from its definition that the Shapley solution is a single valued

solution, a single valued solution is called value.
Next, we introduce an other solution, the core (Shapley, 1955; Gillies,

1959). Let v ∈ GNUR be an upstream responsibility game. Then the core of
upstream responsibility game v is defined as follows

7



core (v) =

{
x ∈ RN :

∑
i∈N

xi = v(N), and for any S ⊆ N,
∑
i∈S

xi ≤ v(S)

}
.

The core consists of the stable allocations of the value of the grand coali-
tion, that is, any allocation of the core is such that the allocated cost is the
total cost (

∑
i∈N xi = v(N)) and no coalition has incentive to deviate from

the allocation scheme.
In the following definition we list the axioms we use to characterize the

Shapley value.

Definition 12. A value ψ on A ⊆ GN is / satisfies

• Pareto optimal (PO), if for all v ∈ A,
∑
i∈N

ψi(v) = v(N),

• null-player property (NP ), if for all v ∈ A, i ∈ N , v′i = 0 implies
ψi(v) = 0,

• equal treatment property (ETP ), if for all v ∈ A, i, j ∈ N , i ∼v j
implies ψi(v) = ψj(v),

• additive (ADD), if for all v, w ∈ A such that v + w ∈ A, ψ(v + w)
= ψ(v) + ψ(w),

• marginal (M), if for all v, w ∈ A, i ∈ N , v′i = w′i implies ψi(v) = ψi(w).

Brief interpretations of the above introduced axioms are as follows: An-
other, commonly used name of axiom PO is Efficiency. This axiom requires
that the total cost must be shared among the players. Axiom NP is about
that, if a player’s marginal contribution is zero, that is, she has no influence,
effect on the given situation, then her share (her value) must be zero.

The axiom ETP puts the requirement that, if two players have the same
impact on the given situation, then their evaluations must be equal. Going
back to our example, if two firms are equivalent in regard to their emission
costs, then their cost shares must be equal.

A value meets axiom ADD, if for any two games, adding up the games
first then evaluate the players, or evaluate the players first then adding up
their evaluations does not matter. Axiom M requires that, if a player in two
games produces the same marginal contributions, then her value must be the
same in the two games.

First we take an observation:
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Proposition 13. Let A,B ⊆ GN . If a set of axioms characterizes a solution
on both classes of games A and B, and the solution meets the set of axioms
on A ∪B, then set of axioms characterizes the solution on class A ∪B.

In this section we consider two characterizations of the Shapley value
on the classes of upstream responsibility games. The first one is Shapley’s
original axiomatization (Shapley, 1953).

Theorem 14. For any rooted tree G, a value ψ on GG is PO, NP , ETP
and ADD if and only if ψ = φ, that is, if and only if it is the Shapley value.
Therefore, a value ψ on the class of upstream responsibility games is PO,
NP , ETP and ADD if and only if ψ = φ.

Proof. For the proof see e.g. Radványi (2018). �

Next we consider Young’s axiomatization of the Shapley value (Young,
1985). This was the first axiomatization of the Shapley value not involving
the axiom ADD.

Theorem 15. For any rooted tree G, a single valued solution ψ on GG is
PO, ETP and M if and only if ψ = φ, that is, if and only if it is the Shapley
value. Therefore, a value ψ on the class of upstream responsibility games is
PO, ETP and M if and only if ψ = φ.

Proof. For the proof see e.g. Radványi (2018). �

Furthermore, Lemma 10 and the well-known results of Shapley (1971)
implies the following corollary:

Corollary 16. For any upstream responsibility game v, φ(v) ∈ Core (v),
that is, the Shapley value is in the core. Moreover, since every airport game
is an upstream responsibility game, for any airport game v, φ(v) ∈ Core (v).

The above corollary shows that on the two considered classes of games
the Shapley value is stable, that is, it can be considered as a core selection.

Finally, as a direct corollary of our characterization of the class of up-
stream responsibility games, Lemma 5, we have the following result:

Corollary 17. The Shapley value on the class of the upstream responsibility
games can be calculated in polynomial time.

Proof. Take an arbitrary upstream responsibility game v ∈ GNUR. Then

v =
∑
i∈N

αPi(G)ūPi(G) .

9



Moreover,

φj(ūPi(G)) =

{ 1
#Pi(G)

, if j ∈ Pi(G),

0 otherwise.

Therefore, by αPi(G) = ci−i we have that for all j ∈ N :

φj(v) =
∑

j∈Pi(G)

ci−i
#Pi(G)

.

�

4 Axiomatic basis for the Shapley value re-

lied on pollution related properties

In this section we consider pollution related properties in the case of upstream
responsibility games. We rely on the axiomatization of Gopalakrishnan et
al. (2017), who introduce six properties an allocation rule should satisfy in
the context of allocating the responsibility of pollution. They also introduce
three axiomatizations of the Shapley value using these properties. Our goal
for this section is to compare those pollution related axioms with axioms
arising from the cooperative game theory, which axioms we have introduced
in the previous section.

First of all some notions and notations, some of them as a reminder: we
consider a supply chain represented with graph G = (V,E), with n firms
denoted by N = {1, 2, . . . , n}. M = {1, 2, . . . ,m} denotes the set of all
processes in the chain, where each process j corresponds to an activity by
some player of the supply chain. The process j has a related pollution of
fj and a set of firms Nj which bear responsibility for it. For each process
j, fj represents the pollution for arc (j1, j2), so fj = aj ≥ 0. The Shapley
value was shown to divide the pollution fj equally among the firms who are
responsible for it.

Let Pi the set of processes that firm i is responsible for, and P̃i the set of
processes with non-zero pollution. A responsibility matrix B shows if firm
i is responsible for the pollution of process j, if and only if bi,j = 1, and
0 otherwise. A firm i is responsible for the total pollution of

∑m
j=1 fjbi,j.

For the set of firms S, bS,j = 1 if at least one firm in S is responsible for the
pollution of process j, and 0 otherwise. S is responsible for the total pollution
of f(PS) =

∑m
j=1 fjbS,j. Let f = (f1, f2, . . . , fm) be the total footprint set

consisting of the pollution of all processes in the supply chain.
We introduce the definition of a pollution allocation rule, according to

Gopalakrishnan et al. (2017):
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Definition 18. A pollution allocation rule ϕ is defined on a supply chain
with n firms, set of processes M and a responsibility matrix B as a mapping
ϕ : Rm

+ → Rn
+, which allocates to each firm its responsibility towards the total

pollution such that
∑n

i=1 ϕi(f) =
∑m

i=1 fj.

A pollution allocation rule allocates the total pollution responsibility
among the firms (without double counting). It is worth to notice, that a
pollution allocation rule is Pareto-optimal by definition.

In the following we introduce some properties that any rule should possess
in the context of pollution allocation according to Gopalakrishnan et al.
(2017).

Definition 19. A pollution allocation rule ϕ on a supply chain with n firms,
set of processes M and a responsibility matrix B satisfies the property of

• equal sharing of extra pollution (ESEP), if f ′ ≥ f such that f ′j = fj
for all processes j ∈ M \ {k} and f ′k ≥ fk, then for p, q ∈ N such that
bp,k = bq,k = 1 implies ϕp(f

′)− ϕp(f) = ϕq(f
′)− ϕq(f),

• no free riding (NFR), if for any firm i and footprints f ′ ≥ f , such that
f ′j = fj for all processess j for which bi,j = 1, then ϕi(f

′) = ϕi(f),

• firm equivalence (FE), if for two firms i and j, (P̃i) = (P̃j), then
ϕi(f) = ϕj(f),

• firm nullity (FN), if for a firm i, (P̃i) = ∅, then ϕi(f) = 0,

• process history independence (PHI), if for f ′ ≥ f and f̃ ′ ≥ f̃ foot-

prints, such that f ′j = fj and f̃ ′j = f̃j for all processes j ∈ M \ {k},
f ′k = f̃ ′k and fk = f̃k, then for any firm i, ϕi(f

′)−ϕi(f) = ϕi(f̃
′)−ϕi(f̃),

• disaggregation invariance (DI), in the following case: suppose firm i
chooses to disaggregate and represent itself as firms i1 and i2, with
an arc (i1, i2) joining them, which corresponds to a process with zero
pollution. Each of i1 and i2 is responsible for disjoint sets of processes
Pi1 and Pi2 respetively, such that Pi1 ∪ Pi2 = Pi ∪ {(i1, i2)}. The
disaggregated supply chain G′ has n + 1 firms and process set M ∪
{(i1, i2)}. Then ϕ is said to be disaggregated invariant if for a firm
j 6= i, ϕj(G) = ϕj(G

′) and ϕi1(G
′) + ϕi2(G

′) = ϕi(G).

The property of equal sharing of extra pollution means, that if the pollu-
tion increases at some processes and remains the same at all the others, then
any two firms who are responsible for the extra pollution should allocate the
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extra burden equally. No free riding requires that if the total amount of
the pollution increases, but still remains for some firm, then the pollution
allocation must be unchanged for those firms who are not responsible for the
increase. Firm equivalence implies that if two firms are responsible for the
exact same set of polluting processes (it means they are equivalent), then
their share of the total pollution must be equal. Firm nullity states that if a
firm is not responsible for any polluting process, then it’s allocation must be
zero. The property of process history independence requires that the change
of responsibilities of the firms due to a change in pollution of any process is
independent of the pollution levels of other processes. In the case of disag-
gregation invariance if for example a manufacturer decides to disaggregate
and instead of selling directly, sells via a distributor who creates no addi-
tional pollution, it should not change the pollution allocation to the firms
(so the property might avoids manipulation by de-merging while reporting
emission).

The Shapley pollution allocation rule allocates the pollution of each pro-
cess to all the firms held responsible for equally. The following theorem pro-
vides three axiomatizations for the Shapley pollution allocation rule, which
according to Corollary 17 coincides with the Shapley value.

Theorem 20 (Gopalakrishnan et al., 2017). The Shapley pollution allocation
rule is uniquely characterized by each of the following sets of independent
properties:

1. Equal sharing of extra pollution and no free riding.

2. Firm equivalence, firm nullity and process history independence.

3. Firm equivalence, no free riding and disaggregation invariance.

The above defined properties and the axiomatization results are in some
way similar to the cooperative game theoretic axioms and characterizations
we introduced in the previous section. The similarity is formalized in the
following proposition. But first we define one more axiom used in cooperative
game theory, the fairness property (following the definition by van den Brink,
2001).

Definition 21. A value φ on A ⊆ GN satisfies the fairness property (FP),
if for v, w ∈ A and i, j ∈ N such that v + w ∈ A and i ∼w j it holds that
φi(v + w)− φi(v) = φj(v + w)− φj(v).

Proposition 22. Let (G, c) be a cost-tree, representing a supply chain, a
single valued pollution allocation rule ϕ defined on the supply chain with n
firms, a set of processes M and a responsibility matrix B, a value ψ be defined
on GUR as ψ(v(G,c)) = ϕ(f). Then ϕ satisfies the property of
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• firm nullity, if and only if ψ is NP ,

• firm equivalence, if and only if ψ is ETP .

Proof. • Firm nullity ⇔ NP :

⇒: We assume that for i ∈ N c′i = 0, that is for every S ∈ N c(S ∪
{i}) = c(S). Therefore P̃i = ∅. Firm nullity implies that ϕi(f) = 0, so
ψi(G, c) = 0, therefore ψ is NP .

⇐: We assume that ψ is NP , lets take an i ∈ N with P̃i = ∅, which
means that

∑
j∈Ei fj = 0. This implies that

∑
j∈ES∪{i} fj =

∑
j∈ES fj.

Therefore c(S ∪ {i}) = c(S) ⇔ c′i = 0. Since ψ is NP , ψi(G, c) = 0, so
ϕi(f) = 0, therefore ϕ satisfies the property of firm nullity.

• Firm equivalence ⇔ ETP :

⇒: We assume that i ∼c j, that is c′i(S) = c′j(S), which means for all
S \ {i, j}, c(S ∪ {i})− c(S) = c(S ∪ {j})− c(S), that is, c(S ∪ {i}) =

c(S ∪ {j}). Therefore
∑

k∈ES∪{i} fk =
∑

k∈ES∪{j} fk ⇒ P̃i = P̃j. So firm

equivalence implies that ϕi = ϕj which means ψi(G, c) = ψj(G, c).

⇐: Assume that ψ is ETP and there exists i and j ∈ N : P̃i = P̃j.
This means that

∑
k∈Ei fk =

∑
k∈Ej fk ⇒

∑
k∈ES∪{i} fk =

∑
k∈ES∪{j} fk

for any S \ {i, j}. Therefore c(S ∪ {i}) = c(S ∪ {j}), that is i ∼c j.
Since ψ is ETP , ψi = ψj, therefore ϕi(f) = ϕj(f), that is ϕ satisfies
the property of firm equivalence.

�

Remark 23. From Lemma 5 we know that for any upstream responsibility
game v ∈ GNUR it holds that

v =
∑
i∈N

fiūPi(G),

where fi is the weight of the (only) edge from node i towards to the root,
that is, fi is player i’s footprint, Pi(G) = {j ∈ V : j ≤ i}, V = N ∪ {root}.

Definition 24. A value ψ meets axiom weak fairness with dual (WFD) on
the class of game A ⊆ GN , if for all v ∈ A, α > 0, T ∈ P(N) \ {∅} such that
v + αūT ∈ A it holds that for all i, j ∈ T

ψi(v + αūT )− ψi(v) = ψj(v + αūT )− ψj(v).
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Definition 25. A value ψ meets axiom weak fairness with dual II (WFD2)
on the class of game A ⊆ GN , if for all v ∈ A, α > 0, T ∈ P(N) \ {∅} such
that v + αūT ∈ A it holds that for all i, j ∈ T or i, j /∈ T , that is, for all
i, j ∈ N such that i ∼ūT j

ψi(v + αūT )− ψi(v) = ψj(v + αūT )− ψj(v).

Corollary 26. WFD2 implies WFD.

Theorem 27. Let A = ConvexCone {ūT}T∈C⊆P(N)\{∅}, then a value ψ meets
FP if and only if it meets WFD2.

Proof. It is clear that FP implies WFD2.

Let v, w ∈ GN , i, j ∈ N be such that v, v + w ∈ A and i ∼w j. Then

w =
∑
T∈C

αT ūT

for some αT s.
Let C+ = {T ∈ C : αT ≥ 0}, moreover, let

w+ =
∑
T∈C+

αT ūT ,

and

w− =
∑

T∈C\C+

αT ūT .

Furthermore i ∼w j if and only if for each T ∈ C either i, j ∈ T or i, j /∈ T
or αT = 0.Then it is clear that i ∼w j if and only if i ∼w+ j and i ∼w− j.

Then v + w+ ∈ A, and by applying WFD2 for v and w+ |C+| times we
get that for all i and j such that i ∼w+ j it holds that

ψi(v + w+)− ψi(v) = ψj(v + w+)− ψj(v). (2)

Then by applying WFD2 for v + w and −w− |C \ C+| times we get that
for all i and j such that i ∼w− j it holds that

ψi(v + w+)− ψi(v + w) = ψj(v + w+)− ψj(v + w),

that is,

ψi(v + w)− ψi(v + w+) = ψj(v + w)− ψj(v + w+). (3)
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Adding up equations (2) and (3), we get that by applying WFD2 for v
and v+w |C| times we get that for all i and j such that i ∼w j it holds that

ψi(v + w)− ψi(v) = ψj(v + w)− ψj(z).

�

Corollary 28. On the class of GN(G,V ) FP is equivalent with WFD2, and FP
implies WFD.

Proposition 29. A rule ψ̄ on the class of GREEN problems with a fixed tree
meets ESEP if and only if the corresponding value ψ on the class of upstream
responsibility game meets WFD.

Proof. For a weight system f let vf be the corresponding TU game. Take f
and f ′ as in the definition of ESEP, then

vf ′ − vf = vf ′−f = (f ′k − fk)ūPk
.

Moreover, p, q ∈ Pk if and only if bpk = bqk = 1, that is, p ∼ūPk q if and
only if bpk = bqk = 1.

Therefore, ESEP implies WFD, and WFD implies ESEP. �

Proposition 30. A rule ψ̄ on the class of GREEN problems with a fixed tree
meets NFR if and only if the corresponding value ψ on the class of upstream
responsibility game meets M.

Proof. Let i ∈ N , f ′ ≥ f such that f ′j = fj, if bij = 1.
For all j ∈ Pi it holds that f ′j = fj.
Let S ⊆ N \ {i}, then

vf ′(S ∪ {i})− vf ′(S) =
∑

j∈PS∪{i}

f ′j −
∑
j∈PS

f ′j =
∑

j∈Pi\PS

f ′j,

and

vf (S ∪ {i})− vf (S) =
∑

j∈PS∪{i}

fj −
∑
j∈PS

fj =
∑

j∈Pi\PS

fj.

Therefore, for all S ⊆ N \ {i} it holds that

vf ′(S ∪ {i})− vf ′(S) = vf (S ∪ {i})− vf (S).

Therefore NFR is equivalent with M. �
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Definition 31. A value ψ meets axiom equal change (EC) on the class of
game A ⊆ GN , if for all v, w ∈ A, α > 0, T ∈ P(N) \ {∅} such that
v + αūT , w + αūT ∈ A it holds that for all i ∈ N

ψi(v + αūT )− ψi(v) = ψi(w + αūT )− ψi(w).

Proposition 32. A rule ψ̄ on the class of GREEN problems with a fixed
tree meets PHI if and only if the corresponding value ψ (which meets PO by
definition) on the class of upstream responsibility game meets EC.

Proof. By that for all j ∈ N \ {k} it holds that f ′j = fj and f̃ ′j = f̃j we have
that for all j ∈ N \ {k}

f̃ ′j − f ′j = f̃j − fj.

Moreover, by that f̃ ′k = f ′k and f̃k = fk we have that

f̃ ′k − f̃k = f ′k − fk.

Then

vf̃ ′ − vf̃ = (f̃ ′k − f̃k)ūPk
= (f ′k − fk)ūPk

= vf ′ − vf .

Therefore PHI is equivalent with EC.

�

Lemma 33. If a value ψ meets axioms PO, M and WFD on the class of
games A ⊆ GN , then it meets EC on A.

Proof. By that ψ meets M if i /∈ T , then

ϕi(v + αūT )− ϕi(v) = 0 = ϕi(w + αūT )− ϕi(w).

Moreover, if i ∈ T , then by that ψ meets PO and WFD it holds that

ϕi(v + αūT )− ϕi(v) =
α

|T |
= ϕi(w + αūT )− ϕi(w).

�

Lemma 34. If a value ψ meets axioms NP and EC on the class of games
A = ConvexCone {ūT}T∈C⊆P(N)\{∅}, then it meets M on A.

Proof. Notice that 0, αūT ∈ A. Moreover, by EC for all i ∈ N it holds that

ϕi(v + αūT )− ϕi(v) = ϕi(αūT )− ϕi(0).

16



Then by NP ϕi(αūT ) = ϕi(0) = 0, i /∈ T , that is, for all i /∈ T

ϕi(v + αūT ) = ϕi(v).

�

Theorem 35. Based upon the above results and Theorem 20 we get the fol-
lowing characterizations of the Shapley value for the class of upstream respon-
sibility games (note that a pollution allocation rule ϕ is PO by definition):

1. The characterization of the Shapley pollution allocation rule by axioms
(FE + FN + PHI) holds for the upstream responsibility problem if
and only if the characterization of the Shapley value by axioms (PO +
ETP + NP + EC) holds for the class of upstream responsibility games,
therefore the characterization of the Shapley value by axioms (PO +
ETP + M) holds for the class of upstream responsibility games.

2. The characterization of the Shapley pollution allocation rule by axioms
(FE + NFR + DI) holds for the upstream responsibility problem if and
only if the characterization of the Shapley value by axioms (PO + ETP
+ M) holds for the class of upstream responsibility games. This also
means, that the axiom of DI is not needed, the axioms of FE and NFR
together already characterize the Shapley value for this class of games.

We get to the conclusion, that the 2. characterization of Theorem 20 implies
the 3. characterizations, therefore FN + PHI ⇒ NFR. The 2. characteriza-
tion implies Young’s axiomatization of the Shapley value, which is equivalent
to the 3. characterization.
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