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1 Introduction

These lecture notes are for Economics PhD students at the Corvinus University
of Budapest, but can be used equally by any graduate student interested in
modern econometrics and its relationship to general statistics. It is divided into
�ve main sections. The �rst introduces some general concepts of theoretical
statistics, including Bayesian ideas. Many of these ideas appear in economet-
rics textbooks, but some of them is ominously missing. Basic (philosophical)
questions of statistics are usually not treated in those, though some apprecia-
tion of them should be useful for any practicing econometrician. The next two
sections cover material that can be found in most (non-time series) econometrc
textbooks. Here I stress the di¤erence between two apparoaches: the data de-
scription style of classical regression analysis and the causal estimation centered
econometric approach. The following section introduces statistical learning, an
area little known for most economists at the present. My conviction is that
its knowledge will be more and more crucial in the future. The �nal section
is assigned to time series analysis, mostly dealing with traditional time domain
approaches, but making an unusual, for econometric texts, foray into the fre-
quency domain and wavelet methods. Again, I believe that the latter will be
important in the future, and the former is a stepping stone to the latter.
The bookis a textbook and as such a compendium. It does not contain new

material, at most a few examples or cases. It is based mostly on other textbooks,
but selected from a rather wide range. At the end of each section those texts I
used most extensively are listed, in all areas these should be consulted if someone
wants to have a deeper understanding of the issues involved. The present text
aims at a wide coverage, rather than an in-depth one.
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2 Classical statistics

2.1 The classical statistical problem

We have n observations on p variables. We assume that there exists a family of
distributions parameterized by �,

F (X j �)

where � 2 �, and there exists a speci�c "true" b�: Then x (the observed
sample) is a realization from this distribution. Thus X is a matrix of random
variables, and we have available a speci�c realization x (the sample), which we
observe.
The goal is to derive statements about the true b� 2 �:
For an example suppose we measure the height of 2000 Hungarian citizens.

The assumption is that the selection of these people was random, and there
is a random variable with cumulative distribution function (cdf) F that can
be called "the height of a living Hungarian". The simplest and most frequent
assumption is that X1::::Xn have the same (Fi = F ) distribution, and they are
independent pairwise:

F (x1; x2; :::xn) = F1(x1)F2(x2):::Fn(xn) = F (x1)F (x1):::F (xn):

This sample is called i.i.d. (independently identically distributed). So far
we haven�t introduced enough restrictions to enable us to speak about "para-
meters". But, if, in addition, we assume that F is normal, then EF (X) = �;and
varF (X) = �2 > 0 completely determine the population distribution, and we
have a parametric problem. Classical statistics mostly, but not exlusively, was
concerned with parametric problems. In general we can de�ne a statistic T as
any measurable function of X; thus T (X) is also a random variable (possibly
multivalued), with realization t.

Another possible interpretation of population Another possible in-
terpretation is that the population consists of the almost 10 millions of Hun-
garians living today. If sampling were conducted with replacement then the
sample is also i.i.d. In that case the parameter of interest is simply the average
height, and we can infer it, in principle, by observing everyone. The problem is
statistical only because it is too costly to observe everyone.
A frequent use of statistics is to forecast the outcome of an election based on

exit poll data. Here the goal is to give an estimate of the actual vote of a �nite
set of individuals, not the potential vote of an in�nite potential population.
It is similar to the problem of taking a sample of, say a bunch, of bullets,
and determine what percentage of the bunch is faulty. Because in this case
sampling implies destroying the bullets increasing the sample size would be
counterproductive, though it would lead to the truth eventually.
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Most econometric investigations assume an in�nite population, and strive
for more than just establishing some contingent facts about the present or the
past. In each particular case one has to decide which interpretation is sensible.

2.2 First approach to telling something about the para-
meters: point estimation

Let us try to �nd statistics that "determine" the unknown � and �2 in the above
example! In general determining exactly the true parameters is not possible.
Thus this is not a well-de�ned mathematical problem. Classical statisticians�
informal purpose is "to get as close as possible" to the true parameters in some
sense. There exist basically three ways to achieve this goal: point estimation,
interval estimation, and testing.
Point estimation aims at giving the best possible "single" estimate for an

unknown parameter (an element of �). There is no unequivocal meaning to the
expression: "some statistic is an estimate of parameter �". However, informally
this expression is used customarily.

2.2.1 Formal properties of estimators

De�nition: A statistic (an estimator) is called an unbiased estima-
tor of � , if

E�T (X) = �:

Unbiasedness seems to be reasonable: on average the estimator returns the
true parameter.

Proposition: E(Xn) = � (the sample average is an unbiased esti-
mate of the population mean), where

Xn =

 
1

n

nX
i=1

Xi

!
:

There are many unbiased estimates. For instance if
X

�i = 1

Xn� =
X

�iXi

is unbiased. But what about their variance? It is

var(Xn�) = E(Xn� � �)2:

De�nition: An unbiased estimator is e¢ cient if it has minimum
variance among unbiased estimators.
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Proposition: The sample mean is e¢ cient for the population mean,
and its variance is �2

n : It is plausible to estimate the population variance
with its sample counterpart:

s2u =
X
i

1

n
(Xi �Xn)

2:

However, it turns out that it has a little fault.

Proposition: E(s2u) =
n�1
n �2;in other words, this estimator is biased

downwards. The bias can be easily corrected:

s2 =
n

n� 1s
2
en =

1

n� 1
X
(Xi �Xn)

2:

E(s2) = �2:

A strange example: Poisson distribution A Poisson distribution de-
scribes the number of occurrences of a random phenomenin per unit of time.
Its probability mass function is

pn = exp(��)
�n

n!
:

Suppose we observe the phenomenon n times during a unit interval. We look
for the unbiased estimator of �; as a statistic T (n). Unbiasedness requires that

1X
n=0

exp(��)�
n

n!
T (n) = �;

1X
n=0

�n

n!
T (n) = � exp(�):

The left-hand side must be the Taylor-series expansion of the right hand side
around � = 0. Therefore

T (n) =
@n(exp(�)�)

@nn

T (n) = n

One can derive the unbiased estimator of �2 with the same method:
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1X
n=0

exp(��)�
n

n!
T2(n) = �2

T2(n) =
@n(exp(�)�2)

@nn

T2(0) = 0

T2(1) = 0

T2(n) = n(n� 1):

There is a clear "contradiction" between the two estimates.

2.2.2 Estimation principle: Maximum Likelihood

The principle amoubts to estimating parameters so that the observed sample
be the most likely with this set of parameters. It is a principle, nothing proves
a priori that it has good properties. The likelihood function can be de�ned as

L(� j x) = f(x j �);
where f is either the density function or the probability mass function. The

standard example is a normal population, and an i.i.d. sample.

f(Xj �;�) = (2��2)�n
2 exp

266664�
nX
i=1

(Xi � �)2

2�2

377775 :
Let us apply the ML principle, and maximize the likelihood function:

max
m;s

L(m; s j x) = (2�s2)�n
2 exp

266664�
nX
i=1

(xi �m)2

2s2

377775
Usually we use the logarithm of the likelihood function. Logarithm is a

monotone transformation, therefore the maximum of the log-likelihood function
is the same as that of the likelihood function. Interesting statements refer, in
general, to the log-likelihood (see below, for instance, the Cramér-Rao inequal-
ity.)

Proposition:
mML = Xn

s2ML = s2u =
1

n

X
(Xi �Xn)

2:
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This example shows that an ML estimator is not necessarily unbiased.

2.2.3 Why is ML sensible?

ML has the attractive Invariance property: if t is an ML estimate for �, then
r(t) is an ML estimate of r(�) for any r function.
For example, If we have an unbiased estimate of a parameter then the square

(or square root) of the estimate is not unbiased for the square of the parameter.
If an ML estimate is unbiased then it is e¢ cient in the sense that it has

minimum variance among the set of unbiased estimators.

Cramér-Rao inequality Let

I(�) = �E(@
2 logL(�)

@�2
)

be the Fisher-information.
Then the variance of any unbiased estimator is as large as the inverse of the

Fisher.information 1
I(�) .

De�nition: An estimator is called consistent for �, if

p lim
n
Tn(Xn) = b�:

In general in i.i.d. samples sample moments are consistent estimates of the
theoretical moments if their second moment exists. This can be derived from
the Law of Large Numbers.

Asymptotic properties of ML estimators (under some regularity
conditions) It can be proved that
1. ML estimators are consistent.
2. ML estimators are asymptotically normal, in the sense that

p
n(Tn(Xn)� b�)

converges to a normal distribution.
3. The asymptotic variance of ML estimators achieves the Cramér-Rao lower

bound among consistent estimators.

2.3 Second approach: hypothesis testing

Here we postulate something about the true �, and either accept or reject this
hypothesis. A testing procedure is a rule: if T (x) is an element of 
0 the
hypotheses is accepted, if not, it is rejected. The null-hypothesis can be iden-
ti�ed with � 2 �0, while the alternative with � 2 subset(� � �0): The � 2 �
assumption is sometimes called the maintained hypothesis.
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A Type 1 error occurs if we we reject the null, though it is true. A Type 2
error occurs if we accept the null, though it is false. As the alternative hypothesis
contains many possible truths in general, there is no single Type 2 error, for
each true parameter there belongs one. The size of the test is the the probability
of the Type 1 error, while the power of the test is 1 minus the probabiity of the
Type 2 error, thus the power is a function of the true parameter.
Analogously to the ML principle we have a general testing principle: the

likelihood ratio (LR) test.
The LR test statistic for � 2 �0 is de�ned as

� =
sup�2�0

L(�; x)

sup�2���0
L(�; x)

:

An LR test is any procedure with rejection region

�(x) � c; 0 � c � 1:
It can be proved that it is a uniformly most powerful (UMP) test: for each

size (i.e. type-1 error) it has the highest power.

An example: mean with known variance (the normal case) The
null hypothesis is � = �0, and � = �0 known, and the level is �. We know that

z =
p
nXn��0

�0
is standard normal, if the null hypothesis is true. Then

P (abs(
p
n
Xn � �0

�0
) > z�=2) = �

determines z�=2. Here for z =
p
nXn��0

�0
:

P
�
�z�=2 � z � z�=2

�
= 1� �;

Therefore if

abs(
p
n
Xn � �0

�0
) � z�=2;

the null is accepted, otherwise it is rejected. In an alternative formulation
the acceptance region is

Xn 2 (�0 �
�0z�=2p

n
; �0 +

�0z�=2p
n
):

De�nition: Pivotal quantity: a statistics is a pivotal quantity if its
distribution does not depend on �. For example z =

p
nXn��0

�0
is pivotal

in the former example. If the variance is unknown

t =
p
n
Xn � �

s
:

is pivotal. Pivots help in �nding tests.
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Testing paradox There is an experiment, and a test procedure with size
0.05. Suppose it de�nes an acceptance region of (-2,2). The test statistics turns
out to be 1.9, thus the null is accepted. Later on the investigator discovers
that 2 could never be reached as the measuring device had limits. On the other
hand the limits were never hit during the experiment. Still the statistician
should recalculate the acceptance region, as the "true" probability of the original
acceptance region is higher than 0.95, and after narrowing the acceptance region,
it may not contain 1.9.
Is it reasonable that the outcome of a test depend on evidence that did not

"materialize"?

2.4 Third approach: interval estimation

Let us determine an interval that will probably "cover" the true parameter.
This is de�ned by a pair of statistics with SL(x) < SU (x).

Example: normal population with known � We know that

z =
p
n
Xn � �

�

is standard normal. Let 1 � � be the con�dence level, and F the standard
normal cdf. z�=2 is implicitly de�ned from

F (z�=2) = (2�)
� 1
2

z�Z
�1

exp(�x
2

2
)dx = 1� �

2
:

Then

P

�
�z�=2 �

p
n
Xn � �

�
� z�=2

�
= 1� �:

therefore

P

�
Xn �

1p
n
�z�=2 � � � Xn +

1p
n
�z�=2

�
= 1� �:

Proposition: If

T2 = Xn +
1p
n
�z�=2

T1 = Xn �
1p
n
�z�=2

then with probability 1 � � � is included in the (T1; T2) random interval.
Notice what is random: the endpoints of the interval, but not the parameter.
This con�dence interval is created by "inverting" the corresponding test.
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Con�dence interval paradox Let x be uniform on (� � 1; � + 1). Sup-
pose we have an independent sample of 4 observations. Then de�ne xmin =
min(xi); xmax = max(xi). Then

P (xmin > �) = 1=16

P (� > xmax) = 1=16

and

P (xmin < � < xmax) = 7=8:

Thus (xmin; xmax) is a con�dence interval of size 7=8:
Suppose that in the sample

xmin = 1:5

xmax = 2:7

values are realized. Then we KNOW for sure that � must be between xmin
and xmax. The lesson is that certain realizations provide "better" information
on the unknown parameter than others.

2.5 Bayesian-statistics

As the above "paradoxical" examples show the classical estimation and testing
procedures may have strange implications in certain cases. Many statisticians
have been interested in general principles, that would be helpful to prove the
reasonability of statistical procedures.
A large part of statistics amount to data compression, i.e. when the di-

mension of a T statistic is (much) smaller than the dimension of X. Data
compression can be approached from other perspectives as well, but classical
statisticians considered it as a problem in probability theory. Historically the
most important concept is su¢ cient statistic. Intuitively if we have a su¢ cient
statistic then we do not need anything else for estimation purposes.
Let

F (X j �)
the sampling distribution for given �. S(X) is called su¢ cient for � if the

conditional distribution of X with condition S

G(X j S(X))

is independent of �:

Theorem 1 Let H(S(X) j �)) the distribution of S: S is su¢ cient for �, if

F (X j �)
H(S(X) j �))

13



is constant as a function of �.
This theorem provides a method to derive su¢ cient statistics for speci�c

cases. In a sense if we have a su¢ cient statistic then we should not search
further, we have a method to summarize the data without loss of information.
For instance if we have a sample of independent characteristic variables, where
the only unknown parameter is p (the probability of 1) then the sum of the
variables (which has a binomial distribution) is a su¢ cent statistic. Intuitively
we should not care about the exact sequence of 0s and 1s, it is enough to count
them.
Many believe that the so-called Su¢ ciency Principle is an axiom that sound

statistical procedures must satisfy. This Principle asserts that two experimental
results that result in the the same su¢ cient statistic must provide the same
evidence. A second axiom whose plausibility seems obvious is the Condition-
ality Principle: Suppose that two experiments with the same parameter space
are randomized with equal probability. The eventually performed experiment
must have the same evidence as the same experiment performed without the
randomization.
With respect to these two principles the Likelihood Principle appears to be

not so obvious. It asserts that if two experiments have the same likelihood
function then all evidence derived from them must be the same. However,
the celebrated Birnbaum Theorem states that the Su¢ ciency Principle and the
Conditionality Principle are equivalent with the Likelihood Principle.
It can be proved, however, that classical testing and con�dence interval

formation procedures do not satisfy the Likelihood Principle. Thus classical
statistics does not satisfy either the Conditionality Principle or the Su¢ ciency
Principle.This argument justi�es a search for a di¤erent outlook for statistics,
which is provided by the Bayesian approach.

2.5.1 Bayesian principles and concepts

There is an important addition to the basic classical model. Bayesians equip
the parameter space with a prior distribution for the parameters: p(�): Then if
the conditional distribution of the sample for any parameter f(x j �) is given
then the posterior distribution of the parameters can be derived from Bayes�
Theorem.

Proposition 2 Bayes�Theorem

p(� j x) = f(x j �)p(�)Z
�

f(x j �)p(�)d�0
:

To simplify derivations we can observe that the posterior is proportional to
the product of the conditional and the prior distibutions:

p(� j x) _ f(x j �)p(�):

14



Bayesian updating implies

p(� j x1; x2) _ f(x1; x2 j �)p(�):

p(� j x1; x2) _ f(x2 j x1; �)p(� j x1):

Thus new information can be accommodated recursively, each piece of new
data will cause an update of the posterior, the essential goal of the Bayesian
analysis.
Obviously in practice there remains the question of selecting the prior. If

one would like to obtain analytical results the choice must be �ne-tuned. For an
example let us consider again n observations of a characteristic variable where
P (1) = �. The likelihood function (the conditional distribution) is binomial:

p(x j �) = �

X
xi
(1� �)n�

X
xi

We look for conjugate priors, where for a given prior and likelihood the
posterior belongs to the same family as the prior. For instance the binomial
likelihood and beta prior are conjugate pairs, where the beta distribution is
de�ned as

p(�) =
�(�) + �(�)

�(�+ �)
���1(1� �)��1;

implying

E(�) =
�

�+ �

var(�) =
��

(�+ �)2(�+ � + 1)
:

Then the posterior is beta with:

�1 = �+
X

xi

�1 = � + n�
X

xi:

From this it is easy to see that

E(� j x) =
�

�+ �

�+ � + n

�
�

�+ �
+

�
n

�+ � + n

�
1

n

X
xi;

thus the posterior�s expected value of the parameter is a weighted average
of the prior mean and the sample mean. One can see that as n ! 1 the
prior becomes inessential. So if we take this posterior expected value as the
"estimate" of � then this would converge to the ML estimate as the sample size
increases.
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Some general statements can be proved about Bayesian inference for large n
(a) The role of the prior gets smaller and smaller.
(b) The posterior converges to a degenerate distribution.
(c) The posterior is asymptotically normal with mean the "true" �.
So in the in�nite limit Bayesian and classical inference may not be so di¤er-

ent. But in the middle range how could we de�ne a Bayesian estimate?

2.5.2 Bayesian point estimation and loss function optimality

For Bayesians the "truth" is embodied in the posterior distribution of the pa-
rameter, solely. Still it is considered rightful to give a point estimate, for some
purpose. However, the purpose must be de�ned precisely.
If we want to use a point estimate or some purpose we have to know what

the costs of making mistakes are. We de�ne a loss function as

L(�;b�);
where � is the true parameter, and b� is the would-be estimate based on the

posterior. It is not necessary but customary to have

L(�;b�) = 0; � = b�:
Then the expected loss is de�ned as

R(�; d(X)) = E�L(�; d(X));

where d(X) is some point estimator, and the expectation is taken according
to the posterior. Obviously two d()-s may not be ordered by their expected
losses unequivocally, for di¤erent x observations one or the other can be more
e¢ cient.
The Bayes-rule for point estimation is de�ned as

dB(X) = arg min
d(X)

Z
�

R(�; d(X))p(�)d�:

As

Z
�

(

Z
X

L(�; d(x))f(X j �)dx)p(�)d� =

Z
X

(

Z
�

L(�; d(x))p(� j x)d�)m(x)dx:

minimization is equivalent to minimizing the posterior expected loss
Z
�

L(�; d(X))p(� j

X)d�) for each x, a mechanical procedure to �nd the Bayesian estimate for a
given loss function. The Bayes-rule as a statistical procedure satis�es the Like-
lihood Principle.
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Proposition 3 For a quadratic loss function the Bayes rule requires: d(x) =
E(� j x). For absolute error loss d(x) must be the median of p(� j x).

Thus the estimate of � as the posterior expected value in the example above
can be justi�ed with having a quadratic loss funcion in mind.

2.5.3 Bayesian interval estimation

For some parameter � and an � credibility level we look for a credibility interval
as

P (�A � � � �B) = �:

If there are many, we choose the shortest. Again this procedure satis�es the
Likelihood Principle, and is based only on observed, and not on would-be, data.

2.5.4 Bayesian testing

Bayesian testing is esssentially model comparison. Suppose there exist two
possible models:
Model 1 with p1(�1); f1((x j �1) and Model 2 with p2(�2); f2((x j �2):The

marginal posterior likelihoods are:

fi(x) =

Z
�

fi(x j �i)pi(�i)d�0i:

The idea is to compare the marginal posterior likelihoods: f1(x); f2(x). One
can calculate the Bayes factor:

f1(x)

f2(x)
:

If it is larger than 1 then we can say that data are in better accordance with
Model 1, than with Model 2. Another possible quantity to calculate is

p1(M1)f1(x)

p2(M2)f2(x)
;

where we give, in true Bayesian spirit, a prior chance to both Model 1 and
Model 2.

2.5.5 Practical considerations

Bayesian inference at �rst sight is a mechanical procedure: set the prior and
the likelihood, and derive the posterior after data arrive. However, calculating
a distribution may not be done analytically even if the prior and the likelihood
are analytic. And in the next step the posterior becomes the prior which may be
non-analytical from now on. Then to compute point estimates we need to �nd

17



marginal distributions and moments from the posterior. Fortunately numerical
integration or simulation can help us to carry out our plan. However, these
may require a lot of calculation. This is partly the reason why the increase in
the e¢ ciency of computation technology gave an important shove to Bayesian
statistics, formerly researchers were largely constrained to look for appropriate
conjugate priors.

2.6 Literature
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3 Classical conditional estimation: regression

3.1 Introducing the regression problem

We observe the heights of n Englishmen, and the heights of their parents. Know-
ing the parents�heights, what would be our best guess for the vertical extension
of any Englishman (not just those in the sample)? This was roughly Galton�s
original regression problem.
The problem can be generalized as follows. Given observations on y (re-

sponse), and X (features, explanatory variables) establish some relationship
that could predict (explain, describe) y based on information on X.
Several approaches exist for solving this (ill-de�ned) problem, the traditional

statistical approach is based on probability theory. Here one assumes that there
exists an underlying probability measure that describes the "population" in
question. Then, we make assumptions about this "theoretical" population, we
de�ne our estimands, i.e. certain unknown properties of the population distrib-
ution. Next, a method of sampling is determined (or assumed if data are given),
where identically independently distributed (i.i.d.) samples are typical.
What are the reasons for assuming a probability structure? Usually even

for the same Xs we �nd di¤erent ys, therefore a deterministic functions do not
conform to the facts, in general.
Let us start with discussing some population concepts (probability theory),

then we proceed to sample concepts (statistics).

3.2 Conditional expectations and population regression

We start by operationalizing the concept of "best guess"! We are looking for a
function f(x) that minimizes

E(y � f(x))2;
the Mean Squared Error (MSE).
Here we must introduce certain important concepts: conditional mean or

expectation of a random variable, its properties and rules of operation.

3.2.1 Properties of the conditional expectation

Let y be a random variable, and x a random vector.

Proposition 4 The Law of Iterated Expectations

E(y) = E(E(y j x))
The unconditional expectation is the expectation of the conditional expec-

tations. This is an important theorem, that is frequently used in theoretical
derivations.

Proposition 5 CEF (conditional expectation function) decomposition
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There exists �, for which

y = E(y j x) + �
E(� j x) = 0;

and � is uncorrelated with any function h(x), as E(h(x)�) = E(E(h(x)� j
x)) = E(h(x)E(� j x)), by the Law of Iterated Expectations. It is a basic
property, that can be used again and again in proving theorems.

Proposition 6 CEF as the best predictor

E(y j x) = arg min
m(x)

(E(y �m(x))2)

where m(x) is any function.
Proof:

E(y �m(x))2 = E(y � E(y j x))2 + 2E(y � E(y j x)(E(y j x)�m(x))
+(E(y j x)�m(x))2:

The �rst term is irrelevant, and the middle term is 0 by the CEF decompo-
sition.
This theorem is important for practical work, as it asserts that if we look

for an estimates that are best in the MSE sense, then our natural candidate is
to have an estimate for the CEF.

3.2.2 Linear projection (population regression)

It may be di¢ cult to obtain the CEF even theoretically. Let us look for a
simpler (parametric) solution!
Find the a¢ ne transform of the x variables that minimizes the MSE:

min
�
(E(y � �� x0�)2):

The �rst order conditions are

E(xj(y � x0�)) = 0

E((y � x0�)) = 0:

De�ne the residual variable as:

� = y � x0�:
Then the �rst order conditions assert that
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E(xj�) = 0;

for all j, i.e. the residual is orthogonal to (uncorrelated with) the xj variables.
Also it is true that

E(�) = 0:

By analogy, it is called linear projection, or, alternatively, the population
regression.
From now on we assume that a constant (a degenerate random variable)

belongs to x, and we can dispose of � (the constant): Alternatively we could
assume that each variable is replaced by its centralized counterpart, that is the
mean is subtracted.
The solution can be written compactly as:

� = E((xx0)�1)E(xy):

The two �s (de�ned by the CEF and the linear projection, respectively),
may be di¤erent. Notice that E(� j x) = 0 is not necessarily ful�lled by the
regression residual.

Proposition 7 Regression parameters

�j =
cov(y; exj)
var( exj)

where exj
exj = xj �

X
i 6=j

�jixi;

and �ji are parameters of the projection of xj on x1; :xj�1:xj+1:xn.
Proof:

y =
kX
j=1

�jxj + ";

Multiply with exj , and take expectations. As
cov(xi; exj) = 0; j 6= i

cov("; exj) = 0

cov(xj ; exj) = var( exj)
it follows that

cov(y; exj) = �jvar( exj):
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It is also true that

�j =
cov(gy�j ; exj)
var( exj)

where gy�j is the "residual"from the projection of y on the xk � s (except
xi):

gy�j = y �
X
i 6=j

�jixi;

On the other hand

�j =
cov(gy�j ; xj)
var(xj)

only if xj is orthogonal to the others.

Proposition 8 the relationhip between regression and linear CEF

If the conditional expectation function is linear then it coincides with the
linear projection.
Proof: x is uncorrelated with the decomposition error of the conditional

expectation.
One celebrated case when this is necessarily true is when the variables are

jointly normal.

Proposition 9 Best linear prediction (least squares problem)

The linear projection is the best linear predictor of y (in the MMSE (mini-
mum mean squared error) sense).
In other words � solves

minE((E(y j x)� x0:

Proposition 10 The linear projection (population regression) is the minimum
MSE linear approximation to the CEF. In other words, � solves:

min
�
E
h
(E(y j x)� x0�)2

i
:

Proof:

(y � x0�)2 = (y � (E(y j x))2 +
2(y � (E(y j x))(E(y j x)� x0�)+

(E(y j x)� x0�)2:

The �rst term is irrelevant, the second term is 0, by the CEF decomposition
property, thus this problem has the same solution as the least squares problem.
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This theorem has great practical importance as it suggests that in short
of being able to estimate the CEF we may avail ourselves with estimating the
population regression. However, as the examples below show, this standpoint
may be overoptimistic.

Examples Suppose that x and z are independent standard normal variables.
If x is standard normal, then x2 is �2 with 1 degree of freedom.

Example 1 Project y = 3x2 + z on x

E(x(3x2 + z � a� bx)) = 0;

E(3x2 + z � a� bx) = 0

a = 3; b = 0

proj(y j x) = 3:

However the CEF is clearly:

E(y j x) = 3x2:
In this case the projection is very poor approximation to the CEF.

Example 2 Now project y = 3x2 + z on z and a constant.

E(z(3x2 + z � a� cz)) = 0

E(3x2 + z � a� cz) = 0

a = 3; c = 1

proj(y j z) = 3 + z:

The CEF now is exactly the same:

E(y j z) = 3 + z:

Example 3 Now project y = 3x+ z on x.

E(x(3x+ z � a� bx)) = 0

E(3x+ z � a� bx) = 0

a = 0; b = 3

proj(y j x) = 3x:

The CEF:

E(y j x) = 3x:
There is, again, equivalence.
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Example 4 Now project y = 3x+ xz on x; and a constant.

E(x(3x+ xz � a� bx)) = 0

E(3x+ xz � a� bz) = 0

a = 0; b = 3

proj(y j x; 1) = 3x:

The CEF:

E(y j x; ) = 3x:

The linear projection in partitioned form We are frequently interested
in �nding out what e¤ects the inclusion or exclusion of some variables would
imply. Writing down the regression in paritioned form help in this.

E(x1y)
E(x2y)

= E

�
x1x

0

1 x1x
0

2

x2x
0
1 x2x

0

2

�
�1
�2

:

It can be derived that

�1= E(x1x
0

1)
�1
E(x1(y � x02�2)):

Then let

�s1= E(x1x
0

1)
�1
E(x1y):

This way we obtain the omitted variable formula:

�1 = �
s
1 � E(x1x

0

1)
�1
E(x1x

0

2)�2:

This gives the change in the regression coe¢ cients of the �rst group of vari-
ables due to the omission of the second group of variables.
With two variables the formula is clearer. Consider the following linear

projection:

y = �1x1 + �2x2 + �

where

E(xi) = 0; E(xi�) = 0; i = 1; 2;

Then

cov(y; x1) = �1var(x1) + �2cov(x1x2)

�1 =
cov(y; x1)

var(x1)
� cov(x1x2)

var(x1)
�2:
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But

proj(y j x1) = �s1x1 =
cov(y; x1)

var(x1)

and

proj(y j x1) = �12x1 =
cov(x1; x2)

var(x1)

therefore

�s1 = �1 + �12�2:

With some abuse of words it is frequently interpreted that the full e¤ect of
x1 on y equals the sum of the direct e¤ect and the indirect e¤ect via x2. It
must be clear that talking of e¤ects is totally unwarranted if the word "e¤ect"
is used in the normal sense. Later in these notes we will consider cases when
this language is justi�ed.

3.3 The classical statistical approach to regression

There is a �nite (of size n) i.i.d. sample from a population, with the ith obser-
vation (yi; x1i; :::xki). We want to estimate the estimands (some parameters of
this sample) in order to give a good guess of y. The key idea is to substitute
sample moments for theoretical moments.
For instance:

E(xjy) �=
1

n

X
i

xijyi:

The Law of Large numbers says that this is correct with high probability if
n is large.

3.3.1 What is a linear (sample) regression?

Here we "imitate" the population regression.

OLS (ordinary least squares) principle OLS is an estimation principle,
applied to our problem it requires that we minimizeX

i

(yi �
X
j

xijbj)
2:

This minimization problem is the �sample" equivalent of the theoretical pro-
jection problem.
By the �rst order conditions of the minimum this leads to the following

normal equations X
i

(yi �
X
j

xijbj)xik = 0;8k:
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These are called the sample moment orthogonality conditions. Therefore it
is also called a method of moments estimator.
In matrix form the normal equations can be written as

X0(y �Xb) = 0:

From this the explicit solution follows:

b = (X0X)�1X
0
y:

The sample equivalent of the omitted variable formula can be derived as
follows. Let us write the sample regression in partitioned form

y = X1�1+X2�2+�;

y =
�
X1 X2

� ��1
�2

�
+ �

where X1 nxk1 and X2 nx(k � k1):

X0
1y

X0
2y

=
X0
1X1 X0

1X2

X0
2X1 X0

2X2

b1
b2

:

Then

b1= (X
0
1X1)

�1
X0
1(y �X2b2):

the "long" parameter vector.
Let

bs1= (X
0
1X1)

�1
X0
1y

be the "short" parameter vector.
then

b1 = b
s
1 � (X

0
1X1)

�1
X0
1X2b2:

The omitted variable formula in matrix notation is

B12 = (X
0
1X1)

�1
X0
1X2:

bs1= b1+B12b2:

Again by some abuse of words one say that B12b2 measures the e¤ect of
omitting x2 . If X0

1X2 = 0 or b2 = 0 then the long coe¢ cients equal the short
ones.
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OLS properties

Proposition 11 bols is an unbiased estimator of �, moreover it is a BLUE
(minimal variance unbiased linear) estimator. If limn!1((X

0X)=n) = Q; then
it is consistent, too.

Proof:
Unbiasedness:

b = (X0X)�1X
0
y = (X0X)�1X

0
(X� + �)

b = � + (X0X)�1X
0
�

E(b) = � + (X0X)�1X
0
E(�) = �

BLUE:

V ar(b) = E(((X0X)�1X0(X� + ")� �)((X0X)�1X0(X� + ")� �)0

= E(((X0X)�1X0")((X0X)�1X0")0

= (X0X)�1X0E(""0)X(X
0
X)�1

= �2(X
0
X)�1

Let bc be another unbiased linear estimator:

bc = b+Cy:

bc = ((X0X)�1X0 +C)(X� + �)

If bc is unbiased then CX = 0 and

V ar(bc) = E((bc��)(bc��)0

E((X0X)�1X0 +C)�(X0X)�1X0 +C)�)0) =

�2((X0X)�1 +CC0):

V ar(bc) = var(b) +Q;

where Q positive semide�nite.
Consistency:

b = (X0X)�1X
0
y = (X0X)�1X

0
(X� + �)

b = � + n(X0X)�1X
0 �

n
Pr

lim
n!1

b = � +Q�1 Pr

lim
n!1

X
0
�

n
= �
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(Because X
0
E( �n ) = 0; and limn!1X

0
var �n = 0, (Law of Large Numbers).)

This Theorem makes statements conditional on X. There are two possible
readings: 1. OLS is the best estimate of the linear projection parameters for
given X: 2. If the CEF is linear then OLS is the best linear estimate of the
CEF. For a given X the distinctive properties of the two types of residuals do
not matter.

Estimation of the variance Let

u = y �Xb
be the OLS residual.
Then:

X0u = 0

as

X0(y �Xb) = X0
y �X0X(X0X)�1X

0
y = 0:

In particular:

10u = 0;

if a constant appears in the regression.
Let

s2 =
1

n� k
X

u2i =
u0u

n� k :

(where s is called the standard error of the regression). Then

E(s2) = �2;

and therefore s2(X
0
X)�1 is an unbiased estimate of V ar(b).

Proof:

u= y �Xb = y �X(X 0X)
�1
X0y =

X� + ��X(X0
X)

�1
X0(X� + �) =

��X(X0
X)

�1
X0� =

M�

where

M = I�X(X0
X)

�1
X0:

M =M2:

Therefore:
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u0u = �0M�:

By the properties of idempotent matrices:

E(u
0
u) = E(�

0
M�) = E(tr(�

0
M�)) = E(tr(��

0
M)) =tr(�2IM) =�2tr(M):

As

N = X(X
0
X)

�1
X0

is idempotent, too, and as M = I�N; rank(I) = n and rank(N) = k

tr(M) = n� k:

Moreover:

MN = 0:

Thus:

�2 = E(
u0u

n� k ) = E(s2):

Sometimes the question is raised whether it is wise to use any available
variables in a regression. The next statement shows why this can be disadvan-
tageous.
We call the second set of variables redundant, if b2 = 0:
Then

cov(b
s
1) = �2(X

0
1X1)

�1

N2 = X2(X
0
2X2)

�1
X0
2

M2 = I�N2:

cov(b1) = �2(X
0
1M2X1)

�1

and

cov(b
s
1)
�1 � cov(b1)

�1
= �2(X

0
1N2X1);

is positive de�nite. In other words redundant variables reduce the precision
of our estimates.
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3.3.2 Normality and ML

Suppose now that "i s N(0; �2) i = 1; :::n. Then one can write the likelihood
function as

L(y;X; b; s2) = ��n(2�)�
n
2 exp(�

nX
i=1

(yi �X0
i�)

2

2�2
):

and the log-likelihood as:

lnL = �n ln s� n ln(
p
2�)� 1

2s2

X
(yi �X0

ib)
2:

The ML Principle requires choosing (bML; s
2
ML) so that the likelihood func-

tion be maximized.
The ML estimator for � is the same as the OLS. The �rst order condition

for s2 is
� n

sML
+

1

s3ML

X
(yi �X 0

ibML)
2 = 0:

From which

s2ML =
ESS

n
;

which is biased downwards, as we know. However for the modi�ed (unbiased)
estimate

s2 =
n

n� 1s
2
ML:

It can be proved that

(n� k)s2=�2 � �2n�k:

Proof:

"0

�
M
"

�
=
u0u

�2
=
(n� k)s2

�2
� �2n�k:

This statement is important for deriving test statistics. In particular, from
this it turns out that the elements of s

p
diag((X 0X))�1)�1(b� �) are Student

t variables.
Proof: From the perivious statment follos that �

p
diag((X 0X))�1)�1(b� �)

are standard normal variates. As

E((X
0
X)

�1
X0""0M) = E((X

0
X)

�1
X0""0(I�X(X0

X)
�1
X0))

= �2((X
0
X)

�1
X0)(I�X(X0

X)
�1
X0)) = 0;

"0M" and b� � are independent.
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3.3.3 F-statistics

The distribution of the variance can be used to test several parameters together,
essentially the relative quality of nested models.

F con�dence regions If we have more than one parameter, and want to form
a con�dence region it is not clear what shape the region should have. Using F
statistics naturally lead to ellipsoids.

As
�
1
�2 (X

0
X)
� 1
2 (b� �) � N(0; I); therefore

(b� �)0 1
�2
(X

0
X)(b� �) � �2k:

Dividing by s2=�2 = ESS=(n� k)�2; we get

(b� �)0 1
s2
(X

0
X)(b� �) 1

k
= (b� �)0 1

ESS
(X

0
X)(b� �)n� k

k
� Fk;n�k:

This implicitly de�nes an ellipsoid for some positive number �:

(b� �)0 1

ESS
(X

0
X)(b� �)n� k

k
� �:

F-tests Suppose our null hypothesis is that �2 = :::�k = 0 (only the
constant is nonzero.) Then

RSS

ESS

n� k
k � 1 =

TSS � ESS
ESS

n� k
k � 1 =

R2

1�R2
n� k
k � 1 � Fk�1;n�k:

According to the null TSS �2n�1 and we have seen that ESS is �
2
n�k; more-

over RSS and ESS are independent. Here R2 = 1� ESS
TSS :

By Cochrane�s Theorem since

TSS = RSS + ESS;

RSS is �2n�1.
It is not di¢ cult to generalize for the null: �j+1 = :::�k = 0: (Here we have

k � j restrictions.) Then

ESSR � ESSU
ESSU

n� k
k � j =

R2U �R2R
1�R2U

n� k
k � j � Fk�j;n�k:

If our hypotheses are not fomulated naturally as zero-restrictions we have
another generalization.

Now the null can be formulated as

R� = r;

where R is an mxk (m < k) matrix. :
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Then

V ar(Rb) = E(Rb)(Rb)0) = RE(bb
0
)R

0

= RVar(b)R0

= �2R(X
0
X)�1R0:

and (Rb� r)0(�2R(X0
X)�1R0)�1(Rb� r) � �2m:

From which

(Rb� r)0(R(X0
X)�1R0)�1(Rb� r)
ESSU

n� k
m

� Fm;n�k:

3.3.4 Properties of OLS with stochastic regressors

So far we have restricted our attention to the �xedX case. Clearly it is of interest
to know how the above statements extend to stochastic regressors. Fortunately,
quite well.
Unbiasedness is satis�ed when the model estimates the CEF because E(� j

X) = 0 is ful�lled.
Consistency prevails quite generally (even for linear projection), though it

requires certain assumptions on the stochastic properties of X:
As the Gauss-Markov Theorem is valid for each X, therefore it is also valid

on average.
Strictly speaking t and F statistics are valid unconditionally only when there

is joint normality. However, if we have a large enough sample they are correct
asymptotically as the Central Limit Theorem implies that

p
n(b� �) converge

to a zero mean normal vector:
p
n(b� �) � asyN(0; E(xx0)�1E(xx0"2)E(xx

0
)�1).

The standard errors are the square roots of the diagonal elements, and the
covariance matrix simpli�es in the case of homoskedasticity as �2E(xx0)�1:

3.3.5 Several possible regressions: what can the OLS estimate?

For the moment we only assume that

yi = �
0xi + �i;

and E(�i) = 0.
We have four gears, in fact.
Gear 1: E(xi�i) = 0:
In that case OLS estimates the parameters of the population regression (lin-

ear projection) consistently

p lim
n!1

bn= �:
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Gear 2: E(�i j xi) = 0: Then, in addition, OLS provides the unbiased
estimates of the parameters of the linear CEF

E(b) = �:

Gear 3 (an extra):
Suppose

E(�2i j xi) = �2;

is also satis�ed (homoskedasticity). Besides consistency and unbiasedness
OLS is BLUE (minimum variance unbiased linear).
Gear 4: Suppose (yi;xi) are identical, jointly normal variables. Then OLS

is globally e¢ cient among unbiased estimators, and t; F tests can be conducted
correctly.

3.3.6 The examples and OLS regression

The above four examples can be analyzed to show that each of them belongs to
the di¤erent gears.

Example 1 The CEF and the population regression are di¤erent. The
CEF residual is z; the regression residual � = 3x2 + z � 3; thus E(� j x) 6= 0:
Clearly the model is in Gear 1, OLS estimates consistently the linear projection,
but not the CEF.

Example 2 Here both the CEF and the regression residuals are 3x2�3;and
one can see that E(� j z) = 0: Therefore OLS estimates the CEF consistently and
in an unbiased way (where the conditioning variable is z.) Also homoskedasticity
is true, therefore the estimate is BLUE. As � is not normal the model is only in
Gear 3.

Example 3 The CEF and regression residuals are both z:The model is in
Gear 4, as the joint distribution is normal.

Example 4 Here both residuals are xz: Clearly

E(� j x) = 0
therefore OLS estimates the CEF consistently and in an unbiased way, but

it is not e¢ cient, as homoskedasticity fails, since
var(� j x) = x2:
Therefore the model is in Gear 2.

Heteroskedasticity (Gear 2) This is a very important case in practice. Here

�2i 6= �2:

The OLS estimator is unbiased and consistent, but not e¢ cient.
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Proposition: The OLS covariance matrix

var(b
OLS

) = E((X0X)
�1
X0�)(�

0
X(X

0
X)

�1
)):

is a biased and inconsistent estimator of the true covariance matrix.
This is the main problem with heteroskedasticity. Here the E(X0��0X) =�2E(X0X)

simpli�cation is not valid, and we need to estimate the E(X0��0X) fourth-
moment matrix.
Let us de�ne S as

S =

X
i

xix
0

iu
2
i

n
:

The heteroskedasticity-consistent covariance matrix estimator is:

var(bOLS) = (X
0
X)

�1
S(X

0
X)

�1
:

The diagonal elements can be used for t tests.

Generalized Least Squares We look for a CEF estimate. The assumptions
are now:

y = X� + �

E(� j X) = 0:

E(��0 j X) = diag


�21; ::�

2
i ; :::�

2
n

�
;

where �2i my depend on X.
An even more general assumption is that

E(��0 j X) = 
:
There exists a 


1
2


1
2 = 
 decomposition for positive de�nite matrices.

From this
(
�

1
2 �)(�0
�

1
2 ) = I:

Consider the transformed


�
1
2y = 
�

1
2X� +
�

1
2 �

y� = X�� + ��

model. This is homoskedastic and the OLS estimate

bGLS= (X
0

�1X)

�1
(X

0

�1y)

is unbiased, consistent, and e¢ cient for �, moreover

var(bGLS) = (X
0

�1X)

�1
:

A simple subcase is the weighted least squares estimate when 
 is diagonal.
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Feasible GLS As 
 is unknown we need a consistent c
 estimate. One can
have this from the OLS estimate. Having this we derive the feasible GLS esti-
mator as

bFGLS= (X
0d
�1X)�1(X0d
�1y):

3.4 Three general testing principles

An important theoretical concept is Fisher�s information matrix:

F(t) = [�E(@ logL
@ti@tj

)]:

In the case of the normal regression model:

lnL = �n ln� � n ln(
p
2�)� 1

2�2

X
(yi �X0

i�)
2;

and If b = bML. Then

F(b) = E(
X 0X

s2
);

and

cov(bn) = F(b)
�1
:

In other words the inverse of the infomation matrix gives the covariance
matrix of the ML estimator.
Let us consider the general restricted estimation problem:

R(�) = r;

where the Jacobi matrix of R is:

J(R) = [
@Rj
@�k

]:

We have three general testing principles that are asymptotically equivalent.

3.4.1 The Likelihood Ratio principle

The distance between the restricted and the unrestricted estimate is measured
as

�LR = �2(logL(bU )� logL(bR));

the log point di¤erence between the likelihood values of the two estimates.
(Approximately the percentage di¤erence.)
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3.4.2 Wald principle

The distance is:

�W = (R(bU )� r)0J(Rbu)FbUJ(R0bu)(R(bU )� r);
It is a distance of the estimated vectors in log points, where the distance is

de�ned by the Jacobi.

3.4.3 LM principle

A new metric is introduced as

�LM = �0J(RR)F
�1
bR
J(R0R)� = [

@ logL

@bR
]0F�1bR [

@ logL

@bR
];

where

@ logL

@bR
� J(R0

R)� = 0:

This is a log point di¤erence of the Lagrange-multpliers of the two estimates.
It can be proved that the three tests are asymptotically equivalent and dis-

tributed as �2J .
A partial explanation of this theorem is that the Wald and LM test statistics

are approximations to the LR statistic.
Let L : Rn ! R be di¤erentiable, and �Lx0= 0:

L(x1)� L(xo) �=
1

2
(x1 � x0)0HLxo (x1 � x0):

where H is the Hessian. Therefore

2(L(x1)� L(xo)) �= (x1 � x0)0HLxo (x1 � x0):
This "explains" the asymptotic equivalence of LR and W, if L is the log-

likelihood, x0 is the unresricted ML estimator, and x1 is the restricted ML
estimator.
Moreover

�Lx0 ��Lx1 �= HLx1
(x0 � x1)

�H� 1
2

Lx1
�Lx1

�= H
1
2

Lx1
(x0 � x1)

�L0x1H
�1
Lx1
�Lx1

�= (x0 � x1)0HLx1
(x0 � x1);

"explaining" that LM is asymptotically equivalent with the other two.
Notice that the usual Wald F test can be obtained from �W by adjusting for

the degrees of freedom.
�LM can be computed from an auxiliary regression, where the target is the

estimated residual from the restricted model, and the regressors include all
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regressors in the general model. If R2a is the coe¢ cient of determination of the
auxiliary regression, then

�LM = nR2a:

In the case of multiple regression with linear restrictions:

�LR = n log(
ESSR
ESSU

)

�W = n
ESSR � ESSU

ESSU

�LM = n
ESSR � ESSU

ESSR
:

�LM � �LR � �W :
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4 Structural estimation problems

Suppose: that

y = �1x1 + �2x2 + �3x3;

where y can be crop yield per area or earnings per month, x1 hours with sun-
shine or years of education, x2 water absorbed per area or the IQ of the worker,
x3 phosphate content of ground or stamina of the worker. Econometricians
have always been concerned with the estimation of similar relationships, which
were called structural equations. Probably the most traditional structural rela-
tionships economists have studied are the supply and demand functions. What
makes a relationship "structural" is its character with respect to statistical as-
sumptions.
A relationship is structural if it is valid irrespective of the "probability struc-

ture". In other words we can write down this equation without specifying any-
thing about the random properties of the quantities involved. When we make
assumptions about the distributions, too, then we transform this model into a
statistical (probability) model. However, this transformation is not unique, and
depending on it, we can obtain di¤erent results concerning the identi�ability
(estimability) of the parameters.
In the following let us assume that x2 and x3 are normal variates, x3 is non-

observed and has mean 0, while x1 and x2 can be observed. We are interested
in estimating �1. By setting the distribution of x1 in di¤erent ways we obtain
di¤erent models.

Case 0 (nature) x1 is normal jointly with the other xs. Then

E(y j x1; x2) = �1x1 + �2x2 + �3E(x3 j x1; x2);

and �1 can be estimated by OLS from data consistently if and only if E(x3 j
x1) = 0:
In this case we are exposed to the mercy of nature.

Case 1 (random experiment) We are able to set x1 independently of
anything relevant.

x1 = u;

where u is independent of x2 and x3:Then the OLS estimate of �1 is inde-
pendent of the other variables, and it is consistent.

Case 2 (conditional independence assumption, see later the expla-
nation) Here we are not able to set x1 fully according to our wishes, and it
is unavoidable that x1 is correlated with the observable x2, for instance

x1 = �x2 + u;
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and E(u j x2) = 0. However, if we are lucky and x2 and x3 are independent,
then

E(y j x1; x2) = �1x1 + �2x2;

and �1 is again recoverable from the data by OLS. But because of collinearity
between x1 and x2 the estimator has a higher variance than in the former case.

Case 3: (selection bias) It is the unlucky case. However hard we try x1
is not independent of the unobserved x3.

x1 = �x3 + u;

and E(u j x2; x1) = 0
Then

E(y j x1; x2) = �1x1 + �2x2 + �3E(x3 j x1; x2);
and

E(y j x1; x2) = (�1 +
1

�
�3)x1 + �2x2:

The "true" coe¢ cient �1 is not recoverable from the data by OLS. In this
example x3 is called a confounder.

4.1 What is a causal e¤ect?The potential outcome frame-
work

Structural problems are essentially equivalent to causal estimation problems.
The main (apparent) di¤erence is that causal problems usually involve a causal
variable that can take on a �nite number of di¤erent treatment values. Causal
problems are usually set in the potential outcome framework.
In a binary treatment case for the ith unit Yi0 is the potential outcome

when Di = 0 (no treatment); and Yi1 is the potential outcome when Di = 1
(treatment)
The observed outcome is

Yi = Yi0 + (Yi1 � Yi0)Di;

and the causal treatment e¤ect can be de�ned as

(Yi1 � Yi0) = �:

It follows that

E(Yi1 j D1)� E(Yi0 j D0) =

E(Yi1 j D1)� E(Yi0 j D1) +

E(Yi0 j D1)� E(Yi0 j D0)
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In other words the average "observed" di¤erence = average treatment e¤ect
+ selection bias.
An example for selection bias is the case when patients with a better chance

to recover get treatment in a medical experiment with higher probability than
those with worse chances. We may attribute erroneously the better state of the
treated patients to the e¤ect of treatment. Our goal is to recover the average
causal e¤ect E(Yi1 j D1) � E(Yi0 j D1) from the observations, by making the
selection bias 0. One can guess that this case is formally equivalent to having a
confounder in the structural problem.
In the following we always assume that the SUTVA (stable unit value) as-

sumption is satis�ed. It means that potential outcomes across individuals are
independent. (One patient�s state does not a¤ect the state of any other, and
there are no common in�uences that a¤ect all patients.) This assumption is
rather dubious in many economics applications (for instance if we want to esti-
mate the e¤ect of subsidies on �rm performance.)
From now on we generalize to more than two treatment states. Suppose that

Yi = C + �Di + �i:

It can be regarded as a structural assumption without any reference to the
distribution of D.

4.1.1 Random assignment

If Di is independent of �i then

E(Yi j Di) = C + �Di:

� = �:

Random assignment amounts to Di being independent from anything that
can a¤ect Yi. In that case OLS would recover � consistently. In practice it is
advisable to check whether the randomization is successful, which means that
one must ask whether each level of treatment is represented uniformly in the
sample (balance checking).

4.1.2 CIA (conditional independence assumption) and real human
experiments

From now on treatment is characterizes by multiple values and D represents the
corresponding vector of variables.
Frequently samples depend on some variable, for instance in schooling exper-

iments participating schools are usually self-selected, but classes within schools
can be chosen randomly. An assumption that can substitute for random assign-
ment is as follows.
The conditional independence assumption (CIA): For any observable X, rel-

evant for the potential outcomes, potential outcomes and D are independent,
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conditioned on X. This assumption corresponds to the case in the structural
problem when the variable of interest was correlated only with relevant observed
variables.
Then the

Y = �D+ �X+ �i

regression would give � (a vector) as the causal e¤ects. The CIA means
that X is the only source of dependence between treatment assignment and the
potential outcomes. It is important that the speci�ed functional form must be
correct.
We can classify explanatory variables in the following way:
a) The treatments D
b) Controls that are connected to the treatment. Importantly: all such

variables must be present in the regression, these must constitute part of X.
c) Controls that are independent of the treatment, but are relevant. They

belong also to X.
One can observe here a paradox: the estimate of the parameter of interest

becomes more precise if relevant orthogonal variables are added to the regres-
sion. On the other hand if we add irrelevant variables the redundant variable
problem arises.
An important point is that there might exist bad control variables. A variable

that is in�uenced by the variable of interest, but does not a¤ect the selection
can be called a bad control, since if we include such a variable in the regression
part of the total e¤ect of the treatment will be attributed to it. We want
to retain that pathway for the estimate of the causal e¤ect. For instance in an
educational experiment pre-experiment test scores can be included, but attrition
rate cannot, if the response is the post-experiment test score.

Regression and causality: a practical guide I. Divide variables into ob-
servables and non-observables
Observables contain the
- outcome (y) (variable to be explained causally)
- treatment (D) (the potentially causal cariable)
- necessary control (X) (treatment assignment partly depends on it, and it

also a¤ects outcome)
- possible control (W) (independent of treatment, but may a¤ect outcome)
- bad control (Z) (a¤ected by treatment, can-be outcome).
Non-observables include
- confounders (C) (a¤ect treatment assignment and outcome) and
- honest non-observables (u) (a¤ect outcome, but independent of anything

else)
II. One can formulate the following rules:
(1) If C is present linear regression does not work for recovering the causal

e¤ect.
(2) A truly random experiment excludes C and X.
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(3) Otherwise X should be among the right-hand side variables.
(4) Z should not be among the right-hand side variables.
(5) Inclusion of W depends on judgement. It may increase imprecision if it

does not a¤ect y, but incrase precision if it does.
In any case the functional form must be approximately correct. But for

linear regression linearity in parameters is what matters, thus it encompasses a
wide range of non-linear functional forms in variables.

4.2 Matching: an alternative to regression

When applying the matching methodology the fundamental assumption is that
we can identify (almost) identical individuals measured by relevant input char-
acteristics (the X variables). The CIA is called in this literature the serendipity
assumption: nothing essential is left out. Then the di¤erence in the behaviour of
a matched pair is truly random. There is another assumption needed: common
support, which means that the probability of being treated or non-treated is
non-zero for the same X. The basic case is full matching, when for each treated
individual there exists at least one untreated with the same X properties.
The simplest estimate of the average causal e¤ect on the treated is

1

NT

NTX
i=1

(yi(Xi; Di = 1)� yi(Xi; Di = 0)):

Other estimators are possible, each of them takes some weighted average of
the yi(Xi; Di = 1)� yi(Xi; Di = 0) di¤erences.
The main advantage of matching is that there is no need to �nd the correct

functional form. The principal problem with matching is securing that the basic
assumption is ful�lled. For this X must contain many variables, making less
and less likely that exact matching can be achieved. Common support is also
jeopardized if we increase the number of variables. In case of continuous Xs, it
is practically impossible to satisfy.
There are several practical solutions for these problems. 1. One can apply

approximate matching, based, for instance, on the Mahalanobis distance. 2.
Approximate matching can be de�ned by the propensity score. This latter has
a foundation in the following statement: if the CIA is satis�ed with X, then it is
satis�ed with p(X), where p(X) is the probability of treatment conditioned on
X (the propensity score). The propensity score must be estimated from data,
where logit is the most frequently applied methodolgy.
In the simplest logit model the outcome (y) is binary (0 or 1). The funda-

mental assumption is

log(
Pi

1� Pi
) = �0xi;

Pi =
exp(�0xi)

1 + exp(�0xi)
;
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where Pi is the probability of yi = 1: The likelihiod function is the product
of these probabilities assuming independence. Then

E(yi j xi) = Pi:

A possible algorithm for a matching strategy is the following:
(1) Choose X:
(2) Create matched samples with di¤erent methods.
(3) Check balance with each method.
(4) Prefer the matched data set with the best balance.
(5) Calculate the causal e¤ect by some weighted average of the matched

di¤erences, and test signi�cance.

4.3 Instrumental variables and causality

The origin of the instrumental variable estimation idea comes from the general
problem of noisy observation of covariates.

4.3.1 Error in-variables problem

Suppose that

E(y j x) = �x;

but xi can only be observed with noise:

x� = x+ u;

where ui is the noise with properties

E(u j x) = 0

E(u2) = �2

E(yu) = 0:

Consider the

y = �
0
x� + �

population regression. Then

�0 =
E(x�y)

E(x�2)
=

E(xy)

E(x2) + �2

abs(�0) = abs(
E(xy)

E(x2) + �2
) < abs(

E(xy)

E(x2)
) = abs(�):

The OLS estimate b estimates consistently �0:
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b =
x�0y

x�0x�
=
x�0y

n
:
x�0x�

n

�0 = E(b) = p lim b;

but is an inconsistent estimate of �, biased towards 0:

abs(p lim b) < abs(�):

The problem is that � is the parameter of interest. What can we do?
We can look for an observable z with the following properties:

E(zx) 6= 0

E(zu) = 0

E(z�) = 0:

Then:

E(zy) = �E(zx�)

� =
E(zy)

E(zx�)
:

Estimating the parameters with sample moments we get

bz =
z0y

z0x
:

p lim bz = �:

4.3.2 Structural (causal) estimation with instrumental variables

The IV idea Suppose the CIA is not satis�ed, i.e. there is at least one con-
founder. A possible instrument is any variable that has no role in the supposed
structural relationship, is independent of the confounder, but is correlated with
the variable of interest. More formally the setup is the following:

y = �x+ �

and

� = cw + u

cov(x;w) 6= 0

Then
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cov(x�) 6= 0:
In other words w is a confounder, if we want to estimate � from a sample

that do not contain observations on w.
If there exists z (called an instrument for x) which satis�es

cov(z; x) 6= 0

(relevance)

cov(z; �) = 0

(uncorrelatedness)
and

E(y j x; z) = �0x+ 
0z


0 = 0:

(exclusion)
then

cov(yz) = �cov(xz);

and therefore

� =
cov(yz)

cov(xz)
;

where � is the looked for causal e¤ect of x on y.
For example a typical labour economics problem is the following. For each

individual let y be earnings, x the length of education, w abilities, and z the
month of birth. The variable of interest is the length of education but it is
related to abilities, an unobserved variable, which also a¤ects earnings in its
own right. The relevance of month of birth is satis�ed if length of education
depends on the month of birth, which can be proven sometimes empirically.
Independence is satis�ed plausibly as month of birth and abilities are thought
to be independent. The exclusion restriction is satis�ed if the only e¤ect of
month of birth on earnings is via the length of education, which is a plausible
assumption.
This problem can also be formulated in the traditional simultaneous struc-

tural equations framework in econometrics. In this somewhat special case the
"structural" form consists of two equations:
(1) the population regression of x on the instrument:

x = 
z + u;

and (2) the structural (causal) equation:

y = �x+ "0;
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where "0 = 
� + ", and which is not the conditional expectation function as
cov(x"0) 6= 0; since cov(x; �) 6= 0:
Then we obtain the reduced form by solving the structural equations in

terms of z:

x = 
z + u

y = �
z + ("0 + u) = �z + u0

where cov(z; u) = 0; cov(z; u0) = 0. Thus both equations are population
regressions on z.
From these:

� =
�



;

provided that 
 6= 0 (the coe¢ cient of z is non-zero in the �rst equation).
This is another route to estimate the causal e¤ect (called indirect LS).
A third way to achieve exactly the same outcome exists, too. De�ne the

projected value as a random variable

bx = 
z:

Then bx is also a valid instrument by de�nition and
cov(bx; y) = �cov(bx; x)

� =
cov(bx; y)
cov(bx; x) :

Or alternatively:

� =
cov(bx; y)
var(bx) ;

since var(bx) = var(x).
The �rst formula shows that � is the parameter on bx in a population regres-

sion where we regress y on bx: Therefore it is called two-stage LS (2SLS). In the
�rst stage we create bx, then with bx we do another regression, and the wanted
parameter is the parameter on bx in the second-stage regression.

� =
cov(bx; y)
var(bx) =

cov(y; z)

cov(x; z)
=
cov(y; z)

var(z)
:
cov(x; z)

var(z)
:

2SLS has the additional attraction that it can be generalized for several
instruments. Suppose

x = 
1z1 + 
2z2 + u;

where z1 and z2 are valid instruments, is a population regression.
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The reduced form in this case consist of:

x = 
1z1 + 
2z2 + u

and

y = �(
1z1 + 
2z2) + (�u+ "
0) = �1z1 + �2z2 + �

0:

Then

bx = 
1z1 + 
2z2

is also a valid instrument, and

� =
cov(y; bx)
var(bx) :

This is called the overidenti�ed case of 2SLS.
If both bx1 and bx2 (the instruments created from one-variable population

regressions) are valid then bx is more e¢ cient.
Structural linear regression in the general case with mathematical
formulas Suppose that

y = �x+ "

where E(x�) 6= 0. and � is the parameter of interest.
Then

� 6= E(xx0)�1E(yx0):

The IV estimate If there exist z with the same dimension as x;E(z�) = 0;and
E(xz

0
) non-singular then

E(yz
0
) = �E(xz

0
);

and therefore

� = E(xz
0
)
�1
E(yz

0
):

This is the population relationship whose sample equivalent is:

biv= (Z
0
X)

�1
Z0y

and plimbiv = �, if plimZ0X
n non-singular, plimZ0Z

n positive de�nite, and
plimZ0"

n = 0:
We can divide x into two parts:

x = [x1; x2] ;
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where

E(x1�) 6= 0

E(x2�) = 0:

Then the x1 variables are called endogenous, while the x2 variables exoge-
nous. The x2 variables are their own instruments.

Indirect LS Consider

Bx;z= (Z
0
Z)

�1
Z0X

and

by;z= (Z
0
Z)

�1
Z0y:

Obviously

biv= B�1x;zby;z:

2SLS Now z�s dimension is at least as large as x�s. Consider the regression of
x on z:

bX= Bx;zZ:
Then bx is another possible set of instruments and

b2sls= ( bX 0X)
�1 bX 0y

consistent.
As

(bX0 bX) = X0Z(Z
0
Z)

�1
Z0Z(Z0Z)

�1
Z0X =

X0Z(Z
0
Z)

�1
Z0X = (bX0X)

the estimator can be written as

b2sls= ( bX 0 bX)�1 bX 0y:

In other words b2sls is the OLS parameter vector from regression of y on bX:
How to calculate standard errors with 2SLS estimation? Standard

errors are not to be calculated from second-stage residuals, but from

RSSIV = (y �Xb2sls)0(y �Xb2sls)

the "true" 2SLS residuals (Xb2sls 6= bXb2sls.) Then the t(z); �2 and F tests
are asymptotically valid.
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Diagnostic testing 1. Relevance (are instruments correlated with the causal
variables?) can be tested with an F test from the reduced form. It is also called
a weak instrument test.
2. One can test whether the causal variables correlate with the structural

residuals (endogeneity test). If they do not then the IV is meaningless, and
one should simply estimate the structural equations with OLS. For the test the
estimated residuals of the reduced form are put into the structural equation as
explanatory variables. If the parameters are not signi�cantly di¤erent from 0
then the whole IV procedure is futile (the Wu-Hausman test).
3. Do all the instruments satisfy the exclusion conditions? (Overidenti�ca-

tion or Sargan test.) If not all of them are valid instruments then some of them
must enter the equation as its own instrument. For the test 2SLS residuals are
regressed on all explanatory variables and instruments. The null is that each
coe¢ cient in this regression is 0. If the null is rejected one must reduce the
number of instruments, but it is not obvious exactly how.

A practical guide to IV modelling of structural e¤ects 1. Select a re-
sponse y, endogenous variables x1(whose e¤ects are the parameters of interest),
x2 exogenous controls, and write down the structural equation.
2. Choose instruments z for the endogenous variables. The number of in-

struments must be larger than the number of endogenous variables.
3. Estimate the structural parameters by 2SLS. Test parameter signi�cance.
4. Conduct the test for weak instruments. If the null is accepted look for

other instruments.
5. Test the endogeneity of endogenous variables. If the null is accepted you

can reestimate with OLS.
6. Test overidenti�cation restrictions. If the null is rejected try to �nd out

which instruments can be changed to controls.

4.4 Regression discontinuity design (RDD)

This is a methodology that identi�es the treatment e¤ect via the discontinuity
of treatment probability as a function of some variable. The idea is that on the
two sides of the discontinuity individuals are "almost the same", at least close
to the point of discontinuity.

4.4.1 Sharp RDD

The legal drinking age constitutes a chilling discontinuity in the probability of
death for American youth. In this case treatment (having the right to drink
alcohol) is a deterministic function of the running (forcing) variable, x, which
is age.

D = 0; x � x0

D = 1; x > x0
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where D = 1 is the legal right to buy alcoholic liquors, and x0 is the legal
age.

4.4.2 Parametric sharp RDD

If we are con�dent we can de�ne a regression:

y = �D + P (x) + �;

where P (x) is a polynomial in x. Or, more generally,

y = �D + P0(x) + 
DP1(x) + �:

Here � and 
 are the parameters of interest. Implicitly the CIA is assumed
here: the only variable that a¤ects treatment is x. The functional form of the
polynomial must be correct, however, that�s why con�dence is needed.

4.4.3 Non-parametric sharp RDD

If we are less con�dent, and we do not trust in our ability to get the functional
form right we can de�ne windows around the cutpoint x0, and take local averages
above and below. The di¤erence of the averages is the the treatment e¤ect
approximately, and it is independent of the functional form. "Averaging" is not
an unique concept, di¤erent estimators use di¤erent weighting schemes.

4.4.4 Fuzzy RDD

In some cases the running variable does not determine fully the treatment, but
there is a sharp change in treatment probability at the cuto¤ point. Here the
parametric structural assumption looks like:

y = �D + 
X + �;

where X contain other exogenous variables (possibly polynomials in x), but
it can happen also that D is endogenous (i.e correlated with �).
We assume that

P (D = 0) = g0(x); x � x0

P (D = 1) = g1(x); x > x0

g0(x) 6= g1(x);

in other words the running variable x does not determineD deterministically,
while the probabilities of being treated are a¤ected by the running variable,
and there is a discontinuity at x0. We guess that there is some confounder that
in�uences D and y as well. However, we have as instrument T :
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T = 0; x � x0

T = 1; x > x0;

the assignment for the treatment. As some people will decide against treat-
ment, and others might get treatment without being assigned assignment and
treatment do not coincide. Still assignment depends only on the observable x;
and T is a valid instrument since it is related to D, unrelated to any confounder,
and, in itself, does not a¤ect y. This is therefore an IV version of regression
discontinuity, and must be dealt with accordingly. The �rst stage determines
treatment as a function of the instrument, and, possibly, of other exogenous
variables.

D = �+ �T + �X + u;

The second-stage is:

y = �+ � bD + 
X + �:

A non-experimental, mathematically equivalent, example is an educational
problem. Suppose y is seventh-grade test score, D seventh-grade peer test score,
and R is the individual�s fourth-grade test score. The causal problem is whether
peer quality is important for the performance of students.
If we ran a naive regression

y = �+ �D + 
R+ �;

the parameter of interest � would appear to be signi�cant, but D is proba-
bly "endogenous", i.e. there must exist unobserved variables that a¤ect both
individual and peer seventh-grade performance.
We should look for a good instrument. Q quali�cation (in the past) for a

"good" school (a dummy) is a valid instrument of D: Quali�cation meant having
an entry exam score above some threshold value, it is clearly correlated with
R, and is very likely correlated with D: On the other hand, being in the past,
supposedly does not have an independent in�uence on the current test score,
and on nothing else that may a¤ect it.
The complete model consists of the equations:

D = �Q+ �R+ ubD = b�Q+ b�R
Yi = � bD + 
R+ �:

The parameter of interest is �, which may turn out to be insigni�cant.
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A short guide to RDD analysis 1. De�ne an RDD object. What are the
response, the running variable, the cutpoint, and other exogenous variables? If
it is fuzzy then you must provide the instrument(s) as well.
2. Check the assumptions. For instance the running variable must be smooth

around the cutpoint, the discontinuity must have its origin in treatment assign-
ment alone.
3. Estimate the model parametrically or non-parametrically.
4. Check the sensitivity of results. It is especially important in the case of

non-parametric estimation, where the width of the window is not an obvious
choice.

4.5 Di¤erence-in-Di¤erences

This method of estimating causal e¤ects works when we have data observed at
di¤erent points of time, and we are able to eliminate time invariant confounders
in some way. In this case we can observe entities in an untreated state at time
T, and, while some of them stay untreated at T+K, some gets treatment later.
When we take di¤erences over both groups and then take the di¤erence of the
di¤erences we obtain the causal e¤ect, provided that some other conditions are
also ful�lled.

4.5.1 Panel �xed e¤ects models

We have panel data, in other words the same units can be observed over two or
more time periods.
Our basic assumption can be formulated as:

E(yit j Ai; t;Xit; Dit) = Ai + f(t) + �Xit + �Dit:

Here f(t) is a time trend common to all individuals (the common trend
assumption), Xits are individual speci�c observed exogenous variables, and Ai
is a non-observed individual characteristic, which is therefore a confounder, as
it may correlate with Dit(the treatment variable). This is called the �xed-e¤ect
panel model. Without the Ai there would be no problem with causal estimation,
but in practice with non-experimental data confounding is always present. It
is important to notice that here �xed e¤ects (the confounders) are individual
speci�c, but time invariant, and time e¤ects f(t) are common among individuals
(the common-trend assumption).
We have two main ways to eliminate the confounding variables.and then

estimate �.
1. Taking time averages over individuals. Then one can write the equation

in deviation from averages. It "kills" the �xed e¤ect, because the deviation from
average is zero in the case of Ai. (It is called the within estimator).
2. Taking di¤erences between periods. This again kills the �xed e¤ects as

ryit = f(t+ 1)� f(t) + �rXit + �rDit + �t+1 � �t:
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Obviously rDit cannot be identically 0, there must exist changes in treat-
ment status.
These two methods lead to di¤erent residuals. In the latter equation it is

clear that there must be residual autocorrelation. With panel data homoskedas-
ticity is usually not satis�ed, estimation and, especially, tests must take this into
account.

4.5.2 Groups and di¤erence-in-di¤erences (DID)

A leading example is the e¤ect of minimum wages on employment in Philadel-
phia and New Jersey, when New Jersey introduced a new minimum wage in
1993. Researchers looked for changes in employment in fast-food restaurants
in the two states to establish whether the minimum wage increase a¤ected em-
ployment.
In this type of models individuals belong to groups (indexed by s). Con-

founding e¤ects are present at the group level (as).

E(yist j s; t;Dst) = as + f(t) + �Dst:

Then

E(yist j s; t+k;Ds;t+k)�E(yist j s; t;Ds;t) = f(t+k)�f(t)+�rDst = diff(s; t; t+k):

Consider s 6= s0.

diff(s; t; t+ k)� diff(s0; t; t+ k) = �(rDst �rDs0t):

If, for example, rDst = 1 and rDs0t = 0, then � can be estimated as

(av(Yis;t+k)� av(Yis;t))� (av(Yis0;t+k)� av(Yis0;t))

It is a "weighted regression" where groups�data are weighted by their relative
size.

4.5.3 Regression DID

Suppose we have two groups (here fast-food restaurants in New Jersey and
Philadelphia, respectively), and we de�ne a group dummy Ds which takes the
value 1 for the treated group. Then the previous model can be written as a
regression:

Yist = �+ �Ds + 
Dt + �Dst + �ist:

Here Dt is a time dummy, with 0 for pre-treatment periods, and 1 for post-
treatment periods, and

Dst = DtDs:
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The parameter of interest is �; measuring the e¤ect of treatment on the
treated.
This equation can be generalized by including exogenous variables Xist, for

several groups and periods. Indeed it is just a regression framework.
In sum, we can say that DID is applicable when
1. treatment has a time reference, and there are observations both pre- and

after-treatment
2. confounders (relevant non-observed variables) can be "di¤erenced-out"

either at the group or at the individual level.
3. the common trends assumption can be maintained.
In addition:
4. There might still exist confounders either at the s or the i levels. Here we

do not assume the CIA, therefore we must �nd instruments for the treatment
variable. (Find a variable that is correlated with treatment but not correlated
with the confounder, and has no place in the structural equation.)

4.6 Literature

Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data
MIT Press. Cambridge, MA, 108.
Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An

empiricist�s companion. Princeton university press.
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5 The inductive approach: statistical learning

5.1 Prediction

In many cases we want to predict the target value of an observation that does
not belong to the sample from which we have calculated our estimates. Let
P (X) is an estimator, and let ey0 be interpreted as the predicted value of the
unknown y0; ey0 = P (X0):
To evaluate predictions we should make assumptions. Suppose that y0 and

X0 are independent of the sample (X), and the conditional expectation function
is E(y0 j X0) = F (x0). The mean squared error (MSE) is

MSE(x0) = E(y0 � P (X0))
2 = E(F (x0) + �� P (X0))

2 =

= E(�2) + E(E(P (x0)� F (x0))2 + E(E(P (X0))� P (X0))
2:

The MSE is the sum of three terms: 1. The irreducible uncertainty, which is
the consquence of x0 being random. 2. The squared bias. This depends on the
"quality" of the estimator in terms of unbiasedness. 3. The estimator�s variance
(following from the fact that the estimator is a random variable since the sample
is random). This latter can be reduced by increasing the sample size. There
might be a trade-o¤ between the second and third terms. An unsophisticated
model may be biased but may have little variance, whereas a sophisticated model
may be unbiased but may have a large variance. In other words if we want to
have a good prediction (in the sense of a small MSE) it is not necessarily the
case that looking for an unbiased estimate of the CEF is the best idea.
Prediction is inevitably a problem of generalization. We want to have a sta-

tistical model that works well outside the sample, which is called training sample
in this literature. On the other hand prediction must have a de�nite purpose.
The statistical learning literature is based on the idea that good generalizations
can be obtained by (learning) algorithms rather than setting up �xed assump-
tions about a problem, and proceeding by deduction from these. Traditional
statistical practice does something similar implicitly, when diagnostic testing is
applied and models are reformulated as a result of tests. The statistical learn-
ing literature carries out this program more systematically, and uses somewhat
di¤erent concepts than the traditional literature. Loss functions, hyperpara-
meters, training, validation and test samples are concepts that are employed
incidentally by traditional statisticians, but here these are basic concepts. Also
testing the generalization capabilities of a model is a must here, in contrast to
the traditional t or F tests.

5.2 The problem setting

X is the input (feature, covariate, explanatory or exogenous variables) space.
There exists a function F : X ! Y , where y 2 Y is the the target variable,
the "true" relationship. The true relationship can be observed only with some
noise, however. The true relationship can be taken as the expectation of Y

55



conditional on X. We want to get an estimator P : X ! Y based on a �nite
data set that is "optimal" in the sense of giving optimal predictions for y based
on information about X. Determining optimality clearly requires an objective
function which is usually a loss function in this literature.
Typical loss functions include the following.
Squared error:

L(Y; P (X)) = (Y � P (X))2:
This is implicitly the loss function applied by traditional regression analysis,

it is perfectly well suited to normal distributions.
Absolute error:

abs(Y � P (X)):
This criterion leads to the estimation of some median, rather than a mean.

It is the only meaningful criterion with ordinal target variables.
Likelihood loss:

�2 log Pr(Y j P (X)):
This can be applied for all sort of targets, including qualitative variables.

An obvious disadvantage is that the distribution must be known explicitly. For
instance if the true model is Gaussian then

Pr(y;X;�) = ��N (2�)�
N
2 exp(�

NX
i=1

(yi �X0
i�)

2

2�2
);

(Here Pr denotes the density.)
For classi�cation problems, where Yi qualitative (G = 1; ::k::::K) loss func-

tions include 0 � 1 loss, or the likelihood loss which is called here deviance.
Typically one sets up a model to explain pk(X) (the probability that type k is
realized when X). Then the investigator assigns to X the type with the highest
probability.

bG(X) = argmax
k
bpk(X);

where bpk(X) is the estimate of pk(X).
With 0� 1 loss the loss is 1 when the classi�cation is wrong, otherwise it is

0.

L(G; bG(X)) = I(G 6= bG(X)):
With likelihood loss:

L(G; bpG(X)) = �2 log bpG(X):
In principle these cases are di¤erent.
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5.2.1 Types of errors

We can distinguish among a number of di¤erent errors. The potentially most
useful to measure is the generalization error:

ErrgT = E(L(y0; P (X0) j T )):

This is the expected loss of applying the prediction, estimated on a training
sample (T ), on a test observation which is independent of the training set. That
is the ideal goal of estimation, but in practice this is normally unreachable.
The expected generalization error

Errg(x0) = EL(y0; P (X0)):

is the expectation of the former, where the expectation is taken over all
training sets. This can be estimated sometimes.
The ideal solution would beif we had a triple division of data: Training

set - Validation set - Test set. On the training set we would estimate models
with di¤erent tuning (complexity) parameters (also called hyperparameters).
On the validation set we would choose the tuning parameter with the smallest
expected generalization error. And �nally on the test set we would estimate the
generalization error for the model selected.

5.2.2 Information criteria: a surrogate for the generalization error

Suppose, however, that we do not have enough data to apply the ideal proce-
dure. Though we would like to tell something about generalization errors as an
intermediate step we must consider errors for each xi in the training sample,
too:

ErrT (xi) = E(L(yi; P (xi) j T )):

It is a theoretical quantity, since it is an expected value.
We de�ne the in-sample prediction error as

Errin =
1

n

nX
i

ErrT (xi);

which is also a theoretical quantity.
Then the training error is de�ned as the observed counterpart of the in-

sample prediction error.

err =
1

n

nX
i=1

L(yi; P (xi)):

One can guess that the training error (the average residual sum of squares in
the case of a quadratic loss function) is an optimistic estimate of the in-sample
error.
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The bias-variance decomposition and linear regression The model
in this case can be written as

y = F (x) + �

E(�) = 0

var(�) = �2:

Suppose we estimate by OLS:

bOLS = (X 0X)�1X 0y:

The natural prediction function is:

ey0 = P (X0) = x00b
OLS :

For least squares linear regression the expected squared loss is:

err(x0) = �2 + (x00E(b
OLS)� F (x0))2 + (x00(X

0
X)

�1
x0)�

2:

If it is well speci�ed (it is a CEF), then the bias is 0, but it is not necessarily
the case.
The in-sample expected error is

Errin =
1

N

X
Err(xi) = �2 +

1

N

X
(x0i(E(b

OLS))� F (xi))2 +
p

N
�2:

Here in the formula the observations take the place of x0. From least squares
theory it is known that

X(X
0
X)

�1
X0

is idempotent and have rank p, therefore its trace equals p, the number of
estimated parameters.
Model complexity, as indicated by p, is related to the in-sample error!
Optimism of the estimator can be de�ned as

op = Errin � err:
It can be proved that expected optimism for several loss functions satis�es

E(op) =
2

N

X
cov(yi; P (xi)):

(The observed yis are correlated positively with P (xi) (the estimator), whereas
"new" observations at the same xi are not.)
For the linear regression model

NX
i=1

cov(yi; x
0
ib
OLS) = trace(X(X

0
X)

�1
X0)�2 = p�2:
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Thus expected optimism increases with the number of parameters, and with
�2.

De�nition of the e¤ective number of parameters The de�nition is
motivated by the previous formula:

df =

X
cov(yi; P (xi))

�2
:

Therefore in linear regression:

df = p:

Estimating the in-sample prediction error

The CR statistics We look for an estimate of the in-sample prediction
error (a theoretical quantity):

\Errin = err +\E(op):

Based on the above argument under squared error loss CR is a reasonable
estimate:

CR = err + 2
p

N
c�2:

Akaike Information Criterion Suppose we consider likelihood loss. It
can be proved that asymptotically:

�2E(log Pr
�ML

y) ' � 2
N
E(
X

log Pr
�ML

(yi)) + 2
p

N
:

Let loglik be the maximized log-likelihoodX
log Pr

�ML
(yi) = log lik:

Then the Akaike-criterion is

AIC = � 2
N
log lik +

2p

N
:

For the Gaussian model likelihood loss and squared loss are the same, thus

CR = AIC:
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The Bayes factor and minimum description length Another esti-
mate is the bayesian information criterion:

BIC = �2 log lik + log(n)p:

Obviously it is also designed for likelihood loss. Comparison of models via
the BIC is equivalent to using the Bayes factor with uniform priors.
An alternative interpretation of the BIC is the following. When transmitting

(optimally) a random variable about �
X

Pr(yi) log2 Pr(yi) bit information is
needed on average. The BIC compares two models (i.e. two ways of transmitting
information on Y ) via their minimum description lengths. Originally AIC, too,
was derived from information theoretical principles.
To sum it up: if we must rely only on the training set we can still estimate

the in-sample prediction error, using its observed equivalent the training error
but correcting for its "optimism", and choose the best model based on it.

5.2.3 Validation: one step closer to the generalization error

We still do not think we can set aside data for testing, and calculating the
generalization error. Cross-validation can be used for estimating the expected
generalization error, and choosing the best model with the minimum expected
validation error from a set of candidates. Another method of circumventing the
data problem is to use bootstrap sampling.

K-fold cross-validation Let � : f1; :::Ng ! f1; ; ;Kg an indicator function
that divides the data into K equal-sized subsets.

f�k� (x; �) is the function indexed by the tuning parameter �, where esti-
mation uses data not belonging to the kth fold. Then we can calculate the
cross-validation statistics for each � :

CV (f� ; �) =
1

N

NX
i=1

L(yi; f
��(i)
� (xi; �)):

The chosen model is with the � that minimizes CV (f� ; �). The typically
choices are K = 5 or 10. If K = N , it is called leave-one-out cross validation.
The choice of K is empirical and casual. There is an obvious trade-o¤: if K is
large the computational burden is substantial and there is large variance (as
training sets are similar), if K is small there are only few estimates to average
over (the Law of Large numbers does not have enough force.)

The bootstrap as validation Bootstrap sampling means that from a sample
of size N we create many (T ) new random samples, each of size N , by random
selection and replacement. For each � we calculate

CV (f� ; �; boot) =
1

T

TX
j=1

(
1

N

NX
i=1

L(yi; f
j
�(xi; �)));
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where j indexes the bootstrap samples. We choose the model with the � that
minimizes CV (f� ; �; boot).

5.3 Machine learning algorithms

5.3.1 Regression learning algorithms

A typical way to �nd a good predictor is to start with a set of functions parame-
trized by � (for instance linear regression with � parameter vector), and a loss
function L(Y; P�(X)), where P� is an element of this set. It may be reasonable
to minimize a perturbed loss function EXL(Y; P�(X)) + h(�; �), where � (a
hyperparameter) measures the complexity of the function parameterized by �,
since, as we have seen, more complex functions (with more e¤ective parameters)
have larger variance.

Ridge regression Ridge regression is a a generalization of OLS. We wish to
minimize the following criterion function:

SSR+ ��0�:

where SSR is the sum of squared residuals, and � is a complexity parameter.
(� penalizes large �, if it deviates from 0 too much.) Plausibly the result is that
the estimate is shrunken towards 0:

bridge = (X
0
X+ �I)�1X0y:

(As the inverse of a matrix decreases in absolute value if any element of it
increases in absolute value.) This method wants to exploit the bias-variance
trade-o¤, the optimal � may be set by cross-validation.

The Lasso The Lasso di¤ers from ridge regression in the perturbed criterion
function:

SSR+ �
KX
k=1

j �k j :

The penalty is formulated as a sum of absolute deviations from 0, rather than
squared deviations. A disadvantage of Lasso is that explicit solution does not
exist. However the Lasso makes variable selection for large enough �, as certain
parameters may become 0, which is generally considered as an advantage. The
selection of � occurs via cross-validation, again.

5.3.2 Tree-based methods

Growing a tree recursively To be concrete the detailed description below
addresses the binary classi�cation problem with negative entropy as a measure
of the goodness of �t, at the end we give the necessary modi�cations for other
types of models.
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Output data de�ne a binary distribution over the two classes they belong
to. This distribution has an entropy, re�ecting the uncertainty one faces when
wishing to classify the objects without the knowledge of any explanatory vari-
ables. Tree growing is in essence an entropy reduction process. At the beginning
consider each explanatory variables (features) and calculate by how much total
entropy would be reduced if one were to split the full sample in two, based on the
variable in question. If a variable has many possible values then there are many
splits to consder, and one must choose the one with the highest reduction in
entropy. After considering each variable in turn, select the one with the highest
entropy reduction capacity, and perform the corresponding split of the sample.
Graphically this is equivalent to forming two nodes in a tree whose parent node
is the root. Geometrically a partition of the input space is the result. Entropy
reduction can be viewed alternatively as purifying: the new nodes are purer
than the root node, in the sense that the observations belonging to them are
more homogeneous. Tree-growing is a recursive process. In the next step each
descendant node is considered likewise, and new nodes are added by the same
procedure. In principle this tree-growing process can lead to perfect puri�ca-
tion (where each �nal node contains objects belonging to the same class), but,
in practice, researchers apply some stopping criterion when, for instance, the
number of objects in the �nal nodes should not be below a certain threshold.
For the classi�cation problem other impurity measures can be used, such

as the Gini-index. Trees can be grown to continuous response variables (the
regression tree). In that case the most usual is to measure the goodness of �t
with the mean squared error metric, but tree-growing can accommodate other
measures as well.
It is clear that at the end we �nd a fully grown tree (if there is no stopping

criterion) which gives a perfect �t, and therefore would not be very useful for
prediction (an obvious case of over�tting). Still tree growing provides much
information since the path to the full-grown tree is also important, it shows an
optimal way to reach that. As usual over�tting leads to high variance, and it
must be controlled. To make tree-growing a successful predictive device the bias-
variance trade-o¤must be dealt with. Di¤erent approaches have been developed
to use trees to get a prediction that is validated.
A mathematical description looks like this.
Every node A represents a subset of observations. The root node (R) con-

tains all observations. Then

piR =
ni
n
; i = 1; ::K

is the a priori probability (relative frequency) of class i in the sample.
The loss function in case of classi�cation may be

L(i; j) = 0; i = j; i; j = 1; :::K

L(i; j) = 1; otherwise:

Then the true class of observation xh
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�(xh); � : X ! f1; :::Kg

The relative frequency (probability) of A can be de�ned as

P (A) =
nA
n
:

While the relative frequency of type i in A is

piA =
niA
nA

:

We must give a classi�cation rule at node A:

�(A) = argmax
i
piA:

Let us de�ne the entropy impurity function as:

I(A) = �
KX
i=1

piA log piA

We say that node A has left and right descendants (AL; AR). At each step
we choose descendants so as to minimize average impurity:

P (AL)I(AL) + P (AR)I(AR):

We grow a tree until all nodes (i.e. end nodes) are pure. The resulting tree
is called T, leading to perfect training sample classi�cation. (The training error
is 0.) We have every reason to think that it "over�ts".
In case of a quantitative target variable the loss function is mean squared

error, the impurity is average squared error at each node, and the estimate is
the average of the target values belonging to the node in question.

Pruning the tree T The tree built by the above manner can be regarded as a
non-parametric estimate of a two-valued function, where the procedure divides
the input space into mutually exclusive regions, and assigns each observation to
one of the classes depending on the region (�nal node) it belongs to. An alter-
native interpretation assigns a probability based on the relative frequencies of
the corresponding region (�nal node), when the �nal nodes are not completely
pure. There exists general theorems that assert that with a very large number
of observations this estimate can be considered unbiased. However, it is also
recognized that a very large (�nely tuned) tree probably over�ts (i.e. accommo-
dates noise), resulting in reduced predictive abilities. Therefore, CART prunes
the initially built tree using complexity cost pruning. In the �rst step of pruning
one �nds the best subtree, in the sense of least entropy or impurity, for a number
of complexity classes, where a tree is more complex if it has more leaves. Then
a validation procedure compares the best subtrees´ generalization capabilities,
and the one with the best predictive score is chosen as the end product of the
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procedure. (Concrete implementations may di¤er in the choice of complexity
cost, and in the validation procedure.)
More formally, the perturbed loss function for a tree Td is

nX
h=1

L(�(xh); �(Td(xh)) + ! jTdj

where Td(xh) is the end node in tree Td where xh belongs to, and jTdj is the
cardinality of the end nodes in Td.
For ! = 0 T is the optimal (minimal loss) tree obviously. By increasing !

shorter and shorter trees become optimal. It can be proved that the process
results in a series of sub-trees. If ! is in�nite we get the root-tree as the optimal
one.
To summarize: we get 0 = !0 < !1 < !1 < :::!M =1; and for each interval

[!i; !i+1] there is an optimal tree of a certain size. How to choose the optimal
sub-tree , i.e. the optimal ! (complexity cost)?
Determine �s as follows:

�1 = 0

�2 =
p
!1!2

:::

�M = 1

Do K-fold cross validation where for each n- nK subsample estimateM models,
one for each �. Compute the loss from the classi�cations and average it over
the K subsample. You get a loss (sometimes called risk) for each �j . Choose
the �j with the smallest error.

Interpretation of a tree The �nal tree can be interpreted as a decision tree
where at each node some binary decision is made, leading to �nal decisions
concerning where to classify a certain object. For any new observation one has
to �nd its region in the input space, and make the corresponding classi�cation as
a prediction. (The alternative interpretation again is a probabilistic judgment,
rather than a "yes-no" decision.) For regression trees the prediction equals the
average at each node, thus it is basically a step function.
When interpreting the winning tree informally one can say that it suggests

that important variables are those that have many and closer to the root splits
in them, but researchers have also developed formal indicators to measure the
relative importance of explanatory variables, based on the entropy reduction
work they do.
Another possible use of CART models is by varying the input space: we can

include (suspect) variables (either deemed as relevant or irrelevant), and see
how they appear in the best decision tree. We can adapt the idea of Granger-
causality as well: does the inclusion of a variable signi�cantly improve the pre-
dictive performance of the model or not? As the CART algorithm does not lead
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automatically to a better in-sample �t, after adding a new variable this ques-
tion can (sometimes) be evaluated in a two-valued logic context, in contrast to
Granger-causality where the measure of signi�cance depends on the validity of
maintained probabilistic assumptions.
Finally, CART algorithms can be used for "audience segmentation", as they

are used in public health applications. One can identify non-trivial segments
of society by their behaviour, enabling policy makers to adjust interventions
targeted to these di¤erent groups.

5.3.3 Tree-based ensemble methods

Boosting Boosting is a tree-based algorithm where pruning is missing. We
�rst grow a small tree, then model residuals with small trees consecutively, and
�nally add the models up.

Random forests CART is a greedy algorithm, as it strives at each step to
achieve maximal purity increase. This results in higher variance, and instability
(small changes in samples lead to large changes in the tree). Bagging is a version
that addresses this problem by growing many trees, but on di¤erent bootstrap
samples. Bootstrapping can be regarded as an alternative way of validation,
and accordingly bagging does not use pruning, rather it averages over many
large and unpruned trees.
A Random Forest is also constructed from a collection of trees, where the

number of trees is a parameter set by the researcher. The prediction (estimate)
a Random Forest regression gives is the average of the constituent trees�predic-
tions. RF improves on bagging by randomizing variable choice at each cut-point,
at each node only a random subset of explanatory variables are considered for
a split. The cardinality of that subset is another parameter of the algorithm.
The main advantage of Random Forests is that the random and restricted

manner of splitting achieves de-correlation among the many trees, while unbi-
asedness is not jeopardized. It has been argued that Random Forest regression is
similar to other traditional non-parametric regression methods (e.g. k-nearest-
neighbor algorithms), as it delivers some weighted average of �nearby�points
as the prediction, when both the weights and the �nearby-ness�are determined
in a data-driven way. All in all, with the presence of signi�cant non-linearities,
and with a relative abundance of explanatory variables Random Forest seems
to be a successful and well-attested predictive methodology.
Though an outstanding method for prediction Random Forest regression has

a problem: the results are not easily interpretable variable-wise. The demand
for assessing the separate role of variables (their individual explanatory power)
led to the proposal of several variable importance measures. As trees are grown
from bootstrap samples a number of out-of-the-bag (OOB) observations belong
to each tree, namely those data points that are not included in the sample
for that particular tree. One can then calculate the prediction MSE for OOB
data for each tree. Now the idea is that if a variable is unimportant it does
not matter whether the predictions are generated with the help of their true
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values, or are calculated from a random permutation of the true data. (The
permutation shu­ es only the values of the variable in question.) Then one can
calculate the di¤erence between the true and the permuted MSE, which must
be small if the variable is unimportant. By averaging all such di¤erences over all
trees one obtains a measure of variable importance. This measure is obviously
ad hoc.

5.3.4 Support vector machines (SVM)

SVM was originally developed for binary classi�cation with 1 or -1 output.

The maximum margin classi�er The maximum margin classi�er is the
"grandfather" of the SVM. It tries to separate two sets with hyperplanes, and
tries to �nd the hyperplane that achieves maximal separation. It solves the
following problem:

max
�

MX
�2i = 1

yi�
0x � M:

This is a linear quadratic problem, for which there may not be any feasible
solution. Obviously not any two sets are linearly separable.

The support vector classi�er This is the immediate predecessor of the
SVM. It relaxes the conditions of the maximum margin classi�er, allowing that
some observations be placed on the "wrong" side. The mathematical problem:

max
�

MX
�2i = 1

yi�
0x � M(1� �i)
�i � 0;

X
�i � C:

In fact an observation can be on the wrong side of the margin, or on the
wrong side of the hyperplane. Here C is the tuning parameter ("budget"). It is
possible that there is no feasible solution, but by increasing C we will get one
sooner or later.
It can be proved that:
(1) the linear classi�er can be written as

f(x) = �0 +
nX
i=1

�i hx; xii
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where hx; xii is the inner product.
(2) To determine the unknown parameters we need only the n(n�1)=2 inner

products of pairs of training observations.
(2) If S is the set of support points then

f(x) = �0 +
X
i2S

�i hx; xii :

An observation that lies strictly inside the margin does not modify the clas-
si�er.

Support vector machines This is another way to solve the infeasibility
problem. We enlarge the feature space with nonlinar functions of the origi-
nal features. Then the classi�er is linear in the modi�ed feature space, though
it corresponds to a nonlinear decision boundary in the original feature space.
The basic idea is that we replace the inner product with its generalization, a
positive de�nite kernel function (it is called the kernel trick):

K(xi; xj) � 0; symmetric:

Then the separating "plane" can be written as

f(x) = �0 +
X
i2S

�iK(xi; xj):

Several kernels have been proposed in the literature. A frequently used
kernel is the following:

K(xi; xj) = exp(�

pX
k=1

(xik � xjk)2):

The implicit enlarged feature space can be very high dimensional (even in-
�nite), but we do not need to "enter" into it.
Here the tuning parameters are C and some parameter of the kernel (for

instance 
 above).

SVM and multiple classes There are several ways to extend SVM to mul-
tiple class classi�cation.
(1) One versus one classi�cation. In that case all possible K(K-1)/2 "matches"

are played (binary classi�cations done), and the �nal classi�cation is made by
majority voting.
(2) One versus all classi�cation. Here in each "match" one class plays against

the rest, thus only K binary classi�cation must be accomplished. In each of them
belonging to the stand-alone group is coded as 1. The �nal classi�cation of x
occurs by argmaxing.
SVM can be extended to regression problems, too.
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6 Time series analysis

6.1 The stochastic theory of time series

A discrete time stochastic process is the ensemble of (countably) in�nitely many
ordered random (vector) variables. The elementary event is an in�nite trajec-
tory. If all the �nite dimensional marginal distributions exist then the whole
process constitutes a regular probability space.
The basic ingredient of time series is the white noise (a sort of "unit vector"):

E(�t) = 0

E(�t�t0) = 0; t 6= t0

var(�t) < 1:

The Gaussian white noise is a normally distributed white noise.
Second order moments for stochastic processes are autocovariance and au-

tocorrelations functions:

cov(xt; xt�k) = E(xtxt�k)� E(xt)E (xt�k)

k = :::;�1; 0; 1; :::

cor(xt; xt�k) =
cov(xt; xt�k)p
var(xt)var(xt�k)

:

If we have a vector valued stochastic process than cross-autocovariances can
be de�ned as:

cov(xt; yt�k) = E(xtyt�k)� E(xt)E (yt�k) ; k = :::;�1; 0; 1; :::

for each x; y pair.

6.1.1 An important subclass: stationary stochastic processes

From now on we will focus on single variable (one-dimensional) series. Strong
stationarity of time series means that distribution functions depend only on
distances.
For all k, � and t1; :::tk:

FX(xt1+� ; :::xtk+� ) = FX(xt1 ; :::xtk);

thus the joint distributions are not functions of time.
This obviously imples that

FX(xt1+� ) = FX(xt1);

i.e. the same unconditional distribution describes x at each time.
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Weak stationarity means that the �rst and second moments depend only on
distance:

E(xt+� ) = E(xt);

cov(xt+� ; xt�k+� ) = cov(xt; xt�k):

In general strong stationarity implies weak stationarity, and for a Gaussian
process, weak stationarity implies strong stationarity, too.
It is an important observation that linear combination of stationary series

are stationary. With stationary series we can talk of kth order autocovariance
matrices unequivocally, which are symmetric and positive de�nite. For instance�

var(xt) cov(xt; xt+1)
cov(xt+1; xt+2) var(xt+1)

�
:

is symmetric, cov(xt�1; xt) = cov(xt; xt+1); moreover var(xt) = var(xt+1).
The traditional notation is 
0 for the variance, and 
�k = 
k for the kth

autocovariance.
An important subclass of stationary series are the mean ergodic processes.

A mean ergodic process is such that

TX
i=0

Xt+i

T
converges as T ! 1 in squared mean to �, the unconditional mean of the

process. In other words, averaging over any trajectory we obtain a consistent
estimate of the mean. It can be proved that

1X
i=0

abs(
i) <1

is a su¢ cient condition for ergodicity.
In the following we will usually deal with ergodic processes,

6.1.2 Representation in the time domain of covariance-stationary
processes

A fundamental theorem (The Wold Representation Theorem) asserts that for
covariance-stationary processes the mean can be regarded as a deterministic
function of time (sometimes called a signal) plus a purely indeterministic process,
i.e. an in�nite linear combination of white noise. In formulas:

xt = f(t) +
1X
i=0

ai"t�i; a0 = 1;

where f(t) deterministic, "t white noise, moreover
1X
i=0

a2i <1:
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The white noise process is not "noise" in the sense this word is used in the
literature. "t is called innovation (or shock). It is also the CEF residual when
the condition is the whole history of the process up to t� 1:

xt = Et�1(xt) + �t.

(The meaning of Et: expected value conditioned on everything occurring
before and including time t.) Shocks are "unexpected", but have an in�uence
beyond the time they occur, while "noise" is usually taken to be something that
has no in�uence on the future course of the process, it is merely a matter of
imperfect observation.

6.2 Mathematical detour

6.2.1 Stability of linear di¤erence equations

Consider the following equation:

�n = �1�n�1 +��+�p�n�p:

Let �i be a root of the following polinomial:

�p � �1�p�1 � ::� �p = 0:

Then for any Ai
�n = Ai�

n
i

is a solution of the di¤erence equation.
Every solution can be written as

�n =

pX
i

Ai�
n
i :

The p initial conditions determine the Ai constants.
Obviously �n converges if and only if all �s are less than 1 in absolute value.

6.2.2 A useful tool: lag polinomials

A useful mathematical tool in times series analysis is the lag operator:

Lxt = xt�1;

that translates any series one step back in time.
The powers of L can be de�ned naturally as

Lnxt = L(Ln�1)xt = xt�n;

where

L0xt = xt:
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Obviously there exists L�1 for which

L�1(Lxt) = xt

L�1xt = xt+1:

L�1 is called the forward operator, and sometimes is denoted by F .
Finite order polinomials of L can be de�ned accordingly as

A(L)xt =
kX

i=�k
�i(L

ixt):

With traditional notation a pth order linear di¤erence equation can be writ-
ten as:

xt = a1xt�1 + :::+ apxt�p + ft;

where ft is called an exogenous forcing process. Then in terms of lag oper-
ators the equation can be rewritten as

(1�
pX
i=1

�iL
i)xt = A(L)xt = ft; �p 6= 0:

One can guess formally that the solution can be written a:

xt = A(L)�1�t:

The question is whether we can assign a precise menaing to the inverse
A(L)�1 as a lag operator. If we want to have a causal solution (where the
present does not depend on the future) A(L)�1 should contain only positive
powers of L. The question boiles down to the problem whether we can �nd
parameters �0; �1; :::�n; ::: that satisfy:

(L0 � �1L� :::�pLp)(�0L0 + �1L+ :::�nLn + :::) = (L0 + 0L+ :::+ 0Ln + :::):

In fact we also require that the
X

�2i series converge to 0. It can be proved
that

�n = �(a1�n�1 +��+am�n�m);

in other words the parameters of the inverse operator satisfy this linear
di¤erence equation.
We know that for �n to converge it is necessary and su¢ cient that the roots

of

�m + a1�
m�1 + ::+ am
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be within the unit circle, therefore the

1 + b1L
1 + ::+ bmL

m

polinomial must have all roots outside the unique circle.
Let us illustrate this important point with the simplest case. Suppose

xt = �xt�1:

Then convergence requires that abs(�) < 1. The lag polinomial form of the
equation is

(1� �L)xt = 0:

Clearly the root of 1� �L is 1
� .

6.3 ARMA processes: making the Wold Theorem practi-
cal

The Wold Theorem states that stationary series can be characterized by an
in�nite series of parameters having a time distance e¤ect interpretation. Finite
data sets demand that we have models with a �nite number of parameters.
ARMA processes are an "empirically realizable" subset of stationary processes.
First we introduce the pure AR, and then the pure MA processes, before de�ning
the general ARMA process.

6.3.1 AR (p) processes

The general AR(p) process can be de�ned as

xt = C + �1xt�1 + :::+ �pxt�p + �t:

Let � = E(xt).Then

� = C + (�1 + :::+ �p)�:

� =
C

1� �1:::� �p
:

If we change to the variable yt = xt � �, with mean 0, then

yt = �1yt�1 + :::+ �pyt�p + �t:

For simplicity we will deal with zero mean series in the following.
There are several identical formulations:
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xt =

pX
i=1

�ixt�i + �t;

xt = (

pX
i=1

�iL
P )xt�i + �t;

(1� �1L� �2L2 � :::�pLP )xt = A(L)xt = �t;

where �t white noise with variance �2.
We can determine xt in the Wold-framework as

xt = (1� �1L� �2L2 � :::�pLP )�1�t = A(L)�1�t;

where A(L)�1 is an in�nite lag polinom, provided that the roots of the
polinomial

1� �1L� �2L2 � :::�pLP

exceed 1 in absolute value. It is called the impulse response function.
The autocovariance function can be determined from the Yule-Walker equa-

tions, to be derived now.
Let us start from the

xt =

pX
i=1

�ixt�i + �t

expression. Multiplying both sides with �t, and taking expectations we get

E(xt"t) = �2.

Then multiplying with xt and taking expectation we obtain


0 = �1
1 + :::�p
p + �
2:

Multiplying both sides with xt�k (k = 1; :::p), and again taking expectations
the new result is


k = �1
k�1 + :::�p
k�p;

where, because of stationarity,


k�p = 
p�k:

This is a linear system of p+ 1 equations in as many variables, from which
one can determine the unknown 
0; 
1; :::
p: Then autocorrelations (�k) are
obtained by dividing by 
0.
For k > p autocovariances satisfy the following di¤erence equation:


k =
k�1X
i=1

�i
k�i:

74



Equivalently for autocorrelations

�k =
k�1X
i=1

�i�k�i:

These di¤erence equations can be uniquely solved taking into account the p+
1 initial values, computed in the Yule-Walker equations. A necessary condition
for (ergodic) stationarity is that this equation be asymptotically stable, in other
words autocovariances converge to 0.

6.3.2 MA (q) processes

The general MA(q) process can be de�ned as

xt = C + ut + �1ut�1 + :::+ �qut�q:

Then
E(xt) = C;

and if yt = xt � C, then

yt = ut + �1ut�1 + :::+ �qut�q

is a 0 mean MA(q) process. Again we restrict our attention to zero mean
processes.
A zero-mean MA (q) process can be de�ned as

xt = "t +

qX
i=1

�i"t�i;

xt = (1�
qX
i=1

�iL
i)"t: = B(L)"t:

Autocovariances vanish after q periods:


0 = �2(1 +

qX
i=1

�2i );


k = �2(�k +

q�kX
i=1

�i�i+k); k = 1; :::q;


k = 0; k > q:

The relationship between parameters and autocovariances is non-linear (quadratic),
and therefore there are multiple solutions. Whenever B(L)�1 exists (invertibil-
ity) :
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"t = B(L)�1xt:

Because autocovariances vanish there are always invertible representations,
but also non-invertible ones, because of multiplicity.

6.3.3 Generalization: ARMA (p,q) with non-zero mean

A(L)xt = C +B(L)�t;

� = (1� �1 � :::� �p)�1C
yt = xt � �

A(L)yt = B(L)�t:

where A(L) and B(L) are �nite lag polinomials, and �t white noise. Then
in the case of stationarity:

xt = A(L)�1B(L)�t;

which is a Wold-representation (an in�nite MA representation). This is also
called the impulse response.
If B(L)�1exists

B(L)�1A(L)xt = �t;

the process has an in�nite AR representation, and is called invertible.

6.3.4 Partial autocorrelation in the stationary case

We de�ned the linear projection of y on (x1; x2:::xn) with the following expres-
sions:

y = �x;

cov(y;x) = 0:

Letdx�i be the projection of xi on x�i (e obtain x�i from x by skipping xi).
Let

gx�i =dx�i � xi;
be the projection error. Then partial covariances (correlations) are de�ned

as:

pcovx�i(xi; xj) = cov(gx�i;gx�j)
pcorx�i(xi; xj) = cor(gx�i;gx�j):

Partial autocovariances (autocorrelations) are de�ned as:
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pacovk(xt; xt�k) = pcovx
t�1;xt�2;:::xt�k+1

(xt; xt�k)

pacork(xt; xt�k) = pcorx
t�1;xt�2;:::xt�k+1

(xt; xt�k)

Thus all the observations between t and t � k are partialled out. Notice
that the partial correlation between two variables depends on the conditioning
variables, thus it is not a unique number. However, the de�nition of partial
autocorrelation assigns a unique number as the conditioning is determined un-
equivocally.

6.3.5 The statistical approach: Box-Jenkins analysis

Identi�cation ARMA models have particular shapes for the auto and partial
autocorrelation functions, depending on p and q. The identi�cation phase con-
sists in estimating these functions, and guessing at p and q from the estimates.
The sample mean, the sample autocovariance and autocorrelation are con-

sistent estimators in the ergodic case:

x =
1

T

X
xt;

acovs0 =
1

T

X
(xt � x)2;

acovsk =
1

T

T�kX
t=1

(xt � x)(xt+k � x);

acorsk =
acovsk
acovs0

:

If the process is white noise the asymptotic distribution of the sample auto-
correlations is normal with 1=T variance. From this one can calculate con�dence
intervals.
The Box-Pierce statistics is used to test the null-hypothesis that m autocor-

relations are 0 :

QBP = T
mX
k=1

r2k:

This statistics is asymptotically �2.
Partial autocovariances are estimated from the autoregression coe¢ cients.

Let bk be the

bxt = kX
i=1

bixt�it

last coe¢ cient in this empirical projection. As

var(gxt�k) = var( ext)
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therefore

bk =
cov( ext; gxt�k)
var(gxt�k)

p
var(gxt�k)p
var( ext) = �k:

Estimation of ARMA processes Pure AR processes can be consitently
estimated by OLS. Otherwise the two most frequent methods are conditional
least squares and maximum likelihood. The former�s advantage is that it can
dispose of a speci�c distributional assumption.

Conditional least squares We write down recursively the residuals as
functions of parameters and observables, and then minimize the squared resid-
uals. This method can be illustrated by a simple example.

An example: conditional least squares estimation of ARMA (1,1)
Here the residual is:

ut = xt � �xt�1 � �ut�1:

The least squares problem:

min
�;�

TX
t=2

u2t :

We can start from t = 2, thus x1 must be a condition. However we still need
u1: The simplest assumption is that u1 = 0 (equals its expected value). Except
for � = 0 this is a nonlinear optimization problem.

Maximum Likelihood estimation The novelty of time series models, with
respect to i.i.d. samples, is that the observations are mutually dependent. If we
assume that the sample has a multidimensional (centralized) normal distribution
then the density is

F (y) =
1p

(2�)n det(�)
exp(�y

0��1y

2
):

The rules of conditional probability tell us that

f(x; y) = f(x p y)f(y);

and this property can be explored to write down the likelihood function in
speci�c cases. For simplicity consider the AR(1) model.
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f(y1; ::yT ) = fyT jyT�1;:::y1 � f(y1; ::yT�1)
f(y1; ::yT�1) = fyT�1jyT�2;:::y1 � f(y1; ::yT�2)

:::

f(y1; ::yT ) = fy1 � fy2jy1 � :: � :fyT�1jyT�2;:::y1 � fyT jyT�1;:::y1 :

The conditional distrubutions are known as

yt p yt�1; :: � N(�yt�1; �
2):

We have no information on the conditional distribution of y1. However, we
"know" the unconditional distrubution of y1 :

y1 � N(0;
1

1� �2�
2):

Plugging this into the formula above the product of the distributions provides
the likelihood to be maximized as a function of � and �. The formula can
be generalized to AR(p). If we have MA terms the expression is much more
complicated.

Selecting the best model Normally, after the identi�cation phase we have
several candidate models. Each of them is estimated, then diagnostic testing is
applied, and those models are preferred that show favourably diagnostic proper-
ties. (For instance residuals appear to be normal, and they do not appear to be
autocorrelated etc..) Also, it is customary to compute information criteria for
selecting the best model. Out of sample forecasting exercises and tests are not
frequent in econometrics, but potentially these would provide the best solution.

6.4 Some generalizations of ARMA in the time domain

6.4.1 A non-stationary generalization: ARIMA (p,d,q)

In that case the autocorrelation function suggests that the series is non-stationary.
Frequently, after one or two-di¤erencing (rxt = xt�xt�1;r2xt = rxt�rxt�1)
the resulting series can be taken as stationary. With the lag operator di¤erenc-
ing can be written as: (1� L)dxt = �dxt:
Then

A(L)(1� L)dxt = B(L)ut:

is called an ARIMA(p; d; q). Its speciality is that the AR polynomial con-
tains unit roots. The usual treatment of ARIMA models is that after the neces-
sary di¤erencing the model is treated as an ARMA(p; q). Naturally forecasting
of the undi¤erenced series must take this into account.
There exist tests for deciding whether di¤erencing results in a stationary

process. In these tests usually the null hípothesis is unit root in the process,
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in other words that that the autoregressive polinomial has a unit root. For
example in the case of the simple Dickey-Fuller test one estimates the following
equation by OLS,

xt = �+ �xt�1 +At+ ut:

and then tests whether � = 1. However, the distribution of the "t statistic"
calculated from the OLS estimate is di¤erent from the t distribution, therefore
using the test requires speci�c tables for the corresponding true distribution.

Trend-stationary and di¤erence-stationary processes Suppose that

xt = At+ ut:

where ut is a stationary ARMA. Then

xt � xt�1 = A+ ut � ut�1 = A+ (1� L)ut:

Therefore xt is I(1), but it is not invertible, since there is a unit root in the
MA polinomial. These processes are called trend-stationary, since we would get
a stationary process after subtracting the trend. The correct treatment of the
process would involve the simultaneous estimation of the trend and the residual
process.
It has become almost an article of faith among macroeconomists that macro-

economic time series can be stationarized by di¤erencing. In the next section
we explore models that rely on this assumption, but in a multiple time series
context.

6.4.2 Seasonally integrated series

Another generalization makes the assumption that

(1� L)d(1� LS)Dxt

is stationary. In this case there are seasonal unit roots in the lag polinomial.
Econometricians usually prefer to work with seasonally adjusted data, and the
treatment of seasonality belongs to data pre-processing.

6.4.3 Fractionally integrated series

We have a formal generalization of di¤erencing:

(1� L)dxt = �t:

What is the meaning of d, when it is any real number? Take the power series
expansion of

(1� L)d

around L = 0. This gives
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(1� L)d = 1� dL� d(d� 1)
2!

L2 � d(d� 1)(d� 2)
3!

L3 � :::

This is an in�nite lag polinomial. The coe¢ cients satisfy:

�j =
j � 1� d

j
�j�1:

If d < 0:5 then xt is stationary, but not absolute summable. Therefore this
is called a long-memory process. Certain economic time series are supposed to
be well described by long-memory processes, but their identi�cation needs long
data series.

6.4.4 ARCH and its generalizations

Financial time series often exhibit heteroskedasticity in time. The theoretical
counterparts are autoregressive conditional heteroskedasticity (ARCH) models.
The simplest one perhaps:

zt = �zt�1 + ut;

E(ut j ut�1;:::)) = 0;

ht = var(ut j ut�1;:::)) = !0 +
X

!iu
2
t�i:

A generalization of ARCH is GARCH (generalized ARCH), where

ht = var(ut j ut�1;:::)) = !0 +
X

!iu
2
t�i +

X
 ih

2
t�i:

This model produces distributions with fatter tails than the normal�s, an-
other feature of many �nancial time series. A number of variations and further
generalizations have been developed in the �nancial econometrics literature.
The identi�cation and estimation of these models is usually based on high fre-
quency data that are not available for macroeconomists.

6.5 Multiple time series analysis in the time domain

Economists consider usually several time series simultaneously. The one-dimensional
time-domain theory can be extended to the multiple dimension case. The sim-
plest is the extension of the AR(p) model to multiple time series.
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6.5.1 VAR representation

Analogously to the one-dimensional case we say that the following is a V AR(p)
model, where VAR stands for vector autoregression.

xt= A1xt�1+:::+Apxt�p+�t;

where xt has n components, and �t is vector white noise with 
 positive
de�nite instantaneous covariance matrix. In general we assume that 
 is not
diagonal, thus there is contemporaneous connection between the di¤erent ele-
ments of the xt vector.
The lag polinomial form analogously is:

(I�A1L�:::�ApL
p)xt= A(L)xt = �t;

where, for example, A1L is a nxn matrix whose each element is multiplied
by L (symbolically).
It turns out that through rede�ning variables an nxn V AR(p) is mathemat-

ically equivalent with a one-variable AR(pxn) model. Therefore mathematical
results can be transported. These yield a condition for stationarity: the deter-
minant

det (I�A1L�:::�ApL
p);

which is a pxn polinomial in L, must have roots exceeding 1 in absolute
value:Though VMA (vector moving average) and V ARMA (vector autoregres-
sion and moving average) models can also be de�ned, they are not used fre-
quently.

Impulse response function The MA(1) form gave the impact of innova-
tions (shocks) on di¤erent horizons in the one-variable case. Here there is an
analogous de�nition. The VMA(1) form:

xt = (I�A1L�:::ApL
p)
�1
�t

(I�A1L�:::ApL
p)
�1
= I +�1L+�2L

2 + :::+�kL
k + :::

xt = �t +�1�t�1 +�2�t�2 + :::+�k�t�k + :::

is called the impulse response function. The interpretation is that the �(ij)k (

�
(ij)
k =

@x
(i)
t

@�
(j)
t�k
) element is the marginal e¤ect of shock j on variable xi after k

periods:
The matrix of long-run coe¢ cients is an interesting analytic tool as it gives

the cumulative (on an in�nite horizon) e¤ect of shocks:

(I�A1�:::Ap)
�1
= �;
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where �(ij) = lim
1X
k=0

@x
(i)
t

@�
(j)
t�k

:

However, there is a problem with the interpretation: as 
 is non-diagonal
the di¤erent components of � do not vary independently, therefore the partial
derivatives cannot be interpreted unequivocally. Econometricians found a sim-
ple "solution" for this problem: let us suppose that there exist "fundamental"
shocks (u) with diagonal covariance matrix, and the VAR shocks (�), are linear
combinations of them:

� = Qu:

It follows that

cov(u) = 
u= Q
�1
(Q

�1
)0:

There are in�nitely many Q with the property that 
u diagonal. In that
case Q can be written as

Q = E(��
0
) =

nX
i=1

qiq
0
i:

The modi�ed impulse response function in terms of u is

xt = (I�A1L� :::ApL
p)
�1
Qut:

If we make enough assumptions to achieve uniqueness we obtain what is
called the SVAR (structural VAR) analysis.
The easiest choice is if we assume that Q is lower triangular (Cholesky-

decomposition) which can be interpreted as the existence of a causal chain within
a period. For instance it is frequently assumed that prices do not react quickly
to changes in supply, in this sense within a quarter prices a¤ect demand or
supply, but not vice versa.
Another popular approach is making long-run restrictions on the (I�A1L� :::ApL

p)
�1
Q,

which is the matrix of the long-run e¤ects in the transformed model.

Variance-decomposition Variance decomposition stands for decomposing
the mean (squared) prediction error due to di¤erent shocks at di¤erent hori-
zons. It is meaningful if we have structural (orthogonal) shocks, only. The
mathematical derivation is the following:

xt+s = �t+s+�1�t+s�1+:::+�s�1�t+1 +�s�t +�s+1�t�1:::

x̂t+s;t = �s�t +�s+1�t�1 + :::

xt+s�x̂t+s;t = �t+s+�1�t+s�1+:::+�s�1�t+1:

where x̂t+s;t is prediction made at t for s period ahead. Then:
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E((xt+s�x̂t+s;t)(xt+s�x̂t+s;t)
0 = 
+�1
�

0
1+::+�s�1
�

0
s�1

=
nX
i=1

�
Iqiq

0
i +�1qiq

0
i�

0
1+::+�s�1qiq

0
i�

0
s�1
�
:

The vector of mean squared prediction errors is the diagonal of this ma-
trix. (The o¤-diagonal elements show covariances between predictions.) The
ith innovation�s share in the prediction error of the jth variable is:

diag(
�
Iqiq

0
i +�1qiq

0
i�

0
1+::+�s�1qiq

0
i�

0
s�1
�
)

MSEj;s
:

6.5.2 Cointegration

Suppose in the one-variable case that a variable is either stationary or I(1), dif-
ference stationary. (Of course there exist other possibilities, but we ignore them
now.) In the multiple variable case it may happen that though all variables are
I(1), still there exist some linear combination of them which is stationary. Many
macroeconomic time series look like I(1) variables, but simple functions of them
look rather stationary (for instance the share of consumption in GDP). Certain
economic theories can be formulated as stationarity of functions of variables.
It turns out that considering the possibilty of this feature of time series, called
cointegration, results in di¤erences for the properties of estimators, as well.

The case where xt is I(1) Let

xt= A1xt�1+A2xt�2+:::Apxt�p+�t;

be a V AR(p), with all elements of xt being I(1) variables.
The equation can be equivalently rewritten as:

rxt = (A1+A2+::+Ap�I)xt�1�(A2+::Ap)rxt�1 +
�(A3+:::Ap)rxt�2�:::�Aprxt�p+1+�t:

Granger�s Representation Theorem Case 1:� = A1+A2+:::Ap�I = 0:
It means that � has n 0 eigenvalues. Then the VAR is stationary in di¤erences.
Case 2: dim(�) = r; 0 < r < n. � has n� r 0 eigenvalues. Then there exist

�(nxr) and 	(rxn) matrices for which

�	 = �

and

	x
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is stationary, where the rows of 	 are eigenvectors of � belonging to the r
non-zero eigenvalues.
(The possibility dim(�) = n is excluded by the I(1) assumption.)
There exist several methodologies to establish and estimate cointegration

relationships. Johansen�s method is relatively easily algorithmized.

Johansen�s method 1. Estimate the regression

rxt= �xt�1+�1rxt�1+:�+�p�1rxt�p+1+�t:

2. Test the number of non-zero eigenvalues (r) in the estimated � matrix.
3. If you accept the hypothesis that r = 0 then re-estimate the equation by

setting � = 0.
4. If you accept the hypothesis that 0 < r < n, then calculate r eigenvec-

tors of the estimated �, corresponding to the largest r eigenvalues. Form the
"cointegrating" relationships as the variables zt�1 = b	xt�1:
Then estimate the regression:

rxt= �zt�1+�1rxt�1+:::+�p�1rxt�p+1+�t:

From the coe¢ cients of this regression one can determine the coe¢ cient esti-
mates of the original model. (For example�1 = �(A2+::Ap);�2 = �(A3+::Ap); :::;�Ap =
�p�1 etc.)
The important point is that if cointegration exists the estimation in di¤er-

enced form is inconsistent, while the estimation in levels is not e¢ cient.

Exogeneity and Granger-causality Let the target variable be y, and
the explanatory variable(s) x. Multiple time series analysis traditionally is con-
cerned with concepts of exogeneity and causality. Weak exogeneity means that
the parameters of interest belonging to the conditional expectation function can
be estimated by ML without knowing the parameters of the marginal processes
of the corresponding variables. It results in e¢ cient estimation, and it is usually
easily assumed without much thinking.
Granger-causality is de�ned without proper respect to the traditional intu-

itive concept of causality. According to it x is not a Granger-cause of y if x
does not improve the forecast error of y. This is frequently tested. If Granger-
causality is not rejected in either direction then it gives an indication that a
V AR must include both variable.
Strong exogeneity means that x is weakly exogenous plus y is not a Granger-

cause of x. If we want to forecast y conditioned on x, then the ful�lment of this
condition gives a sort of green light.

6.6 Signal processing and time series analysis

Signal processing is a problem when given �nite observations (g(ti); i = 0; :::T )
made on a function f(t) we want to recover f(t), where
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g(t) = f(t) + �t:

There is obvious similarity with the Wold Representation Theorem, the im-
portant di¤erence is that �t is usually thought of as noise, rather than as a shock
(or innovation) that drives the process.

6.6.1 General mathematical background

A usual assumption is that f(t) belongs to a function space, normally the space
of square integrable functions.
This space is linear and Z

f(t)g(t)dt

is a natural inner product. In inner product spaces angles, and orthogonality
can be de�ned. Orthogonal functions are such that:Z

f(t)g(t)dt = 0:

6.6.2 Some general properties of inner product spaces

Orthogonal elements are linearly independent: hui; uji = 0:An orthonormal set
(U) has the property that each ui 2 U has a norm of 1. Then for any f the
orthogonal projection of f on U is

bf =X�iui;

where

�i = hui; fi :

If f belongs to the subspace generated by U , then f = bf . Otherwise bf is
the closest point in the subspace to f .
An important fact is that the set

1; cos(2�kx); sin(2�kx); k = �1;�2

is an orthogonal basis of L2(a; b), the space of square integrable functions
on the interval (a; b): This is the foundation of Fourier-analysis.
For mathematical reasons even for studying real functions one considers

frequently complex L2 spaces where

exp(2�ikt); k = 0;�1;�2; :::

is an orthogonal basis.
An important theorem states that if f(t) square integrable and periodic with

period T then there exists the Fourier-series representation:
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f(t) =
1X

k=�1
ck exp(2�ikt=T );

ck =
1

2�

TZ
�T

f(t) exp(�2�ikt=T )dt:

Equivalently if (a; b) a �nite interval and f(t) is square integrable on (a; b)
the same statement is essentially true.
This is in fact a projection on a speci�c orthonormal basis. Via a limiting

argument one can obtain another fundamental result: for L2(�1;1) there
exists the Fourier-transform:

bf(!) = 1Z
�1

f(t) exp(�2�i!t)dt

and the inverse transform:

f(t) =

�Z
��

bf(!) exp(2�i!t)d!;
In words it means that for any function of "time" there eists an equivalent

representation in "frequencies". The Fourier transform has huge signi�cance
theoretically, and also in practical "analogue" signal processing.
In statistical practice with a �nite signal one can de�ne the discrete Fourier

transform (DFT) as

bf(k) = TX
t=1

f(t) exp(�2�ikt); k = 0; 1; :::T � 1

and its inverse transform as

f(t) =

T�1X
k=0

bf(k) exp(2�ikt):
These can be regarded as approximations to the Fourier and inverse-Fourier

transforms, respectively.
As one can see the parameters can be derived from a "perfect regression" :

ft = a0 +

(T�1)=2X
k=1

(ak cos(2�t
k

T
) + bk sin(2�t

k

T
));

as because of orthogonality:
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ak =
T

2

TX
t=1

xt cos(2�t
k

T
)

bk =
T

2

TX
t=1

xt sin(2�t
k

T
):

Then bf(k) = ak + ibk.

6.6.3 Fourier-analysis and time series analysis

It is easy to see that no trajectory of a stationary process can have a Fourier-
transform. The autocorrelation function has one, however, if it is absolute
summable:

f(!) =
1X

k=�1

k exp(�2�ik!)


k =

Z
f(!) exp(2�ik!)d!; k = 0;�1:::

This is called the spectrum or spectral density of the corresponding process.
It is true that

f(!) = f(�!)


0 =

0:5Z
�0:5

f(!)d!:

One can prove that frequencies outside (�0:5; 0:5) can be neglected, because
of periodicity. We can conclude that the spectrum and the autocovariance
function contain the same information in the absolute summable case..
The fundamental Spectral Representation Theorem is the frequency domain

equivalent of the Wold Representation Theorem. It asserts that any covariance-
stationary process can be represented as a stochastic integral

yt = �+

Z �

0

[A(!) cos(!t) +B(!) sin(!t)] d!;

where and A(!) and B(!) are continuous "time" stochastic processes with
certain properties. (The de�nition of a stochastic integral is outside the scope
of these lecture notes.)
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6.6.4 Statistical problem: how to estimate the spectrum?

One approach is parametric estimation. For instance, we may assume that the
process in question is ARMA(p; q), then we derive the theoretical spectrum
which provides a correspondence to the ARMA parameters. After estimating
the ARMA parameters in some traditional fashion we plug the estimates into
the theoretical spectrum.
Another popular method is a non-parametric estimate.
The DFT of the sample as de�ned above looks like

d(
k

T
) =

1p
T
(
TX
t=1

xt cos(2�t
k

T
)� i

TX
t=1

xt sin(2�t
k

T
))

0 � k � T � 1:

It can be written in matrix form as

d = Fx;

where, for instance

F =

2664
1 1 1 1
1 exp(�i 1T ) exp(�i 2T ) exp(�i 3T )
1 exp(�i 2T ) exp(�i 4T ) exp(�i 6T )
1 exp(�i 3T ) exp(�i 6T ) exp(�i 9T )

3775 ;
Then

x =
1

T
F
�
d;

as the inverse DFT "reconstructs" the orginal series. The squared DFT is
called the scaled periodogram:

P (
k

T
) = a2k + b

2
k:

where ak and bk are the real and imaginary parts of dk. Alternatively the
periodogram is the DFT of the empirical autocorrelation function.
When xt is stationary the periodogram is stationary, too, and con�dence

intervals can be calculated. The periodogram is an unbiased but not consistent
estimate of the spectrum. It can be made consistent via smoothing.
Spectral analysis is not so frequently used by econometricians as the the

time domain methodologies. The main reason perhaps is that in contrast to
many natural phenomena economic time series do not exhibit sharp di¤erences
between frequencies, in other words do not seem to exist clear cycles. However,
theoreticians use frequency domain methods because certain operations are more
easy to carry out in the frequency domain, and, also, because constructing and
studying frequency domain �lters appears to be a useful data preprocessing
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strategy. For instance, the renowned band-pass �lter �lters out short and long
frequency components from a macroeconomic time series in order to separate
the "business cycle" component. Frequency domain methods are theoretically
sound only if stationarity can be supposed. As in many areas this assumption
is more than doubtful new methodologies have become fashionable promising
"automatic" analysis for non-stationary series.

6.7 Wavelets

Signal processing applications of the Fourier-transform encountered several dif-
�culties. Fourier-analysis is unable to detect non-stationarity, and its global
nature prevents it from giving information about the local (in time) behaviour
of the series. One proposed solution was the windowed Fourier transform that
essentially is a slicing up in time if the window is simple. The formula is

bf(!; �) = 1Z
�1

f(t)w(t� �) exp(�2�i!t)dt;

where w(t � �) is a "window" function. However it is not self-adapting,
one has to discover the appropriate shape of the window function. The wavelet
transform can enable us to rectify these problems at the cost of increased free-
dom of choice: whereas the Fouruer transform is essentially unique there are an
in�nite number of substantially di¤erent wavelet transforms.

6.7.1 The wavelet transform

The wavelet transform provides us with a decomposition of a time series into
scale and time components, while the Fourier-transform gives only frequency
decomposition, and the Wold Representation Theorem only time decomposition.
As a simpli�cation one could say that the wavelet transform expresses how much
a time series changed around a certain date at di¤erent scales. It has been
likened to a prism through which one can observe the properties of an object
(the time series in our case) otherwise obscured. It is customary to relate it to
the Fourier-transform that assumes a similar task, but relies on the assumption
of homogeneity (stationarity), and does not account for local (localized in time)
changes. In the role of prism wavelets have been proved to improve on Fourier-
analysis, at least in the life and earth sciences. In other words, to characterize
complex and non-stationary systems this methodology has advantages.

6.7.2 Continuous wavelet transform

It starts from the windowed Fourier transform, but replaces w(t��) exp(�2�i!t)
with some (time dependent) �lter:

W (s; �) =

1Z
�1

x(t)
1p
s
 �(

t� �
s
)dt;
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where  (t) is called a wavelet n having (somewhat simpli�ed) properties
1Z
�1

 (t)dt = 0 and

1Z
�1

j (t)j2 dt = 1. Here the frequency of the Fourier trans-

form is replaced with scale (s):The wavelet transform is a convolution:

(f � g)(�) =
Z
f(t)g(� � t)dt;

for any scales.
Continuous wavelets are highly redundant transformations, when calculated

from an actual time series the computation produces a matrix with much more
entries than the original series. They must be distinguished from discrete
wavelets that speci�cally strive for data compression and are used much less
in research than in engineering. In economic applications the most commonly
used mother wavelet is the Morlet wavelet.
What kind of statistics can we derive from the wavelet transfom to analyze

data? The Wavelet Power Spectrum (WPS) is the squared wavelet transform.
WPS �gures can be created with the following interpretation: a point with
abscissa (time period), and ordinate (scale) expresses the power attributable to
that time and scale. The integral of the WPS equals the variance of the time
series, thus the WPS can be interpreted as producing variance decomposition.
If we have two series the cross wavelet transform is de�ned as the conjugate

product of the two individual transforms. From this one can de�ne the Wavelet
Coherency (WC) measure which is similar to the cross-autocovariance function,
but having also a time dimension. The cross wavelet transform makes possible
the calculation of phase di¤erences, establishing lead-lag relationships between
the series. We can calculate the most powerful time and the most powerful
scale statistics, where the WC values are averaged time- and scale-wise, and
then arg-maxed according to time and scale, respectively.

6.7.3 The orthogonal wavelet transform

It starts from the Fourier-series, and looks for an orthogonal representation of
x(t):

x(t) =
1X

j;k=�1
W (j; k)'(t; k; j);

where f'(t; k; j)g is an orthonormal set of functions. It is the inverse of the
wavelet transform resulting in the coe¢ cients W (j; k).
The construction of this orhogonal representation starts with a mother wavelet

and a father wavelet. The simplest is the Haar mother wavelet

 (t) =

8<: �1; 0 � t < 1
2

1; 12 � t < 1
0; else

9=;
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and the Haar father wavelet:

�(t) =

�
1; 0 � t < 1
0; else

�
The daughters are de�ned as

 j;k(t) = 2
j
2 (2jt� k);

whereas the scaling functions as:

�k(t) = �(t� k):

Then the union f�k(t)g[
�
 j;k(t)

	
for all integers j; k forms an orthonormal

basis of L2.
For practical purposes it is important that it can be proved that there is a

general method for �nding an orthonormal basis, starting from an appropriate
father or mother wavelet.

The discrete orthogonal wavelet transform in practice For �nite data
we have to choose a �nite basis. We assume that n = 2J and make the restriction
k = 2j .
For instance the 8-sample Haar-wavelet (without normalizing constants)

looks like: 266666666664

�1 1
�1 1

�1 1
�1 1

�1 �1 1 1
�1 �1 1

�1 �1 �1 �1 1 1 1 1
1 1 1 1 1 1 1 1

377777777775
:

The �rst wavelet in this case is

 1;1(t) =

8<: �1; 0 � t < 1
23

1; 123 � t < 1
22

0; else

9=; ;

and the �fth:

 2;1(t) =

8<: �1; 0 � t < 1
22

1; 122 � t < 1
2

0; else

9=; :

The wavelet transform (without normalizing constants) is
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x2 � x1
x4 � x3
x6 � x5
x8 � x7
(x3 + x4)� (x3 + x4)
(x7 + x8)� (x5 + x6)
(x5 + x6 + x7 + x8)� (x1 + x2 + x3 + x4)
(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8):

The orthogonal wavelet transform enables multiresolution analysis:

x = w0 + w1 + :::+ wJ + vJ ;

where each wj is in the orthogonal complement of Vj (where vj 2 Vj :)
The wavelet transform and its inverse can be written in matrix form as

xw = Wx

x = WTxw =
X
(WT )ix

w
i ;

providing a scale-wise decomposition:

x =
X
j

xj :

This is the multiresolution analysis in practice. Its main use is data com-
pression in computer science, but it is also used for data de-noising.
A problem with the orthogonal wavelet transform is that it is sensitive to

"initial" conditions, and it requires "decimated" data. A possible solution is the
Maximal Overlap DWT (MODWT). It does not restrict observations to k = 2j ,
however it is not orthogonal and is redundant. Its construction requires arti�cial
data. But reconstruction is possible, and gives a multiresolution analysis with
preserving variance. Both the orthogonal wavelet transform and the MODWT
have been used in economics for estimating regressions at di¤erent scales.
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