
Common priors for generalized type spaces∗

Miklós Pintér†

October 14, 2011

”Give me a place to stand on,
and I will move the Earth.”

Archimedes

Abstract

The notion of common prior is well-understood and widely-used in
the incomplete information games literature. For ordinary type spaces
the common prior is defined.

Pintér and Udvari (2011) introduce the notion of generalized type
space. Generalized type spaces are models for various bonded ratio-
nality issues, for finite belief hierarchies, unawareness among others.
In this paper we define the notion of common prior for generalized
types spaces.

Our results are as follows: the generalization (1) suggests a new
form of common prior for ordinary type spaces, (2) shows some quan-
tum game theoretic results (Brandenburger and La Mura, 2011) in
new light.
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1 Introduction

The common prior is a central notion of games with incomplete information
since the very beginnings (Harsányi, 1967-68). The intuition behind the
common prior is clear, it aggregates all information of the model, it works as
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a source of all information, that is, e.g. the players’ beliefs can be deduced
from it.

For ordinary type spaces (Heifetz and Samet, 1998) the common prior
is known, it grabs the same intuitions as that for finite models it gives. In
type spaces the players’ beliefs are explicitly given by the so called type
functions, so a common prior is a probability measure which is compatible
with the players’ beliefs. This compatibility can be well-defined by the notion
of conditional probability.

Pintér and Udvari (2011) introduce the notion of generalized type space.
Generalized type spaces are models for ordinary belief hierarchies and for
various bounded rationality issues, e.g. for finite hierarchies of beliefs, un-
awareness among others. In other words, generalized type spaces are gener-
alizations of ordinary type spaces (Heifetz and Samet, 1998), that is, every
ordinary type space is a generalized type space.

In this paper we define the common prior for generalized type spaces.
The intuition is the same as for ordinary type spaces, that is, a certain
compatibility with the players’ beliefs is required. Since in generalized type
spaces the players’ beliefs can be very different from those in ordinary type
spaces we define the common prior as a common type function, a mapping
which assign a probability measure to each state of the world, in a way
such that, at each state of the world the players’ beliefs (given by the type
functions) are compatible with the given probability measure. However, in
generalized type spaces the players might have beliefs about very few events
only, so the word compatibility means less in this case than in the case of
ordinary type spaces.

In the setting of generalized type spaces compatibility means at each
state of the world each player cannot learn more or less from the common
prior than that she learns from her own type function. In generalized type
spaces, however, it can happen that each player knows nothing, in which case
any mapping is a common prior. Therefore, the common priors can be very
different for the very same generalized type space.

Technically, while in ordinary type spaces with common prior the type
functions are conditional probabilities, this is not the case for generalized
type spaces. In the generalized type space setting the type functions are less
than conditional probabilities, so they can vary more.

Furthermore, in this paper we work with purely measurable generalized
type spaces, so with a generalization of Heifetz and Samet (1998)’s type space.
Even if most of the works in the literature use topological type spaces, see
Böge and Eisele (1979); Mertens and Zamir (1985); Heifetz (1993); Branden-
burger and Dekel (1993); Mertens et al (1994); Heifetz and Samet (1999);
Pintér (2005) among others, the results of Heifetz and Samet (1998); Pintér
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(2008, 2010) tell us to prefer the purely measurable to the topological frame-
work.

We mention two results. First, in this paper we define the common prior
as a common type function. This approach fits well to the type space setting,
and makes possible for us to discuss the problem in an elegant form. However,
this implies also that we have to reformulate the common prior for ordinary
type spaces. This reformulation does not bring new issues for ordinary type
spaces, so we can say our notion of common prior is the same as the one
well-known in the literature (for ordinary type spaces).

Second, our notion of common prior can interpret the quantum corre-
lation ”device” in Brandenburger and La Mura (2011)’s paper. In other
words, we can interpret the quantum correlation as an ordinary correlation
for boundedly rational players, that is, as a common prior for generalized
type spaces. In this sense, our result shows quantum game theoretic results
in new light.

Finally, we give an explanation for the citation from Archimedes in the
head of the paper. One of the main difference between ordinary and gen-
eralized type spaces is that the ordinary type spaces are Harsányi type
spaces, while the the generalized type spaces are not necessarily Harsányi
type spaces, that is, in ordinary type spaces the players know their own
types, while it needs not to happen in generalized type spaces. That a player
knows her own type is “the place to stand on“. If this ”place” is missing,
then the players can do less, but it makes possible for external factors (com-
mon prior) to coordinate the players’ beliefs more subtle ways than in models
where the players know their own types. Definitely, Archimedes did not mean
the same that we.

The setup of the paper is as follows. In the next section we introduce
the notion of common prior for generalized type spaces in a finite, simple
setting. In Section 3 we explain the introduced notion by examples. Section
4 is about applications of the previously discussed models. The last section
briefly concludes. In an appendix we give the notion of common prior for the
general setting.

2 Common priors for generalized type spaces

In this section we introduce the notion of common prior for generalized type
spaces in the finite setting. We give the mathematically precise definitions
in Appendix A.

In our model we assume that the player set N is a finite set, that is, there
are finitely many players, and N0 = N ∪ {0} is for the extended player set,
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which contains the nature (Player 0) as an extra player.
In generalized type spaces the players can have very different beliefs. For

instance it can happen that at a certain state of the world a player has a belief
which can be represented by a probability distribution defined on all subsets
of the set of the states of the world, while at an other state of the world the
player has a belief which can be represented by a probability distribution
defined only on some subsets of the set of the states of the world.

First, we introduce the notion of states of the world.

Definition 1. Let the finite set Ω be the state of the states of the world
and for each i ∈ N0, let Mi be a partition on Ω. Partition Mi represents
Player i’s information, M0 is for the information available for the nature.
Let M = ∨i∈N0Mi, that is M is the coarsest partition among the partitions
which contain partitions Mi.

The above notion is from Aumann (1999). The states of the world are
the basic elements of the world, each point of Ω is for one specific state of
the world. The partitions are for modeling the information of the players.
PartitionMi gives which states Player i can distinguish (by observation) and
which she cannot. Partition M0 is for the information the model provides,
but does not belong to any player. We say this is the nature’s information.

Usual in the literature that the parameters of the modeled situation, to
which we also refer as the types of the nature, are given by a parameter set
(Mertens and Zamir, 1985; Brandenburger and Dekel, 1993; Heifetz, 1993;
Pintér, 2005). We also follow this way, and take set S as a parameter set.
Moreover, we assume that S is a finite set, and each subset of S is an event.

We have already mentioned above that in generalized type spaces the
players’ beliefs can be truncated, that is, those need not be defined at any
event; we denote the class of this type of beliefs by ∆(Ω,M). Formally,
∆(Ω,M) is for all probability measures (distributions) defined on certain sub-
sets of Ω, ∆(Ω,M) = {µ is a probability measure defined on the field gen-
erated by partition N : N is coarser than M}. If at a certain state of the
world a player’s belief is a probability measure such that is not defined at
event A ⊆ Ω, then we say that the player is not aware about event A.

Definition 2. Let (Ω,Mi)i∈N0 be the set of the states of the world (see
Definition 2). The generalized type space based on parameter space S is a
tuple (S,Ω, {Mi}i∈N0 , g, {fi}i∈N), where

• g : Ω → S is such that for each A ⊆ S there exists M1,M2, . . . ,Mn ∈
M0 ∪ {∅} such that g−1(A) = ∪nj=1Mj,
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• fi : Ω → ∆(Ω,M) is such that for each A ⊆ ∆(Ω,M) there exists
M1,M2, . . . ,Mn ∈Mi ∪ {∅} such that f−1

i (A) = ∪nj=1Mj, i ∈ N .

Mapping g connects the parameter set to the set of the states of the
world. Moreover, g preserves the information given by partition M0, that
is, the g-inverse image of any event in the parameter set is expressible by
the elements of partition M0. In other words, if two states of the world are
indistinguishable by partitionM0, then these points have the same g-image.

fi is the type function of Player i. The type function gives the player’s
beliefs at the states of the world. fi also preserves Player i’s information,
that is, if the two states of the world are indistinguishable by Player i, then
those have the same fi-image.

In the generalized type spaces the beliefs can vary much, the players need
not be aware of all events, they might know their types or not, therefore,
many things can happen. The model of generalized type spaces encompasses
both Harsányi and Non-Harsányi type spaces (Heifetz and Mongin, 2001)
and more.

In general it can happen that at a state of the world the players’ beliefs are
inconsistent, that is, the players’ beliefs are very different. This can happen
basically because of two things. First, when the players have different piece of
information about the state of the world, so the differences in their beliefs are
due to quantity of information available for the players, in this case there is
no substantial disagreement about the state of the world among the players.

Second, when the differences of the players’ beliefs are due to substantial
disagreement, in other words, when the information available for the player
differ in its quality not only in its quantity. Typically this happens when the
players can agree to disagree on a commonly known event (Aumann, 1976).
In the first case we say the generalized type space has (a) common prior(s),
in the second we say it has not.

Definition 3 (Common prior for generalized type spaces). Consider general-
ized type space (S, {Ω,Mi}i∈N0 , g, {fi}i∈N). f : Ω→ ∆(Ω,M) is a Common
Prior, if for each ω ∈ Ω, i ∈ N , A ⊆ Ω such that fi(ω) is defined at event A:

f(ω)(A) =
∑
ω∈Ω

fi(ω)(A)f(ω) .

The notion of Common Prior formalizes the intuition we have discussed
above. If there is a Common Prior for a generalized type space, then there is
no substantial differences in the players’ beliefs, that is, those are consistent.

Remark 4. We do not discuss it in details, only mention it, that Aumann
(1976)’s result holds for generalized type spaces too. Formally, for any gen-
eralized type space having Common Prior, if at a state of the world event
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A is commonly known, then it cannot be commonly known that the players’
beliefs about event A at the state of the world do not coincide; that is, the
players cannot agree to disagree.

It is also worth mentioning that the type functions fi are not (necessarily)
conditional probabilities. If type functions fi were conditional probabilities,
then those should meet the following condition, for each ω ∈ Ω, i ∈ N ,
A,B ⊆ Ω such that fi(ω) is defined at event A, and B ∈Mi:

f(ω)(A ∩B) =
∑
ω∈B

fi(ω)(A)f(ω) . (1)

The difference is obvious, if A ∩ B = ∅, then the conditional probability
must be 0 (f(ω)(B) > 0, fi(ω

′)(A), ω′ ∈ B in (1)), while this is not the case
in (3). In other words, since the generalized type spaces are not (necessarily)
Harsányi type spaces, the type functions are not (necessarily) conditional
probabilities.

3 Examples

In this section we provide two examples for illustrating the notions introduced
in the previous section. The first example is about an ordinary Harsányi type
space.

Example 5. Take generalized type space (S, {Ω,Mi}i∈N0 , g, {fi}i∈N), where

• N = {1, 2},

• S = {∗},

• Ti = {t1i , t2i }, i ∈ N ,

• Ω = S × T1 × T2,

• M0 = {Ω}, Mi = {{∗} × {t1i } × {T−i}, {∗} × {t2i } × {T−i}}, i ∈ N ,

• for each Player i ∈ N and state of the world ω ∈ Ω: fi(ω) is defined at
each subset of Ω, and fi(ω)({∗} × {ti} × {t1−i}) = fi(ω)({∗} × {ti} ×
{t2−i}) = 1

2
.

This type space is a Harsányi type space, that is, each player knows her
own type, more precisely, each player believes with probability 1 her own
type, and at each state state of the world, each player’s belief is defined on
M, that is, each player is aware, so can form beliefs, about any event.
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Take state of the world ω = (∗, t1, t2) ∈ Ω. If f is a common prior, then
f(ω)({∗} × {t1} × {t2}) = f(ω)({∗} × {t1} × T2 \ {t2}) = f(ω)({∗} × T1 \
{t1}×{t2}) = f(ω)({∗}×T1 \ {t1}×T2 \ {t2}). So the unique common prior
has the same value at each state of the world, see Table 1 (we do not put the
only state of the nature in the model, because that does not count).

(t11, t
1
2) (t11, t

2
2) (t21, t

1
2) (t21, t

2
2)

(t11, t
1
2) 1/4 1/4 1/4 1/4

(t11, t
2
2) 1/4 1/4 1/4 1/4

(t21, t
1
2) 1/4 1/4 1/4 1/4

(t21, t
2
2) 1/4 1/4 1/4 1/4

(2)

Table 1: The common prior for the Harsányi type space of Example 5

Therefore, in this example we have got a ”classical” common prior, that
is, we can use a unique distribution, see Table 2.

T1 \ T2 t12 t22
t11 1/4 1/4
t21 1/4 1/4

Table 2: The “classical“ common prior for the Harsányi type space of Ex-
ample 5

In the above example we have seen that in certain cases the common
prior has the same value at each state of the world, put it differently, we
can say that the common prior is a probability distribution (measure) on the
set of the states of the world. In the following proposition we formalize this
observation, but first, we introduce a notion.

Definition 6. Consider generalized type space (S, {Ω,Mi}i∈N0 , g, {fi}i∈N)
such that it has a common prior f . For each state of the world ω ∈ Ω let
undirected graph (Vω, Eω) be defined as Vω = {B ∈ ∪i∈NMi : f(ω)(B) > 0},
and BB′ ∈ Eω, if there exist A,A′ ∈ ∨i∈N0Mi and B′′ ∈ ∨i∈N0Mi such that
A ⊆ B ∩B′′, A′ ⊆ B′ ∩B′′, and f(ω)(A), f(ω)(A′) > 0.

Now, we can provide the above mentioned proposition.

Proposition 7. Take generalized type space (S, {Ω,Mi}i∈N0 , g, {fi}i∈N) such
that

1. it has a common prior f ,
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2. fi(ω) is defined at each event A ∈ ∨i∈N0Mi, ω ∈ Ω, i ∈ N ,

3. for each B ⊆Mi, ω ∈ B: fi(ω)(B) = 1, i ∈ N .

Then for all states of the world ω, ω′ ∈ Ω such that there exists B∗ ∈ ∧i∈NMi

such that

4. ω, ω′ ∈ B∗,

5. both (Vω ∩B∗, Eω) and (Vω′ ∩B∗, Eω′) are connected undirected graphs,

f(ω) = f(ω′) .

Proof. From Points 1., 2., 3. and 4. for each Player i ∈ N : fi(ω)(B∗) = 1.
Let A ∈ ∨i∈N0Mi be such that A ⊆ B∗ and f(ω)(A) > 0. Then for

each A′ ∈ ∨i∈N0Mi such that there exists Player i ∈ N , Bi ∈ Mi such that
A,A′ ⊆ Bi:

f(ω)(A) =
∑
ω∈Ω

fi(ω)(A)f(ω) =
∑
ω∈Bi

fi(ω)(A)f(ω) = fi(ωBi
)(A)f(ω)(Bi) ,

similarly,

f(ω)(A′) =
∑
ω∈Ω

fi(ω)(A′)f(ω) =
∑
ω∈Bi

fi(ω)(A′)f(ω) = fi(ωBi
)(A′)f(ω)(Bi) ,

where ωBi
∈ Bi.

Since f(ω)(A) > 0, f(ω)(Bi) > 0 and fi(·)(A) > 0:

f(ω)(A′)

f(ω)(A)
=
fi(·)(A′)
fi(·)(A)

,

that is, f(ω)(A′)
f(ω)(A)

is given by the generalized type space (by fi).

Since (Vω∩B∗, Eω) is connected (Point 5.), for each A′ ∈ ∨i∈N0Mi A
′ 6= A,

f(ω)(A′)
f(ω)(A)

is given (if A * B, then f(ω)(A′)
f(ω)(A)

= 0). Furthermore, we have the

equations: f(ω)(A′) = fi(ωBi
)(A)f(ω)(Bi), as many as | ∨i∈N0 Mi| − 1 (the

number of atoms minus 1), and equation
∑

A′∈∨i∈N0
Mi

f(ω)(A′) = 1; these

equations are (linearly) independent; and we have as many as | ∨i∈N0 Mi|
unknowns (the probabilities f(ω)(A′) and f(ω)(A)), so f(ω) is well-defined,
that is, it is uniquely determined by the generalized type space (by the type
functions).

Similarly, the above argument can be applied to f(ω′), so f(ω′) is well-
defined too, therefore f(ω) = f(ω′). �
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In the second example the common prior is neither “classical“ nor unique.

Example 8. Take generalized type space (S, {Ω,Mi}i∈N0 , g, {fi}i∈N), where

• N = {1, 2},

• S = {∗},

• Ti = {t1i , t2i }, i ∈ N ,

• Ω = S × T1 × T2,

• M0 = {Ω}, Mi = {{∗} × {t1i } × {T−i}, {∗} × {t2i } × {T−i}}, i ∈ N ,

• for each Player i ∈ N and state of the world ω ∈ Ω: fi(ω) is defined only
onMi, and fi(ω)({∗}×{t1i }×{T−i}) = fi(ti)({∗}×{t2i }×{T−i}) = 1

2
,

i ∈ N .

Then it is a slight calculation to see that mapping given in Table 1 is a
common prior for this type space. However, so is the mapping given in Table
3 (this numerical example is from Abramsky and Brandenburger (2011)).

(t11, t
1
2) (t11, t

2
2) (t21, t

1
2) (t21, t

2
2)

(t11, t
1
2) 3/8 3/8 1/8 1/8

(t11, t
2
2) 1/8 1/8 3/8 3/8

(t21, t
1
2) 3/8 1/8 3/8 1/8

(t21, t
2
2) 1/8 3/8 1/8 3/8

(3)

It is worth noticing that the two common priors provided in Example 8
are very different. The first one (Table 1) can be interpreted as there is no
relation among the states of the world, however, the second (Table 3) shows
a very subtle and smart relation among the states of the world.

4 Applications

By generalized type spaces we can model finite belief hierarchies, unaware-
ness, and other various phenomena of bounded cognitive abilities (Pintér and
Udvari, 2011). In the “classical” models the common prior is a tool of coor-
dination. By common priors the players, more precisely, the players’ beliefs,
can be harmonized, so that the outcome of the game can Pareto outperform
the outcomes achievable without harmonization (Aumann, 1974, 1987).

For generalized type spaces the common prior can harmonize the players’
beliefs in smarter ways than that classical common priors do. This smarter
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harmonization allows outcomes to Pareto outperform those achieved by clas-
sical harmonizations.

Perhaps, the key point in general type spaces is that the players need not
know their own types. From the viewpoint of mathematics, it is not difficult
to formalize and handle this. However, it could be difficult to give a good
decision theoretic interpretation for this type of cognitive incapability of the
players.

One interpretation is Brandenburger and La Mura (2011)’s, who consider
games in extensive form. If a game does not meet the property of perfect
recall, then there might be decision points indistinguishable by the player,
that is, the decision points are in the same information set, and the decision
points are different only in the player’s previous moves. This setting can
be modeled as the player does not know her previous moves, that is, she
does not know her own strategy, which is equivalent with that she knows her
strategy, but does not her type. In other words, generalized type space can
be good frameworks for this kind of problems too.

Usually, the description of incomplete information models starts with
that the players learn their own types. In many cases, however, this is not
realistic. For instance, many people evaluate their own physical and mental
strength wrong. Many times we hear sentences like “I had thought I was
strong enough, but I was not“. Considering these uncertainties, and putting
them into a model, we get generalized type spaces.

Filar and Beck (2007)’s model is another approach. In their model the
players’ incompetence makes that the players’ control over their actions is
not 100%, that is, even if a player intends to take a certain action, she plays
a different, maybe mixed, action. Filar and Beck (2007)’s approach is similar
to the trembling-hand models, but not the same. In their model the players
know their incapability of playing the exact action, and they decide by using
this knowledge (an other difference is that in Filar and Beck (2007) the hand
can tremble in strange and not uniform ways too).

Therefore, putting Filar and Beck (2007)’s idea in the incomplete informa-
tion setting, the players know their own types, but not their own strategies.
However, this is equivalent with that, the players know their own strategies
but not their own types. That is, we get generalized type spaces again.

5 Conclusion

In this paper we have introduced the notion of common prior for generalized
type spaces. We have showed that a generalized type space can be compatible
with substantially different common priors.
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Moreover, for generalized type spaces the common priors can harmonize
the players’ beliefs on very different levels. In Example 8 one of the two
common priors gives no harmonization at all (see Table 1), while the other
(see Table 3) provides a very smart harmonization of the players’ beliefs.
This phenomenon rises substantial decision theoretical questions.

Example 8 clearly shows that the common prior can be more than the
”sum” of the players’ information (Pintér (2011) concludes the same on a
different basis). Therefore, in certain cases generalized type spaces are not
complete descriptions of decision theoretic situations. This, again, shows
that it is not enough to take account of the players’ beliefs (generalized type
spaces), the relation of their beliefs should be also considered (common prior).

A Common prior – the abstract model

In this section we give the mathematically precise definitions of the notions
used in the paper. We do not give the interpretations for the notions we
discuss here, the reader can find those in the main text and in Pintér and
Udvari (2011).

Notations : Let N be the set of the players, w.l.o.g. we can assume that
0 /∈ N , and let N0 = N ∪ {0}, where 0 is for the nature as a player.

For any set system A ⊆ P(X): σ(A) is the coarsest σ-field which contains
A.

First we introduce the notion of generalized type space. We generalize or-
dinary type spaces, and use terminologies, notions similar to those of Heifetz
and Samet (1998).

Definition 9. Let X be a space, M be a class of σ-fields on set X and
∆(X,M) be the class of probability measures on the σ-fields of M, formally
∆(X,M) = {µ ∈ ∆(X,M) :M ∈M}. Then the σ-field A∗ on ∆(X,M) is
defined as follows:

A∗ = σ({{µ ∈ ∆(X,M) : µ(A) ≥ p}, A ∈M, p ∈ [0, 1]}) .
In other words, A∗ is the smallest σ-field among the σ-fields which contain
the sets {µ ∈ ∆(X,M) : µ(A) ≥ p}, where M ∈ M, A ∈ M and p ∈ [0, 1]
are arbitrarily chosen.

Notice that A∗ is not a fixed σ-field, we mean, it depends on the measur-
able spaces on which the probability measures are defined.

Assumption 10. Let the parameter space (S,A) be an arbitrary measurable
space.
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Henceforth we assume that (S,A) is a fixed parameter space which con-
tains all states of the nature. We can think of S as a set which encompasses
all the not commonly known parameters of the considered situation.

Definition 11. Let Ω be the space of the states of the world and for each
i ∈ N0: let Mi be a σ-field on Ω. The σ-field Mi represents Player i’s
information, M0 is for the information available for the nature, hence it
is the representative of A, the σ-field of the parameter space S. Let M =
σ(∪i∈N0Mi), the smallest σ-field which contains σ-fields Mi.

For the sake of brevity, henceforth – if it does not make confusion – we
do not indicate the σ-fields. E.g. instead of (S,A) we write S, or ∆(S)
instead of (∆(S,A),A∗). However, in some cases we refer to the non-written
σ-field: e.g. A ∈ ∆(X,M) is a set of A∗, that is, it is a measurable set in
the measurable space (∆(X,M),A∗), but A ⊆ ∆(X,M) keeps its original
meaning: A is a subset of ∆(X,M).

Definition 12. Let (Ω, {Mi}i∈N0) be a space of the states of the world (see
Definition 11). The generalized type space based on the parameter space S is
a tuple (S,Ω, {Mi}i∈N0 , g, {fi}i∈N), where

1. g : Ω→ S is M0-measurable,

2. fi : Ω→ ∆(Ω,M) is Mi-measurable, i ∈ N ,

where M = {N is a σ-field on Ω : N ⊆M}.

The generalized type spaces are not Harsányi type spaces (Heifetz and
Mongin, 2001), that is, the players do not necessarily know their own types,
more precisely, they do not necessarily believe with probability 1 their own
types.

Definition 13 (Common prior for generalized type spaces). Consider gen-
eralized type space (S, {(Ω,Mi)}i∈N0 , g, {fi}i∈N). f : Ω → ∆(Ω,M) is a
common prior, if for each ω ∈ Ω, i ∈ N , A ∈ M such that fi(ω) is defined
at event A:

f(ω)(A) =
∫
Ω

fi(·)(A) df(ω) .

The common prior is a ”universal” type function, a type function which
summarizes the beliefs of all the players at each state of the world. In other
words, by a common prior the differences in the player’s beliefs are due to the
quantity of information and not to the quality of the information available
to the players.
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