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Abstract

We generalize exactness to games with non-transferable utility (NTU). A game is
exact if for each coalition there is a core allocation on the boundary of its payoff set.

Convex games with transferable utility are well-known to be exact. We consider
five generalizations of convexity in the NTU setting. We show that each of ordinal,
coalition merge, individual merge and marginal convexity can be unified under NTU
exactness. We provide an example of a cardinally convex game which is not NTU
exact.

Finally, we relate the classes of Π-balanced, totally Π-balanced, NTU exact, to-
tally NTU exact, ordinally convex, cardinally convex, coalition merge convex, indi-
vidual merge convex and marginal convex games to one another.
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1 Introduction

Convex cooperative games with transferable utility (TU) introduced by Shapley (1971)
arise from a wide range of applications. Airport games (Littlechild and Owen, 1973),

∗Department of Finance, Corvinus University of Budapest. The author would like to thank the “Ku-
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bankruptcy games (Aumann and Maschler, 1985), sequencing games (Curiel, Pederzoli,
and Tijs, 1989) and standard tree games (Granot, Maschler, Owen, and Zhu, 1996) are
all convex. Recently, Pulido and Sánchez-Soriano (2009) studied convex games with a
coalitional structure.

Convex TU games are exact (Schmeidler, 1972). A game is exact if for each coalition
there is a core allocation such that the coalition only gets its stand-alone value. Calleja,
Borm, and Hendrickx (2005) show that the class of multi-issue allocation games coincides
with the class of non-negative exact games. Csóka, Herings, and Kóczy (2009) demonstrate
that the class of exact games equals the class of risk allocation games with no aggregate
uncertainty. Branzei, Tijs, and Zarzuelo (2009) use exactness as one of the properties
characterizing convex multi-choice games. Casas-Méndez, Garćıa-Jurado, van den Nouwe-
land, and Vázquez-Brage (2003) show that if you take any exact game and a coalitional
structure, then the resulting coalitional game will be quasi balanced. Quasi balancedness
is a requirement under which their proposed solution concept, the coalitonal τ -value can
be defined.

Although transferable utility has proved itself to be a very valuable workhorse, it is a re-
strictive assumption, and generalizations of convexity and exactness to the non-transferable
utility case are highly desired. Vilkov (1977) and Sharkey (1981) have extended convexity
to games with non-transferable utility (NTU) to define ordinal and cardinal convexity,
respectively. Hendrickx, Borm, and Timmer (2002) analyze coalition merge convexity, in-
dividual merge convexity, and marginal convexity in an NTU setting. The aforementioned
five classes of NTU convex games do not coincide in general. The only general result (re-
stated in this paper as Theorem 2.11) is that coalition merge convexity implies individual
merge convexity, and individual merge convexity implies marginal convexity.

In this paper we generalize exactness to the NTU setting. An NTU game is exact if
for each coalition there is a core element on the boundary of its payoff set, meaning that
this coalition does not necessarily benefit from the gains of forming the grand coalition
in an allocation which is robust against all coalitional deviations. We show that each of
ordinal, coalition merge, individual merge, and marginal convexity implies NTU exactness.
We provide an example of a cardinally convex game which is not NTU exact.

The structure of the paper is as follows. We start with the notation and the necessary
definitions for TU and NTU games. In Section 3 we define NTU exactness and from this
perspective analyze the five classes of NTU convex games. In Section 4 we conclude by
relating the various classes of NTU games to one another.

2 Notation, Definitions, Existing Results

Let N = {1, . . . , n} denote the finite set of players, 2N = {C | C ⊆ N} is the power set of
N , N = 2N \ {∅} is the collection of coalitions, the non-empty subsets of N. Let R denote
the set of all real numbers. RN is the n-dimensional Euclidean space generated by the set
of players. An element of RN is denoted by a vector x = (xi)i∈N . For a coalition C ∈ N ,
let xC = (xi)i∈C denote the restriction of x on C. For x, y ∈ RN , y ≥ x denotes yi ≥ xi
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for all i ∈ N , and y À x denotes yi > xi for all i ∈ N .
For a set A ⊆ RN , the symbols cl A, ∂A and int A denote, respectively, the closure, the

boundary and the interior of A. For x ∈ RN , x ∈ cl A if there exists a sequence (xk)k∈N
with xk ∈ A for all k ∈ N and (xk)k∈N → x; x ∈ ∂A if x ∈ cl A∩ cl (RN \A); and x ∈ int A
if x ∈ A \ ∂A.

2.1 Transferable Utility Games

A value function v : 2N → R satisfying v(∅) = 0 gives rise to a cooperative game with
transferable utility (TU game, for short) (N, v). Let ΓTU denote the set of TU games with
player set N . A utility allocation is a vector x ∈ RN , where xi is the payoff of player i ∈ N .
For a coalition C ∈ N , let x(C) =

∑
i∈C xi. An allocation x ∈ RN is called efficient if

x(N) = v(N), individually rational if xi ≥ v({i}) for all i ∈ N, and coalitionally rational
if x(C) ≥ v(C) for all C ∈ N . The core is the set of efficient and coalitionally rational
allocations.

Shapley (1971) and Schmeidler (1972) introduce exact TU games.

Definition 2.1. A TU game (N, v) is exact if for each C ∈ 2N there exists a core allocation
x such that x(C) = v(C).

Let ΓTU
e denote the class of exact TU games with player set N . Convex TU games

(Shapley, 1971) can be defined and characterized as follows.

Definition 2.2. A TU game (N, v) is convex if it satisfies the following three equivalent
conditions:

∀S, T ∈ 2N : v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), (1)

∀U ∈ 2N ;∀S ( T ⊆ N \ U : v(S ∪ U)− v(S) ≤ v(T ∪ U)− v(T ), (2)

∀i ∈ N ; ∀S ( T ⊆ N \ {i}: v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ). (3)

Let ΓTU
c denote the class of convex TU games with player set N .

A permutation of the players in N is a bijection σ : {1, . . . , n} → N , where σ(i) denotes
which player in N is at position i, and σ−1(i) denotes the position of player i. Let ΣN denote
the set of all permutations on N . For a permutation σ ∈ ΣN , P σ

i = {j ∈ N | σ−1(j) <
σ−1(i)} denotes the coalition of players which precede i with respect to the order σ. In a
permutation σ ∈ ΣN , mσ

i (v) = v(P σ
i ∪ {i}) − v(P σ

i ) denotes the marginal contribution of
player i to the preceding players, and mσ(v) = (mσ

1 (v),mσ
2 (v), . . . , mσ

n(v)) is the vector of
marginal contributions. Shapley (1971) and Ichiishi (1981) characterize convex TU games
as follows.

Theorem 2.3. The TU game (N, v) is convex if and only if mσ(v) belongs to the core of
(N, v) for all permutations σ ∈ ΣN .

Theorem 2.3 directly implies the following theorem.
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Theorem 2.4. If a TU game (N, v) is convex, then it is exact, ΓTU
c ⊆ ΓTU

e .

For a TU game (N, v) and a coalition C ∈ N the subgame (C, vC) is obtained by
restricting v to subsets of C. Following Biswas, Parthasarathy, Potters, and Voorneveld
(1999), we define totally exact TU games.

Definition 2.5. A TU game (N, v) is totally exact if for every C ∈ N its subgame (C, vC)
is exact.

Let ΓTU
te denote the class of totally exact TU games with player set N . Biswas,

Parthasarathy, Potters, and Voorneveld (1999) show the following theorem.

Theorem 2.6. A TU game is totally exact if and only if it is convex, that is ΓTU
te = ΓTU

c .

2.2 Non-transferable Utility Games

A cooperative game with non-transferable utility (NTU game, for short) (N, V ) is a family
of sets V = (V (S))S∈2N satisfying the following assumptions:

V (∅) = ∅, (4)

V (S) = Vp(S)× RN\S, where Vp(S) ⊆ RS, for all S ∈ N , (5)

0N ∈ V (S) for all S ∈ N , (6)

V (N) is closed, (7)

if x ∈ V (S), y ∈ RN , yS ≤ xS, then y ∈ V (S) (known as comprehensiveness), (8)

the sets V +
p (S) = RS

+ ∩ Vp(S) are bounded for all S ∈ N . (9)

Let ΓNTU denote the set of NTU games with player set N .
The core C(V ) of an NTU game (N, V ) ∈ ΓNTU consists of those elements x ∈ V (N)

for which it holds that there exist no S ∈ N and y ∈ V (S) such that xS ¿ yS, which by
comprehensiveness is equivalent to x /∈ int V (S) for any S ∈ N . Therefore,

C(V ) = V (N) \
⋃

S∈N
int V (S). (10)

Predtetchinski and Herings (2004) define Π-balancedness, which is a necessary and
sufficient condition for the core in a non-transferable utility game to be non-empty. Let
ΓNTU

Π−b denote the class of Π-balanced NTU games with player set N .
For an NTU game (N, V ) and a coalition S ∈ N a subgame (S, V S) is obtained by

restricting V to subsets of S. It holds that V S(T ) ⊆ RS for all T ⊆ S. We define
V S(S) = cl Vp(S) to have a closed payoff set for the grand coalition in the subgame. Let
ΓNTU

t−Π−b denote the class of totally Π-balanced NTU games with player set N , the class of
games with a non-empty core in each subgame.

There are various classifications of NTU games. For surveys see Peleg and Sudhölter
(2003) or Ichiishi (1993). We will only give those definitions that we use later in the paper.
NTU convex games have been defined in five ways.
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Definition 2.7. (Vilkov, 1977) An NTU game (N, V ) is ordinally convex if for all S, T ∈ N
we have V (S) ∩ V (T ) ⊆ V (S ∩ T ) ∪ V (S ∪ T ).

Let ΓNTU
oc denote the class of ordinally convex NTU games with player set N . Ordinal

convexity has numerous applications. Peleg (1984) transforms a social choice situation
with a convex effectivity function into an NTU game which is ordinally convex. Demange
(1987) provides two examples: a model of public goods and a production economy with
increasing returns to scale; Masuzawa (2003) adds N -person prisoners’ dilemma games and
oligopoly models to this class.

For S ∈ N let V ◦(S) = {x ∈ V (S) | xi = 0 for all i ∈ N \S} and let V ◦(∅) = 0N . Note
that V ◦(S) = Vp(S)× {

0N\S}
, for all S ∈ N .

Definition 2.8. (Sharkey, 1981) An NTU game (N, V ) is cardinally convex if for all
S, T ∈ N we have V ◦(S) + V ◦(T ) ⊆ V ◦(S ∩ T ) + V ◦(S ∪ T ).

Let ΓNTU
cc denote the class of cardinally convex NTU games with player set N .

Hendrickx, Borm, and Timmer (2002) introduce the following three marginalistic in-
terpretations of NTU convexity.

Equation (2) in Definition 2.2 of convexity for TU games states that for any coalition
U , the marginal contribution of U to a coalition is at least equal to U ’s contribution to
a smaller coalition. The same idea in the NTU setting is formulated as coalition merge
convexity.1 Let ΓNTU

cmc denote the class of coalition merge convex NTU games with player
set N .

Equation (3) in Definition 2.2 of convexity for TU games says that for any player i, the
marginal contribution of i to some coalition is at least equal to i’s contribution to a smaller
coalition. The analogous concept in the NTU setting is called individual merge convexity.2

Let ΓNTU
imc denote the class of individual merge convex NTU games with player set N .

We now define the vector of marginal contributions for an NTU game.

Definition 2.9. Consider an NTU game (N, V ) and a permutation σ ∈ ΣN . The vector
of marginal contributions Mσ(V ) is defined by

Mσ
σ(j)(V ) = sup{yσ(j)|y ∈ V ({σ(1), . . . , σ(j)}),

∀i ∈ {1, . . . , j − 1} : yσ(i) ≥ Mσ
σ(i)(V )}

for all j ∈ {1, . . . , n}.3

Theorem 2.3 suggests the following convexity notion for NTU games.

Definition 2.10. An NTU game (N, V ) is marginal convex if for all σ ∈ ΣN we have
Mσ(V ) ∈ C(V ).

1For the definition of coalition merge convexity, we refer to the electronic supplement.
2For the definition of individual merge convexity, we refer to the electronic supplement.
3We use the convention sup(∅) = −∞.
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Let ΓNTU
mc denote the class of marginal convex NTU games with player set N .

The five notions of NTU convexity are not equivalent in general. Hendrickx, Borm,
and Timmer (2002) show that ordinal and cardinal convexity are not related to each other
and to the other three types of convexity. They also provide the following theorem on the
relation of the last three convexity notions.

Theorem 2.11. If an NTU game (N, V ) is coalition merge convex, then it is individual
merge convex, that is ΓNTU

cmc ⊆ ΓNTU
imc . If an NTU game (N, V ) is individual merge convex,

then it is marginal convex, that is ΓNTU
imc ⊆ ΓNTU

mc .

Since our definition of the NTU game is slightly different from the one of Hendrickx,
Borm, and Timmer (2002), we provide a proof of Theorem 2.11 in the electronic supple-
ment.

To illustrate the subtle differences between the various notions of NTU convexity, con-
sider the following example of an ordinally convex NTU game which is neither cardinally,
nor marginal, thus by Theorem 2.11 nor individual merge, nor coalition merge convex.

Example 2.12. (Hendrickx, Borm, and Timmer, 2002, Example 4.1.) Consider the fol-
lowing NTU game with player set N = {1, 2, 3}. Let

V ({i}) = {x ∈ R3 | xi ≤ 0} for all i ∈ N,

V ({1, 2}) = {x ∈ R3 | x1 ≤ 0, x2 ≤ 2},
V ({1, 3}) = {x ∈ R3 | x1 + x3 ≤ 1},
V ({2, 3}) = {x ∈ R3 | x2, x3 ≤ 0},

V (N) = {x ∈ R3 |
∑
i∈N

xi ≤ 2}.

To show that (N, V ) is ordinally convex, let S, T ∈ N and let x ∈ V (S)∩ V (T ). If S ⊆ T ,
T ⊆ S or S ∩ T = ∅, then ordinal convexity is easy to check. If S = {1, 2} and T = {1, 3},
then x1 ≤ 0 and thus x ∈ V (S ∩ T ). Otherwise,

∑
i∈N xi ≤ 2, thus x ∈ V (S ∪ T ).

Cardinal convexity of (N, V ) fails, since (0, 2, 0) ∈ V ◦({1, 2}) and (0, 0, 1) ∈ V ◦({1, 3}),
but (0, 2, 0) + (0, 0, 1) = (0, 2, 1) /∈ V ◦({1}) + V ◦(N).

Marginal convexity of (N, V ) is also not satisfied, since the vector of marginal con-
tributions corresponding to σ = (1, 2, 3), Mσ(V ) = (0, 2, 0) does not belong to the core:
coalition {1, 3} blocks it. Therefore, by Theorem 2.11, (N, V ) is neither individual merge,
nor coalition merge convex.

We will continue Example 2.12 in Examples 3.3 and 3.6.

3 Exact NTU Games

Theorem 2.4 claims that convex TU games are exact. In this section we generalize exactness
to the NTU setting and analyze the relationship of NTU exactness and the various notions
of NTU convexity.
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Definition 3.1. An NTU game (N, V ) is NTU exact if for each S ∈ N there exists a core
allocation x ∈ C(V ) such that x ∈ ∂V (S).

Let ΓNTU
e denote the class of exact NTU games with player set N . Every TU game

(N, v) with v(S) ≥ 0 for all S ∈ N gives rise to an NTU game (N, V ) by defining V (S) =
{x ∈ RN | x(S) ≤ v(S)} for all S ∈ N . Note that Assumptions (4)-(9) are satisfied by
(N, V ). It is a straightforward exercise to verify the following theorem.

Theorem 3.2. A TU game (N, v) is exact if and only if the corresponding NTU game
(N, V ) is NTU exact.

Note that if an NTU game (N, V ) is NTU exact, then each of its subgames has a core
element, since by definition for each S ∈ N there exists a core allocation x ∈ C(V ) such
that x ∈ ∂V (S), and x cannot be blocked in the subgame (S, V S) either. Thus exact NTU
games are a subset of totally Π-balanced games, ΓNTU

e ⊆ ΓNTU
t−Π−b.

Next, we check whether the ordinally convex NTU game in Example 2.12 is NTU exact.

Example 3.3. (Example 2.12 continued.) The NTU game (N, V ) in Example 2.12 is NTU
exact, since (0, 0, 2) is a core element on the boundary of V ({1}), V ({2}), and V ({1, 2});
(2, 0, 0) is a core element on the boundary of V ({2}), V ({3}), and V ({2, 3}); and (1, 1, 0)
is a core element on the boundary of V ({1, 3}).

If for all S ∈ N all core elements of the subgame (S, V S) could be extended to the
core of the original game by an appropriate choice for the elements outside S, then NTU
exactness would follow immediately from ordinal convexity, since core elements of (S, V S)
are on the boundary of V (S). Example 3.3 shows that NTU exactness of an ordinally
convex NTU game cannot be demonstrated in this way. The core of the subgame related
to coalition {1, 2} is {x ∈ R2 | x1 = 0, 0 ≤ x2 ≤ 2}. Note that only some elements in this
core can be extended to the core of the original game: {x ∈ R2 | x1 = 0, 0 ≤ x2 ≤ 1},
since if y1 = 0, 1 < y2 ≤ 2, y3 = 2 − y2, then coalition {1, 3} blocks allocation y in the
original game.

Peleg (1986) gives the following sufficient condition under which certain core elements
of a subgame in an ordinally convex NTU game can be extended to the core of the original
game.

Theorem 3.4. (Peleg, 1986, Corollary 2.10). Let (N, V ) be an ordinally convex game. Let
T ∈ N \ {N}, z ∈ V T (T ) such that z ∈ C(V T ) and for all R ⊆ T, R 6= T, z /∈ cl V T (R).
Then there exists an allocation x ∈ C(V ) such that xT = z.

In Example 3.3 let T = {1, 2} and take any z ∈ C(V T ). Since z1 = 0, we have that
z ∈ cl V T ({1}), hence Theorem 3.4 cannot be used to show that ordinally convex NTU
games are exact.

To proceed, we define the notion of a reduced game for the case where one player leaves
the grand coalition. This notion of reduced game originates from Greenberg (1985),
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Definition 3.5. Take any NTU game (N, V ), n ≥ 2, and a player i ∈ N . Define:

M =N \ {i}, m = n− 1,

αi = sup{xi | x ∈ V ({i})},
W (S) ={x ∈ RM | ∃β > αi such that (x, β) ∈ V (S ∪ {i})}, S ⊆ M.

P (S) =Vp(S)× RM\S, S ⊆ M.

Then, the reduced game (M,U) is given by:

U(S) =





{x ∈ RM | (x, αi) ∈ V (N)}, for S = M ,

∅, for S = ∅,
W (S) ∪ P (S), otherwise.

The definition of the reduced game is illustrated in the following example.

Example 3.6. (Example 2.12 continued.) If player 3 leaves the grand coalition in Example
2.12, then the derived reduced game looks as follows. U({1, 2}) = {x ∈ R2 | x1 + x2 ≤ 2},
U(∅) = ∅. Moreover, W ({1}) = {x ∈ R2 | x1 < 1}, W ({2}) = ∅, P ({1}) = {x ∈ R2 | x1 ≤
0} and P ({2}) = {x ∈ R2 | x2 ≤ 0} imply that U({1}) = {x ∈ R2 | x1 < 1} and
U({2}) = {x ∈ R2 | x2 ≤ 0}.

Note that the reduced game is not zero normalized and U({1}) is open. Moreover, all
the core elements of the reduced game {x ∈ R2 | x1 + x2 = 2, 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1}
can be extended to a core element of the original game by setting x3 = α3 = 0.

In general, a reduced game is not always an NTU game. However, Greenberg (1985)
shows the following lemma about reduced games of ordinally convex NTU games.

Lemma 3.7. (Greenberg, 1985) Consider an ordinally convex NTU game (N, V ). Then
the reduced game (M, U) is an ordinally convex NTU game.

In his proof Greenberg (1985) considers the setting when V (S) ⊆ RN
+ instead of V (S) ⊆

RN , for all S ∈ N , but due to Assumptions (6) and (8) all the arguments can be carried
over to our setting.

We show the following theorem.

Theorem 3.8. If an NTU game (N, V ) is ordinally convex, then it is NTU exact, that is
ΓNTU

oc ⊆ ΓNTU
e .

Proof. The proof proceeds by induction on the cardinality of N .

Let n = 1. If an NTU game (N, V ) is ordinally convex, then it is NTU exact, since
max{x | x ∈ V (N)} is well defined, is on the boundary of V (N) and belongs to the core.

Assume that the theorem holds for any game with less than n players. We will show
that it also holds for n players.

Let (N, V ) be an ordinally convex NTU game with n ≥ 2 players. Consider some
coalition S ⊆ N. We show that there exists y ∈ C(V ) such that y ∈ ∂V (S) and thereby
prove that (N, V ) is NTU exact.
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Let i ∈ S be arbitrarily chosen and let M = N \ {i}. Lemma 3.7 and the induction
hypothesis imply that the reduced game (M, U) is NTU exact. Then let x ∈ C(U) be
such that x ∈ ∂U(S \ {i}) if S 6= {i}, and let x ∈ C(U) be arbitraryly chosen otherwise.
Moreover, let y ∈ RN be defined by yM = x and yi = αi. Then, in Step I we show that
y ∈ C(V ), in Step II we establish that y ∈ ∂V (S).

Step I, y ∈ C(V )
Since x ∈ C(U) by definition x ∈ U(M), that is y ∈ V (N).

Case 1 : First, we show that y cannot be blocked by any coalition T ( N . Suppose
to the contrary that there exist β > αi, z À x and T ( N such that (z, β) ∈ V (T ). We
consider two subcases: T = M or T 6= M .

Case 1a: T = M . Then (z, β) ∈ V (M) and by comprehensiveness for all ε > 0 we
have that (z, αi − ε) ∈ V (M). Also, for all ε > 0 we have that (z, αi − ε) ∈ V ({i}) by
the definition of αi. Ordinal convexity implies that V (M) ∩ V ({i}) ⊆ V (N), thus for all
ε > 0 we have that (z, αi − ε) ∈ V (N). Since V (N) is closed, (z, αi) ∈ V (N), implying
that z ∈ U(M), contradicting x ∈ C(U).

Case 1b: T 6= M . If i /∈ T , then z ∈ P (T ) and hence T would block x in (M,U),
contradicting x ∈ C(U). If i ∈ T , then T \ {i} 6= ∅, since β > αi implies (z, β) /∈ V ({i}).
Therefore, z ∈ W (T \ {i}), again contradicting x ∈ C(U).

Case 2 : Next, we show that y cannot be blocked by N either. Otherwise there exist
β > αi, z À x such that (z, β) ∈ V (N). It follows using comprehensiveness that (z, αi) ∈
V (N), implying that (z, αi) ∈ U(M), again contradicting x ∈ C(U). Thus y ∈ C(V ).

Note that the construction used shows that all core elements of the reduced game can
be extended to core elements of the original game.

Step II. y ∈ ∂V (S)
Recall that i is a member of S. If S = {i}, then y ∈ ∂V ({i}) by the definition of αi. If

S = N , then y ∈ C(V ) by Step I, which implies that y ∈ ∂V (N).
If S 6= {i} and S 6= N , then U(S \ {i}) = W (S \ {i})∪P (S \ {i}) and x ∈ ∂U(S \ {i}).

So

x ∈ ∂

(
W (S \ {i}) ∪ P (S \ {i})

)

= cl

(
W (S \ {i}) ∪ P (S \ {i})

)
∩ cl

(
RM \ (W (S \ {i}) ∪ P (S \ {i}))

)

=

(
cl W (S \ {i}) ∪ cl P (S \ {i})

)
∩ cl

(
RM \ (W (S \ {i}) ∪ P (S \ {i}))

)

=

(
∂W (S \ {i}) \ int P (S \ {i})

)
∪

(
∂P (S \ {i}) \ int W (S \ {i})

)
,

which implies that there are two (not exclusive) cases:
x ∈ ∂W (S \ {i}) \ int P (S \ {i}) or x ∈ ∂P (S \ {i}) \ int W (S \ {i}).
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Case 1 : x ∈ ∂W (S \ {i}) \ int P (S \ {i}). Then, x ∈ ∂W (S \ {i}) implies x ∈
cl W (S \ {i}) ∩ cl (RM \ W (S \ {i})). Since x ∈ cl W (S \ {i}), there exists a sequence
(xk)k∈N with xk ∈ W (S \ {i}) for all k ∈ N and (xk)k∈N → x. Then, by the definition of
W (S \{i}), there exists a sequence (βk)k∈N with βk > αi and (xk, βk) ∈ V (S) for all k ∈ N.
Due to comprehensiveness (xk, αi) ∈ V (S) for all k ∈ N as well, and the sequence (xk, αi)k∈N
converges to (x, αi), implying that (x, αi) ∈ cl V (S). Since x ∈ cl (RM \W (S\{i})) as well,
there exists a sequence (xk)k∈N with xk ∈ RM \W (S \ {i}) for all k ∈ N and (xk)k∈N → x,
that is for all β > αi we have that (xk, β) ∈ RN \ V (S) for all k ∈ N. In particular,
(xk, αi + 1/(k + 1)) ∈ RN \ V (S) for all k ∈ N, and (xk, αi + 1/(k + 1))k∈N → (x, αi),
implying that (x, αi) ∈ cl (RN \ V (S)). So (x, αi) ∈ cl V (S) ∩ cl (RN \ V (S)), thus
y ∈ ∂V (S).

Case 2 : x ∈ ∂P (S \ {i}) \ int W (S \ {i}). By ordinal convexity of (N, V ) we have
V (S \ {i})∩V ({i}) ⊆ V (S), which together with x ∈ ∂P (S \ {i}) implies that there exists
a sequence (xk, αk

i )k∈N with (xk, αk
i ) ∈ V (S) for all k ∈ N and (xk, αk

i )k∈N → (x, αi),
so (x, αi) ∈ cl V (S). Since x /∈ int W (S \ {i}), for all z À x and for all β > αi

we have (z, β) /∈ V (S). Thus there exists a sequence (xk, αi + 1/(k + 1))k∈N → (x, αi)
such that (xk, αi + 1/(k + 1)) ∈ RN \ V (S), implying that (x, αi) ∈ cl (RN \ V (S)). So
(x, αi) ∈ cl V (S) ∩ cl (RN \ V (S)), thus y ∈ ∂V (S). 2

Next, we provide an example of a cardinally convex game which is not NTU exact.

Example 3.9. (A cardinally convex game which is not NTU exact). Consider the following
NTU game with player set N = {1, 2, 3, 4}. Let

V ({i}) = {x ∈ R4 | xi ≤ 0}, i ∈ N,

V ({1, 2}) = {x ∈ R4 | x1 + x2 ≤ 2},
V ({1, 3}) = {x ∈ R4 | x1, x3 ≤ 0},
V ({1, 4}) = {x ∈ R4 | x1, x4 ≤ 0},
V ({2, 3}) = {x ∈ R4 | x2, x3 ≤ 0},
V ({2, 4}) = {x ∈ R4 | x2, x4 ≤ 0},
V ({3, 4}) = {x ∈ R4 | x3, x4 ≤ 0},

V ({1, 2, 3}) = {x ∈ R4 | x1 + x2 + x3 ≤ 4},
V ({1, 2, 4}) = {x ∈ R4 | x1 + x2 + x4 ≤ 4},
V ({1, 3, 4}) = {x ∈ R4 | x1, x3, x4 ≤ 0},
V ({2, 3, 4}) = {x ∈ R4 | x2, x3, x4 ≤ 0},

V (N) = {x ∈ R4 | x1 + x2 + x3 ≤ 4, x4 ≤ 0}
∪ {x ∈ R4| x1 + x2 + x4 ≤ 4, x3 ≤ 0}
∪ {x ∈ R4| x1 + x2 + x3 + x4 ≤ 6, x1 ≤ −1}.

The game (N, V ) above is cardinally convex, since
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(i) V ◦({1, 2, 3}) + V ◦({1, 2, 4}) ⊆ V ◦({1, 2}) + V ◦(N) using the third set in the definition
of V (N). Notice that to do so we make use of the fact that for x ∈ V ◦(N), x1 and x2 can
be chosen to be negative in order to increase the values of x3 and x4.
(ii) For all other S, T ∈ N it is easy to verify that V ◦(S) + V ◦(T ) ⊆ V ◦(S ∪ T ).

However, (N, V ) is not NTU exact, since there is no core allocation on the boundary
of V ({1, 2}). To see that, assume that there is an allocation x ∈ C(V ) such that x ∈
∂V ({1, 2}). Since x ∈ ∂V ({1, 2}), we have that x1 + x2 = 2. To have a core allocation,
x3 ≥ 2 should hold to prevent blocking by coalition {1, 2, 3} and x4 ≥ 2 should hold to
prevent blocking by coalition {1, 2, 4}. Thus x should be in the third set in the definition
of V (N), requiring that x1 ≤ −1, which would be blocked by player 1.

By Theorem 2.11, to verify whether the marginalistic interpretations of NTU convexity
imply NTU exactness, it is enough to analyze marginal convexity.

Theorem 3.10. If an NTU game (N, V ) is marginal convex, then it is NTU exact, that
is ΓNTU

mc ⊆ ΓNTU
e .

Proof. Consider a marginal convex NTU game (N, V ), and a coalition S ∈ N . For ex-
actness we have to show that there is a core element on the boundary of V (S). Let σ̄ be a
permutation such that S ∈ {σ̄(1), {σ̄(1), σ̄(2)}, {σ̄(1), σ̄(2), σ̄(3)}, . . . , N}. Since (N, V ) is
marginal convex, we have that M σ̄(V ) ∈ C(V ). By definition, M σ̄(V ) is on the boundary
of V (T ) for all T ∈ {σ̄(1), {σ̄(1), σ̄(2)}, {σ̄(1), σ̄(2), σ̄(3)}, . . . , N}, thus it is a core element
on the boundary of V (S) as well. 2

Using Theorems 2.11 and 3.10 we have the following corollary.

Corollary 3.11. Each of coalition merge convexity, individual merge convexity and marginal
convexity implies exactness in the NTU setting, that is ΓNTU

cmc ⊆ ΓNTU
imc ⊆ ΓNTU

mc ⊆ ΓNTU
e .

4 Conclusion

In this paper we have generalized exactness to games with non-transferable utility to get
the class of NTU exact games (ΓNTU

e ). A game is NTU exact if for each coalition there is
a core allocation on the boundary of its payoff set, meaning that this coalition does not
necessarily benefit from the gains of forming the grand coalition in an allocation which
is robust against all coalitional deviations. We have noted that NTU exact games are a
subset of totally Π-balanced NTU games (ΓNTU

t−Π−b), having a non-empty core in each of
their subgames.

We have shown that the classes of ordinally convex (ΓNTU
oc ), coalition merge convex

(ΓNTU
cmc ), individual merge convex (ΓNTU

imc ), and marginal convex (ΓNTU
mc ) NTU games are a

subset of NTU exact games. Moreover, we have given an example of a cardinally convex
game (ΓNTU

cc ) which is not NTU exact.
Hendrickx, Borm, and Timmer (2002) show that the aforementioned five classes of NTU

convex games do not coincide for more than three players. The only general relationship
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between these five classes (Theorem 2.11) is that coalition merge convexity implies indi-
vidual merge convexity (ΓNTU

cmc ⊆ ΓNTU
imc ), and individual merge convexity implies marginal

convexity (ΓNTU
imc ⊆ ΓNTU

mc ).
Theorem 2.6 claims that the class of convex TU games coincides with the class of

totally exact TU games. In the NTU setting we do not have such a theorem. Let ΓNTU
te

denote the class of totally exact NTU games with player set N , being NTU exact in all of
their subgames. Since an ordinally convex game is exact, and all subgames of an ordinally
convex game are ordinally convex, we have that ΓNTU

oc ⊆ ΓNTU
te . For marginal convex games

a similar argument leads to ΓNTU
mc ⊆ ΓNTU

te .
However, using our results it is easy to provide counterexamples where NTU total

exactness implies none of the NTU convexity notions. For instance, the NTU game in
Example 2.12 is ordinally convex, and as we argued that game is totally NTU exact. But
it is neither cardinal, nor marginal, nor individual merge, nor coalition merge convex.
So neither cardinal, nor marginal, nor individual merge, nor coalition merge convexity is
implied by total NTU exactness in general. Hendrickx, Borm, and Timmer (2000) provide
an example (Example 4.6 there) for an NTU game which is marginal convex but not
ordinally convex. That example can be used to show that total NTU exactness does not
imply ordinal convexity either.

We summarize the relationships between the various classes of NTU games for more
than three players in Figure 1.
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