Darvay, Zsolt and Illés, Tibor and Rigó, Petra Renáta (2020) Predictor-corrector interior-point algorithm for sufficient linear complementarity problems based on a new type of algebraic equivalent transformation technique. Working Paper. Corvinus University of Budapest, Budapest.
| 
 | PDF
 - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 591kB | 
Abstract
We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear complementarity problem (LCP) with P_* (κ)-matrices. The introduced IPA uses a new type of algebraic equivalent transformation (AET) on the centering equations of the system defining the central path. The new technique was introduced by Darvay et al. [21] for linear optimization. The search direction discussed in this paper can be derived from positive-asymptotic kernel function using the function φ(t)=t^2 in the new type of AET. We prove that the IPA has O(1+4κ)√n log〖(3nμ^0)/ε〗 iteration complexity, where κ is an upper bound of the handicap of the input matrix. To the best of our knowledge, this is the first PC IPA for P_* (κ)-LCPs which is based on this search direction.
| Item Type: | Monograph (Working Paper) | 
|---|---|
| Series Name: | Corvinus Economics Working Papers - CEWP | 
| Series Number / Identification Number: | 2020/03 | 
| Uncontrolled Keywords: | Predictor-corrector interior-point algorithm, P_* (κ)-linear complementarity problem, new search direction, polynomial iteration complexity | 
| JEL classification: | C61 - Optimization Techniques; Programming Models; Dynamic Analysis | 
| Subjects: | Mathematics, Econometrics | 
| Projects: | NKFIH 125700 - OTKA, BME IE-MI-FM TKP2020 - Budapest University of Technology and Economics, AGC32921/30.07.2019 - Babes-Bolyai University | 
| References: | [1] M. Achache. Complexity analysis and numerical implementation of a short-step primal-dual
 [2] S. Asadi, N. Mahdavi-Amiri, Zs. Darvay, and P. R. Rigó. Full Nesterov-Todd step
 [3] S. Asadi and H. Mansouri. A path-following algorithm for P_* (κ)-horizontal linear complementarity
 [4] S. Asadi and H. Mansouri. Polynomial interior-point algorithm for P_* (κ) horizontal linear
 [5] Y.Q. Bai, M. El Ghami, and C. Roos. A comparative study of kernel functions for primaldual
 [6] C. Br�as, G. Eichfelder, and J. J�udice. Copositivity tests based on the linear complementarity
 [7] S.J. Chung. NP-completeness of the linear complementarity problem. J. Optim. Theory
 [10] A. Csizmadia, Zs. Csizmadia, and T. Illés. Finiteness of the quadratic primal simplex
 [11] Zs. Csizmadia and T. Illés. New criss-cross type algorithms for linear complementarity
 [12] Zs. Csizmadia, T. Ill�es, and A. Nagy. The s-monotone index selection rule for criss-cross algorithms
 [13] Zs. Darvay. A new algorithm for solving self-dual linear optimization problems. Studia
 [14] Zs. Darvay. New interior point algorithms in linear programming. Adv. Model. Optim.,
 [18] Zs. Darvay, T. Illés, J. Povh, and P. R. Rigó. Predictor-corrector interior-point algorithm
 [19] Zs. Darvay, I.-M. Papp, and P.-R. Takács. Complexity analysis of a full-Newton step
 [20] Zs. Darvay and P.-R. Tak�acs. New interior-point algorithm for symmetric optimization
 [21] Zs. Darvay and P.-R. Takács. New method for determining search directions for interiorpoint
 [22] Zs. Darvay and I. Tak�o. Computational comparison of primal-dual algorithms based on a
 [23] E. de Klerk and M. E.-Nagy. On the complexitiy of computing the handicap of a sufficient
 [24] D. den Hertog, C. Roos, and T. Terlaky. The linear complimentarity problem, sufficient
 [25] M.C. Ferris and J.S. Pang. Engineering and economic applications of complementarity
 [26] K. Fukuda, M. Namiki, and A. Tamura. EP theorems and linear complementarity problems.
 [27] K. Fukuda and T. Terlaky. Criss-cross methods: A fresh view on pivot algorithms. Math.
 [28] S.M. Guu and R.W. Cottle. On a subclass of P0. Linear Algebra Appl., 223/224:325{335,
 [29] M. Haddou, T. Migot, and J. Omer. A generalized direction in interior point method for
 [30] T. Illés and S. Morapitiye. Generating sufficient matrices. In F. Friedler, editor, 8th VO-
 [31] T. Illés and M. Nagy. A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient
 [32] T. Illés, M. Nagy, and T. Terlaky. EP theorem for dual linear complementarity problems.
 [33] T. Illés, M. Nagy, and T. Terlaky. Polynomial interior point algorithms for general linear
 [34] T. Illés, M. Nagy, and T. Terlaky. A polynomial path-following interior point algorithm for
 [35] B. Kheirfam. A predictor-corrector interior-point algorithm for P�(�)-horizontal linear
 [36] B. Kheirfam and M. Haghighi. A full-Newton step feasible interior-point algorithm for
 [37] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point
 [38] M. Kojima and R. Saigal. On the number of solutions to a class of linear complementarity
 [39] C.E. Lemke. On complementary pivot theory. In G.B. Dantzig and Jr. A.F. Veinott, editors,
 [40] C.E. Lemke and J.T. Howson. Equilibrium points of bimatrix games. SIAM J. Appl. Math.,
 [41] G. Le�saja and C. Roos. Unified analysis of kernel-based interior-point methods for P�(�)-
 [43] H. Mansouri and M. Pirhaji. A polynomial interior-point algorithm for monotone linear
 [44] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.
 [45] J. Miao. A quadratically convergent O((� + 1)
 [46] S. Mizuno, M.J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms
 [47] M. Nagy. Interior point algorithms for general linear complementarity problems. PhD thesis,
 [48] J. Peng, C. Roos, and T. Terlaky. Self-Regular Functions: a New Paradigm for Primal-Dual
 [49] F.A. Potra. Corrector-predictor methods for monotone linear complementarity problems in
 [50] F.A. Potra and X. Liu. Predictor-corrector methods for su�cient linear complementarity
 [51] F.A. Potra and R. Sheng. Predictor-corrector algorithm for solving P�(�)-matrix LCP from
 [52] F.A. Potra and R. Sheng. A large-step infeasible-interior-point method for the P�-Matrix
 [53] P. R. Rigó and Zs. Darvay. Infeasible interior-point method for symmetric optimization
 [54] P.R. Rigó. New trends in algebraic equivalent transformation of the central path and its
 [55] G. Le�saja and F. Potra. Adaptive full Newton-step infeasible interior-point method for
 [56] E. Sloan and O.N. Sloan. Quitting games and linear complementarity problems. Math. Op.
 [57] Gy. Sonnevend, J. Stoer, and G. Zhao. On the complexity of following the central path by
 [60] H. Valiaho. Criteria for sufficient matrices. Linear Algebra Appl., 233:109{129, 1996.
 [61] H. Valiaho. P�-matrices are just sufficient. Linear Algebra Appl., 239:103{108, 1996.
 [62] H. V�aliaho. Determining the handicap of a su�cient matrices. Linear Algebra Appl.,
 [64] C. van de Panne and A. Whinston. Simplicial methods for quadratic programming. Naval
 [65] C. van de Panne and A. Whinston. The symmetric formulation of the simplex method for
 [66] M. Vieira. The accuracy of inteior-point methods based on kernel functions. J. Optim
 [68] Y. Ye. A path to the Arrow-Debreu competitive market equilibrium. Math. Program.,
 [69] L. Zhang and Y. Xu. A full-Newton step interior-point algorithm based on modified Newton
 [70] M. Zhang, K. Huang, M. Li, and Y. Lv. A new full-Newton step interior-point method for
 | 
| ID Code: | 5908 | 
| Deposited By: | Ádám Hoffmann | 
| Deposited On: | 14 Sep 2020 15:22 | 
| Last Modified: | 14 Sep 2020 15:32 | 
Repository Staff Only: item control page



 Download Statistics
 Download Statistics Download Statistics
 Download Statistics