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Dániel HOMOLYA – Gábor BENEDEK:  

Analysis of operational risk of banks – catastrophe modelling  

 

Abstract 

 

Nowadays financial institutions due to regulation and internal motivations care more intensively 
on their risks. Besides previously dominating market and credit risk new trend is to handle 
operational risk systematically. Operational risk is the risk of loss resulting from inadequate or 
failed internal processes, people and systems or from external events. First we show the basic 
features of operational risk and its modelling and regulatory approaches, and after we will analyse 
operational risk in an own developed simulation model framework. Our approach is based on the 
analysis of latent risk process instead of manifest risk process, which widely popular in risk 
literature. In our model the latent risk process is a stochastic risk process, so called Ornstein-
Uhlenbeck process, which is a mean reversion process. In the model framework we define 
catastrophe as breach of a critical barrier by the process. We analyse the distributions of 
catastrophe frequency, severity and first time to hit, not only for single process, but for dual 
process as well. Based on our first results we could not falsify the Poisson feature of frequency, 
and long tail feature of severity. Distribution of “first time to hit” requires more sophisticated 
analysis. At the end of paper we examine advantages of simulation based forecasting, and finally 
we concluding with the possible, further research directions to be done in the future. 

JEL Classification: G32, C19, C69, G21 
Key words: Risk management, operational risk, risk modelling, banking 
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1. INTRODUCTION INTO OPERATIONAL RISK 

Starting point for examining management of operational risk is the definition of this risk 
category. Correct definition for operational risk and placement of it among other risk categories 
is key element for management: Known category could be managed in a standardised framework. 
In this paper we are focusing on financial institutions, although with some limitations the 
methods presented hereinafter could be applied for institutions operating in other businesses.  

In the risk management literature various risk-typologies are applied. Nowadays, in tune 
with regulatory requirements, we could distinguish business risk (e.g. risk of business 
environment change), market risk (change of the value of market positions), credit risk (risk of 
default of the debtor) and operational risk4. We could speak risks out of the set of these main 
four categories (so called residual risks), these risks (e.g. concentration risk of credit portfolio) is 
managed under Pillar 2 of Basel II regulatory framework. Credit and market risk all together 
could be called financial risk. The management of basic four risks (credit, market, operational and 
business risk) is composing the so called „enterprise-wide risk management” (ERM). Of course 
there are gaps in the 4 tier risk category framework (e.g. liquidity risk), what could be managed 
under the framework of ERM. 

The core problem about operational risk was the lack of accurate, sector-wide accepted 
definition. The earliest definition trial was the following: everything is operational risk, which is 
not under credit or market risk categories. Although if this definition is complementary, the 
management side of the risk could not be implemented.  

Basel Committee on Banking Supervision (BCBS) (located at Bank for International 
Settlement) apprehended, that the main problem about operational risk is the absence of 
standardised definition, and that is why BCBS developed definitive framework becoming 
accepted by financial institutions and regulators as well: Operational risk is „the risk of loss resulting 
from inadequate or failed internal processes, people and systems or from external events” (BIS [2004]). This 
definition of the so called Basel II New Capital Accord framework, contains legal risk, but 
excludes legal risk, strategic risk and reputation risk Regarding the whole risk space risks being 
outside the set of credit, market and operational risk could be called „other risk”. It is an 
interesting question: what is the dividing line between operational risk and „other risk”.  

In the interpretation of Cruz [2002b]5 the category of operational risk is cost based, while 
„other risk” is related to „lost revenue”. But this distinction results not a perfectly precise 
definition6.  

                                                 
4 Source: ERISK RISK JIGSSAW, risk classification (http://www.erisk.com/Learning/RiskJigsaw.asp, 21. July 

2006.) 
5  Page 286 
6    As an alternative approach operational risk event could be defined as „An operational risk event is an incident 

leading to the actual outcome(s) of a business process to differ from the expected outcome(s), due to 
inadequate or failed processes, people and systems, or due to external facts or circumstances. (ORX [2007], 
page 6). This definition gives a framework for handling the event causing lost revenue because of wrongly 
set interest rate (lower than it would be based on business policy.) 
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The following table contains the examples of the two types of risks:  

Table 1 
Operational risk vs. „other risk (based on Cruz [2002b]) 

Operational risk– 

Loss/ cost based approach 

„Other” risks – 

Lost revenues 

Legal losses 

Fees and penalties 

Regulatory fines 

Compensation because of late 
settlement 

Costs of replacement of wrong 
machines 

Reputation events 

Loss of key personnel 

Strategic events 

 

Basel Committee (and respectively Capital Requirements Directive in European Union) 
concentrates on the causes of operational risks, this framework is clearer than the residual 
definition earlier applied, and gives concrete risk subtypes. Although regulatory typology of 
operational risk is event based, not cause-based. Regulatory operational risk event types provides 
good basis for giving framework for internal regulation: defines event types, definition 
determined positively allows systematic identification and management of operational risk.  

Loss event categories are the followings (BIS [2004], EU [2006]): 

1. Internal fraud: unauthorised activity, theft and fraud (e.g. transactions not reported 
(intentional), employee fraud, insider trading). 

2. External fraud: theft and fraud, system security (e.g. hacker activity, signature forgery, 
computer fraud). 

3. Employment practice and workplace safety: employee relations, absence of workplace safety, 
discrimination matters  

4. Clients, Products and Business Practices: suitability, disclosure and fiduciary (e.g. breach of 
privacy, money laundering, non-authorized products). 

5. Damages to physical assets: disasters and other events (e.g. natural disaster losses, human 
losses from external sources, terrorism, vandalism). 

6. Business disruption and system failures: system outages (e.g. hardware-, software-problems). 

7 Execution, delivery and process management: transaction capture, execution and maintenance; 
monitoring and reporting; customer intake and documentation; customer/ client account 
management; trade counterparties; vendors, suppliers (e.g. failures in transaction capturing, 
incompleteness of legal documents, non client counterparty disputes) 

These, above mentioned, event categories cover the full space of operational risk events, and 
“Basel definition” became accepted by banking sector and regulatory bodies.  

Category of operational risk is worth being compared with the two other main risk 
categories (market and credit risk). The following table gives a comparison, and flashes all the 
features of operational risk causing modelling difficulties relatively to market and credit risk: 
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Table 2 
Comparison of main risk categories 

(Based on Elder [2006] and Király [2005]) 

 Market risk Credit risk Operational risk 

Measurability of 
exposure (Yes/No) 

Yes Yes Difficult to delimit 
exposure 

Main features of 
occurrence 

Data richness, high 
frequency data 

Difficulties of 
statistical estimations, 

not well-tractable 
distributions 
(skewness)  

High frequency – low 
impact, Low 

frequency – high 
impact events 

dominates: difficulties 
in estimations 

Risk factors Interest rates, FX 
rates, share prices, 

volatility, commodity 
prices,  

- Probability of 
default (PD) 

- Loss given default 
(LGD) 

Exposure at default 
(EAD) 

Probability of event 
(PE) 

Loss given event 
(LGE) 

Approaches of risk 
measurement 

Value at risk (VAR), 
stress testing, 

economic capital 

scoring/ rating 
systems, PD-LGD 
models, economic 

capital 

OpRisk VAR, 
economic capital ( 

absence of full 
consensus): exact 
calculation versus 

assessment (top-down 
methods, indicators) 

Reliability of 
measurement 

Good Acceptable Low level 

Risk management 
techniques 

Limits, balance sheet 
matching, hedging 

(with derivative 
positions) 

Limit, intake of 
collaterals, 

diversification of 
credit portfolio, 

securitization, credit 
derivatives 

Process management, 
system development, 
insurance, application 

of risk transfer 
mechanisms  

 

The table above presented do not emphasize some other important special feature of 
operational risk:  

Operational risk could be endogenous – external factors could coincide with internal factors 
causing extremely high severity events, e.g. in case of Barings Bank internal fraudulent activity 
and external market movements together resulted extremely high loss effect. The other 
interesting feature: the higher operational risk exposure do not cause obviously higher profit, 
although in case of market and credit risk, risk exposure and return have positive correlation. 
This is why examination of existence and determination of risk appetite or risk tolerance level is 
an interesting topic.  

Before outlining our model framework, it is worth speaking about the operational risk 
management preparedness of the banking sector: One of the main drivers of systematic 
operational risk management is regulatory requirement. Following the EU the Capital 
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Requirements Directive (EU [2006]) is obliged to apply since 1st January 2008. In this new 
regulatory framework capital should be allocated for operational risk as well, with one of the 
following methods: simpler, gross income based basic indicator approach (BIA) or the 
standardised approach (TSA), or more complex Advanced Measurement Approach. Model based 
approaches are applied now at the most sophisticated institutions, although banks applying 
simpler methods started to collect loss data in order to ensure the option of more reliable risk 
assessment later in time. 

 

2. RISK MODELLING FRAMEWORK – STYLISED FACTS 

 
Operational risk could be characterised – as other categories of risk – through frequency of 
occurrence and severity of loss event. Scaling frequency and severity into two subcategories (low 
or high) we get 2x2 matrix of risk space. In this case two of the cells will be relevant for us:  

High frequency – low severity: events to be easily understood and priced 

Low frequency – high severity: events to be prevented and forecasted with important difficulties. 

This view is presented at table 3.  
Table 3 

Main attributes: severity and frequency (Elder [2006]) 

 Low frequency High frequency H
igh

 severity 

Main challenge for operational 
risk management 
Possible outcome: maybe full 
disruption 
Difficult to forecast, 
experiences of other sectors 
(e.g. aviation) could be applied

Not relevant – In case of this 
risk profile exit from the 
business could be the optimal 
solution  

L
ow

 severity 

Not relevant Milder events, could effect 
strong threats! Events to be 
easily understood and priced. 
Interdependence of events 
could be existing factor. 

 
Complexity of operational risks (two main focuses mentioned above) makes operational 

risk modelling complicated. Appropriate input data in terms of quality and quantity is required to 
provide suitable modelling database.  

We could pose the following questions: 

1. How the complexity of operational risk could be modelled? Separate modelling of 
different event categories is necessary for robust estimations? 

2. Can we find any holistic approach?  

We do not trial to give fully comprehensive answer to these questions in this paper, although one 
of most important goals of our research going concern is to answer these questions as much as 
possible in our modelling framework. 
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There is no modelling approach prescribed by the regulators, we could speak about industry wide 
best practice methodologies. Based on the operational risk literature we could distinguish two 
basic types of modelling methods (see e.g. Risk Books [2005], CEBS [2006]): 

● loss distribution approach (LDA) 

● scenario-based approach (SBA) 

Objective of both methods is to determine the necessary economic capital level for operational 
risk, and to measure risk profile and related exposure accurately. 

Essentially using LDA methods we determine aggregate distribution (to model loss 
amount occurring during predetermined period) based on internal loss data history, sometimes 
supplemented by loss data coming from external loss data sources. Aggregate loss distribution 
could be derived from frequency and severity distribution through analytic (partly numeric) or 
Monte-Carlo-simulation based convolution. There are two methods of formal, analytic 
convolution techniques: recursive methods to be applied in case of discrete distributions (e.g. 
Panjer-algorithm); or (Fast) Fourier-Transformation ((F)FT) to applied after discretisation of the 
distributions given. In practice simulation techniques are applied often, because of the problem 
could be more easily structured via simulations, although this is a time consuming way, and 
sensitivity of model could be examined with relatively more difficulties, than analytic techniques 
(Klugman et al [1997] give good and comprehensive overview of this modelling approach). The 
following figure summarises and gives an example of convolution methods: 

Figure 1 
Convolution of frequency and severity distributions  

 

 
Source: own illustration 

The steps of application of LDA approach is the followings: identification of suitable 
distributions for both of frequency and severity distributions (e.g. Poisson – lognormal model), 
parameter estimation based on realised loss data, use of goodness of fit tests (GOF tests) and 
finally model selection and calibration (CEBS [2006]). The regulation (BIS [2004], EU [2006]) in 
the obligations related to AMA approach defines capital to be held requires a risk measure 
compatible with 99.9% confidence interval and one year holding period. Note, this is a V@R 
(value at risk) type calculation based on the analysis of the aggregate distribution. The literature 
and the practice apply mainly symmetric distributions for frequency modelling (e.g. mainly 
Poisson–distribution), and mainly asymmetric, fat-tailed distributions for severity distributions 
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(e.g. lognormal or extreme value distributions (EVT – Extreme Value Theory). 

The other important modelling approach, scenario based analysis is also quantitative based 
method. We determine stress-event scenarios, and through quantitative assessment of these 
scenarios we calculate the operational risk exposure. As in case of scenario based approaches we 
examine the structure of operational risk event scenarios, we could say: SBA method is a bottom-
up approach, LDA method is a top-down approach in this sense. (CEBS [2006]) 

Besides LDA and SBA methods, because of difficulties in quantification of operational 
risk recognised by practitioners, lot of institutions applies more qualitative, so called scorecard 
techniques (Riskbooks [2005]).  

In this paper we would like to look beyond the methods (LDA, SBA) shortly presented 
above. The methods presented previously are focusing on the modelling of manifested, or 
manifesting risks in terms of events, but the analysis of latent risk process as interim modelling 
step generally left out. As our objective to build up a model suitable for support of risk 
management process, that is why we try to model latent risk factors, and from that we derive the 
loss event process. Our own model framework and its results are to be presented in the following 
sections.  

 

3. OWN STOCHATIC PROCESS BASED MODEL – FIRST RESULTS 

 
Stochastic process based modelling is quite often applied for risk phenomena. The basic idea in 
the risk modelling literature for that type of modelling is factors related to the risk given follow 
regular process describable in statistical terms.  

What could we mean by the term of stochastic process? Concisely we mean by stochastic process 
that process which describes the changes of X probability variable. 

Four main factors or parameters determine a stochastic process (Karlin–Taylor [1985]):  

● S state-space (possible value-set of X probability variable, e.g. real 
numbers); 

● T index parameter (That feature of X probability variable, that represent 
the characteristic of steps in the process, e.g. if T maps the set of non-negative integers 
that case we speak about discrete process); 

● Xt probability variables and the dependence structure among them: initial 
value should be determined, and based on knowledge of the dependence structure the 
whole process could be described.  

We could apply stochastic process based models for two objectives (see e.g. Cruz [2002] 
chapter 7.): 

1. Modelling of movement of latent risk factors: in this case break even of a critical level could 
cause operational risk event attended by some repairing cost or some loss (Cruz [2002] 
7.6–7.9 subchapters). 

2. Modelling of manifest risk event and amount of loss: In these model-applications the important 
objective is not the determination of latent risk factors, only ruin process is interesting for 
the analysing researcher. This approach disposes wide range of actuarial literature; see e.g. 
Michaletzky [2001] or Klugman et al. [1997]. 

The risk modelling literature does not devote too much time for latent risk factor modelling. 
Although if we would like to manage the risks, not only measure, latent risk factors do have 
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essential role, because changes in latent factors could influence the changes in overall risk 
exposure and risk profile reflected in manifest ruin process. In the remaining part of this 
paper we present a prototype model for modelling latent risk factors.  

We examine the characteristics of operational risk in a simplified model-framework, what we 
would like to extend to more complex problems in more advanced phase of our research. 

Our basic problem is on the following question: how could server disruptions to be 
modelled? 

During the analysis we focus on the risk profile and influencing factors of system failure.  

Operational description of the problem: 

There is a central server in a bank, which performance fluctuates over time. If performance 
breaks even a critical level of this factor (two side barrier7), we experience server disruption. 
Catastrophe is defined by above mentioned phenomenon, which results a given level of loss. 

Another type of problem is that when we have two servers operating. The secondary server is 
„hot” back-up server of the first one. In case joint disruption (performance level breaks even the 
critical level at both servers) we speak about „crash” event, and in this case system could be 
recovered only with some loss.  

Our model assumptions, elements are the following:  

1. Performance level process follows mean reversion process: the system reverts back to 
an equilibrium value, although fluctuation above, and under equilibrium could be 
occurring.  

2. If the process breaks even the lower or upper limit, we speak about catastrophe.  

3. After the catastrophe the process gets back to the equilibrium point automatically. The 
staff repairs the error, and equilibrium state stands back.  

4. Loss of catastrophe is commensurable with the measure with the overstepping of 
performance level limit (linear relationship).  

5. Risk process of both servers follows identical stochastic process. The two processes are 
correlated with each other, while the two servers are identical, and operation of the bank 
influences both servers8. Due to risk management, or process controlling principles a 
machine, a process or an employee have a substitute resource, in case of business failure 
to dispose a substitution resource for having back-up solution. 

We could say, some mean reverting type of model could be suitable for above-mentioned 
assumptions.  

Fulfilling these above mentioned requirements we will use the Ornstein-Uhlenbeck 
process (so called O-U process), widely known in financial mathematics (because of the relative 
simplicity). This type of process is widely known as Gauss-Markov process as well.  

Most known application of OU processes is the Vasicek model used for modelling 
interest rate movements. (Baxter–Rennie [2002], page 197.). Ornstein-Uhlenbeck process firstly 
was not applied by financial research, but in neurology to model discharges of neuron, 
movements of animal, and modelling latent process behind rusting. Generally OU process to be 

                                                 
7 One-side limit (upper or lower limit) could be more reasonable (overloading or underperforming), built in our 

explanatory research by symmetric barriers we expect to receive well-behaving results. Later in time, during 
applied research phase we would like to apply asymmetric barriers. 

8  Of course, correlation could be decreased by some measures (e.g. separate location), although full removal of 
correlation is not possible.  
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applied for latent factor modelling, where manifest process (output, e.g. the data series of events) 
is known, but the latent factor process is not fully explored ensuring forecasting opportunities. 
(e.g. Ditlevsen–Ditlevsen [2006]). Operational risk factors are similar to the factors modelled by OU 
process in other areas of science: the latent process is not to be observed or could not be 
observed, only the risk event is explicit.  

Ornstein–Uhlenbeck-process could be defined by the following differential equation (Based on 
Finch [2004], sample process on Figure 2.): 

dPt = η·(M-Pt) ·dt+σ·dz (1) 

Concerning notations: 

Pt: value of P at time t 

η: speed factor of mean reversion, 

M: equilibrium rate of P process, performance level process to be reverting to this point, 
and after a catastrophe the restarting point is hear.  

σ: standard deviation parameter 

dz: Wiener-process with mean of 0, and standard deviation of 1, 

ρ: correlation factor (ρ) is defined in case of joint process representing the alignment 
feature of the process. (In this case stochastic element of processes is the following: stochastic 
element of first process is σ·dz, although stochastic element of the second process is 

)dy1dz( 2ρ−+ρ⋅σ , where dy and dz are independent, identical, standard normally distributed 
Wiener-process. 

So the differential equation of the first process is the following: dPt= η·(M-Pt)·dt+σ·dz. 

Second differential equation is the following: dPt= η· (M-Pt) ·dt+ )dy1dz( 2ρ−+ρ⋅σ . 
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Figure 2 
Illustration of Ornstein–Uhlenbeck-process 

 
Source: own illustration, parameters: equilibrium parameter (Μ=1, speed of reversion and standard 
deviation: η=0.2, σ=0.25) 

 

In mathematics modelling “first time to hit” (FTH) is widely analysed by mathematicians, not 
only by numeric methods, also by analytic way. (Good reference is: Ditlevsen–Ditlevsen [2006]). 
OU process is not limited, that is why unrealistic negative values could be realised as well. In our 
model framework instead of application of barriers, we apply a standing back step to the 
equilibrium value of the process.  

3.1. Model results 
 

Hereinafter we would like to present the basic model results: we analyse the risk process, and 
demonstrate the frequency and severity features related to the catastrophe events. Firstly we 
examine the single process, later the dual process. Simulation method is to be applied, with 
realisations of 10 samples, 10.000 unit long period. When we apply large number of samples, we 
apply 10.000 samples with 10.000 unit long period sample by sample. We model OU process 
based on formula (1) mentioned above. For purposes of analysis, statistical calculations we used 
Borland Delphi 5.0 and SPSS 14.0 for Windows software. On the figures parameter settings are 
indicated, in case of multiple runs we refer on it in the text. Current phase of our research is more 
or less explorative, that is why now we would like to explore some basic trends supporting to 
structure robust and stable model later in time.  

3.1.1. Analysis of single process 

Empirical analysis shows us that the core process (OU process) values could characterised by 
normal distribution (as we have expected from the features of OU process). 
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Figure 3 
Characterisation of basic OU process with given parameterisation 

 
Source: own calculation (process values, histogram of output values and parameterisation) 

Based on the application of Kolgomorov–Smirnov-statistics (value is 0.615) we could not 
reject that hypothesis that values of the process follows normal distribution. Certainly in case of 
limit tightening the process values would follow truncated normal distribution.  

First of all it is worth examining the frequency distribution of catastrophes. In contrast of 
the process illustrated on the figure 3, on the following figure we show the frequency features of 
a process with asymmetric limitations, only lower limit: 

Figure 4 
Frequency distribution of catastrophe of a process with a given parameterisation  

 
Source: own calculations 

In operational risk literature frequently assumed that occurrence of operational risk events 
could be characterised by Poisson process. (We have referred on this in chapter 2). As the figure 
4 shows in our model frequency could be characterised by symmetry. It is worth to test, with 
what kind of parameterisations Poisson like behaviour hypothesis could not be rejected. (E.g. Bee 
[2006]) We have tested with three types of limitation features (broader two-sided, tighter two-
sided, tightened lower and upper unconstrained limit-parameterisation) goodness of fit for 

P-start P-lower 
critic

P-upper 
critic

M η σ

1 0.25 2 1 0.75 0.25
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Poisson-distribution fitting, ceteris paribus to the parameterisation showed on figure 4: 

Table 4 
Goodness of Poisson distribution fitting by different limitations parameters 

P-start P-lower 
critic 

K-S Z Sigma

0.25 2 2.129 0 
0.5 1.5 0.406 0.996 
0.5 ∞ 0.794 0.554 

 

Kolgomorov-Smirnov Z statistics presented on Table 4 shows us, that in case of 
tightened two-sided limitation and by one-sided limitation Poisson characteristics could not be 
rejected. In case of broader limit Poisson feature could not be accepted.  

As mentioned previously, in probability theory literature dealing with OU type processes 
one of most examined topic is another aspect of frequency, the so called “first time to hit” 
(FTH), the timing of the first break-even point. Ditlevsen–Ditlevsen [2006] presents, that 
probability distribution of „first time to hit” could be described in analytic way in a very 
complicated way. In case of special parameterisation FTH follows Poisson distribution (when 
equilibrium value and critical value have long distance from each other), while in other cases it 
some sums of gamma distributions. 

Similarly to frequency examination we have examined FTH distribution for different 
parameterisations. The following figure shows one the example of this: 

Figure 5 
Distribution of first time to hit by tightened limit parameterisations (critical 

values: 0.5 and 1.5) 

 
Source: own calculations 

We could observe skewed distribution of „first time to hit” on Figure 5. Poisson or 
gamma distribution fitting is not adequate, although based on theoretical works these 
distributions could be applied. However we experienced good fit of Poisson distribution for 
catastrophe frequency, and it is known the distribution of time between events follows 
exponential distribution, so we can have hypothesis on empirical goodness of fit for exponential 
distribution: 
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Table 5 
Goodness of fit test applied for the fit of distribution of „first time to hit” and 

exponential distribution  

P-start P-lower 
critic 

K-S Z Sigma 

0.25 2 2.470 0.000 
0.5 1.5 0.736 0.650 
0.5 ∞ 4.907 0.000 

 
Source: own illustration 

As on the table above presented, goodness of fit tests (e.g. K-S Z-score) signs, in case of 
tightened two-sided limitations the exponential could not be rejected, in case of other two 
parameterisations exponential fit is not good. That is why distribution of „first time to hit” 
should be analysed analytically with more effort. 

We have examined the severity distribution as well. We applied the following regularity for 
determination of the amount of loss: value of loss is absolute value excess above upper limit or 
under lower limit multiplied by unit of 10 000. This is a linear relationship, could be reasoned by 
economic idea. (E.g. There is a catastrophe at level of 0.4 in case of lower level 0.5, in that case 
the excess value under lower level is 0.1, and that is why the loss is 1000 unit). Applying this 
assumption we received well behaving severity distributions fulfilling the preliminary expectations 
of asymmetry and fat-tailed property. We present below an empirical distribution in case of given 
parameterisation, and goodness of fit with Pareto distribution fairly acceptable as showed by Q-Q 
plot: 

Figure 6 
Severity distribution and its fit to Pareto distribution 

 
Source: Own calculation 

P-start P-lower 
critic

P-upper 
critic

M η σ

1 0.5 1.5 1 0.75 0.25
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Pareto distribution is a typical left-skewed, fat-tailed distribution reflecting well the high 
frequency of low impact events, and low frequency of high impact events. The Pareto 
distribution type, applied originally by Vilfredo Pareto in order to characterise the distribution of 
wealth among people, is often used in actuarial literature.  

The formula of Pareto probability density function is the following: 

1)x(
)x(f +α

α

θ+
θ⋅α

=  (2), 

where α is the so called location parameter, while θ is the shape parameter. (Cruz [2002] 
page 53.; Michaletzky [2001] page 156.) 

As we could see, the observed patterns of frequency and severity could fulfil the preliminary 
assumptions applied for operational risk: symmetric frequency distribution, skew, fat-tailed 
severity distribution.  

 
3.1.2. Examination of dual process 

Besides single process we have examined the features of dual process as well.  

In case of dual disruption of originally operating system and back-up system, we could 
speak about joint catastrophe, about crash. As a story they say: there was bank during 11/09 
WTC-catastrophe, which had hot system in one of the twin towers, while the hot back-up system 
operated in the other tower of WTC.  After the collapse of both towers, the institution was 
forced to continue its operation after recovery from data savings.  

In case of dual process we have examined the same features as in case of single process: 
frequency of catastrophe event, first time to hit, severity distribution, although we focus on joint 
catastrophe events (crashes).  In case of first sample both processes have same parameter 
settings, correlation coefficient is built in via stochastic element.  

It is a trivial expectation that in case of broader limitations we experience fewer crashes, although 
in case of tightened limitations we experience more crashes and as illustrated below symmetric 
distribution fit for frequency could not be rejected.  

Figure 7 
Frequency distribution of joint catastrophes („crashes”) by broader limitations 

and tightened limitations  

 
Source: own calculation 
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Besides tightened limitations (0.5-1.5) fit for Poisson distribution could not be rejected 
based on Kolgomorov–Smirnov Z-test statistics (value: 0.455). 

„First time to hit” distribution could not be identified based on visual inspection. As 
Figure 8 illustrates only few number of joint catastrophe occurred in case of broader limitations, at 
the dominant part of samples there was no crash occurred (8000 samples from 10 000 samples). 
In case of filtering for that sample which contains crash event (right side of Figure 8), we get a 
visually unidentifiable distribution. 

Figure 8 
„First time to hit” distribution for crash events  

 
Source: own calculations 

The other important topic is to examine the severity distribution for catastrophes. We 
apply the same loss measure as in case of single process: value of loss is absolute value excess 
above upper limit or under lower limit multiplied by unit of 10 000. In uncorrelated case of dual 
process we receive acceptable fit for Pareto distribution, as illustrated on the figure bellow:  

Figure 9 
Severity distribution related to dual process in case of given parameterisation  

 
Source: own calculations 
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Wilcoxon test run in SPSS (comparison of empirical data series and Pareto random numbers) 
shows us that deviation from Pareto distribution is not significant (value of two sided sigma is 
0.195). 

Dependency on correlation could sign up with strong emphasis in case of severity that is why 
optimalisation of correlation has great importance. We tested this phenomenon the process 
showed on Figure 9.: with correlation of zero and medium sized correlation (0.5) Based on 
calculation of the distribution moments we have experienced that in parallel with increase in 
correlation mean, skewness, kurtosis and variance increased as well: 

Table 6 

Moments of severity distributions for dual process by two correlation value  

Correlation Mean Variance Skewness Kurtosis 

0 693.91 663.04 1.73 3.97 
0.5 765.69 734.34 2.05 6.21 

Comment: parameter settings except for correlation is the same as it was by Figure 9  

This result could be dealt as triviality, but based on it the relationship between correlation and 
severity should be examined in more details.  
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3.1.3. Parameter sensibility of the catastrophe frequency 

In this section we analyze the sensibility of our model. We analyze how the slight changes in 
reversion speed (η) and correlation (ρ) affect the crash-frequency. We consider this also as the 
partial verification of our simulation method, while the introduced results confirm our previous 
hypotheses.  

The increase of the reversion speed parameter definitely decreases the expected value of the 
number of crashes at both the single and the dual process models. 

Figure 10 
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The increase of the reversion speed decreases the expected value of the crashes (joint catastrophe analysed at the 
dual model). 

The increase of correlation parameter is the following: the stronger the correlation between the 
two processes, the more often the estimated value of the dual crash frequency. At the following 
figure we demonstrate a bounded series of realization at different correlation parameters.  
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Figure 11 
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The increase of the correlation increases the expected value of the joint catastrophes (crashes)  

 

Naturally, during our further researches to be conducted later it is necessary to analyze more 
precisely the sensitivity of the parameters. Beside the speed of mean reversion and the correlation 
parameter, the other input parameters should be analyzed later.  

 

3.2. Forecasting the operational risk 
 
One of the important objectives of the risk analysis is risk profile based forecasting. Analyzing 
the historical database of the past events, we prepare to the emergence of future risks. As we 
presented in the second part of this paper, the key-point of the operational risk analysis, is the 
modelling of the low frequency high impact (LFHI) events. In this case the risk forecasting can 
raise difficulties. We distinguish two basic methods to forecast risk events (catastrophes): 9  

1. Based on the past occurrence of the risk events: We analyze the frequency and the impact 
(severity) of the catastrophe events. 10 We suppose, that the estimated risk parameters are 
suitable for forecasting. (The terminology for same methodology of credit default 
estimation is the “k/n” method.) The essence of this approach is that we use a small 
sample for estimation, and we use naïve forecasting, as we suppose parameter stability. 
(The future parameters and the past parameters are supposed to be the same: future fully 
reflects past) 

                                                 
9 Naturally, we can extrapolate historical data in many different ways (e.g.: moving average, smoothing 
techniques, etc.), but here we examine two basic methods. 
10 External loss-databases can have a high impact on the processing of the previous chatastrophe events. (E.g.: 

HunOR Hungarian Operational Risk Database). 
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2. Based on the exploration of the latent risk process: We analyze the previous risk events, and 
reproduce the latent risk process. Based on computer simulation methods, we can give 
forecasting. We run the latent risk process based on our flexible modelling assumptions 
and parameters, then we generate the forecasting of the future risk (events and factors) 
based on the simulation results. We might simulate many replication of the latent risk 
process (fix length, hit analysis), or simulate only one very long period (steady-state 
simulation). 11   

Note, that the real target of our analysis is not the forecasting, but – assuming the risk profile 
stability (in time) – the best estimation, in classical terms. 

When comparing the different methods our starting-points of the analyses were the following: 12   

1. We are acquainted with the single run of the latent risk process (for 100, 250 and 1000 
unit length periods). The concrete database is a single realization of a previously defined 
OU-process. 

2. We suppose the stability of the latent OU-process, and that will go on with the same 
parameters in the future, as we supposed this at the small-sample estimation, too. 

Next, we continue the analyses of the single and dual processes separately. 

 

3.2.1. Risk forecasting by simulated processes 
In this section, we analyzed two different parameter-settings: 

1. Strict catastrophe criterion (broader tolerance level - low catastrophe event frequency): The 
lower limit value of crash is 0, the higher limit value is 2. The starting value, and the 
equilibrium state of the process is 1. The reversion speed parameter value is ( η) 1, and 
the deviation ( σ ) is 0.25. 

2. Wider catastrophe criterion (tightened tolerance level - higher catastrophe event frequency): 
The lower limit value of crash is 0.4, the higher limit value is 1.6 (narrower, symmetric 
range). The starting value, and the equilibrium state of the process is 1, as before. The 
reversion speed is ( η) 0.75 (thus the process can return to equilibrium slower), and the 
deviation ( σ ) is 0.25.13 

In the following table we compare the different crash frequencies of the parameter-settings at 
different sample size and length period: 

                                                 
11 Simulation terminology calls „batch mean” method, when we split the steady state simulation to smaller 

periods (batches). 
12 Naturally, we must loose the restrictions as much as possible during the further researches. 
13 Parameter-settings are arbitrary. The main purpose was to present different situations.  
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Table 7 
Crash frequency simulation for the different parameter-settings 

1. Strict catastrophe criterion (broader range of tolerance) 
Number of 
simulation 

Sample size 
(number of runs) 

Length of period 
(T) 

Total number of 
crashes during 
the period 

Estimated crash 
probability 

1 1 100 0 
        

-    

2 1 250 0 
        

-    

3 1 1000 0 
        

-    

4 10000 100 56 
        

0.006%  

5 10000 250 175 
        

0.007% 

6 10000 1000 629 
        

0.006% 

7 1 10000 1 
        

0.010% 

8 1 100000 12 
        

0.012% 
 

2. Wider catastrophe criterion (tightened range of tolerance) 
Number of 
simulation 

Sample size 
(number of runs) 

Length of period 
(T) 

Total number of 
crashes during 
the period 

Estimated crash 
probability 

1 1 100 2 
         

2.000% 

2 1 250 4 
         

1.600% 

3 1 1000 18 
         

1.800% 

4 10000 100 19234 
         

1.923% 

5 10000 250 48163 
         

1.927% 

6 10000 1000 192031 
         

1.920% 

7 1 10000 190 
         

1.900% 

8 1 100000 1915 
         

1.915% 
 
Source: own simulation results 
 

Small sample estimation of crash frequency at the first parameter-setting cannot be reliable. In 
this case, no catastrophe event occurred, thus we would definitely underestimate the risk 
frequency.  

Using simulation (large size sample) we get more conservative results. That means that without 
simulation, we can usually underestimate our risks. The statistical applicability of simulation 
methods is based on a probability theory statement. The essence of the Glivenko-Cantelli 
statement is the following: the empirical distribution function of the observed simulation outputs, 
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tends to the real, latent distribution function, with the probability of 1. 

Formally: P(supt | Fn
*(t) - F(t) | → 0 ) = 1, where * notes the empirical distribution, F(t) is the 

latent distribution function of the t random variable, Fn
*(t) is the empirical distribution function 

of t random variable at n realization of the simulation, and P(x) is the probability of the x event. 

However the second parameter-setting, where the catastrophe events are more often, the small 
sample observation would overestimate the market risk. 

Taking a longer period (T = 100 000 unit) we observed how the error rate (number of crashes 
divided by the passed period) changes in the function of the expansion of the simulation period. 
We can realize an un-hoped convergence of the error rate, as we examine the strict risk 
definition. At the beginning of the simulation run, the deviation is larger, but later the 
convergence of the result is trivial. (See Figure 12) 

Figure 12 

Fluctuation of catastrophe ratio (tolerance level: 0-2)
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Source: Error- (catastrophe-) rate in the function of the sample size at wider catastrophe criterion 
(simulation results of the authors) 
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This convergence path is more evident and faster at the stricter catastrophe criterion parameter-
setting (see Figure 13) 

Figure 13 

Fluctuation of catastrophe ratio  (tolerance level: 0.4 - 1.6)
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Source: Error- (catastrophe-) rate in the function of the sample size at stricter catastrophe criterion 
(simulation results of the authors) 
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The forecasting of the loss amount at the single crash process is also an interesting problem. 
Suppose, that loss amount has still a positive correlation with the exit distances from the 
tolerance ranges. We introduce the most important characteristics (moments) of the impact 
distribution function at Table 8: 

Table 8 
Simulation results of the impact (seriousness) forecasts for the single process, at the two 

parameter-settings 

1. Strict catastrophe criterion (broader range of tolerance) 
Number of 
simulation 

Sample size 
(number of 
runs) 

Length of 
period (T) 

Average Standard 
deviation 

Skewness Kurtosis 

1 1 100 
No  
catastrophe No catastrophe No catastrophe No catastrophe 

2 1 250 
No  
catastrophe No catastrophe No catastrophe No catastrophe 

3 1 1000 
No  
catastrophe No catastrophe No catastrophe No catastrophe 

4 10000 100 479.34 462.60 2.17 5.91 
5 10000 250 496.77 538.41 2.56 8.75 
6 10000 1000 553.02 507.58 1.52 3.05 

7 1 10000 111.15 
0 (1 
catastrophe) 0 (1 catastrophe) 0 (1 catastrophe) 

8 1 100000 642.29 616.82 0.67 –0.74 
 

2. Wider catastrophe criterion (tightened range of tolerance) 
Number of 
simulation 

Sample size 
(number of 

runs) 

Length of 
period (T) 

Average Standard 
deviation 

Skewness Kurtosis 

1 1 100 1019.16 114.67
Number of joint 
catastrophes  < 3 

Number of joint 
catastrophes  < 4 

2 1 250 664.61 417.10 0.62 1.19 
3 1 1000 1207.82 1137.91 1.60 2.84 
4 10000 100 865.24 806.35 1.60 3.21 
5 10000 250 867.48 799.88 1.59 3.35 
6 10000 1000 877.29 784.18 1.52 2.87 
7 1 10000 819.65 766.29 1.37 1.35 
8 1 100000 849.85 790.31 1.74 4.55 

 
Source: own simulation results 
 
The analysis of impact (seriousness) is similar to the frequency results. At low frequency 

catastrophes we might have an underestimation from small sample, and at high frequency 
catastrophes we might have an overestimation (derived form the moments). However, comparing 
those simulations, where we analyzed 10 000 small sample, we see some increase in the estimated 
risk.  

3.2.2. Risk forecasting for dual process 
 

In this section we analyze the characteristics of the joint crash processes. Joint catastrophes 
(“crash”) frequency forecasting, from small sample rise difficulties. 
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We applied two different parameter settings in this case, too: 

We applied two different parameter settings in this case, too: 

1. Two strongly correlated processes: The lower limit value of crash is 0.1, the higher limit value is 
1.9. The starting value, and the equilibrium state of the process is 1. The reversion speed 
parameter value is ( η) 0.75, the deviation ( σ ) is 0.25. The correlation (ρ ) is 0.8. 

2. Two weakly correlated processes: The lower limit value of crash is 0.1, the higher limit value is 
1.9. The starting value, and the equilibrium state of the process is 1. The reversion speed 
parameter value is ( η) 0.75, the deviation ( σ ) is 0.25. The correlation (ρ ) is 0.1. 

At the weakly correlated processes the frequency of crashes is rare, just as we supposed. The 
results are summarized in the following table. 

Table 9 
Simulation results of forecasting for the dual processes at two different parameter-

settings 
1. Two strongly correlated processes (correlation = 0.8) 

Number of 
simulation 

Sample size 
(number of runs) 

Length of period 
(T) 

Total number of 
joint 
catastrophes 
(crashes) during 
the period 

Estimated joint  
catastrophe 
(crash) 
probability 

1 1 100 0 
         

-    

2 1 250 0 
         

-    

3 1 1000 1 
         

0.1000% 

4 10000 100 92 
         

0.0092% 

5 10000 250 242 
         

0.0097% 

6 10000 1000 1066 
         

0.0107% 

7 1 10000 1 
         

0.0100% 

8 1 100000 11 
         

0.0110% 
2. Two weakly correlated processes (correlation=0.1) 

Number of 
simulation 

Sample size 
(number of runs) 

Length of period 
(T) 

Total number of 
joint 
catastrophes 
(crashes) during 
the period 

Estimated joint  
catastrophe 
(crash) 
probability 

1 1 100 0 
         

-    

2 1 250 0 
         

-    

3 1 1000 0 
         

-    

4 10000 100 0 
         

-    

5 10000 250 3 
         

0.0001% 

6 10000 1000 8 
         

0.0001% 
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Number of 
simulation 

Sample size 
(number of runs) 

Length of period 
(T) 

Total number of 
joint 
catastrophes 
(crashes) during 
the period 

Estimated joint  
catastrophe 
(crash) 
probability 

7 1 10000 0 
          

-    

8 1 100000 0 
          

-    
 
Source: Own simulation results of the authors 

 

We analyzed the probability of single and joint catastrophes, too. When the correlation was 
stronger, we observed higher deviation and longer convergence of the error rate (see Figure 14). 
At weaker correlation, we observed more obvious and faster convergence (see Figure 15). 

Figure 14. 

Catastrophe ration (tolerance level: 0.1-1.9)
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stronger correlation (own simulation results) 
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Figure 15 

Catastrophe ration (tolerance level: 0.1-1.9)
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Source: Error- (catastrophe-) rate in the function of the sample size, for joint catastrophes, at weaker 
correlation (own simulation results) 
 

As we can see, the joint catastrophe (“crash”) rate is stable 0%, thus at weaker correlation, it is 
useful to select a larger sample.   

 

CONCLUSION, TOPICS FOR FURTHER RESEARCHES 

In this paper we presented results of our exploratory research. We could conclude, that our 
model results accords the assumptions provided by operational risk literature. Our simplified 
model presented in this paper is good basis for further modelling of operational risk events and 
influencing factors. Empirical frequency distribution could be fitted quite well onto Poisson-
distribution; while severity distribution could be fitted by Pareto distribution14. Distribution of 
„first hitting time” playing a key role in related mathematical literature shows us great complexity 
in our empirical research. We have examined the model-based forecasting opportunities, and we 
experienced small sample based method could result biased estimations (over- or 
underestimation). 

We need to study in more deepness the theoretical mathematics literature related to analytical 
analysis of OU processes for comparison of empirical and theoretical frequency, severity and 
FTH distributions. Further study of parameter sensitiveness and aggregate (loss amount / 
prespecified period) distribution in order of capital calculations would be also a good topic of 
further research. Our objective for practical implementability is the estimation of process of 
latent factors based on the realised event points, based on some assumptions, and based on the 
latent factor process estimation we would like to forecast and fit our results onto concrete risk 
categories (e.g. system failures, ATM disruptions, frauds etc.). These types of models of course 
could be valid, if model results accord to the real banking experiences.  
                                                 
14 Besides Pareto distribution lognormal or Weibull distributions are frequently fitted on severity distribution. 

We need to apply goodness of fit tests (GOF-tests) for identification of appropriate type of distribution. 
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