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Ordinary type spaces are widely used tools of models for incomplete informa-
tion situations. Harsanyi (1967-68)) introduces the notion of ordinary types
as the complete descriptions of the players’ physical and mental character-
istics. Ordinary types constitute the so called ordinary type space (Heifetz
and Samet, 1998)). These objects, the ordinary type spaces, can model the
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notions of beliefs, infinite belief hierarchies (Battigalli and Siniscalchi), |1999;
Pintér, |2012)) and common prior among others.

However, there are other notions, mainly epistemic ones, which cannot
be modeled by ordinary type spaces. Bounded rationality of players is an ac-
cepted idea in economics (see e.g. Rubinstein (1998)). One form of bounded
rationality might be when the players, or at least one of the players, cannot
take belief hierarchies in full length, but can consider only finite belief hier-
archies, hierarchies of beliefs which are finitely deep only. This constrained
ability of reasoning may have significant impact on solutions of games.

Rubinstein| (1989)’s electronic mail game is a well-known example for the
role and importance of bounded reasoning ability of the players in decision
theory. His example also sheds light on the difference between arbitrary
high, but finite and infinite belief hierarchies. An other example for that
finite belief hierarchies, or something very similar, are applied in economic
theory is the notion of k-rationalizability introduced by |[Bernheim| (1984).

Finite hierarchies of beliefs cannot be grabbed by ordinary type spaces,
those contain only infinite belief hierarchies, so a new notion is needed. This
basic observation is also recognized by [Kets (2012)), who introduces the no-
tion of extended type spaces, which contain both finite and infinite belief
hierarchies. We differ from |Kets (2012)) in some important points, e.g. we
give universal structure, she does not, our model can handle unawareness
too, her model cannot, and her model is different from ours in its setup as
well.

Unawareness is a type of uncertainty where the decision maker ignores a
fact (event) and ignores that she ignores that, and so on to infinity. Unaware-
ness has a huge literature in decision sciences, see Rantalal (1982)); |[Fagin and
Halpern| (1988)); Wansing| (1990); Modica and Rustichini (1994); Dekel et al
(1998)); Modica and Rustichini| (1999); Halpern (2001); Heifetz et al (2006);
Sillarri| (2006)); Halpern and Regol (2008)); Heifetz et al (2008); |Sillarri (2008);
Li (2009); Halpern and Regol (2009); [Hill| (2010); Heinsalu (2011a) among
others. However, up to our knowledge, only three papers take steps in di-
rection of incorporating the unawareness into the type space setting. One of
them is our paper.

The two other papers are Heinsalu (2011b)); Heifetz et all (2011)). These
papers have a very similar setting and both aim the very same goals we do.
We differ from them in several counts. First, we use a purely measurable
setting while they apply a topological one. This difference is important,
since [Pintér| (2010]) shows that there is no universal topological type space in
the topological setting, so the topological approach cannot provide universal
structure (type space with unawareness). Second, our model can handle not
only beliefs and unawareness, but many other phenomena, e.g. finite belief
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hierarchies.

Intuitively, one can classify the events from the epistemology viewpoint
as those are between the two extrema: commonly believed (with probability
1) and (commonly) unawared about, or for restricting this classification for
only one decision maker: the event is believed with probability 1 or the given
player is unaware about it. One event among these extrema, when a player
ignores an event, but she believes that she ignores the event. Then the player
is aware about the event, but she cannot form beliefs about it. Our model
can handle this kind of subtle differences of eventdl]

Extensive literature is about the theory of belief hierarchies and type
spaces, see e.g. [Boge and Eisele (1979); [Mertens and Zamir| (1985)); Heifetz
(1993); Brandenburger and Dekel (1993); [Mertens et al (1994); |Heifetz and
Samet| (1999)); |[Pintér| (2005)); Meier| (2008) among others. Heifetz and Samet
(1998)) show that the universal ordinary type space, the ordinary type space
which encompasses all ordinary types, exists (uniquely) in the setting where
only measure theory notions applied. |Pintér| (2010) proves, however, that a
similar result does not hold in the topological setting, that is, there is no
universal topological ordinary type space.

In this paper we introduce the notion of generalized type space. Gener-
alized types constitute the generalized type spaces (see Definition . Each
point in a generalized type space gives the players’ generalized hierarchies of
beliefs, in the same way as each point in an ordinary type space gives the
players’ (ordinary) belief hierarchies (Battigalli and Siniscalchi, [1999; Pintér,
2012).

Generalized types can describe finite belief hierarchies, unawareness and
many other interesting (interactive) epistemic phenomena. The idea behind
generalized type spaces is simple. Let (X, M) be a measurable space, where
event A € M can “mean” a proposition (formula). Then the decision maker’s
beliefs modeled by probability measures defined on any of the sub-o-fields of
M, which is denoted by 90, that is, contrary to ordinary models where the
beliefs are probability measures on a fixed o-field, in our model the beliefs
can vary more.

Suppose that at event A € M the decision maker’s belief is not defined,
then we can interpret this as the decision maker ignores event (proposition,
formula) A. In addition to this, A(X,9%) \ {x € A(X,9M) : u(A) > 0} is for
the beliefs (probability measures) which are not defined at event A. In other
words, A(X, )\ {© € A(X, M) : u(A) > 0} is the event that the decision
maker ignores event A.

'We do not explore the decision theoretic consequences of this kind of epistemic differ-
ences here, we intend to focus on that in an other paper.



For instance, if A;(X,9) is the set of Player ¢’s first order beliefs, and at
a certain state of the world Player j’s belief about Player i’s first order belief
is the trivial probability measure, that is, the probability measure defined on
the the trivial o-field (consisting of only the empty set and its complement),
then we can say that Player j has no second order belief with respect to
Player .

If at a given state of the world Player j has no second or higher order
beliefs with respect to any other player, then it means that Player ¢ has only
first order beliefs. In other words, if Player j’s belief does not catch any detail
about the other players’ beliefs, if Player j ignores the other players’ beliefs,
then Player j has only first order beliefs, she has a finite belief hierarchy.
Our model grabs the notion of finite hierarchies of beliefs in this way.

If at a certain state of the world Player i’s belief on A;(X,91) is not
defined at event A;(X, ) \ {p € A(X, M) : u(A) > 0}, then it means
Player i ignores that she ignores event A. Similar way, we can define the
event Player ¢ ignores that she ignores that she ignores event A. In general,
if a player ignores an event, and ignores that she ignores the event, and so
on to infinity, then we say that the player is unaware about the event.

Beyond that in generalized type spaces the players’ beliefs are probability
measures defined on not a concrete o-field but on one of a family of o-fields
(see above), the main characteristics of our notion of generalized type space
are as follows.

Since Pintér| (2010)’s result (who shows that there is no universal topolog-
ical ordinary type space) we work in the purely measurable setting, that is,
our generalized type space is a generalization of Heifetz and Samet| (1998)’s
ordinary type space. We demonstrate that there exists a universal general-
ized type space in this setting.

Our generalized type space is not a Harsanyi type space (Heifetz and
Mongin), 2001), we do not recommend a player know or believe with prob-
ability 1 her own lower order beliefs. We apply this more general model of
type spaces because modeling unawareness requires that a player be able to
ignore own ignorance, so be capable of forming false beliefs about her lower
order beliefs (see the discussion above).

As Example [7] shows in our model the unawareness is not trivial. This
feature does not contradict with Dekel et al (1998)’s, mainly because our
model is very different in its setting. For instance, KU introspection does
not hold in our model, since even if a player is unaware about an event at a
certain state of the world, it does not imply that she ignores the event at each
state of the world?l We also discuss our notion of unawareness in the light

2As Example [7] clearly shows the lack of KU introspection does not necessarily imply



of Example [7| (the complete characterization of unawareness in generalized
type spaces is left for an other paper).

Furthermore, even if we do not discuss it in this paper, but one can in-
corporate the knowledge into generalized type spaces, these enlarged objects
called generalized knowledge-belief spaces, in the very same way as [Meier
(2008) does it for ordinary type spaces (Heifetz and Samet), 1998).

It is worth mentioning that the proof for the existence of universal gener-
alized type space goes as |Heifetz and Samet) (1998)’s, [Meier| (2008))’s, [Pintér
(2012)’s proof, the construction of canonical model in modal logic goes, that
is, the same machinery lays behind all these results. We do not go into the
details of the common behind these results, only mention that the theory of
coalgebras and final coalgebras is the common umbrella for these and other
results, see (Moss and Viglizzo, 2004, 2006; |Cirstea et al, [2011; |[Moss, |2011))
among others.

The setup of the paper is as follows: In the following section we introduce
the notion of generalized type space, and characterize our notion of unaware-
ness. In Section [3| we discuss the generalized belief hierarchies, Section [4] is
devoted for introducing and characterizing the generalized type morphism.
In Section [5| we prove that the universal generalized type space does exit.
Moreover, a short appendix about inverse systems and inverse limits is at-
tached to the paper.

2 Generalized type spaces

Notations: Let N be the set of the players, w.l.o.g. we can assume that
0¢ N, and let Ng = N U {0}, where 0 is for the nature as a player.

Let # A be the cardinality of set A. For any set system A C P(X): o(A) is
the coarsest o-field which contains A. Let (X, M) and (Y, N') be measurable
spaces, then (X x Y, M ® N) or briefly X ® Y is the measurable space on
the set X x Y equipped with the o-field oc({A x B: A€ M, Be N}).

Furthermore, N={n € Z : n > 1}.

In the following we introduce the notion of generalized type space. We
generalize ordinary type spaces, and use terminologies, notions similar to
those Heifetz and Samet| (1998)) apply.

Definition 1. Let X be a space, M be a class of o-fields on set X and
A(X,0N) be the class of probability measures on the o-fields of M, formally

counterintuitive models.



AX, M) ={p e A(X,M): M e€M}. Then the o-field A* on A(X,IN) is
defined as follows:

A" =o({{p € AX, M) : p(A) > p}, Ae M, pe[0,1]}) .

In other words, A* is the smallest o-field among the o-fields which contain
the sets {u € A(X, M) : u(A) > p}, where M € M, A€ M and p € [0,1]

are arbitrarily chosen.

In models of incomplete information situations it is recommended the
players be able to consider own and the other players’ beliefs, that is, to
reason about events like a player believes with probability at least p that a
certain event occurs (beliefs operator see e.g. |Aumann (1999b)). For this
reason, for any M € M, A € M and p € [0,1]: {p e AX, M) | u(A) > p}
must be an event (a measurable set).

In our model, moreover, it is possible that for a certain event A € M,
M € M, and probability measure p € A(X, ) proposition p(A) > 0 does
not hold, since g is not defined at event A. Therefore, for any event A
such that A # X and A # (), that is, A is neither the sure nor the impossible
event, {p € A(X, M) : u(A) > 0} C A(X,9M) (proper subset). If probability
measure 1 € A(X,9M) (belief of a player) is not defined at event A, then
we say that the given player ignores event A. Moreover, A(X,9M) \ {u €
A(X, ) : p(A) > 0} is for the event that the given player ignores event
A. To keep the class of events as small (coarse) as possible, we take the A*
o-field.

Notice also that A* is not a fixed o-field, we mean, it depends on the
measurable spaces on which the probability measures are defined. Therefore
A* is similar to the weak* topology, which depends on the topology of the
base (primal) space.

Assumption 2. Let the parameter space (S, A) be a measurable space.

Henceforth we assume that (S, .4) is a fixed parameter space which con-
tains all states of the nature. We can think of S as a set which encompasses
all the not commonly known parameters of the considered situation.

Definition 3. Let Q be the space of the states of the world and for each
1 € Nyo: let M; be a o-field on Q2. The o-field M; represents Player i’s
information, My is for the information available for the nature, hence it
is the representative of A, the o-field of the parameter space S. Let M =
Vieny M, the smallest o-field which contains all M; o-fields.

Each point in €2 provides a complete description of the actual state of
the world. It includes both the state of nature and the players’ states of the
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mind. The different o-fields are for modeling the informedness of the players,
they have the same role as e.g. the partitions in Aumann| (1999a))’s paper
have. Therefore, if w,w’ € Q are not distinguishable | in the o-field M,
then Player 7 is not able to discern the difference between them, that is, she
believes the same things and behaves in the same way at the two states w
and w’. M represents all information available in the model, it is the o-field
got by pooling the information of the players and the nature.

For the sake of brevity, henceforth — if it does not make confusion — we
do not indicate the o-fields. E.g. instead of (S5,.4) we write S, or A(S)
instead of (A(S,.A), A*). However, in some cases we refer to the non-written
o-field: e.g. A € A(X, M) is a set of A*, that is, it is a measurable set in
the measurable space (A(X, M), A*), but A C A(X, M) keeps its original
meaning: A is a subset of A(X, M).

Definition 4. Let (2, {M,}icn,) be a space of the states of the world (see
Definition @ The generalized type space based on the parameter space S is

a tuple (S, Q, {Mi}ieny, g, { fitien), where

1. g:Q — S is My-measurable,

2. fi: Q= A(Q,IM) is M;-measurable, i € N,
where M = {N is a o-field on Q : N C M}.

Put Definition 4| differently, S is the parameter space, it contains the
"types” of the nature. M; represents the information available for Player 7,
hence it corresponds to the concept of types (see Harsanyi (1967-68)). f; is
the type function of Player i, it assigns Player i’s (subjective) beliefs to her
types. Furthermore, notice that, if for each state of the world w € €2 and
Player i € N the type function is such that f;(w) is defined on M, and each
player knows her own type, then the generalized type space is an ordinary
type space, that is, each ordinary type space is a generalized type space.

The generalized type spaces are not Harsdnyi type spaces (Heifetz and
Mongin|, [2001)), that is, the players do not know their own types, more pre-
cisely, they do not believe with probability 1 their own types. This is because
when we model unawareness, then we must allow the players to have “false“
beliefs about their own beliefs, that is, e..g. Player i ignores that she ignores
event A.

The following examples illustrate the notion of generalized type space.
The first example is for how finite belief hierarchies can be modeled by gen-
eralized type spaces.

3Let (X,T) be a measurable space and z,y € X be two points. Points z and y are
measurably indistinguishable, if for each A € T: (z € A) & (y € A).
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Example 5. Let S = {s1,s2}, A = P(S) and N = {1,2}. Consider the
following generalized type space:

(S, {Mi}iz01,2: 9, { fiti=12) , (1)

where

Q=5 xAS)! x A(ST

g : €2 — S is the coordinate projection,

M, is induced by g,

fi = pri, where pr; : Q — A(S)" is the coordinate projection, that
is, for any state of the world w € Q: f;(w) is defined on the o-field
{g71(A): Ae S} i=12,

e M, is induced by f;, i =1,2.

In this type space both players have all possible first order beliefs (ele-
ments of A(S)), however, no player has second order belief.

Player i’s first order belief at state of the world w € Q vi(w) is the
probability measure defined as follows, for each A € S

v (w)(A) = filw)(g7(4)) -

Player i’s second order belief at state of the world w € Q vi(w) is the
probability measure defined as follows, for each A € S®@ A(S,20)' @ A(S,2A)?
such that f;(w) is defined at event (g, v{,v?) "1 (A), where A(S,2A) is the class
of probability measures defined on a sub o-field of A, of the o-field on S:

vy (w)(A4) = fi(w)((g,v1,v7) 7 (A)) .

Notice that vi(w) is defined only on the o-field {g7'(A) : A € S}, which
o-field represents the events about Player ¢ can form second order beliefs.
Therefore, Player i’s second order belief at state of the world w € € is
nothing more than her first order belief, that is, Player ¢ has no second order
belief.

In a similar way one can see that no player has any higher than first order
beliefs in this model.

The following very simple example demonstrates that by generalized type
spaces we can model unawareness too. First, we define the notion of unaware-
ness we use in the paper.

4The index ? is for the player, that is, e.g. A(S)? is the type set of Player 2.

8



Definition 6. In generalized type space (S,Q, {M;}ien,, 9, {fi}ien) Player
1 € N is unaware about event A € S, if Player i ignores event A, she ignores
that she ignores event A, and so on to infinity. If Player i is not unaware
about event A € S, then we say that she is aware about event A.

As we have mentioned it in the Introduction, our model does not contra-
dict |Dekel et al (1998)’s result.

Example 7. Let S = {s1,s2}, A = P(S) and N = {1,2}. Consider the
following generalized type space:

(S, {M;}tizo1,2, 9, { fi}i=1,2) , (2)

where

e 1 =5x T1 X TQ, where T1 = {t%,t%}, T2 = {tg},
e ¢: ) — S is the coordinate projection,
e M, is induced by g,

e f; depends only on the component of T, so does f; on the component
of Ty, so that fi(si,t},ts) = fi(se,11,15) is defined on P(£2) such that
f1(81, t%, t2) = f1(327 t%? t2) = 5(sl,t%,t2)E|a f1<317 t%> t2) = f1<327 t%: t2) and
fa(s1,th,te) = fo(so, th,ta) = fo(s1,13,t2) = fa(sa, 3, 1) are defined on
the trivial o-field, that is, on the o-field consisting of only two sets: the
empty and the universal set,

e M, is induced by coordinate projection pr; : Q@ — T;, i =1, 2.

In this model at state of the world (si,t3,t,), Player 1 ignores event
{s1}, since fi(s1,t3,t) is not defined at {s;}. Moreover, Player 1’s second
order belief (see Example [5)) is not defined at event (S x {t3} x {to}) =
(g,v1,v3)71(S x (A(S, 201\ {v € A(S,20) : v({s1}) > 0}) x A(S,2)?), this
is the event of Player 1 ignores event {s; }, therefore Player 1 at state of the
world (sy,t2,t5) ignores that she ignores event {s;}.

Analogously, it is a slight calculation to see that Player 1 at state of the
world (sy,%,t5) ignores event {s;}, she ignores that she ignores event {s;},
and so on to infinity, that is, she is unaware about event {s; }. Furthermore,
it is clear that Player 1 at state of the world (sy,{,t5) is aware of event {s;},
that is, in this example the unawareness is not trivial.

>The Dirac measure concentrated on point (sq,t1,ts)



We do not provide more examples, but we remark that generalized type
spaces can be models also for situations where a player can form opinion
(belief) about e.g. the degree of finiteness of the other players’ and own
belief hierarchies, and situations where a player has beliefs about only certain,
arbitrary events.

Finally, we characterize our notion of unawareness in Example [7]

Remark 8. In the generalized type space of Example [7]if a player is unaware
about an event, then

e (plausibility) she ignores the event, and ignores that she ignores the
event,

e (strong plausibility) she ignores the event, and ignores that she ignores
the event, and so on to infinity,

o (belief introspection) she ignores that she is unaware about the event,

e (AU introspection) she is unaware about that she is unaware about the
event.

Furthermore,

e (necessitation) each player at each state of the world believes with
probability 1 the sure event (€2),

e if a player has a belief about an event (she believes the event with at
least probability 0), then she is aware (not unaware) about the event,

e if a player has a belief about an event, then she is aware about that
she has a belief about the event.

Moreover, a player

e (symmetry) is aware about an event, if and only if she is also aware
about the complement of the event,

e (A conjunction) is aware about countably many events, if and only if
she is aware about the conjunction of the events,

o (AB self reflection) is aware about that she believes with at least prob-
ability p an event, if and only if she is aware about the event,

o (AA self reflection) is aware about that she is aware about an event, if
and only if she is aware about the event,
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e has a belief about that she is aware about an event, if and only if she
is aware about the event.

In other words, in Example [7| our notion of unawareness meets the prop-
erties usually required in the literature (Dekel et al,|[1998; |Fagin and Halpern,
1988; [Modica and Rustichini, [1999; Halpern, [2001). It is worth mentioning
that in general, characteristic properties, our notion of unawareness meets,
depends on the o-fields and the beliefs. We do not discuss the complete
characterization of unawareness in generalized type spaces here, we left it for
an other paper.

Summing up the above discussion, generalized type spaces can be models
for many epistemic phenomena.

3 Generalized belief hierarchies

In this section we formally introduce the generalized belief hierarchies, and
show that each state of the world in a generalized type space determines the
players’ generalized belief hierarchies.

First we introduce the notion of generalized belief space. This notion is
the generalization of that [Mertens et al (1994) use.

Definition 9. In Diagram (3)

o AL S x e .m
Pt idg Dn
o _ AC S x e, m) ()
Qfm+1 idg qn—1n
o _ AC S x O, M)

e 1 € N is a player,

e neN,

S is the parameter space (see Assumption @),

@n—l = XiEN@:z—li
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® Gon = XieNGons that is, quy is the product of mappings ¢i . i € N,

#0p =1,

M, ={ M is ao-fieldon Sx0, 1 : MCS®O, 1}, n €N,

qfn : @Zi — @6,

o for all m,n € N such that 2 < m < n, p € ©': ¢ (u) € A(S x
@m717mm71):

qf,m(,u) - M|(SX9m7179ﬁm71) ’

that is, qi () is the restriction of u on the o-field {A € S ® ©,, 1 :
w is defined at (idgs, ¢m_1n—1)"'(A)}, where (ids, ¢m_1n_1) is the prod-
uct of mappings ids and ¢y_1,_1. Therefore, ¢, : O — ©! is a
measurable mapping.

e O = @(@;’N’ ¢’..), that is, © is the inverse limit of the inverse
system (0, N, q;,.,),

o pl :©" — O is the canonical projection, n € N.
Then T = S x O is called generalized belief space, where © = X ;e yO'.

The interpretation of generalized belief space is the following. For each
point 0 € O 0" = (ut,ul,...), where pi € ©! is Player i’s nth order
generalized belief, that is, each point in T" gives a complete description of the
state of the nature (a point in S) and the players’ hierarchies of generalized
beliefs.

If for Player i at “type“ #° € ©% and level n it holds that for each m > n
pi = pt  we mean p! is defined at event A € S ® O,,_; if and only if u!, is
defined at event (idg, ¢,_1m_1) ' (A), then we say that Player i has only nth
order (generalized) beliefs at "type” 6, that is, Player i has a finite belief
hierarchy.

Next we formally give how one can deduce the players’ generalized belief
hierarchies in generalized type spaces. The same property, we mean the belief
hierarchies can be deduced from types, is well-known for ordinary type spaces
(see e.g. Battigalli and Siniscalchi| (1999)), [Pintér (2012)), that is, this is not
a special generalized type space feature.
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Demonstration 10. Take generalized type space (S, 2, {M;}ieng, 9, {fi bien)s
state of the world w € 2 and Player ¢ € N.

Player i’s first order generalized belief at state of the world w € Q vi(w)
is the probability measure defined as follows, for each A € S such that f;(w)
is defined at g7!(A):

v (w)(A) = filw)(g7(4)) -
fi is M;-measurable, hence v! is also M;-measurable.

Player i’s second order generalized belief at state of the world w € Q v (w)
is the probability measure defined as follows, for each A € S ® ©; such that
fi(w) is defined at event (g,v1)"'(A), where v; is the product of mappings
vi, 1€ N, and so0 is (g, v;) of mappings g and v;:

vy (w)(A) = filw)((g,v1) "' (A))

Since f; is M;-measurable, so is v}.

Generally, Player i’s nth order generalized belief at state of the world w €
Q vi (w) is the probability measure defined as follows, for each A € S® ©,,_;
such that f;(w) is defined at event (g,v,_1) '(A), where v,_; is the product

of mappings v!,_,, 7 € N, and so is (g,v,_1) of mappings g and v,,_1:

v (W)(A4) = fi(w)((g,va-1)""(A)) -

Again, since f; is M;-measurable, so is v},.

4 Generalized type morphisms

In this section we introduce the notion of generalized type morphism. By
generalized type morphisms we can compare generalized type spaces to each
other, and we can say that a generalized type space is ”bigger” than an other.
Our concept is closely related to that Heifetz and Samet| (1998) introduce to
compare ordinary type spaces.

Definition 11. Mapping ¢ : Q — Q' is a generalized type morphism between
generalized type spaces (S, {Mi}ieng, 9, { fitien) and (S, {M}ieny, 9’
{fi/}iEN); Zf

1. ¢ is a (M;, M})-measurable mapping, i € Ny,

2. Diagram is commutative, that is, for each w € Q: ¢ o p(w) = g(w),

13



’ < (4)

o9 S

3. for each i € N: Diagram 1s commutative, that is, for each w € §:
fiop(w) =¢o filw),

Q Ji - A(Q, M)
@ @ (5)
Qo Ji - A(SY,000)

where ¢+ A(Q, M) — A(QY, ) is defined as for each u € A(Q,9M), A €
M (™ (A)) = @(u)(A), we mean, if the left hand side is not defined,
then neither is the right hand side and vice versa.

Generalized type morphism ¢ is a generalized type isomorphism, if ¢ is a
bijection and =1 is also a generalized type morphism.

As we have already mentioned the above definition is an adaptation
of Heifetz and Samet, (1998)’s notion of ordinary type morphisms (Pintér,
2012)). Generalized type morphisms preserve generalized belief hierarchies
(see Proposition , so, in this context, a generalized type morphism maps
a state of the world of a generalized type space into a state of the world of
an other generalized type space in a way such that the players’ epistemic
characteristics are the same in the two states.

The following result is a direct corollary of Definitions [] and [L1}

Corollary 12. The generalized type spaces based on the parameter space S
as objects and the generalized type morphisms form a category. Let CS denote
this category.

By applying the notions of category theory one can introduce and present
the notions of generalized type spaces in a clear and handy way, in other

6In this model the epistemic characteristics are the generalized belief hierarchies, that
is, what the players believe and so on.
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words, the language of category theory fits both ordinary and generalized
type spaces.

In the following proposition we demonstrate that generalized type mor-
phisms preserve generalized belief hierarchies.

Proposition 13. Generalized type morphisms preserve generalized belief hi-
erarchies.

Proof. Consider generalized type spaces (S, Q, {M;}ieng, 9, {fi}ien), (S,
{M:}ieng, s {fl}ien) and generalized type morphism ¢ : @ — Q. Take
state of the world w € € and Player ¢ € N.

Points (1] and [2| of Definition [11] implies g~! = (¢’ o ¢)~!, so from Point
vl = 0" o ¢, that is, Player i’ first order beliefs at sates of the world w and
¢(w) coincide.

From Points , and the previous paragraph (vi = v’} o ¢) we get that
v = v, 0, that is, Player i’ second order beliefs at sates of the world w and
(w) coincide.

Generally for any n, by induction: from Points and that v!_, =
V" o we get vi = '’ o, that is, Player i’ nth order beliefs at sates of
the world w and ¢(w) coincide. O

It is worth noticing that even if two generalized type spaces represent the
same generalized belief hierarchies those might be not equal by generalized
type morphisms, that is, generalized type morphisms preserve not only the
generalized belief hierarchies, but something more. For further discussion on
this topic for ordinary type spaces see Ely and Peski| (2006) and [Friedenberg
and Meier| (2011)).

5 Universal generalized type space

Heifetz and Samet| (1998) introduce the concept of universal ordinary type
space, here we adapt their notion for generalized type spaces.

Definition 14. Generalized type space (S, 0", {M:}ieny, 0% {fF }ien) is a
universal generalized type space, if for each generalized type space (5,2,

{M;}ieng, 9, {fi}ien) there exists a unique generalized type morphism ¢ :
Q — QF.

In other words, the universal generalized type space is the "biggest” gen-
eralized type space among generalized type spaces. It contains all generalized
types, that is, those which appear in any of the generalized type spaces.

In the language of category theory Definition [14] means the following:

15



Corollary 15. The universal generalized type space is a terminal (final)
object in category C.

From the viewpoint of category theory the uniqueness of a universal gen-
eralized type space is a straightforward statement.

Corollary 16. The universal generalized type space is unique up to general-
ized type isomorphism.

Proof. Every terminal object is unique up to isomorphism. 0

The only question is the existence of the universal generalized type space.
Heifetz and Samet| (1998)) show that in the category of ordinary type spaces
there exists the universal type space, in the following we show this is also the
case in the category of generalized type spaces.

Theorem 17. There exists a universal generalized type space, that is, there
is a terminal object in the category of generalized type spaces C°.

The strategy of the proof is the following: we take the subspace of the
generalized belief space which contains all the generalized hierarchies of be-
liefs appearing in a generalized type space, then we show that the considered
subspace of the generalized belief space “is* the universal generalized type
space. This strategy is not new in the literature, Heifetz and Samet| (1998),
Meier| (2008)), [Pintér (2012) apply this too, and from a more abstract view-
point canonical models in modal logic constructed in the same way (Moss,
2011]).

The proof of Theorem[I7. As we have already showed in Demonstration
each point in a generalized type space ”consists of” a state of the nature and
the players’ generalized belief hierarchies. Since, each point in the generalized
belief space T also consists of a state of the nature and the players’ generalized
belief hierarchies, we can say that for each Player ¢ let

0" = {0’ € ©": (S, Q,{Mi}icn,, 9, { fi}ien) € C%,w € Q such that
6" and w induce the same generalized belief hierarchy for Player i} .

Let Q* = S ® O, where ©F = x,;cyO*.
Take generalized type space (S, Q*, {M}ieng, 95, {fi }ien), where

® g" =prs,

o M; is induced by g¢*,
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o fi=pre.li€N,

o M7 is induced by f', i € N.

Then (S, Q*, {M: }icny, 9% {fF bien) € C, that is, it is a generalized type
space.

Let (S, Q, {M;}ien,, 9, { fi}ien) be a generalized type space, and ¢ : Q —
Q* be defined as for each w € Q: p(w) = (g(w), {vi(w), vi(w), .. .}ien), where
v! is Player ’s nth order belief, and ¢ is the product of the involved mappings.

e Since (2 consists of different generalized belief hierarchies ¢ is well-
defined.

o ¢ is (M;, Mf)-measurable, i € Ny: It directly comes form that g is
M-measurable, v! is M;-measurable, n € N, i € N.

e Diagrams [] and [5] are commutative, and ¢ is unique: It is a direct
corollary of the definition of .

OJ

Theorem says that there exists a universal generalized type space,
and it contains every finite belief hierarchy (it comes from the definition of
generalized belief space T') and some infinite belief hierarchies. However,
Pintér (2012) shows that the universal ordinary type space encompasses all
infinite belief hierarchies, therefore, since the category of generalized type
spaces contains the universal ordinary type space (we have discussed it after
Definition , that is, the universal ordinary type space is a generalized type
space, the universal generalized type space encompasses all finite and infinite
belief hierarchies.

Corollary 18. The universal generalized type space contains all finite and
infinite belief hierarchies.

A Inverse systems, inverse limits

In this section we introduce the basic notions of inverse systems and inverse
limits.

"Notice that by definition each point in ©*° gives a probability measure on a sub-o-field

of M* (see Diagram (B)).
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Definition 19. Let (I, <) be a preordered set, (X;)ier be a family of nonvoid
sets, and for all i,5 € I such that i < j, fi; + X; — X;. The system
(X, (1, <), fij) is an inverse system if it meets the following points:

o fii =idx,,
o fi = fijo [ir,
1,7,k € I such thati < j and 5 <k.

The inverse system, also called projective system, is a family of sets con-
nected in a certain way.

Definition 20. Let ((X;, A, i), (1, <), fi;) be an inverse system such that
foralli € I, (X;, A;, i) is a measure space. The inverse system ((X;, A;, p;),
(1,<), fij) is an inverse system of measure spaces if it meets the following
points:

o fij is a (A;, A;)-measurable function,

® [i; = |45 O ij17
1,7 € I such that 1 < j.

Next we introduce the notion of inverse limit.

Definition 21. Let (X;, (I, <), fi;) be an inverse system, X = X;e1X; and
P = {xe X : foralli,j such that i < j, pri(z) = fij oprj(x)}, where for
all i € I, pr; is the coordinate projection from X to X;. Then P is called
the inverse limit of the inverse system (X;, (I, <), fi;), and it is denoted by

Moreover, let p; = pri|p, so for all i.j € I such that i < j, p; = fij o p;.
p;i 18 called canonical mapping, 1 € I.

In other words, the inverse limit is a generalization of the Cartesian prod-
uct. If (I, <) is such that every element of I is related only to itself, that
is, for all i,j € I, (i < j) = (i = j), then the inverse limit is the Cartesian
product.

Definition 22. Let ((X;, A;, 11:), (I, <), fij) be an inverse system of measure
spaces and P = 1im(X;, (I, <), fi;). Then the measure space (P, A, j1) is the
inverse limit of the inverse system of measure spaces ((X;, Ai, i), (1, <), fi;)
denoted by (P, A, pn) = @((Xi,Ai,ui), (1,<), fij), if it meets the following
points:

1. A s the coarsest o-field for which the canonical projections p; are
(A, A;)-measurable, i € I,

2. 1 is a measure such that jop;t = p;, i € 1.
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