
Simulation of population distributions

of subnational entities (first draft)
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1 Introduction

Most sovereign countries are divided into administrative divisions. The population distribution of

these subdivisions within a country is an important characteristic of national electoral systems.

Supported by theoretical models [Gabaix, 1999], power law distributions were traditionally a frequent

choice to describe population sizes of subnational territorial entities. Nevertheless, they have proven

to be inadequate in practice on empirical data of cities [Soo, 2004] as well as first-level administrative

units [Fontanelli et al., 2017].

Recently, the Discrete Generalized Beta Distribution (DGBD), a broader class of statistical distribu-

tions encompassing power laws and several other important special cases, has been used successfully

to characterize population sizes of natural cities [Li et al., 2015], countries and their second-level

administrative units [Fontanelli et al., 2017], and additionally, the latter paper outlined a model to

support its validity.

2 Methods

Instead of the usual cumulative distribution and probability density functions, the Discrete Gener-

alized Beta Distribution (DGBD) is customarily defined in terms of its rank-size function, which

specifies the relationship between known population sizes x of N entities within a country and the

associated population rank numbers r in a descending order [Fontanelli et al., 2017]:1

x(r) =C
(N +1− r)b

ra (r = 1,2, . . . ,N), (1)

where a and b are parameters and C is a normalizing constant.

Equation (1) can be fitted to observed population sizes and computed ranks by non-linear regression.
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1. The special case of power law distributions arises by setting b = 0.
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Fontanelli et al., 2017 describes how to measure the goodness of this fit using a modified version of

the Kolmogorov-Smirnov test statistic [Smirnov, 1948] as well as test its statistical significance by

bootstrapping [Efron, 1979].

Standard statistical learning techniques such as classification and regression trees [Breiman et

al., 1984] and multivariate adaptive regression splines (MARS, Friedman [1991]) may facilitate find-

ing groups of countries with a poor fit and predicting the parameters of Equation (1) based on the

overall population size and number of subdivisions within a country. In this context, we prefer these

two methods to more complex machine learning techniques such as random forests, artificial neural

networks or support vector machines due to their superior transparency, interpretability and publisha-

bility.

The resulting models may in turn be used to simulate realistic samples of subdivision populations by

means of standard random variate generation techniques commonly applied in Monte Carlo simula-

tion.

3 Statistical analysis

We used a dataset containing lists of population sizes of all first-level administrative subdivisions of

38 countries for our analysis, which we performed in the R programming language [R Core Team,

2014].

First we applied non-linear regression to estimate the parameters of Equation (1) and thereby fit the

DGBD model to each country, and computed the R2 values as well as the Kolmogorov-Smirnov test

statistics KS and the associated p-vales of the null hypothesis of a satisfactory fit.

We summarize our results in Figures 1 and 2 as well as Table 1 in the Appendix. The DGBD model

fits the data of most countries very well: the mean R2 is 0.94, and the fit may be accepted in 31 out

of 38, or equivalently, about 82% of all countries based on the KS test statistics and the associated

p-values, assuming the standard significance level of α = 0.05.2 All 7 countries where the fit of the

model is not acceptable are located in Europe.

2. Using 1,000 bootstrap samples per country. Increasing the bootstrap sample size did not change the sets of countries
where the null hypothesis is accepted or rejected.
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Figure 1: Estimated DGBD parameters a and b (axes), N (size) and conclusion (color) by country.
The dashed horizontal line at b = 0 corresponds to the power law distribution.
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Figure 2: Acceptance or rejection of the DGBD model by country

The overall validity of the model can be further enhanced by excluding countries with specific

patterns based on their electorate size and number of subdivisions which predispose them to a poor

fit. Figure 3 displays a classification tree that identifies a group of this type by predicting the rejection

of the null hypothesis of a satisfactory fit.
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Figure 3: Classification tree predicting the rejection of a satisfactory fit

Based on Figure 3, we reject the fit in 100% of the group of countries with at least 29 subdivisions

and a total electorate of less than 10 million people, which contains 13% or 5 of all countries ana-

lyzed (namely, Bulgaria, Ireland, Lithuania, Scotland and Sweden). These countries can be briefly

characterized as having small populations and fragmented systems of subdivisions at the same time.

After excluding these entities from our analysis, as we did, the model became acceptable in 31 out of

33, or equivalently, about 94% of all remaining countries.

As a next step, we used statistical learning techniques to estimate the dependence of the parameters

a and b on potentially known predictors: the size of the electorate and the number of subdivisions.

First we fitted a multivariate adaptive regression splines (MARS) model with two independent vari-

ables and two predictors, but it returned a non-informative, intercept-only model. Then we built

regression trees for the same purpose and optimized them by tuning their complexity using 10-fold

cross-validation repeated 10 times. The estimated out-of-sample R2 values of the models are 0.37 for

the first tree and 0.53 for the second one: they are far from perfect, but greatly outperform the ’one

size fits all’ approach of the intercept-only models. We display the resulting trees in Figures 4 and 5.
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Figure 4: Regression tree predicting the parameter a of the DGBD model

An example of the interpretation of these: if the size of a country’s electorate is less than 22 million

people and the number of subdivisions is at least 16 then the estimated value of the parameter a is

0.48 based on the mean value of 21% of all countries used to build the model.
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Figure 5: Regression tree predicting the parameter b of the DGBD model

To simulate random populations of constituencies, a and b may be estimated by substituting the

size of the electorate and the number of subdivisions into the trees displayed in Figures 4 and 5, and

plugging these estimated parameter values and randomly generated ranks into the function defined by

Equation (1).



4 Conclusion and limitations

We presented a technique to simulate random subdivision populations based on fitting the DGBD

model to data of 38 countries of the world and applying classification and regression trees to predict

its potential scope and parameters. The fit of the distribution is excellent, and our method is capable

of simulating realistic data, albeit with its own limitations.

The current model only has a high reliability for countries with less than 29 subdivisions or electorates

of at least 10 million people, and the trees that predict its parameters assume that the size of the

electorate and the number of subdivisions are known.

Our method is confined by the incomplete list of countries it was optimizedon, potential parameter

uncertainty, model uncertainty, and the accuracy of the predictions of the regression trees we used to

estimate the model parameters.
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Appendix

Country N a b R2 KS p Conclusion (α = 0.05)
Albania 12 0.45 0.41 0.96 0.11 0.63 accept

Argentina 24 0.91 0.35 0.97 0.05 0.98 accept
Australia 8 0.59 1.31 0.95 0.12 0.64 accept
Austria 9 0.30 0.61 0.94 0.15 0.37 accept

Belgium 11 0.01 0.77 0.96 0.14 0.47 accept
Brazil 27 0.62 0.72 0.99 0.09 0.43 accept

(Bulgaria) 31 0.29 0.25 0.94 0.15 0.01 reject
Canada 10 0.93 0.99 0.97 0.13 0.52 accept
Chile 60 -0.08 1.05 0.90 0.14 0.15 accept

Cyprus 6 0.51 0.58 0.97 0.12 0.70 accept
Croatia 11 -0.71 1.47 0.73 0.50 0.00 reject
Czechia 14 0.29 0.29 0.93 0.16 0.10 accept

Denmark 11 -0.45 1.65 0.87 0.19 0.47 accept
Estonia 12 0.30 0.07 0.94 0.16 0.17 accept
Finland 13 -0.14 1.17 0.89 0.23 0.14 accept
France 96 0.43 0.46 0.98 0.07 0.11 accept

Germany 16 0.67 0.54 0.99 0.07 0.92 accept
Iceland 6 0.27 0.35 0.98 0.09 0.92 accept

(Ireland) 40 0.10 0.14 0.90 0.15 0.00 reject
Italy 98 0.67 0.27 0.99 0.05 0.51 accept
Japan 47 0.68 0.20 0.98 0.07 0.52 accept
Latvia 5 0.65 -0.03 0.92 0.17 0.42 accept

(Lithuania) 71 0.04 0.03 0.93 0.13 0.00 reject
Luxembourg 4 0.26 0.66 0.89 0.16 0.59 accept

Malta 13 0.04 0.01 0.96 0.09 0.84 accept
Norway 19 0.39 0.35 0.98 0.07 0.93 accept
Poland 41 0.17 0.12 0.97 0.09 0.18 accept

Portugal 20 0.81 0.20 0.98 0.08 0.82 accept
Romania 43 0.33 0.18 0.96 0.06 0.80 accept
Slovenia 8 0.02 0.02 0.91 0.17 0.35 accept

South Korea 17 0.52 0.66 0.91 0.15 0.07 accept
(Sweden) 29 0.32 0.30 0.87 0.18 0.00 reject

Switzerland 26 0.57 0.88 0.98 0.08 0.56 accept
UK / England 97 0.61 0.46 0.95 0.12 0.00 reject
UK / Wales 28 1.11 -0.34 0.90 0.34 0.11 accept

UK / Northern Ireland 17 0.24 -0.06 0.85 0.17 0.47 accept
(UK / Scotland) 35 0.59 0.14 0.91 0.22 0.00 reject

USA 50 0.60 0.63 0.98 0.06 0.67 accept

Table 1: Fit of the DGBD model by country (names of countries to be excluded from the simulation
procedure based on Figure 3 are in parentheses)
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