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Abstract

This paper addresses a problem with an argument in Kranich, Perea, and Peters
(2005) supporting their definition of the Weak Sequential Core and their characteri-
zation result. We also provide the remedy, a modification of the definition, to rescue
the characterization.
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1 Introduction

Kranich, Perea, and Peters (2005) presents the concept of the Weak Sequential Core and
its characterization for dynamic TU games without uncertainty. The main idea is that
coalitions can only deviate from a given allocation if this deviation is credible; i.e. there
is no sub-coalition at any date who can further improve upon it. Our focus here will be a
reformulation of the idea of credibility.

By means of an example we argue that there is a problem in the argument of Kranich,
Perea, and Peters (2005) supporting their definition of the Weak Sequential Core. We also
provide a remedy, a modification of the definition, to rescue their results.

The outline of the paper is as follows. We specify the setup of the dynamic TU-game in
Section 2. Next we provide the definition of the Weak Sequential Core following Kranich,
Perea, and Peters (2005) in Section 3. We proceed with showing the problem with this
definition in Section 4 and providing a remedy to it in Section 5.
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2 Preliminaries

In this section we provide the basic definitions and the setting of the game played.
A TU-game is a pair (N, w), where N = {1, 2, . . . , n} is the set of players and w : 2N →

R is a characteristic function which assigns to each coalition C ⊂ N its worth w(C), with
the convention that w(∅) = 0. The set of all TU-games with player set N is denoted by G.

We consider a sequence of TU-games, played in time-periods t ∈ T = {1, . . . , T}, by
the players in N . Now the characteristic function wt : 2

N → R assigns to each coalition
C ⊂ N in each time-period t its worth wt(C), with wt(∅) = 0. Each player i ∈ N
has an intertemporal utility function, ui : RT → R which assigns to every payoff stream
xi = (xi

1, . . . , x
i
T ) ∈ RT of player i a utility level ui(xi). A dynamic TU-game is therefore

defined as follows.

Definition 2.1. A dynamic TU-game, denoted by Γ, is a tuple (N, T , w, u), where w =
(w1, . . . , wT ) and u = (u1, . . . , un).

The utility function ui is assumed to be continuous, weakly increasing in each coordi-
nate, time-separable, and satisfies

lim
xi

t→−∞
ui(x̄i\xi

t) = −∞, (1)

where x̄i\xi
t denotes the allocation where the period-t component of the allocation x̄i is

replaced by xi
t.

The distribution of worth if the grand-coalition is formed is called an allocation; x =
(x1, . . . , xn) ∈ RT ×N . The period-t component of the allocation is xt = (x1

t , . . . , x
n
t ) ∈ RN .

We introduce some useful notation to be able to define the subgame of a dynamic TU-
game. Let t+ ⊂ T denote the set of time-periods from t onwards, so t+ = {t, . . . , T}. An
allocation stream in time-periods from t onwards is denoted xt+ , and player i’s payoff stream
is xi

t+ . Similarly, we use the notation for the characteristic function; wt+ = (wt, . . . , wT ).
We will use the following property of the utility functions. Since every utility function

is assumed to be time-separable, there is a utility function ui
t : Rt+ → R for each period t

such that for every (xi
1, . . . , x

i
t−1) and every pair yi

t+ , ỹi
t+ we have

ui(xi
1, . . . , x

i
t−1, y

i
t+) ≥ ui(xi

1, . . . , x
i
t−1, ỹ

i
t+)

if and only if

ui
t(y

i
t+) ≥ ui

t(ỹ
i
t+).

Let ut denote the utility functions ut = (ui
t)i∈N , the collection of individual utility functions

from t onwards.
Now the subgame of a dynamic TU-game can be defined as follows.

Definition 2.2. The subgame of a dynamic TU-game Γ starting at time period t is the
dynamic TU-game Γt = (N, t+, wt+ , ut+).
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For a dynamic TU-game Γ, (Γ, C) will denote the restriction of the game to coalition
C.

The central question in a TU-game is how to distribute the worth w(C) of a coalition
C among its members if the coalition is formed. An allocation for a coalition C in Γ is a
matrix xC = (xi)i∈C ∈ RT ×C . The allocation for a coalition C at time-period t is xC

t ∈ RC

and an allocation stream for coalition C in time-periods from t onwards is denoted xC
t+ .

The total amount of payoff of coalition C in time-period t is xt(C) =
∑

i∈C xi
t, where xi

t

is player i’s share. The total payoff stream for the coalition from t onwards is denoted by
xt+(C).

Definition 2.3. An allocation x̄ ∈ RT ×N is efficient in the game Γ if

x̄(N) = w(N).

Note that this concept says more than the usual efficiency or feasibility conditions in
TU games, since it requires

∑
i∈N xi

t = wt(N) to hold for all time-periods t ∈ T .
We study which allocations are stable in a game Γ. In general, a given allocation x̄

is stable if there is no time-period t ∈ T and no coalition C ⊂ N which has a profitable
deviation from x̄ at time-period t. There are various ways in which the notion of profitable
deviation might be formulated. Here we concentrate on profitable deviations related to the
Weak Sequential Core.

3 The Weak Sequential Core

In this section we reproduce the definition of the Weak Sequential Core following Kranich,
Perea, and Peters (2005).

Definition 3.1. An allocation xC
t+ ∈ Rt+×C is feasible for a coalition C at time-period t

in the game Γ if

xt+(C) = wt+(C).

Note again that this concept says that the allocation must be feasible for coalition C
in every time-period; it requires

∑
i∈C xi

t′ = wt′(C) to hold for all time-periods t′ from t
onwards.

Definition 3.2. Let some allocation x̄ be given. A coalition C can deviate from x̄ at a
given time period t ∈ T if there exists a feasible allocation xC

t+ for coalition C at t such
that

ui
t(x

i
t+) > ui

t(x̄
i
t+), for all i ∈ C.

Since the utility functions are time-separable, the improvement in time-period t̄ is
independent of the payoffs received before t̄. Note also that we implicitly assume that once
a coalition deviates, it can no longer collaborate with players outside the coalition for the
rest of the time.
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Definition 3.3. A deviation xC
t+ as in Definition 3.2 is credible if there is no sub-coalition

C ′ ⊂ C and time-period t′ ≥ t such that C ′ has a counter-deviation at t′ from xC
t+ , i.e. a

feasible allocation stream x̂t′+ for C ′ with ui
t′(x̂t′+) > ui

t′(xt′+) for all i ∈ C ′.

Kranich, Perea, and Peters (2005) define the Weak Sequential Core as follows.

Definition 3.4. The Weak Sequential Core of the game Γ, denoted by WSC(Γ), is the set
of feasible allocations x̄ for the grand coalition from which no coalition ever has a credible
deviation.

4 Problem with the implications of WSC(Γ)

In this section we argue that if one follows the definitions of Section 3, the results of Kranich,
Perea, and Peters (2005) may not hold. In particular we present a counter-example to their
first result, Lemma 1.

First we re-state Lemma 1. Then we give an example, which proves Lemma 1 to be
incorrect.

Lemma 1. Let Γ be a dynamic TU-game and x̄ a feasible allocation for N . Then the
following two statements are equivalent.

(a) x̄ ∈ WSC(Γ),

(b) x̄ is such that x̄2+ ∈ WSC(Γ2) and there is no C ⊂ N and allocation xC such that
x(C) = w(C), xC

2+ ∈ WSC(Γ2, C) and ui(xi) > ui(x̄i) for all i in C.

Example 4.1. Consider a game with two time-periods and two players; T = {1, 2} and
N = {1, 2}. Let the stage games be given by

w1({1}) = 0.9, w1({2}) = 0, w1({1, 2}) = 1,
w2({1}) = 0, w2({2}) = 0.9, w2({1, 2}) = 1.

Let the utility functions be

ui(xi) = 1/2(1− e−xi
1) + 1/2(1− e−xi

2)

for both players.
Consider the following allocation

x̄ = (x̄1, x̄2) =

(
1 0
0 1

)
.

This allocation would give both players a utility of ui(x̄i) ≈ 0.3161.
It is clear that no singleton coalition can deviate from the given allocation at any time,

and also that the coalition {1, 2} cannot block x̄ at t = 2, since it is not possible to increase
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the utility of both players simultaneously. Thus it only remains to check if {1, 2} has a
credible deviation x{1,2} at t = 1. For such a deviation it must hold that

u1(x1) > u1(1, 0), (2)

u2(x2) > u2(0, 1). (3)

To prevent counter-deviations by players 1 and 2 at t = 2 it should also hold that

x1
2 ≥ 0, (4)

x2
2 ≥ 0.9. (5)

It follows from Inequality (5) and feasibility that x1
2 ≤ 0.1. Using Inequality (2) we find

that

1/2(1− e−x1
1) + 1/2(1− e−0.1) ≥ u1(1, 0),

so, x1
1 ≥ 0.7699. By feasibility we obtain x2

1 ≤ 0.2301.
The deviation x1,2 therefore satisfies

u1(x1) ≤ u1(1, 0.1) ≈ 0.3636,

u2(x2) ≤ u2(0.2301, 1) ≈ 0.4188.

It follows that x{1,2} cannot be a credible deviation, since x′ defined by

x′ =

(
0.455 0.545
0.455 0.545

)

is a counter-deviation for coalition {1, 2} at t = 1; u1(x′1) ≈ 0.3656 and u2(x′2) ≈ 0.4202.
Although x′ itself is not credible, player 2 can counter-deviate from it in time-period 2,

x′ makes any possible deviation by coalition {1, 2} at t = 1 not credible.
Thus the given allocation x̄ is in the Weak Sequential Core of the game.

Now we will show, by means of Example 4.1, that (a) of Lemma 1 does not imply (b).

We have seen that

x̄ = (x̄1, x̄2) =

(
1 0
0 1

)

is an element of the Weak Sequential Core, so x̄ satisfies the conditions in (a). It is also
clear that the first claim of (b) holds; i.e. x̄2+ = x̄2 = (0, 1) is in the Weak Sequential
Core of the subgame starting in time-period 2. The rest of the claim however is not true.
Consider the allocation x{1,2} defined by

x{1,2} =

(
0.9 0.1
0.1 0.9

)
.

It holds that x{1,2}({1, 2}) = w({1, 2}), x
{1,2}
2 ∈ WSC(Γ2, {1, 2}), u1(x1) > u1(x̄1) and

u2(x2) > u2(x̄2), so x̄ does not satisfy the conditions in (b). Thus it follows that (a) does
not imply (b).
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5 Remedy

Part (b) of Lemma 1 plays a very important role in the concept of Weak Sequential Core.
Predtetchinski, Herings, and Perea (2006) take (b) of Lemma 1 to define the Weak Sequen-
tial Core in their work on exchange economies and also Kranich, Perea, and Peters (2005)
think of this condition as a crucial property of the WSC(Γ).

In this section we modify the definition of the Weak Sequential Core. Following Def-
inition 4 in Kranich, Perea, and Peters (2005) the authors argue that the existence of a
deviation by C ′ implies the existence of a credible counter-deviation by some coalition C ′′,
and so it is not necessary to require a counter-deviation by C ′ to be credible; supporting
both their definition of the Weak Sequential Core and the proof of Lemma 1.

Their argument proceeds as follows. Suppose that C ′ has a counter-deviation x′ from
xC that is not credible. One may assume that C ′ itself does not have a counter-deviation
from this deviation. Then there is a coalition C ′′ � C ′ that has a deviation x′′ from x′ at
a time-period t′′ ≥ t′. Next they claim that if x′′ is a credible deviation from x′ then it is
also a credible deviation from x̄. However this claim does not hold.

Consider the counter-deviation x′ of C ′ = {1, 2} at t = 1 in Example 4.1. This devia-
tion is not credible, C ′ itself does not have a deviation from it and C ′′ � C ′ = {2} does.
Player 2 could deviate in time-period 2 with x′′2 = w2({2}) = 0.9 > 0.545. However, x′′ is
not a deviation from x̄2

2 = 1, providing a counter-example to the claim above.

The solution to the problem is to require the counter-deviation by C ′ in Definition 3.3
to be credible at its turn. We propose to use a notion of credibility similar in spirit to the
one defined by Ray (1989), applied to our dynamic setting.

Definition 5.1 (Credible deviation for a singleton). Let some allocation x̄ be given. A

feasible allocation x
{i}
t+ is a deviation from x̄ for player i ∈ N in time-period t ∈ T if

ui
t(x

i
t+) > ui

t(x̄
i
t+). Such a deviation is always credible for a singleton coalition.

A 2-player coalition C has a credible deviation xC
t+ at time-period t if there is no

singleton sub-coalition C ′ � C and time t′ ≥ t such that C ′ has a credible deviation at t′

from xC
t+ . Therefore, recursively, a credible deviation for a coalition C is defined as follows.

Definition 5.2 (Credible deviation). Let some allocation x̄ be given. A feasible allocation
xC

t+ is a deviation from x̄ for coalition C in time-period t ∈ T if ui
t(x

i
t+) > ui

t(x̄
i
t+), for all

i ∈ C. Such an xC
t+ is a credible deviation for coalition C at time-period t if there is no

sub-coalition C ′ � C and time t′ ≥ t such that C ′ has a credible deviation at t′ from xC
t+ .

Now the definition of the Weak Sequential Core can be modified as follows.

Definition 5.3. The Weak Sequential Core of the game Γ, denoted by WSC(Γ), is the set
of feasible allocations x̄ for the grand coalition from which no coalition ever has a credible
deviation.
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If one applies this modified definition of credibility to Example 4.1, x̄ defined by

x̄ = (x̄1, x̄2) =

(
1 0
0 1

)

is no longer an element of the Weak Sequential Core. Consider x{1,2} defined by

x{1,2} = (x1, x2) =

(
0.9 0.1
0.1 0.9

)
.

We claim that x{1,2} is a credible deviation from x̄ by coalition {1, 2} at t = 1. Indeed,
u1(x1) > u1(x̄1), u2(x2) > u2(x̄2), and there is no deviation possible from x{1,2} by any
singleton coalition at any time-period.

We show next that if one uses Definition 5.3 instead of Definition 3.4 to define the
Weak Sequential Core, Lemma 1 is rescued.

First we introduce two lemmas, which will be useful for our proof of Lemma 1 under
the modified definition of the Weak Sequential Core.

Lemma 5.4. If, for some t ∈ T , x̄t+ ∈ WSC(Γt), then it holds that x̄t′+ ∈ WSC(Γt′) for
all t′ ≥ t.

Lemma 5.4 follows immediately from the definition of the Weak Sequential Core, so the
proof is omitted.

Lemma 5.5. Let x̄ be an efficient allocation and let xC be a credible deviation from x̄ by
coalition C at time-period t = 1. Let D be the set of credible deviations yC from x̄ by C at
t = 1 with the property that ui(yi) ≥ ui(xi) for all i ∈ C. It holds that the set D is compact.

Proof. First we show that D is closed. Consider a sequence (yC
n )n∈N with yC

n ∈ D
converging to ȳC . We need to show that ȳC ∈ D. Suppose not, i.e. ȳC /∈ D. Then either

(i) ȳC is not a credible deviation from x̄ by C at t = 1,

or

(ii) it does not hold that ui(ȳi) ≥ ui(xi) for all i ∈ C.

Clearly ȳC is a deviation from x̄ by C at t = 1, so if ȳC is not a credible deviation, then
there is a credible counter-deviation ŷC′

t+ from ȳC by a sub-coalition C ′ � C at t ≥ 1. Since
ui

t(ȳ
i
t+) < ui

t(ŷ
i
t+) for all i ∈ C ′, there must be an n̂ such that if n > n̂ then for all i ∈ C ′,

ui
t(y

i
t+,n) < ui

t(ŷ
i
t+). But then yC

n cannot be a credible deviation from x̄ by C at t = 1
either, thus (i) cannot hold.

The continuity of ui implies ui(ȳi) ≥ ui(xi) for all i ∈ C, thus (ii) cannot hold. Hence,
D is closed.

Now we show that D is bounded. We define the set Dt by

Dt = {yt+ ∈ Rt+×C |yt+ is a credible deviation from x̄ by C at t}.
Notice that D ⊂ D1, since ui(yi) ≥ ui(xi) for all i ∈ C is not required for yC to belong
to D1. We use backwards induction to prove that D1 is bounded, thereby completing the
proof of the lemma.
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1. For i ∈ C and yC
T ∈ DT it holds that

yi
T ≥ wT ({i}),

since yi
T = wT ({i}) if C = {i}, and {i} should not have a deviation from yT if

{i} � C. Furthermore, since yC
T (C) = wT (C), we have

yi
T ≤ wT (C)−

∑
i′ �=i

wT ({i′}),

showing that DT is bounded.

2. Assume Dt+1 is bounded for some t ∈ T . Let bC and b̄C be such that bC ≤ yC
(t+1)+ ≤

b̄C , for all yC
(t+1)+ ∈ Dt+1. We show that Dt is bounded.

Suppose Dt is not bounded from below. Then there exists a sequence (yC
t+,n)n∈N with

yC
t+,n ∈ Dt such that, for some i ∈ C and for some t′ ≥ t,

yi
t′,n ≤ −n for all n ∈ N.

Since yC
t+,n ∈ Dt, it follows that yC

(t+1)+,n ∈ Dt+1, and so bC ≤ yC
(t+1)+,n ≤ b̄C , and

therefore t′ = t. Then, given that the utility function is assumed to be time-separable
and weakly increasing in each coordinate, it holds that

ui
t(y

i
t+,n) ≤ ui

t(y
i
t,n, b̄

i). (6)

By Equation (1), we know that

lim
n→∞

ui
t(y

i
t,n, b̄

i) = −∞, (7)

and so by (7), we get

lim
n→∞

ui
t(y

i
t+,n) = −∞.

At the same time, credibility of yi
t+,n implies ui

t(y
i
t+,n) ≥ ui

t(wt+({i})), and we obtain
a contradiction, so we have shown that Dt is bounded from below. It follows that Dt

is also bounded from above, since yt+(C) = wt+(C).

�

Now we prove Lemma 1, using Definition 5.3 as the definition of the Weak Sequential
Core.

Proof. (of Lemma 1)
First we show that (a) implies (b). The first part of (b) holds as stated in Lemma 5.4.

We prove the second part by contradiction. Suppose there is C ⊂ N and xC such that
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x(C) = w(C), xC
2+ ∈ WSC(Γ2, C) and ui(xi) > ui(x̄i) for all i ∈ C. We show that if such

a deviation xC exists, then there also exists a credible deviation from x̄, thus contradict-
ing (a). If xC is a credible deviation, then we are done, so suppose xC is not a credible
deviation. Since xC

2+ ∈ WSC(Γ2, C), for xC not being credible, there must be a credi-
ble deviation x̂C′

from xC at time-period t = 1 by a sub-coalition C ′ � C. But then x̂C′

is also a credible deviation from x̄ at t = 1 by C ′ since ui(x̂i) > ui(xi) > ui(x̄i) for all i ∈ C ′.

We show next that (b) implies (a). Suppose (a) does not hold. Since x̄2+ ∈ WSC(Γ2)
by assumption, for x̄ /∈ WSC(Γ) to hold, there must be a credible deviation xC from x̄ by
a coalition C at t = 1. We will show that then there also exists a credible deviation ȳC

from x̄ by coalition C at t = 1 such that ȳC
2+ belongs to WSC(Γ2, C), thereby violating (b).

Let D be the set of credible deviations yC from x̄ by C at t = 1 with the property that
uC(yC) ≥ uC(xC). Let ȳC be a credible deviation solving

max
yC∈D

∑
i∈C

ui(yi). (8)

Since the allocation xC belongs to D, so D is non-empty, and we know from Lemma 5.5
that D is compact, the set of maximizers in (8) is non-empty.

We show that ȳC
2+ belongs to WSC(Γ2, C). Suppose ȳC

2+ /∈ WSC(Γ2, C). Then there is
a credible deviation ŷC′

t+ from ȳC
2+ by C ′ ⊂ C at t ≥ 2. Since ȳC is a credible deviation, it

is not possible that C ′ � C, so C ′ = C.
We show that ỹC = (ȳC

1 , ŷC
2+) belongs to D, so

(i) ui(ỹi) ≥ ui(xi), for all i ∈ C,

(ii) ỹC is a credible deviation from x̄ by coalition C at t = 1.

Part (i) follows from the time-separability of the utility functions, since we have that
ui(ỹi) > ui(ȳi) ≥ ui(xi), for all i ∈ C.

Suppose (ii) does not hold. Since ui(ỹi) ≥ ui(xi) > ui(x̄i), for all i ∈ C, for ỹC not to
be a credible deviation from x̄, there should be a coalition C ′ � C with a credible deviation
zC′

t′+ from ỹC at t′. This leads to a contradiction when t′ ≥ t since ŷC
t+ is credible, and to a

contradiction when t′ < t since ȳC is a credible. We have shown that ỹC ∈ D. It follows
that

∑
i∈C ui(ỹi) >

∑
i∈C ui(ȳi), which contradicts that ȳC is a maximizer. We have shown

that ȳC
2+ ∈ WSC(Γ2, C). �

6 Conclusion

The original definition of the Weak Sequential Core for dynamic transferable utility games
as proposed in Kranich, Perea, and Peters (2005) is problematic since it is incompatible
with the main characterization of the Weak Sequential Core. In turn, this characterization
was used to define the Weak Sequential Core for economies with incomplete asset markets
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in Predtetchinski, Herings, and Perea (2006). We propose a modification of the original
definition under which the desired equivalence with the main characterization of the Weak
Sequential Core is rescued.
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