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Abstract

In this paper, we show that the capital asset pricing model can be
derived from a three-period general equilibrium model. We show that our
extended model yields a Pareto efficient outcome. This result indicates
that the beta pricing formula could be applied in a long term model set-
tings as well.

Keywords: general equilibrium, CAPM, intertemporal choice, Pareto effi-
ciency
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1 Introduction

The capital asset pricing model, routinely referred to as CAPM in the literature,
accurately estimates the relationship between the risk and the expected return
of an asset. Its foundations were established by Sharpe (1964); Lintner (1965);
Mossin (1966). The CAPM model is in fact used for the estimation of expected
returns of risky assets in equilibrium. The CAPM can be derived from a two-
period general equilibrium model which provides a sound theoretical basis for
one of the essential tools of modern portfolio management: the Return-Beta
relationship.

In this paper, we extend the consumption-based capital asset pricing model
to a three-period finance economy. This extension can potentially have remark-
able effects on several other fields of application. For example, a minimum
of three periods is both necessary for handling long term financial assets and
adding time-inconsistent behaviour into the context of financial-economic mod-
eling. We introduce the three-period intertemporal general equilibrium model
with one asset and the consumption-based version of the popular CAPM model,
Consumption Capital Asset Pricing Model (CCAPM).

∗Corvinus University of Budapest. E-mail: helga.habis@uni-corvinus.hu and
laura.perge@gmail.com. The authors are grateful for the funding to the Hungarian National
Research, Development and Innovation Office (FK 125126).
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In Section 2 we introduce the three-period general equilibrium model and
show that the resulting consumption plan is efficient if markets are complete and
that the firs theorem of welfare economics remains fulfilled in the three-period
model as well. Section 3 defines the CCAPM, which is followed by the derivation
of the three-period CAPM in Section 4. As a foundation of our model, we use
the well-known, two-period pricing equations described in the book by LeRoy
and Werner (2001) which we frequently use as building blocks in this study.

2 The Three-Period Finance Economy

This section is dedicated to introduce the definitions and notations that are
necessary elements for the dynamics of the model. The described structure is
based on the one in the article by Habis and Herings (2011).

Let t ∈ {0, 1, 2} = T denote the time periods. In each period t one event out
of a finite set occurs. At every state s ∈ S we denote the date-event at period
t by st ∈ St, where the cardinality of St is St and S =

⋃
t St for all t ∈ T . For

t = 0 we define s0 = 0. Let s+t be the set of successors of st for all t = 0, 1 and
s−t the set of predecessors of st for all t = 1, 2. In each period there is a single,
non-durable consumption good.

There are a finite number of agents h ∈ H participating in the economy.
Each agent h has initial endowments (ehst)st∈{0}∪S1∪S2

∈ R(S1+S2+1). Agents

have preferences over consumption bundles chst ∈ R(S1+S2+1) where st ∈ S.
Each agent’s preferences are represented by a von Neumann-Morgenstern utility
function that is additively separable over time and at period 0 it is defined by

uh(ch) = vh0 (c
h
0 ) + δ1

∑
s1∈S1

ρs1v
h
s1(c

h
s1) + δ1δ2

∑
s1∈S1

ρs1
∑

s2∈s+1

ρs2v
h
s2(c

h
s2) (1)

where ρs1 denotes the probability of occurrence of event s1 and ρs2 denotes
the probability of occurrence of event s2 given event s1 has occurred, δt is a
one-period discount factor and vhst is a Bernoulli function.

We apply the following assumptions throughout the paper. We assume that
ρst > 0 for all st ∈ St and

∑
s1∈S1

ρs1 = 1,
∑

s2∈S2
ρs2 = 1, δ1, δ2 > 0,

the probabilities and discount factors are identical across agents, and that the
Bernoulli utility function is strictly increasing. Furthermore ch ∈ Xh where
Xh ⊂ R1+S1+S2 and Xh is the vector of consumption bundles for agent h.

The constraint of ρst > 0 means that the agents only take into account the
future outcomes for which the objective probability of occurrence is positive,
i.e. unlikely events do not affect their utility. A further simplifying assumption
is that all agents apply the same discount factors and have no satiation point.

There are Jst assets at each st ∈ {0} ∪ S1. The set of assets at event st is
Jst . Each asset j pays (random) dividends dst+1,j at date-events st+1 ∈ s+t . We
denote the vector of dividends by dst = (dst,1, . . . , dst,Js

−
t

) where st ∈ S1 ∪ S2,

and the pay-off matrices by Ast = (d1, . . . , dJst
) ∈ R|s+t |×Jst where st ∈ {0}∪S1.

The price of asset j at date-events st ∈ {0} ∪ S1 is qst,j ∈ R. We denote the
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vector of asset prices by qst = (qst,1, . . . , qst,Jst
), and the collection of prices

over date-events by q = (qst)st∈{0}∪S1
. We assume that assets are in zero

net supply. At date-event st ∈ {0} ∪ S1 agent h chooses a portfolio-holding
θhst = (θhst,1, θ

h
st,2, . . . , θ

h
st,Jst

) ∈ RJst .

The finance economy E = ((uh, eh)h=1,...,H ; (Ast)st∈{0}∪S1
) is defined by the

agents’ utility functions and endowments, and the pay-off matrices.
A competitive equilibrium for an economy E is a collection of

portfolio-holdings θ∗ = (θ1∗, θ2∗, . . . , θH∗) ∈ RH×J×(S1+1),
consumption c∗ = (c1∗, c2∗, . . . , cH∗) ∈ RH×(S1+S2+1) and
asset prices q∗ ∈ RJ×(S1+1) that satisfy the following conditions:

1. For h = 1, . . . ,H,

(ch∗, θh∗) ∈ arg max
ch∈Xh,θh∈RJ×(S1+1)

uh(ch) (2)

s. t. ch0 + q0θ
h
0 = eh0 ,

chs1 + qs1θ
h
s1 = ehs1 + ds1θ

h
0 , for s1 ∈ S1,

chs2 = ehs2 + ds2θ
h
s−2

, for s2 ∈ S2,

2.
H∑

h=1

θh∗ = 0, (3)

3.
H∑

h=1

ch∗ =
H∑

h=1

eh. (4)

Note that the third condition is always satisfied when the first and the second
are.

If Assumption 2 is met (i.e. agents have strictly increasing utility functions)
equilibrium prices exclude arbitrage opportunities in the following sense.

Asset prices q are arbitrage-free if there is no θh = (θhst)st∈{0}∪S1
such that

q0θ
h
0 ≤ 0, (5)

∀st ∈ S1 ∪ S2 : qstθ
h
st ≤ As−t

θh
s−t

, (6)

with at least one strict inequality.
Markets are complete if for every income stream y ∈ RS1+S2 there exists a

portfolio plan (θhst)st∈{0}∪S1
such that

∀s1 ∈ S1 : ds1θ
h
0 − qs1θ

h
s1 = ys1 ;

∀s2 ∈ S2 : ds2θ
h
s−2

= ys2 .
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That is, for each date-event st ∈ {0}∪S1 and arbitrary payoffs in immediate
successors of st, there exists a portfolio that generates those payoffs. Such a
portfolio exists if and only if Ast has rank |s+t |, which is stated in the following
proposition:

Markets are complete if and only if for every st ∈ {0} ∪ S1 the following
condition is met

rank(Ast) = |s+t |. (7)

Proof. The proof is given in (Habis and Herings, 2011). ✷

If there are no arbitrage opportunities on the financial markets and the
markets are complete, then there exists a unique, strictly positive state price
vector (πst)st∈{0}∪S1

∈ RS1+1 such that

qst = π⊤
st ·Ast . (8)

Proof. The proof is given in (Magill and Quinzii, 1996). ✷

The following additional assumptions will be made throughout this section: We
assume that

1. asset 1 is risk free, so dst,1 = 1 ∀st ∈ S1∪S2, and its return is Rf = 1/qst,1,

2. and {ch ∈ Xh|uh(ch) ≥ uh(eh)} ⊂ int(Xh), which prevents the solution
of the agent’s maximization problem form occurring at the boundary of
the consumption set.

We use Est(cs+t
) to denote the expectation of cs+t

conditional on date-event

st, so Est(cs+t
) =

∑
st+1∈s+t

ρstcst .

2.1 Efficiency

According to the First Welfare Theorem the complete-markets equilibria provide
Pareto-efficient consumption allocations. An allocation is Pareto-optimal if it is
impossible to reallocate the total endowment so as to make some agents better
off without making any agent worse off. Specifically, an allocation ch is Pareto-
optimal if there does not exist an alternative allocation c̄h which is feasible,

H∑
h=1

c̄h =
H∑

h=1

eh, (9)

weakly preferred by every agent,

uh(c̄h) ≥ uh(ch), (10)

and strictly preferred by at least one agent, so that (10) holds with strict in-
equality for at least one agent.

(First Welfare Theorem) Let (θ∗, c∗, q∗) be a competitive equilibrium for
E . If asset markets are complete, then c∗ is Pareto-optimal.
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Proof. The proof can be obtained by contradiction. Suppose that c∗h is the
complete-market equilibrium consumption allocation, and that there is a feasible
allocation c̃h such that uh(c̃h) ≥ uh(c∗h) for every h, with strict inequality for
some h.

Using the framework of Definition 2, the consumption plan c∗h maximizes
utility uh(ch) subject to the budget constraints

c∗h0 = eh0 − π0ds1θ
h
0 (11)

c∗hs1 = ehs1 + ds1θ
h
0 − πs1ds2θ

h
s1 (12)

c∗hs2 = ehs2 + ds2θ
h
s1 , (13)

where πst is the unique state price vector associated with q∗st . Note that πst is
strictly positive.

Multiplying equation (13) by πs1 and adding the result to equation (12), we
obtain

c∗hs1 + πs1c
∗h
s2 = ehs1 + πs1e

h
s2 + ds1θ

h
0 . (14)

Multiplying equation (14) by π0 and adding the result to equation ((11)), we
obtain

c∗h0 + π0c
∗h
s1 + π0πs1c

∗h
s2 = eh0 + π0e

h
s1 + π0πs1e

h
s2 , (15)

thus the budget constraints of the original utility-maximization problem in (2)
are equivalent to equation (15). Consequently, the optimal consumption plan
c∗h maximizes uh(ch) subject to equation (15).

Since uh(ch) is strictly increasing, we have

c̃h0 + π0c̃
h
s1 + π0πs1 c̃

h
s2 ≥ c∗h0 + π0c

∗h
s1 + π0πs1c

∗h
s2 (16)

for every h, with strict inequality for some h, who are strictly better off with c̃h

than with c∗h. Summing over all agents and applying equation (15), we obtain

H∑
h=1

c̃h0 +
h=H∑
h=1

π0c̃
h
s1 +

H∑
h=1

π0πs1 c̃
h
s2 > e0 + π0es1 + π0πs1es2 , (17)

which contradicts the assumption that consumption allocation c̃h is feasible. ✷

Proving this proposition is a new development, and it is a crucial requirement
for deriving the three-period model and finding a Pareto-efficient result at the
same time.

When markets are incomplete, equilibrium consumption allocations are in
general not Pareto-optimal and the First Welfare Theorem typically fails, since
agents may not be able to implement the trades required to attain the optimal
allocation. Equilibrium consumption allocations, however, can be optimal in
a restricted sense. We turn now to a less ambitious notion of efficiency: are
markets performing well in the sense that it is impossible to improve social
welfare by using the asset market?
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If we consider efficiency as a program carried out by a social planner with
certain objectives we can distinguish myopic and forward-looking planners.

Based on the results above, we can assume that the mentioned theorems can
be proved in such constrained cases as well but that is the subject of future
research.

In this section, we got familiarized with the model’s system and formalized
the environment. Before we arrive at the applications, let us brush up on the
CCAPM model definitions.

3 The Consumption Capital Asset Pricing Model

First, we shortly run through the most relevant aspects of the Capital Asset
Pricing Model based on the relevant section of Bodie, Kane, and Marcus (2011).
Then, we move on to introduce the Consumption Capital Asset Pricing Model
using the definitions from the same book as source.

As we also said this in the Introduction, the CAPM estimates the relationship
between the risk and the expected return of an asset.

The model assumes that the utility of an asset is dependent exclusively
on the expected return, and the covariance of returns of the asset. The risk
premium on the market portfolio can be given as a function of its risk and the
risk aversion of the representative investor:

E(rM )−Rf = Aσ2
M (18)

where σ2
M is the variance of the market portfolio, A is the coefficient of the

average risk-aversion, and Rf is the risk-free rate.
The risk premium of the individual assets is proportional to the risk pre-

mium of the market portfolio and its beta coefficient. The beta describes the
relationship between the individual asset’s return and the the market portfolio’s
return:

βj =
Cov(rj , rM )

σ2
M

, (19)

Thus the risk premium in case of individual assets is:

E(rj)−Rf =
Cov(rj , rM )

σ2
M

[E(rM −Rf ] = βj [E(rM )−Rf ]. (20)

which is the most popular expression of the CAPM: the expected return - beta
relationship.

As it holds true for individual assets, the equation holds for any linear com-
binations of these assets. This relationship can be understood as a risk-reward
equation. The beta of the asset accurately describes the risk because it is pro-
portional to the risk the asset contributes to the risk of the optimal portfolio
with.

The graphical representation of this expected return - beta relationship is
the security-market line, or SML.
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Let us now move on to the Consumption Capital Asset Pricing Model
(CCAPM), where the CAPM is centered around consumption, first introduced
by Rubinstein (1976), Lucas (1978), and Breeden (1979).

We examine a life-long consumption plan, where the agents, in each period,
need to decide about the division of their wealth between today’s consumption
and the investments and savings that ensure the consumption of the future
periods They reach the optimum if the marginal utility coming from spending
an additional unit of wealth today equals the marginal utility coming from the
expected future consumption that is financed using this same unit of wealth.

The future wealth can increase as a result of wage income and the return of
the units of wealth invested in the optimal complete portfolio.

A financial asset is more risky in terms of consumption if it has a positive
covariance with the increase in consumption. In other words, its payoff is higher
when the consumption is already high, and lower when the consumption is
relatively constrained.1 As a result, the optimal risk premium is higher for those
assets that show higher positive covariance with the increase in consumption.
Based on this observation, we can describe the risk premium of an asset as
function of the risk of consumption:

E(Rj) = βjC(E(rc)−Rf ), (21)

where the portfolio C can be translated as a consumption-tracking portfolio,
which is the portfolio which correlates positively to the greatest extent with the
increase in consumption.

The βjC can be interpreted as the coefficient of the regression line where
we explain Rj return premium of asset j using the return premium of the
consumption-tracking portfolio as the explanatory variable.

With the previously defined risk-free rate Rf , we define the risk premium
that is independent from the uncertainty of consumption as (E(rc)−Rf ) which
is also determined using the return premium of the consumption-tracking port-
folio.

This is very similar to the traditional CAPM: the consumption-tracking
portfolio plays the role of the market portfolio in the CAPM. However, opposing
the original CAPM theory, the beta of the consumption capital asset pricing
model is not necessarily 1, in fact it is entirely realistic and empirically observed
that this beta can be greater than 1. This means that the linear relationship
between the market risk premium and the consumption portfolio can be written
as

E(RM ) = αM + βMCE(RC) + ϵM (22)

where αM and ϵM ensures the possibility of empirical deviations from the exact
model defined by equation (21), and that βMC is not necessarily 1.

The CCAPM is attractive, as it compactly expresses the idea of consump-
tion hedging and the potential changes in the investment opportunities. Fur-
thermore, it integrates this in the parameter of the distribution of returns in a
one-factor model setup.

1We also note this when we discuss the three-period model later.
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As a summary, we define the CCAPM below in a format that fits the pur-
poses of this study. The Consumption Capital Asset Pricing Model (CCAPM)
is a version of the Capital Asset Pricing Model where the expected return
premium of the market portfolio is replaced by the return premium of the
consumption-tracking portfolio. This model establishes a relationship between
the investors’ sensitivity to the changes in consumption and the risk of the
assets.

4 The Three-Period CAPM

In this section, we prove that the β pricing formula, that relates the return of
a risky asset to the return of the market portfolio can also be derived in the
introduced three-period finance general equilibrium model.

Though many publications has tackled the possibility of deriving the CAPM
in different environments (such as missing conditions or differing model envi-
ronments) this perspective is a unique one as the capital asset pricing equation
has not been derived in a three-period model previously. Though it is a topic
of future research but this result also means that the CAPM could be used for
asset pricing in long term models with long-lived assets as well.

First, we define the utility function of the rational agents (h) as follows:

uh(ch) = vh0 (c
h
0 ) + δ1

∑
s1∈S1

ρs1v
h
s1(c

h
s1) + δ1δ2

∑
s1∈S1

ρs1
∑

s2∈S+
1

ρs2v
h
s2(c

h
s2). (23)

Agent h maximizes this utility subject to her constraints on endowments, in-
come and even costs which were formalized in Definition 2. Since markets are
complete, it follows from Proposition 2, that there exists a unique and strictly
positive state price vector πst . The asset price vector qst = πT

st ·Ast then follows
from the agents’ optimization problem:

Lh = uh(ch)−λh
0 (c

h
0−eh0+q0θ

h
0 )−λh

s1(c
h
s1+qs1θ

h
s1−ehs1−ds1θ

h
0 )−λh

s2(c
h
s2−ehs2−ds2θ

h
s−2

),

(24)
where λh

st denote the Lagrange-multipliers. The first-order conditions, which
are necessary and sufficient for (ch∗, θh∗) to be a solution, are that there exist
λh∗ ∈ R1+S1+S2

++ such that

∇Lh(ch∗, θh∗, λh∗) = 0, (25)

which is equivalent to
∇uh(ch∗) = λh∗, and (26)

−qstλst + ds+t
λs+t

= 0, ∀st ∈ {0} ∪ S1. (27)

The partial derivatives by (ch0 , c
h
s1 , c

h
s2 , θ

h
0 , θ

h
s1) can be seen in Appendix A.1.

Solving this system of equations for qst :

qst = Ast

λh
s+t

λh
st

, s.t.λh
st ̸= 0 (28)
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then we substitute with the respective values of the λh multipliers and get

qst = Ast

δt+1

∑
st+∈S+

t
ρs+t

∂vh
s+t
(ch

s+t
)/∂ch

s+t

∂vhst(c
h
st)/∂c

h
st

. (29)

It becomes apparent that what we get is the marginal rate of substitution (MRS)
between the consumption levels of the different periods. Equation (29) means
that for each st ∈ {0} ∪ S1 date-event, an agent h invests in j assets, such that
the marginal cost of each additional qst,j unit equals its marginal utility, which
is in fact the present value of the future dividends of agent h.

By the definition of the expected value described in Section 2, we substitute
the respective part of equation (29) and we get2

qst =
δt+1Est [∂cs+t

vh
s+t
(ch∗)Ast ]

∂cst v
h
st(c

h∗)
= E(MRShstAst), for all st ∈ {0} ∪ S1, (30)

where vs+t
= (vst+1)st+1∈s+t

and we can see the MRS between the consump-

tion levels of period t and of all states belonging to the period t+.
Equation (30) asserts that each agent h invests in each asset j at each date-

event st ∈ {0} ∪ S1 in such a way that the marginal cost of an additional unit
of the security qst,j is equal to its marginal benefit, the present value for agent
h of its future stream of dividends. Although the MRSh

st of each agent can
be different as a result of the shape of the utility function (e.g. based on their
attitude towards risk), they cannot disagree on asset prices in equilibrium. If one
projects the individual MRSh

sts onto the marketed subspace ⟨Ast⟩ one obtains
a unique pricing vector, given that qst = π⊤

st · Ast which is the one defined in
(30). For asset prices qst we define the one-period return rs+t

,θst for a portfolio

θst , with qstθst ̸= 0, by

rs+t ,θst
=

Astθ
h
st

qstθ
h
st

. (31)

This reflects the general definition of returns: we divide the pay-offs of the
securities in the portfolio by their price. We will furthermore use the usual
formula of the covariance:

E(yz) = cov(y, z) + E(y)E(z) (32)

to rewrite equation (30) in the following manner:

1 =
δt+1Est [∂cs+t

vh
s+t
(ch∗)rs+t ,θst

]

∂cst v
h
st(c

h∗)
, (33)

2For the sake of clearer notation, we will substitute the traditional notation (
∂f(x)
∂x

) of the
partial derivative of any function f(x) with respect to x variable by simply writing ∂xf(x).
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then using covst(xs+t
, ys+t

) to denote the conditional covariance between two

variables and the above definitions we get

1 =
δt+1Est [rs+t ,θst

]Est [∂cs+t
vh
s+t
(ch∗)]

∂cst v
h
st(c

h∗)
+

δt+1covst(∂cs+t
vh
s+t
(ch∗), rs+t ,θst

)

∂cst v
h
st(c

h∗)
. (34)

Rearranging this yields the equation of the one-period expected return

Est [rs+t ,θst
] =

∂cst v
h
st(c

h∗)

δt+1Est [∂cs+t
vh
s+t
(ch∗)]

−
covst(∂cs+t

vh
s+t
(ch∗), rs+t ,θst

)

Est [∂cs+t
vh
s+t
(ch∗)]

(35)

where the expression

Rf
st =

∂cst v
h
st(c

h∗)

δt+1Est [∂cs+t
vh
s+t
(ch∗)]

(36)

is the return of the one-period risk-free asset3. Plugging this into equation (35)
we retrieve the consumption-based capital asset pricing formula

Est [rs+t ,θst
] = Rf

st − δt+1R
f
st

covst(∂cs+t
vh
s+t
(ch∗), rs+t ,θst

)

∂cst v
h
st(c

h∗)
. (37)

This equation shows that for each asset the risk premium (which is the dif-
ference between the expected return of the risky assets and the risk-free rate) is
proportional to the covariance between its return rate and the marginal rate of
substitution between the date-events of st and s+t (with a negative proportion-
ality constant).

To be precise, ∂c
s
+
t

vh
s+t
(ch∗)/∂cst v

h
st(c

h∗) in equation (37), is not the marginal

rate of substitution between the state-dependent consumptions of date-events s+t
and st, as the probabilities are missing. Similarly, we will refer to the marginal
utility of consumption by the notion ∂c

s
+
t

vh
s+t
(ch∗), although the probabilities

are missing here as well. There is no reason to be held up by this terminological
imprecision, as we are not diverting from the conventional methodology of the
literature, see LeRoy and Werner (2001). For a strictly risk-averting decision
maker, ∂c

s
+
t

vh
s+t
(ch∗) is a negative function of the consumption in s+t . Thus,

the security, that has a high pay-off when the consumption is high, and has a
low pay-off when the consumption is low as well, has a greater expected return
than the risk-free security. Let us now, in contrast, consider a security, that has
a high pay-off when the consumption is low, and has a low pay-off when the
consumption is high. Following the above concept, such a security would have
an expected return which is less than that of the risk-free asset. Such securities

3The definition of the risk-free asset is the one described in LeRoy and Werner (2001) as

Rf
st = 1∑

st∈{0}∪S1∪S2
qst

which, in equilibrium, is equivalent with Rf
st in our equations.
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can then be used to decrease the risk of consumption for the decision makers. If
the covariance of an asset’s return and the MRS is zero, the asset has the same
expected return as the risk-free asset.

Based on equation (37) the risk premium of a security is solely dependent
on the covariance between its return and the MRS between the date-events st
and s+t . This covariance can be understood as the degree of risk of the security,
which has two significant features. Firstly, it can only be used if the economy is
in the state of equilibrium. Secondly, this covariance-measure provides not just
a partial but a complete ordering of the risk of returns.

If the marginal rate of substitution is constant, the consumption-based asset
pricing equation defined in equation (37) gives a fair price. The MRS can be
deterministic in two cases: if the consumption of the agent is deterministic as
well, and if the agent is risk-indifferent.

In order to illustrate further details of the optimization process of the agents,
in the next assumption, we will show the vhst utility function which is quadratic
with respect to the t+ 1 period consumption.

Let Xh = R1+S1+S2 and vhst(c
h
st) = ξtc

h
st −

1
2αt(c

h
st)

2 be a quadratic utility-
function.

Substituting this into Equation (37) we get

Est [rs+t ,θst
] = Rf

st − δt+1R
f
st

covst(ξt+1 − αt+1c
h
st+

, rs+t ,θst
)

ξt − αtchst
, (38)

then it follows that the expected return of an arbitrary asset j is

Est [rs+t ,j ] = Rf
st +

δt+1αt+1R
f
st

ξt − αtchst
covst(c

h
s+t
, rs+t ,j). (39)

In a securities market economy the aggregated endowment is in the asset span
which means it can be attained from the pay-offs of portfolio of some securities.
This portfolio is the market portfolio with its return denoted by rM

s+t
. Equation

(39) holds for returns of portfolios as well. In particular it holds for the market
return rM

s+t
so that

Est [r
M
s+t
] = Rf

st +
δt+1αt+1R

f
st

ξt − αtchst
covst(c

h
s+t
, rM

s+t
). (40)

Dividing Equation (39) by (40) after subtracting Rf
st from both and thus

eliminating the term
δt+1αt+1R

f
st

ξt−αtchst
one obtains

Est [rs+t ,j ]−Rf
st

Est [r
M
s+t
]−Rf

st

=
covst(cs+t

, rs+t ,j)

covst(cs+t
, rM

s+t
)

(41)

where, as we assume, the market risk premium is nonzero.
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If equilibrium consumptions lie in the span of the market return and the
risk-free return, then ch

s+t
and rM

s+t
are perfectly correlated. Accordingly ch

s+t
can

be replaced by φrM
s+t
-vel. Finally, for a portfolio θhst ∈ RJst we define βθst

-t

βθst
=

covst(r
M
s+t
, rs+t ,θ)

var(rM
s+t
)

. (42)

This βθst
will be the consumption beta of the CCAPM, mentioned in Section

3, which reflects how the risk of a security is related to the risk of the market
portfolio.

Then the following CAPM-pricing formula holds for each θhst ∈ RJst thus

Est [rs+t ,θ]−Rf
st = βθst

(Est [r
M
s+t
]−Rf

st); (43)

which is, in fact, the formula of the security market line:

Est [rs+t ,θ] = Rf
st + βθst

(Est [r
M
s+t
]−Rf

st). (44)

As it is also stated in LeRoy and Werner (2001), the assumption, that the
equilibrium consumption choice is in the span of the market return and risk-free
return is trivial in a representative-agent economy. This is because the optimal
consumption of each agent in the economy is equal to the per capita pay-off of
the market portfolio. Since we assumed that all agents has the same quadratic
utility function this holds true for the economy defined in this paper.

Hence, we have proven that the CCAPM formula can be derived from a three-
period utility maximization model; in other words, we extended the results of
the widely known two-period model to three periods. This is significant as a
stand-alone result but it can also provide a basis for numerous future research
topics which require a multi-period model. One such case is the analysis of long
term securities or the long term efficiency of incomplete markets.
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A Appendix

A.1 Partial derivatives

The partial derivatives of the Lagrangean function, all solved when they equal
to zero:

∂Lh

∂ch0
=

∂vh0 (c
h
0 )

∂ch0
− λh

0 = 0,

∂Lh

∂chs1
=

δ1
∑

s1∈S1
ρs1∂v

h
s1(c

h
s1)

∂chs1
− λh

s1 = 0,

∂Lh

∂chs2
=

δ1δ2
∑

s1∈S1
ρs1

∑
s2∈S+

1
ρs2∂v

h
s2(c

h
s2)

∂chs2
− λh

s2 = 0,

∂Lh

∂θh0
= −λh

0q0 + ds1λ
h
s1 = 0,

∂Lh

∂θhs1
= −λh

s1qs1 + ds2λ
h
s2 = 0.

The derivatives with respect to the consumption variables are equivalent to
the

∆uh(ch∗) = λh∗ (45)

matrix equation which means that, in t = 0, the Lagrange multipliers are equal
to the partial derivatives of the utility function with respect to the consumption
variables in the respective date-event.

The partial derivatives with respect to the portfolio-holdings is as follows:

−qstλ
h
st +Astλ

h
s+t

= 0, ∀st ∈ {0} ∪ S1
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