Corvinus
Corvinus

Unified approach of primal-dual interior-point algorithms for a new class of AET functions

Illés, Tibor and Rigó, Petra Renáta and Török, Roland (2022) Unified approach of primal-dual interior-point algorithms for a new class of AET functions. Working Paper. Corvinus University of Budapest, Budapest.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
579kB

Abstract

We propose new short-step interior-point algorithms (IPAs) for solving P_* (κ)-linear complementarity problems (LCPs). In order to define the search directions we use the algebraic equivalent transformation technique (AET) of the system which characterizes the central path. A novelty of the paper is that we introduce a new class of AET functions. We present the complexity analysis of the IPAs that use this general class of functions in the AET technique. Furthermore, we also deal with a special case, namely φ(t)=t^2-t+√t. This function differs from the ones used in the literature in the sense that it has inflection point. It does not belong to the class of concave functions determined by Haddou et al. Furthermore, the kernel function corresponding to this AET function is neither eligible nor self-regular kernel function. We prove that the IPAs using any member φ of this new class of AET functions have polynomial iteration complexity in the size of the problem, bit length of the integral data and in the parameter κ. Beside this, we also provide numerical results that show the efficiency of the introduced methods.

Item Type:Monograph (Working Paper)
Series Name:Corvinus Economics Working Papers - CEWP
Series Number / Identification Number:2022/02
Uncontrolled Keywords:Interior-point algorithm, P∗ (κ)-linear complementarity problem, algebraic equivalent transformation technique, new class of AET functions
JEL classification:C61 - Optimization Techniques; Programming Models; Dynamic Analysis
Subjects:Mathematics, Econometrics
References:

M. Achache. A new primal-dual path-following method for convex quadratic programming.
Comput. Appl. Math., 25(1), (2006), 97–110.

M. Achache. Complexity analysis and numerical implementation of a short-step
primal-dual algorithm for linear complementarity problems. Appl. Math. Comput.,
216(7), (2010), 1889–1895.

S. Asadi and H. Mansouri. A path-following algorithm for P�(�)-horizontal linear
complementarity problem based on Darvay’s directions. In Proceeding of the 43rd
Annual Iranian Mathematics Conference, Tabriz University, Tabriz, Iran, (2012),
pages 861–864.

S. Asadi and H. Mansouri. Polynomial interior-point algorithm for P�(�) horizontal
linear complementarity problems. Numer. Algorithms, 63(2), (2013), 385–398.

S. Asadi, H. Mansouri, and Zs. Darvay. An infeasible full-NT step IPM for P�(�) horizontal
linear complementarity problem over Cartesian product of symmetric cones.
Optimization, 66(2), (2017), 225–250.

S. Asadi, H. Mansouri, G. Lesaja, and M. Zangiabadi. A long-step interior-point
algorithm for symmetric cone Cartesian P�(�)-HLCP. Optimization, 67(11), (2018),
2031–2060.

S. Asadi, M. Zangiabadi, and H. Mansouri. An infeasible interior-point algorithm
with full-newton steps for P�(�) horizontal linear complementarity problems based
on a kernel function. J. Appl. Math. Comput., 50(1), (2016), 15–37.

Y.Q. Bai, M. El Ghami, and C. Roos. A new efficient large-update primal-dual
interior-point method based on a finite barrier. SIAM J. Optim., 13, (2003), 766-782.

Y.Q. Bai, M. El Ghami, and C. Roos. A comparative study of kernel functions for
primal-dual interior-point algorithms in linear optimization. SIAM J. Optim., 15(1),
(2004), 101-128.

S.J. Chung. NP-completeness of the linear complementarity problem. J. Optim.
Theory Appl., 60(3), (1989), 393–399.

R.W. Cottle, J.S. Pang, and R.E. Stone. The Linear Complementarity Problem.
Computer Science and Scientific Computing. Academic Press, Boston, 1992.

R.W. Cottle, J.S. Pang, and V. Venkateswaran. Sufficient matrices and the linear
complementarity problem. Linear Algebra Appl., 114, (1989), 231–249.

Zs. Darvay. New interior point algorithms in linear programming. Adv. Model. Optim.,
5(1), (2003), 51–92.

Zs. Darvay. A new predictor-corrector algorithm for linear programming. Alkalmazott
Matematikai Lapok, 22, (2005), 135-161. in Hungarian.

Zs. Darvay, T. Illés, and Cs. Majoros. Interior-point algorithm for sufficient LCPs
based on the technique of algebraically equivalent transformation. Optim. Lett., 15,
(2021), 357-376.

Zs. Darvay, T. Illés, J. Povh, and P. R. Rigó. Feasible corrector-predictor interiorpoint
algorithm for P�(�)-linear complementarity problems based on a new search
direction. Siam J. Optim., 30(3), (2020), 2628-2658.

Zs. Darvay, T. Illés, and P. R. Rigó. Predictor-corrector interior-point algorithm for
P�(�)-linear complementarity problems based on a new type of algebraic equivalent
transformation technique. Eur. J. Oper. Res., 298(1), (2022), 25-35.

Zs. Darvay, I.-M. Papp, and P.-R. Takács. Complexity analysis of a full-Newton step
interior-point method for linear optimization. Period. Math. Hung., 73(1), (2016),
27-42.

M. E.-Nagy and A. Varga. Private communication, (2021).

E. de Klerk and M. E.-Nagy. On the complexitiy of computing the handicap of a
sufficient matrix. Math. Program., 129, (2011), 383-402.

M.C. Ferris and J.S. Pang. Engineering and economic applications of complementarity
problems. SIAM Review, 39(4), (1997), 669-713.

F. Gurtuna, C. Petra, F.A. Potra, O. Shevchenko, and A. Vancea. Corrector-predictor
methods for sufficient linear complementarity problems. Comput. Optim. Appl., 48(3),
(2011), 453-485.

S.M. Guu and R.W. Cottle. On a subclass of P0. Linear Algebra Appl., 223/224,
(1995), 325–335.

M. Haddou, T. Migot, and J. Omer. A generalized direction in interior point method
for monotone linear complementarity problems. Optim. Lett., 13(1), (2019), 35-53.

T. Illés and S. Morapitiye. Generating sufficient matrices. In F. Friedler, editor, 8th
VOCAL Optimization Conference: Advanced Algorithms, Pázmány Péter Catholic
University, Budapest, Hungary, (2018), pages 56–61.

T. Illés, M. Nagy, and T. Terlaky. A polynomial path-following interior point algorithm
for general linear complementarity problems. J. Global. Optim., 47(3), (2010),
329-342.

T. Illés, M. Nagy, and T. Terlaky. Polynomial Interior Point Algorithms for General
Linear Complementarity Problems. Alg. Oper. Res., 5(1), (2010), 1-12.

T. Illés, R. Török, and P.R. Rigó. Implementation of primal-dual interior-point algortihm
for solving sufficient linear complementarity problems. In S. Drobne, L. Zadnik
Stirn, M. Kljajic Borštar, J. Povh, and J. Žerovnik, editors, Proceedings of the 16th
International Symposium on Operational Research in Slovenia: SOR’21, Slovenia,
(2021), pages 86-91.

B. Kheirfam. A predictor-corrector interior-point algorithm for P�(�)-horizontal linear
complementarity problem. Numer. Algorithms, 66(2), (2014), 349-361.

B. Kheirfam and M. Haghighi. A full-Newton step feasible interior-point algorithm
for P�(�)-LCP based on a new search direction. Croat. Oper. Res. Rev., (2016), 7(2),
277-290.

M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, volume 538 of Lecture Notes
in Computer Science. Springer Verlag, Berlin, Germany, (1991).

M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of
linear complementarity problems. Math. Program., 44, (1989), 1-26.

C.E. Lemke and J.T. Howson. Equilibrium points of bimatrix games. SIAM J. Appl.
Math., 12, (1964), 413-423.

G. Lešaja and C. Roos. Unified analysis of kernel-based interior-point methods for
P�(�)-linear complementarity problems. SIAM J. Optim., 20(6), (2010), 3014-3039.

H. Mansouri and M. Pirhaji. A polynomial interior-point algorithm for monotone
linear complementarity problems. J. Optim. Theory Appl., 157(2), (2013), 451-461.

S. Pan, X. Li, and S. He. An infeasible primal-dual interior-point algorithm for linear
programs based on logarithmic equivalent transformation. J. Math. Anal. Appl.,
314(2), (2006), 644-660.

J. Peng, C. Roos, and T. Terlaky. Self-Regular Functions: a New Paradigm for
Primal-Dual Interior-Point Methods. Princeton University Press, (2002).

P.R. Rigó. New trends in algebraic equivalent transformation of the central path and
its applications. PhD thesis, Budapest University of Technology and Economics,
Institute of Mathematics, Hungary, (2020).

C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization.
An Interior Approach. John Wiley & Sons, Chichester, UK, (1997).

E. Sloan and O.N. Sloan. Quitting games and linear complementarity problems.
Math. Methods Oper. Res., 45(2), (2020), 434-454.

H. Väliaho. P�-matrices are just sufficient. Linear Algebra Appl., 239, (1996), 103-108.

M.V.C. Vieira. Jordan algebraic approach to symmetric optimization. PhD thesis,
Electrical Engineering, Mathematics and Computer Science, Delft University of
Technology, The Netherlands, (2007).

M.V.C. Vieira. The accuracy of interior-point methods based on kernel functions. J.
Optim. Theory Appl., 155(2), (2012), 637-649.

S.J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, (1997).

Y. Ye. Interior Point Algorithms, Theory and Analysis. John Wiley & Sons, Chichester,
UK, (1997).

Y. Ye. A path to the Arrow-Debreu competitive market equilibrium. Math. Program.,
111(1-2), (2008), 315-348.

ID Code:7197
Deposited By: Ádám Hoffmann
Deposited On:21 Feb 2022 17:00
Last Modified:21 Feb 2022 17:00

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics