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Abstract. We propose new short-step interior-point algorithms (IPAs) for solving P∗(κ)-linear
complementarity problems (LCPs). In order to define the search directions we use the algebraic
equivalent transformation technique (AET) of the system which characterizes the central path.
A novelty of the paper is that we introduce a new class of AET functions. We present the
complexity analysis of the IPAs that use this general class of functions in the AET technique.
Furthermore, we also deal with a special case, namely ϕ(t) = t2− t+

√
t. This function differs

from the ones used in the literature in the sense that it has inflection point. It does not belong
to the class of concave functions determined by Haddou et al. [24]. Furthermore, the kernel
function corresponding to this AET function is neither eligible nor self-regular kernel function.
We prove that the IPAs using any member ϕ of the new class of AET functions have polynomial
iteration complexity in the size of the problem, bit length of the integral data and in the param-
eter κ. Beside this, we also provide numerical results that show the efficiency of the introduced
methods.
JEL code: C61
Keywords. Interior-point algorithm; P∗(κ)- linear complementarity problems; algebraic equiv-
alent transformation technique; new class of AET functions

1. Introduction

Linear complementarity problems have been extensively studied nowadays. Linear pro-
gramming (LP) and linearly constrained (convex) quadratic programming (QP) problems
are special cases of LCPs. Several applications of LCPs arise in different fields, such
as engineering, computational mechanics, game theory, economics, see [11, 21]. It was
shown that solvability of LCPs related to quitting games ensures the existence of different
ε-equilibrium solutions, see [40]. Bimatrix games can be also formulated as LCPs, see
[33]. The Arrow-Debreu competitive market equilibrium problem with linear and Leon-
tief utility functions can be transformed to LCP [46]. For detailed study on LCPs see the
books of Cottle et al. [11] and Kojima et al. [31]. In the book of Kojima et al. [31] the
theory of interior-point algorithms for solving LCPs is highlighted.

LCPs belong to the class of NP-complete problems, see [10]. However, the properties
of the problem’s matrix have influence on the solvability of the LCPs. It is known that if
the problem’s matrix is skew-symmetric [39, 44, 45] or positive semidefinite [32], IPAs can
find approximate solution of LCPs in polynomial time. Cottle, Pang, and Venkateswaran
∗Corresponding Author.
E-mail addresses: tibor.illes@uni-corvinus.hu (Tibor Illés), petra.rigo@uni-corvinus.hu (Petra Renáta
Rigó), roland.torok@stud.uni-corvinus.hu (Roland Török).
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[12] introduced the class of sufficient matrices. The class of P∗(κ)-matrices was proposed
by Kojima et al. [31]. If we consider the union of the sets P∗(κ) for all nonnegative κ we
obtain the class P∗, see [31]. Väliaho [41] proved that the class of P∗-matrices is equivalent
to the class of sufficient matrices. In general, IPAs for solving P∗(κ)-LCPs have polynomial
iteration complexity in the size of the problem, bit length of the integral data and the
special parameter κ ≥ 0. However, Klerk and E.-Nagy [20] showed that the handicap of
the problem’s matrix could be exponential in the bit length of the data. Furthermore, the
complexity analyses of IPAs for P∗(κ)-LCPs depend on the special parameter κ. In spite of
this fact, there are computational results in the literature for LCPs with matrices having
exponential value κ, where the iteration numbers are much better than its predicted by
the complexity results, see [15–17]. This means that it is worth trying to obtain better
complexity results for such LCPs, as well.

An important aspect in the theory of IPAs is how we determine the search directions.
Several approaches have been proposed in the literature. For example, there are methods
that use barrier functions for defining search directions. Peng et al. [37] considered self-
regular functions and in this way they reduced the theoretical complexity of long-step
IPAs. Beside these, Bai et al. [9] introduced the class of eligible kernel functions. Lešaja
and Roos [34] also analysed algorithms using eligible kernel functions. Furthermore, the
AET technique for defining search directions in case of IPAs for LP was introduced by
Darvay, see [13]. He applied a continuously differentiable, monotone increasing function
ϕ : (ξ2,∞)→R, where 0≤ ξ < 1, on the modified nonlinear equation of the system defining
the central path. In the literature, most of the IPAs do not use any transformation of
the central path system, hence these IPAs refer to the case when ϕ(t) = t in the AET
technique. Darvay [13, 14] was the first who used the function ϕ(t) =

√
t in the AET

technique. In 2016, Darvay et al. [18] considered the case when ϕ(t) = t−
√
t and they

proposed small-update IPA for LP using this search direction. In [38], different IPAs
have been presented for LP and sufficient LCPs using the AET technique. Kheirfam
and Haghighi [30] introduced an IPA for P∗(κ)-LCPs which applies the function ϕ(t) =√

t
2(1+

√
t) in the AET technique. Later on, Haddou et al. [24] proposed a family of concave

functions. It should be mentioned that they used other type of transformation of the
central path system. In a private communication, M. E.-Nagy and A. Varga [19] showed
us the definition of a new class of AET functions for long-step IPAs. However, up to
our knowledge, there are functions belonging to our class of AET functions, that are not
members of the class of AET functions introduced by M. E.-Nagy and A. Varga [19].
IPAs using the AET approach for determining search directions have been also extended
to LCPs, see [2–5, 7, 15, 17, 29, 35].

The aim of this paper is to introduce a new class of AET functions and to analyse IPAs
for P∗(κ)-LCPs that are based on these new search directions. We analyse the new family
of functions and compare to the class of concave functions given by Haddou et al. [24]
and to other AET functions used in this approach. We also analyse the relationship of
the kernel functions belonging to this new class of AET functions to the class of eligible
kernel functions. We consider a special case belonging to this new class of AET functions,
namely ϕ(t) = t2− t+

√
t. This function has inflection point, hence it does not belong to

the class of concave functions proposed by Haddou et al. Moreover, the kernel function
corresponding to this AET function is neither eligible nor self-regular kernel function. We
present the complexity analysis of the new IPAs in the general case and after that we also
consider the version when ϕ(t) = t2− t+

√
t. We prove that the IPAs using any member

ϕ of the new class of AET functions have polynomial iteration complexity in the size of
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the problem, bit length of the integral data and in the parameter κ. We also provide
numerical results in the special case when ϕ(t) = t2− t+

√
t and we compare our method

to IPAs using other AET functions. Up to our best knowledge, this is the first function
belonging to this new class of AET functions, which has inflection point and for which
the currently best known complexity results can be obtained.

The paper is organized in the following way. In Section 2 we present several results
related to the theory of P∗(κ)-LCPs, the classical AET approach. We also introduce a new
class of AET functions used in this paper. We compare the proposed family of functions to
other techniques for determining search directions. Section 3 is devoted to the complexity
analysis of the IPAs that are based on the new class of AET functions. Section 4 contains
the numerical results related to the IPA using new search direction. Furthermore, in
Section 5 some concluding remarks and further research topics are enumerated.

2. New class of AET functions for interior-point algorithms for
solving P∗(κ)-linear complementarity problems

In the first part of this section we present some basic concepts related to the theory of
P∗(κ)-LCPs and P∗(κ)-matrices.

2.1. Linear complementarity problems and P∗(κ)-matrices. The aim of the LCPs
is to find vectors x,s ∈ Rn, that satisfy the following constraints:

−Mx+ s = q, xs = 0, x,s≥ 0, (LCP )
where M ∈ Rn×n, q ∈ Rn and xs is the componentwise product of vectors x and s. The
feasible region, the interior and the solutions set of LCP are given as follows:

F := {(x,s) ∈ Rn⊕×Rn⊕ :−Mx+ s = q},
F+ := {(x,s) ∈ Rn+×Rn+ :−Mx+ s = q},
F∗ := {(x,s) ∈ F : xs = 0}.

Note that Rn⊕ denotes the n-dimensional nonnegative orthant and Rn+ the positive orthant,
respectively. Cottle et al. [12] introduced the class of sufficient matrices.

Definition 2.1. (Cottle et al. [12]) A matrix M ∈Rn×n is a column sufficient matrix if
for all x ∈ Rn

X(Mx)≤ 0 implies X(Mx) = 0,
where X = diag(x). Analogously, matrix M is row sufficient if MT is column sufficient.
The matrix M is sufficient if it is both row and column sufficient.

Kojima et al. [31] proposed the notion of P∗(κ)-matrices.

Definition 2.2. (Kojima et al. [31]) Let κ≥ 0 be a nonnegative real number. A matrix
M ∈ Rn×n is a P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)
xi(Mx)i+

∑
i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn, (2.1)

where
I+(x) = {1≤ i≤ n : xi(Mx)i > 0} and I−(x) = {1≤ i≤ n : xi(Mx)i < 0}.

A problem is called P∗(κ)-LCP if the problem’s matrix of (LCP ) is P∗(κ)-matrix.
Throughout the paper we assume that F+ 6= ∅ and M is a P∗(κ)-matrix. Hence, we are
dealing with P∗(κ)-LCPs. The handicap of M [41] is the smallest value of κ̂(M)≥ 0 such
that M is P∗(κ̂(M))-matrix.
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Definition 2.3. (Kojima et al. [31]) A matrix M ∈ Rn×n is a P∗-matrix if it is a P∗(κ)-
matrix for some κ≥ 0. Let P∗(κ) denote the set of P∗(κ)-matrices. Analogously, we also
use P∗ to denote the set of all P∗-matrices, i.e.,

P∗ =
⋃
κ≥0

P∗(κ).

Kojima et al. [31] proved that a P∗-matrix is column sufficient and Guu and Cottle [23]
showed that it is row sufficient, too. This means that each P∗-matrix is sufficient. Väliaho
[41] demonstrated the other inclusion, as well, proving that the class of P∗-matrices is the
same as the class of sufficient matrices.

The central path problem in this case is
−Mx+ s = q x,s> 0, xs = µe, (CPP )

where e denotes the n-dimensional all-one vector and µ > 0. Kojima et al. [31] proved
that if M is a P∗(κ)-matrix, then the central path system has unique solution for every
µ > 0. In the following subsection we present the classical AET approach.

2.2. Algebraic equivalent transformation technique. In this subsection we present
the AET technique in case of P∗(κ)-LCPs. Let ϕ : (ξ̄,∞)→ R, with 0 ≤ ξ̄ < 1, be a
continuously differentiable and invertible function, such that ϕ′(t) > 0, ∀t > ξ̄, see [13].
We use the notation ϕ(x) = [ϕ(x1),ϕ(x2) . . . ,ϕ(xn)]T . System (CPP ) can be written:

−Mx+ s = q x,s> 0, ϕ
(

xs
µ

)
= ϕ(e), (CPPϕ)

Applying Newton’s method we obtain the following system, see [16]:
−M∆x + ∆s = 0,
S∆x +X∆s = aϕ, (2.3)

where

aϕ = µ
ϕ(e)−ϕ

(
xs
µ

)
ϕ′
(

xs
µ

) . (2.4)

This system has unique solution, which follows from the following result.

Corollary 2.1. (Kojima et al. [31]) Let M ∈ Rn×n be a P∗(κ)-matrix, x,s ∈ Rn+. Then,
for all aϕ ∈ Rn the system

−M∆x + ∆s = 0
S∆x +X∆s = aϕ (2.5)

has a unique solution (∆x,∆s), where X and S are the diagonal matrices obtained from
the vectors x and s.

Scaling plays important role in the theory of IPAs. Consider the following notations:

v =
√

xs
µ
, d =

√x
s
, dx = d−1 ∆x

√
µ

= v∆x
x

, ds = d∆s
√
µ

= v∆s
s

. (2.6)

From these we obtain
∆x = xdx

v
and ∆s = sds

v
. (2.7)
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After substituting these into (2.3) we obtain the scaled system:
−M̄dx+ ds = 0,

dx+ ds = pv, (2.8)
where M̄ =DMD, D = diag(d) and

pv = ϕ(e)−ϕ(v2)
vϕ′(v2) . (2.9)

Table 1 contains the classical AET functions used in the literature and the corresponding
vectors aϕ and pv.

ϕ aϕ pv
ϕ(t) = t µe−xs v−1−v
ϕ(t) =

√
t 2(√µxs−xs) 2(e−v)

ϕ(t) = t−
√
t

√
µxs

2
√

xs−√µe −xs 2(v−v2)
2v−e

ϕ(t) =
√
t

2(1+
√
t)

√xs
µ (µe−xs) e−v2

Table 1. AET functions used in the literature

Later on, Haddou et al. [24] proposed a family of smooth concave functions for mono-
tone LCPs. However, it should be mentioned that they used other type of transformation
of the central path system. They used functions ϕ : R+→ R+ that satisfy the following
conditions
H1. ϕ(0) = 0;
H2. ϕ ∈ C3([0,+∞));
H3. ϕ′(t)> 0, ∀t≥ 0;
H4. ϕ′′(t)≤ 0, ∀t≥ 0;
H5. ϕ′′′(t)≥ 0, ∀t≥ 0.
In the following subsection we introduce the new class of AET functions used in this
paper.

2.3. New class of AET functions. We present the new class of AET functions which
will be used in order to determine search directions.

Definition 2.4. Let ϕ : (ξ,∞)→ R be a continuously differentiable, invertible function,
such that ϕ′(t)> 0, ∀t > ξ, where 0≤ ξ < 1. All functions ϕ satisfying the conditions
AET1. ∃ c1 ∈ R+, such that ∣∣∣∣∣ ϕ(1)−ϕ(t2)

2t(1− t2)ϕ′(t2)

∣∣∣∣∣≤ c1,
for all t > ξ.

AET2. ∃ c2 ∈ R+, such that∣∣∣∣∣∣
4t2ϕ′(t2)

[
(1− t2)ϕ′(t2)−ϕ(1) +ϕ(t2)

]
(ϕ(1)−ϕ(t2))2

∣∣∣∣∣∣≤ c2,
for all t > ξ.
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AET3. ∃c3 ∈ R+ such that the inequality

4t2(ϕ(1)−ϕ(t2))ϕ′(t2)− c3
(
ϕ(1)−ϕ(t2)

)2
≤ 4t2(1− t2)

(
ϕ′(t2)

)2

≤ 4t2(ϕ(1)−ϕ(t2))ϕ′(t2) +
(
ϕ(1)−ϕ(t2)

)2

holds for all t > ξ,
belong to the new class of AET functions.

Let us introduce the following function: f : (ξ,∞)→ R:

f(t) = ϕ(1)−ϕ(t2)
t(ϕ′(t2)) , (2.10)

By using the function given in (2.10) we can give the definition of the new class of AET
functions in the following way.
Proposition 2.1. The conditions given in Definition 2.4 can be formulated in the follow-
ing equivalent form:
AETa. ∃c1 ∈ R+, such that g(t) = f(t)

2(1−t2) and |g(t)| ≤ c1, holds for all t > ξ;

AETb. ∃c2 ∈ R+, such that h(t) = 4(1−t2−tf(t))
f(t)2 = 1−2tg(t)

(1−t2)g(t)2 and |h(t)| ≤ c2, holds for all
t > ξ;

AETc. ∃c3 ∈ R+ such that the inequality

tf(t)− c3
f(t)2

4 ≤ 1− t2 ≤ tf(t) + f(t)2

4
holds for all t > ξ.

Proof. Using the function given in (2.10) after some calculations we obtain that conditions
AET1-3 can be formulated as the ones given in AETa-c. �

Remark 2.1. The values of the parameters c1, c2 and c3 will have influence on the well-
definedness of the algorithm. For this, we will give a relation between these parameters.
Table 2 contains examples for ϕ belonging to this new family of functions, the value of ξ
and the values c1, c2 and c3. The values given in Table 2 will be clear in the second part
of the paper when we study the well-definedness of the algorithm. It should be mentioned
that for the given values from Table 2 the introduced algorithms are well defined and the
complexity analyses work. However, there are several other acceptable values for these
parameters.

ϕ(t) ξ c1 c2 c3
t 0.25 2 6 1√
t 0 2 6 1

t−
√
t 0.7 2 6 1

t2− t+
√
t 0 2 8 8

t2 +
√
t 0 2 6 8

Table 2. Examples for ϕ belonging to the new class of AET function

Table 2 shows that most of the functions used in the literature from Table 1 belong
to the new class of AET functions. However, it should be mentioned that the intervals
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on which the functions ϕ are defined play important role in this approach. For example,
ϕ(t) = t is only a member of this new class of AET functions if it is defined on a (ξ,∞)
interval, where ξ is strictly positive. If ξ would be zero, then condition AET1 would not
be satisfied for this function. Similar remark can be formulated in case of ϕ(t) = t−

√
t.

Remark 2.2. The functions ϕ(t) = t2− t+
√
t and ϕ(t) = t2 +

√
t are new in this AET

technique. Up to our best knowledge they are the first AET functions in the literature,
that have inflection point.

We can compare our new class of AET functions to the class of concave functions
proposed by Haddou et al. [24].

Example 2.1. Consider the function ϕ(t) = log(1 + t), member of the class of concave
functions introduced by Haddou et al. [24]. By using Definition 2.4, we can check that
for this function condition AET3 is not satisfied.

In the following subsection we present the class of eligible kernel functions proposed in [9]
and the relationship between the kernel function approach and the AET technique.

2.4. Eligible kernel functions. The determination of search directions in case of IPAs
can be realized by using kernel functions.

Definition 2.5. (Bai et al. [9]) A function ψ : R+→ R⊕ is called kernel function if it is
twice continuously differentiable and if the following conditions hold:
K1. ψ(1) = ψ′(1) = 0;
K2. ψ′′(t)> 0, for all t > 0;
K3. limt↓0ψ(t) = limt→∞ψ(t) =∞.

In some cases in the literature condition K3. of Definition 2.5 is used to define the notion
of coercive kernel function, see [42, 43]. We can construct a barrier function Ψ : Rn+→ R
in the following form:

Ψ(v) =
n∑
i=1

ψ(vi),

where v ∈ Rn+.
Peng et al. [37] modified the second equation of the scaled system to

dx+ ds =−∇Ψ(v).
Using this and the scaled system (2.8), we have

dx+ ds =−∇Ψ(v) = pv = ϕ(e)−ϕ(v2)
vϕ′(v2) . (2.11)

Hence, we can assign a corresponding kernel function to several functions ϕ appeared in
the AET technique in the following way, see [1, 36]:

ψ(t) =
∫ t

1

ϕ(τ̄2)−ϕ(1)
τ̄ϕ′(τ̄2) dτ̄ , (2.12)

where the function ψ should satisfy the properties K1.-K3. of Lemma 2.5.
Peng et al. [37] considered self-regular functions and in this way they reduced the

theoretical complexity of long-step IPAs. The definition of self-regular functions is given
below.

Definition 2.6. (Peng et al. [37]) A function ψ : (0,∞)→ R, ψ ∈ C2 is self-regular if it
satisfies the conditions
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SR1. ψ(t) is strictly convex with respect to t > 0 and ψ(t) = 0 at its global minimal point
t = 1, i.e. ψ(1) = ψ′(1) = 0. Further, there exist positive constants ν2 ≥ ν1 > 0 and
p≥ 1, q ≥ 1 such that

ν1
(
tp−1 + t−1−q

)
≤ ψ′′(t)≤ ν2

(
tp−1 + t−1−q

)
, ∀t ∈ (0,∞); (2.13)

SR2. For any t1, t2 > 0,
ψ
(
tr1t

1−r
2

)
≤ rψ(t1) + (1− r)ψ(t2), ∀r ∈ [0,1]. (2.14)

The prototype self-regular kernel function is given by

Υp,q(t) = tp+1−1
p(p+ 1) + t1−q−1

q(q−1) + p− q
pq

(t−1), (2.15)

where p≥ 1 and q ≥ 1.
Bai et al [8] defined the class of eligible kernel functions.
Definition 2.7. (Bai et al. [8]) We call a kernel function eligible kernel function if it
satisfies the following conditions:
EK1. tψ′′(t) +ψ′(t)> 0, t < 1;
EK2. ψ′′′(t)< 0, t > 0;
EK3. 2ψ′′(t)2−ψ′(t)ψ′′′(t)> 0, t < 1;
EK4. ψ′′(t)ψ′(βt)−βψ′(t)ψ′′(βt)> 0, t > 1, β > 1.
Note that the class of eligible kernel functions contains some self-regular functions, as
well as many non-self-regular functions as special cases, see [34]. However, it should be
mentioned that all self-regular kernel functions Υp,q(t) with growth p ≤ 1 belong to the
class of eligible kernel functions.
Remark 2.3. Using (2.12) and (2.10) we have

ψ′(t) =−f(t). (2.16)
From this and Proposition 2.1 we obtain that if we have a kernel function, then using
AETa-c we can check whether the corresponding function(s) ϕ do(es) belong to the new
class of AET without calculating the functions ϕ. Furthermore, if we have a function ϕ,
then by using the conditions given in Proposition 2.1 we can check whether the conditions
given in EK1-4 and K1-3 hold for the corresponding kernel function. Hence, we can
compare functions from the class of new AET to corresponding kernel functions.

Example 2.2. Let ψ(t) = 1
2

(
t− 1

t

)2
be an eligible kernel function, see [34]. This is also

a self-regular kernel function. Using (2.12) we have f(t) = −ψ′(t) = 1
t3 − t. Note that

condition AETb from Proposition 2.1 or AET2 from Definition 2.4 is not satisfied in this
case, which means that the function(s) ϕ belonging to this eligible and self-regular kernel
function is (are) not members of the new class of AET. Note that we do not have to
calculate ϕ to check this.
Remark 2.4. The function ϕ :R+→R+, ϕ(t) = t belongs to the class of concave functions
proposed by Haddou et al. [24]. Furthermore, the kernel function corresponding to this
function is eligible kernel function. It should be mentioned that ϕ(t) = t belongs to the
new class of AET functions if it is defined on (ξ,∞), where 0< ξ < 1.
2.5. Special case of the new class of AET. Let us consider the special case mentioned
in Subsection 2.3, ϕ : (0,∞)→ R.

ϕ(t) = t2− t+
√
t. (2.17)
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Figure 1. Graph of the function given in (2.17).

The graph of the function given in (2.17) is shown in Figure 2.17.
It is interesting that this function has inflection point. Up to our best knowledge this

is the first AET function in the literature which has inflection point.
Using (2.4) and (2.9) we can calculate the corresponding aϕ and pv in this case:

aϕ = µ
e− x2s2

µ2 + xs
µ −

√xs
µ

2xs
µ −e+ 1

2

√
µ
xs

=
2µ2√xs−2x2s2√xs+ 2µxs

√
xs−2µxs√µ

4xs
√
xs−2µ

√
xs+µ

√
µ

(2.18)

and
pv = e−v4 +v2−v

2v3−v+ 1
2e

= 2(e−v)(e+v2 +v3)
4v3−2v+e

. (2.19)

Hence, in our case

f(t) = 2(1− t4 + t2− t)
4t3−2t+ 1 , (2.20)

and using (2.16), in our case when ϕ is the function given in (2.17) we have

f ′(t) = −8t6 + 4t4 + 8t3−28t2 + 4t+ 2
(4t3−2t+ 1)2 =−ψ′′(t). (2.21)

f ′′(t) = 4(8t6−36t5 + 108t4−20t3−6t2−12t+ 3)
(4t3−2t+ 1)3 =−ψ′′′(t). (2.22)

Note that in case of kernel functions we have ψ′′(t)≥ 0. However, using (2.16) and (2.21)
we can conclude that the kernel function corresponding to the function ϕ given in (2.17)
is not a kernel function in the sense, that ψ is not convex for all t > 0. From the same
reason we get that the kernel function belonging to the function ϕ is neither self-regular,
because in case of self-regular functions (2.13) should be satisfied. However, (2.21) takes
positive and negative values as well. In case of eligible kernel functions ψ′′′(t)< 0, hence
we should have f ′′(t)> 0, for t > 0. However, the expression given in (2.22) is not positive
for all t > 0. The kernel function corresponding to the function ϕ given in (2.17) does not
belong to the class of eligible kernel functions.

This function ϕ does not belong neither to the class of Haddou’s class of concave
functions, because ϕ′′(t) = 2− 1

4t
√
t
is not negative for all t≥ 0.

In the following subsection we present short-step IPAs for solving P∗(κ)-LCPs, that use
this new class of functions in the AET technique to determine search directions.

2.6. New interior-point algorithms for solving P∗(κ)-linear complementarity
problems. Firstly, we deal with the determination of the search directions. For this, we
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consider system (2.3), where aϕ depends on the function ϕ used, which is member of the
class new AET functions.

As special case, when ϕ(t) = t2− t+
√
t, aϕ will be the expression given in (2.18).

We define the centrality measure δ : Rn+×Rn+×R+→ R∪{∞} as

δ(x,s,µ) := δ(v) = ‖pv‖2 , (2.23)

where ‖ · ‖ denotes the standard Euclidean norm, and pv is given in (2.9).
Consider the τ -neighbourhood of a fixed point of the central path as

N2(τ,µ) := {(x,s) ∈ F+ : δ(x,s,µ)≤ τ}, (2.24)
where δ(x,s,µ) is given in (2.23), µ > 0 is fixed and τ is a threshold parameter.

In Algorithm 2.1 we define a whole class of IPAs for solving P∗(κ)-LCPs, which is based
on the new class of AET functions.

Algorithm 2.1 : IPAs for P∗(κ)-LCPs based on a new class of AET functions

Let ε > 0 be the accuracy parameter, 0< θ < 1 the update parameter and τ the proximity
parameter. Furthermore, a known upper bound κ of the handicap κ̂(M) is given. Assume
that for (x0,s0) the

(
x0
)T

s0 = nµ0, µ0 > 0 holds such that δ(x0,s0,µ0)≤ τ .
begin

k := 0;
while

(
xk
)T

sk > ε do
begin

(determination of search directions)
compute (∆xk,∆sk) from (2.3) with ϕ belonging to the new class of AET functions;
let xk := xk + ∆xk and sk := sk + ∆sk;

(update of the parameter µ)

µk+1 := (1− θ)µk;
k:=k+1;

end
end

Remark 2.5. The default values of the parameters τ and θ will be given later in the
complexity analysis of the algorithm.

Remark 2.6. If we consider the special case ϕ(t) = t2− t+
√
t, then the default value of

θ is 1
(200+100κ)

√
n
and the default value of τ is τ = 1

32+16κ .

Remark 2.7. Note that using the function from (2.17) the proximity measure from (2.23)
will be

δ(x,s,µ) = 1
2

∥∥∥∥∥e−v4 +v2−v
2v3−v+ 1

2e

∥∥∥∥∥ . (2.25)

In the following section we present the complexity analysis of the IPAs using the new
class of AET functions defined by conditions AET1-3 of Definition 2.4.
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3. Complexity analysis

The first lemma shows the strict feasibility of the full-Newton step.

Lemma 3.1. Let (x,s) ∈ F+ be given, such that δ(x,s;µ) ≤ 1√
1+4κ . For any function

satisfying AET3 of Definition 2.4, we have that (x+, s+) ∈ F+.

Proof. It should be mentioned that only the right hand side of AET3 should be satisfied
in this lemma, namely:

4t2(ϕ(1)−ϕ(t2))ϕ′(t2) +
(
ϕ(1)−ϕ(t2)

)2
≥ 4t2(1− t2)

(
ϕ′(t2)

)2
, t > ξ. (3.1)

We have
x(α)s(α) = (x+α∆x)(s+α∆s) = xs+α(s∆x+x∆s) +α2∆x∆s

= µv2 +µvα(dx+ds) +α2µdxds (3.2)
= µ((1−α)v2 +α(v2 +vpv +αdxds).

Our aim is to show that µα(v2 +vpv +αdxds)≥ 0. We have pv = dx+ds and using the
notations qv := dx−ds it can be seen that

dxds = p2
v−q2

v

4 . (3.3)

Using the definition of pv given in (2.9) we obtain that (3.1) is equivalent with

vpv + p2
v

4 ≥ e−v2, (3.4)

which leads to
v2 + vpv ≥ e− p2

v

4 . (3.5)
Using (3.2), (3.3) and (3.5) we have

x(α)s(α)
µ

= (1−α)v2 +α

(
v2 +vpv +α

p2
v

4 −α
q2
v

4

)

≥ (1−α)v2 +α

(
e− (1−α)p

2
v

4 −α
q2
v

4

)
.

We have x(α)s(α)
µ

≥ 0, if
∥∥∥∥∥(1−α)p

2
v

4 −α
q2
v

4

∥∥∥∥∥
∞
≤ 1 holds.

From [16] we obtain

‖qv‖ ≤
√

1 + 4κ‖pv‖= 2
√

1 + 4κδ. (3.6)
Then, we have ∥∥∥∥∥(1−α)p

2
v

4 −α
q2
v

4

∥∥∥∥∥
∞
≤ (1−α)‖pv‖

2

4 +α
‖qv‖

2

4

≤ (1−α)‖pv‖
2

4 +α(1 + 4κ)‖pv‖
2

4
= (1 + 4ακ)δ2 ≤ (1 + 4κ)δ2.

11



This means that
∥∥∥∥∥(1−α)p

2
v

4 −α
q2
v

4

∥∥∥∥∥
∞
≤ 1 holds if we have δ ≤ 1√

1 + 4κ
. In this way the

lemma is proven.
�

In the following lemma we analyse the conditions under which the Newton process is
quadratically convergent.

Lemma 3.2. Suppose that δ(x,s;µ)≤ 1√
1+4κ . Let (x,s) ∈ F+ and v̄ =

√
x+s+

µ
be given.

For any function ϕ satisfying AET1 and AET2 of Definition 2.4, we can say that after a
primal-dual Newton barrier step we have:

δ(x+,s+;µ)≤ c1(c2 + 2 + 4κ)δ(x,s;µ)2,

where c1, c2 ∈ R+.

Proof. It should be noted that in the proof we will use the form AETa and AETb of
Proposition 2.1. Using Proposition 2.1 and (2.23) we get

δ(x+,s+;µ) := ‖pv̄‖
2 =

∥∥∥(e− v̄2)g(v̄)
∥∥∥ , (3.7)

where the function g is given in Proposition (2.1). Using the assumption that ∃c1 ∈ R+,
for which |g(t)| ≤ c1, we obtain

δ(x+,s+;µ)≤ c1
∥∥∥e− v̄2

∥∥∥ . (3.8)
We know from (3.2) that∥∥∥e− v̄2

∥∥∥=
∥∥∥∥∥e− x+s+

µ

∥∥∥∥∥=
∥∥∥∥∥e−v2−vpv−

p2
v

4 + q2
v

4

∥∥∥∥∥ . (3.9)

Using condition AETb of Proposition 2.1 we have

e−v2−vpv = h(v)p2
v

4 . (3.10)

Using (3.6), (3.9) and (3.10) we obtain∥∥∥e− v̄2
∥∥∥ ≤ ∥∥∥e−v2−vpv

∥∥∥+
∥∥∥∥∥p2

v

4

∥∥∥∥∥+
∥∥∥∥∥q2

v

4

∥∥∥∥∥≤ (2 + c2 + 4κ)δ2. (3.11)

From (3.8) and (3.11) we have
δ(x+,s+;µ)≤ c1(c2 + 2 + 4κ)δ(x,s;µ)2,

which proves the lemma.
�

In the next lemma we investigate the effect of the full-Newton step on the duality gap.

Lemma 3.3. Let δ := δ(x,s;µ) and suppose that the vectors x+ and s+ are obtained using
a full-Newton step, thus x+ = x + ∆x and s+ = s + ∆s. For any function ϕ satisfying
AET3 of Definition 2.4 with c3 ∈ R+, we have that(

x+
)T

s+ ≤ µ(n+ (c3 + 1)δ2).
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Proof. Note that only the left hand side of AET3 will be used in this proof, namely

4t2(ϕ(1)−ϕ(t2))ϕ′(t2)− c3
(
ϕ(1)−ϕ(t2)

)2
≤ 4t2(1− t2)

(
ϕ′(t2)

)2
, t > ξ. (3.12)

Using the definition of pv in (2.9) we get that (3.12) is equivalent with

vpv− c3
p2
v

4 ≤ e−v2. (3.13)

From (3.2) and (3.13) we get
1
µ
x+s+ = v2 +vpv +dxdx ≤ e+ c3

4 p
2
v +dxds.

After some calculations we have(
x+
)T

s+ = eT (x+s+)≤ µ(eTe+ c3
4 e

Tp2
v +eTdxds)

= µ(n+ c3
4 ‖pv‖

2 +dTxds)

≤ µ(n+ c3δ
2 + δ2) = µ(n+ (c3 + 1)δ2).

The last inequality holds, since

dTxds = ‖dx+ds‖2−‖dx−ds‖2

4 ≤ ‖dx+ds‖2

4 = ‖pv‖
2

4 .

�

The next lemma examines the effect which a Newton step followed by an update of the
parameter µ has on the proximity measure.

Lemma 3.4. Suppose that δ(x,s;µ)≤ 1√
1+4κ . Let v+ =

√
x+s+
µ+ , where µ+ = (1−θ)µ and

let η =
√

1− θ. For any function ϕ satisfying AET1 and AET2 of Definition 2.4 with
c1, c2 ∈ R+, after a primal-dual Newton step we have:

δ(x+,s+;µ+)≤ c1
η2

(
θ
√
n+ ((c2 + 2) + 4κ)δ2

)
.

Proof. In the proof we will use the form AETa and AETb of Proposition 2.1. Using the
definition of the proximity measure given in (2.9) we have

δ(x+,s+;µ+) =
∥∥∥(e− (v+)2)g(v+)

∥∥∥ .
From condition AETa of Proposition 2.1 , we get

δ(x+,s+;µ+)≤ c1
∥∥∥e− (v+)2

∥∥∥ . (3.14)
Furthermore,∥∥∥e− (v+)2

∥∥∥ =
∥∥∥∥∥e− 1

η2
x+s+

µ

∥∥∥∥∥=
∥∥∥∥∥e− 1

η2

(
v2 +vpv + p2

v

4 −
q2
v

4

)∥∥∥∥∥
= 1

η2

∥∥∥∥∥η2e−
(
v2 +vpv + p2

v

4 −
q2
v

4

)∥∥∥∥∥
= 1

η2

∥∥∥∥∥−θe+e−v2−vpv−
p2
v

4 + q2
v

4

∥∥∥∥∥ . (3.15)
13



From (3.10), (3.14), (3.15) and condition AETb of Proposition 2.1 we obtain

δ(x+,s+;µ+) ≤ c1
η2

(
‖θe‖+

∥∥∥e−v2−vpv
∥∥∥+

∥∥∥∥∥p2
v

4

∥∥∥∥∥+
∥∥∥∥∥q2

v

4

∥∥∥∥∥
)

≤ c1
η2

(
θ
√
n+ ((c2 + 2) + 4κ)δ2

)
. (3.16)

�

In the following lemma we set the values of the parameters θ and τ and we prove that
for these values the IPAs using the new class of AET functions are well defined.

Lemma 3.5. Let ϕ : (ξ,∞)→ R satisfying AET1-3 of Definition 2.4. Consider n ≥ 1,
θ = 2

25c2(2+κ)
√
n
and τ = 1

2c2(2+κ) . If c1 <
100c2−4
41c2+50 and c2 > 1

2 , then we have

δ(x+,s+;µ+)< τ,

hence the IPAs defined in Algorithm 2.1 are well defined.

Proof. We suppose that τ = 1
2c2(2+κ) and c2 >

1
2 . From here we have 1

2c2(2+κ) <
1

2+κ <
1√

1+4κ . Using this and the assumption that AET1-3 of Definition 2.4 are satisfied, from
Lemma 3.1 we get that (x+,s+) ∈ F+.

Using Lemma 3.4 we have

δ(x+,s+;µ+) ≤ c1
η2

(
θ
√
n+ ((2 + c2) + 4κ)δ2

)
. (3.17)

Considering θ = 2
25c2(2+κ)

√
n
we get

θ
√
n= 2

25c2(2 +κ) . (3.18)

Moreover, using n≥ 1, κ≥ 0 we have
1

1− θ ≤
1

1− 2
50c2

= 25c2
25c2−1 . (3.19)

Substituting the value of τ in (3.17) and using κ≥ 0, (3.18) and (3.19), we get

δ(x+,s+;µ+) ≤ c1 ·
25c2

25c2−1

(
2

25c2(2 +κ) + (c2−6 + 8 + 4κ) 1
(2c2(2 +κ))2

)

= c1 ·
25c2

25c2−1

(
4

25(2c2(2 +κ)) + c2−6
4c22(2 +κ)2 + 4(2 +κ)

4c22(2 +κ)2

)
=

≤ c1 ·
25c2

25c2−1
1

2c2(2 +κ)

( 4
25 + c2−6

4c2
+ 2
c2

)

= c1
25c2

25c2−1
41c2 + 50

100c2
1

2c2(2 +κ) = c1(41c2 + 50)
100c2−4 τ. (3.20)

The obtained result should be less than τ , hence using c2 > 1
2 >

1
25 , we get

c1 <
100c2−4
41c2 + 50 , (3.21)

which gives the result. �

Remark 3.1. It should be mentioned that the parameters c1 and c2 of the functions
given in Table 2 satisfy the condition c2 > 1

2 and c1 < 100c2−4
41c2+50 .
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The following lemma gives upper bound on the number of iterations.

Lemma 3.6. Consider ϕ : (ξ,∞)→ R satisfying AET1-3 of Definition 2.4. Let n ≥ 1,
θ = 2

25c2(2+κ)
√
n
, τ = 1

2c2(2+κ) , c1 <
100c2−4
41c2+50 and c2 > 1

2 and c3 < 16c22−1. We assume that

the pair (x0,s0) is strictly feasible, µ0 = (x0)T s0

n and δ(x0,s0;µ0)< τ . Let xk and sk be the
two vectors obtained by the algorithms given in Algorithm 2.1 after k iterations. Then,
for

k ≥
⌈

1
θ

log µ
0(n+ 1)
ε

⌉
we have (xk)T sk < ε.

Proof. From Lemma 3.3 and c3 < 16c22−1 we have(
xk
)T

sk ≤ µk
(
n+ (c3 + 1) · 1

(2c2(2 +κ))2

)

= (1− θ)kµ0
(
n+ (c3 + 1) · 1

(2c2(2 +κ))2

)
< (1− θ)kµ0 (n+ 1) . (3.22)

The condition (xk)T sk < ε holds if
(1− θ)kµ0 (n+ 1)< ε. (3.23)

Taking the logarithm of both sides of (3.23) we have
k log (1− θ) + log

(
µ0 (n+ 1)

)
< logε.

Using that − log (1− θ)≥ θ finally we get

kθ ≥ log
(
µ0 (n+ 1)

)
− logε= log µ

0(n+ 1)
ε

,

which proves the lemma. �

Remark 3.2. Condition c3 < 16c22−1 is satisfied for all functions given in Table 2.

Theorem 3.1. Let ϕ : (ξ,∞)→ R satisfying AET1-3 of Definition 2.4. Consider n≥ 1,
θ = 2

25c2(2+κ)
√
n
and τ = 1

2c2(2+κ) . If c1 <
100c2−4
41c2+50 , c2 >

1
2 and c3 < 16c22−1, then the IPAs

given in Algorithm 2.1 require no more than

O
(

(2 +κ)
√
n log (n+ 1)µ0

ε

)
interior-point iterations.

In the following subsection we analyse the special case when ϕ(t) = t2− t+
√
t, which is

the first AET function which has inflection point.

3.1. Special case. The first step of this research was to define and analyse an IPA using a
new type of function in the AET technique, which has inflection point. From this analysis
we built up the new class of AET functions. Hence, in this subsection, we summarize
the corollaries of the lemmas presented in the previous part in the special case when
ϕ(t) = t2− t+

√
t.

Corollary 3.1. Let (x,s) ∈ F+ be given, such that δ(x,s;µ) < 1√
1+4κ . In case of ϕ(t) =

t2− t+
√
t we have that (x+,s+) ∈ F+.
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Corollary 3.2. Let (x,s) ∈ F+ and v̄ =
√

x+s+

µ
be given, such that δ(x,s;µ) ≤ 1√

1+4κ .

In case of ϕ(t) = t2− t+
√
t we have that after a primal-dual Newton barrier step:
δ(x+,s+;µ)≤ 2(10 + 4κ)δ(x,s;µ)2.

Proof. In the proof we use that in case of ϕ(t) = t2− t+
√
t

g(t) := 1 + t2 + t3

(4t3−2t+ 1)(t+ 1) (3.24)

function, for which we have |g(t)| ≤ 2. This means that c1 = 2 in this case.
Furthermore,

h(t) = (4t3−2t+ 1)(−2t3−4t2−2t+ 1)
(1 + t2 + t3)2 . (3.25)

It can be shown that |h(t)| ≤ 8, for all t > 0, hence c2 = 8.
Using Lemma 3.2 we have

δ(x+,s+;µ)≤ 2(10 + 4κ)δ(x,s;µ)2.

�

Corollary 3.3. Let δ := δ(x,s;µ) and suppose that the vectors x+ and s+ are obtained
using a full-Newton step, thus x+ = x+∆x and s+ = s+∆s. In case of ϕ(t) = t2− t+

√
t

we have (
x+
)T

s+ ≤ µ(n+ 9δ2).

Corollary 3.4. Let v+ =
√

x+s+
µ+ , where µ+ = (1− θ)µ and let η =

√
1− θ. Suppose that

δ(x,s;µ)≤ 1√
1+4κ . In case of ϕ(t) = t2−t+

√
t used in the AET technique, after a primal-

dual Newton step we have:

δ(x+,s+;µ+)≤ 2
η2

(
θ
√
n+ (10 + 4κ)δ2

)
.

Proof. From Corollary 3.2 we get that in case of ϕ(t) = t2− t+
√
t, c1 = 2 and c2 = 8.

Substitution of these values in Lemma 3.4 gives the desired result. �

Corollary 3.5. Let n≥ 1, θ = 1
(200+100κ)

√
n
and τ = 1

32+16κ . Then, we have

δ(x+,s+;µ+)< τ,

hence the algorithm is well defined.

Corollary 3.6. We assume that the pair (x0,s0) is strictly feasible, µ0 = (x0)T s0

n and
δ(x0,s0;µ0) < τ := 1

32+16κ . Let xk and sk be the two vectors obtained by the algorithm
given in Algorithm 2.1 after k iterations. Then, for

k ≥
⌈

1
θ

log µ
0(n+ 1)
ε

⌉
we have (xk)T sk < ε.

Corollary 3.7. Let n≥ 1, θ= 1
(200+100κ)

√
n
and τ = 1

32+16κ . Then, Algorithm 2.1 requires
no more than

O
(

(2 +κ)
√
n log (n+ 1)µ0

ε

)
interior-point iterations.
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4. Numerical results

We implemented a variant of the proposed PD IPAs in the C++ programming language.
About the implementation there is a detailed explanation in [28]. We did all computations
on a desktop computer with Intel quad-core 2.6 GHz processor and 16 GB RAM. Due to
the fact that in many cases we do not have information about the value of κ, we used
Algorithm 2.1 in our implementation. We set the values θ = 0.999 and ε= 10−5.

Moreover, it should be mentioned that most of the numerical results related to P∗(κ)-
LCPs are related to problems where the value of κ is zero, that lead to LP problems.
Gurtuna et al. [22] and Asadi et al. [6] provided numerical results related to P∗(κ)-LCPs
having positive handicap, by considering 2×2 or 3×3 matrices. They also analysed block
diagonal matrices formed by the aformentioned ones. Darvay et al. [16] presented numer-
ical results where they solved P∗(κ)-problems with matrices having positive κ generated
by Illés and Morapitiye [25].

De Klerk and E.-Nagy [20] proved that the handicap of the matrix can be exponential
in the size of the problem. They considered the following matrix which was proposed by
Csizmadia:

M =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
... ... ... . . . ...
−1 −1 −1 · · · 1

 , (4.1)

and they proved that κ̂(M) ≥ 22n−8− 0.25. However, we obtained promising results in
this case as well.

We generated 10-10 (x̄, s̄) starting point pairs for each size of (4.1) matrix from three
different intervals, [0,1]n, [0,10]n and [0,100]n for coordinates x̄ and s̄, respectively. Given
the P∗(κ)-property of matrix M , we generated test problems with vector q̄ given by

q̄ =−M x̄+ s̄.
The computational results for problems generated by the points (x̄, s̄) for interval [0,1]n
can be found in Table 3, for [0,10]n in Table 4 and for [0,100]n in Table 5. However, in
case of 400×400 matrices there were several problems, where numerical errors appeared.
In case of interval [0,1]n there were two, in case of interval [0,100]n there was one example,
where the duality gap stopped decreasing after several steps. This phenomenon can be
explained by the relatively high local κ value, which was computed as

κ(∆x) =−1
4

∆xTM∆x∑
i∈I+(∆x) ∆xi(M∆x)i

.

This caused after several steps the value α to be zero due to some numerical errors. In
case of each used function ϕ this problem appeared after the same iteration number. It
can be seen from Tables 3, 4, 5 that if x̄ and s̄ are from the same interval, the size of the
interval does not significantly change the iteration number or the CPU time.

On the other hand, we generated another examples as well with the matrix (4.1) with
different sizes. We generated 10-10 examples with random starting points x̄ ∈ [0,1]n
and s ∈ [9,11]n, x̄ ∈ [9,11]n and s̄ ∈ [0,1]n, x̄ ∈ [0,100]n and s̄ ∈ [9900,11000]n, x̄ ∈
[9900,11000]n and s̄ ∈ [0,100]n. The obtained results can be seen in Tables 6, 7, 8 and 9,
respectively. All tables contain the averages of maximum local κ, as well.

It can be seen from Tables 6, 7, 8 and 9 that if the values of x̄ are significantly smaller
than the values of s̄, the problem can be solved relatively easier with less iteration numbers,
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even in case of large-size matrix (4.1). However, if the values of s̄ are smaller, the problem
becomes even harder than in the case when the starting points are the all one vectors.
This phenomenon can be explained by the difference of the local κ which is relatively
small in the case when the values of x̄ are smaller and relatively high in the other case.
The detailed explanation of the connection between the local κ and the change of duality
gap and the step length can be found in [28].

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 13.5 0.1016 252.5210 14.0 0.1014 248.8704 23.3 0.2700 253.01779
100 69.6 13.1915 2.8965 ·1034 70.3 11.7055 2.8905 ·1034 81.2 15.2739 2.8969 ·1034

400 266.75 896.5609 8.3266 ·10137 267.25 763.6711 8.1513 ·10137 279.0 809.6871 8.3419 ·10137

Table 3. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄, s̄ ∈ [0,1]n

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 14.2 0.0987 211.8509 15.9 0.1142 208.7034 29.6 0.2755 212.3371
100 74.6 14.2480 4.8624 ·1033 76.6 13.1046 4.8457 ·1033 91.8 16.2140 4.8651 ·1033

400 253.6 716.8654 4.5225 ·10137 256.1 735.9447 4.5266 ·10137 272.7 876.3592 4.5242 ·10137

Table 4. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄, s̄ ∈ [0,10]n

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 14.7 0.1042 211.8509 17.9 0.1249 208.7034 36.5 0.3014 212.3371
100 73.6 13.0567 3.0703 ·1033 77.3 12.5555 3.0473 ·1033 96.4 17.8456 3.0713 ·1033

400 263.0 796.7204 1.8622 ·10137 266.89 745.1423 1.8564 ·10137 288.22 934.7279 1.8625 ·10137

Table 5. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄, s̄ ∈ [0,100]n

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 6.0 0.0452 7.2784 8.0 0.0630 7.0675 22.6 0.2046 7.1097
100 9.5 1.9026 327003.0236 11.9 2.1738 321470.2586 27.0 5.7808 327269.0307
400 18.0 42.7345 9.0870 ·1017 20.6 47.9526 9.0672 ·1017 36.1 85.7836 9.0888 ·1017

Table 6. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄ ∈ [0,1]n, s̄ ∈ [9,11]n

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 22.3 0.1739 682.0966 24.7 0.1901 684.2502 36.3 0.3449 682.0185
100 274.2 52.4393 1.9735 ·1055 276.6 51.1744 1.9805 ·1055 287.9 58.6141 1.9732 ·1055

400 - - - - - - - - -

Table 7. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄ ∈ [9,11]n, s̄ ∈ [0,1]n

In the following section some concluding remarks are presented.
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n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 6.0 0.0414 9.0557 12.4 0.0900 8.5673 39.5 0.3124 6.2562
100 8.0 1.5736 1742.3699 14.0 2.5820 1731.8622 42.0 8.4011 1724.6807
400 9.3 23.5005 133784.0036 16.0 39.2535 134356.1961 44.9 103.3628 132590.5281

Table 8. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄ ∈ [0,100]n, s̄ ∈ [9900,11000]n

n ϕ(t) = t ϕ(t) =
√
t ϕ(t) = t2− t+

√
t

Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ Nr. of Iter. CPU (s) max local κ
10 15.0 0.1106 108.8984 22.2 0.1655 109.9658 46.3 0.3665 109.1237
100 569.0 109.1256 1.2750 ·1056 577.6 119.9684 1.2778 ·1056 600.9 129.3901 1.2748 ·1056

400 - - - - - - - - -

Table 9. Numerical results with θ = 0.999 for P∗(κ)-LCPs with matrix
given in (4.1) with x̄ ∈ [9900,11000]n, s̄ ∈ [0,100]n

5. Conclusions

In this paper we proposed new IPAs for solving P∗(κ)-LCPs. The novelty of the paper
is that we introduced a new class of AET functions in order to determine the search
directions. We proved that the IPAs using any member ϕ of this new class of AET
functions have polynomial iteration complexity in the size of the problem, bit length
of the integral data and in the parameter κ. We also provided numerical results that
show the efficiency of the IPA in the special case when ϕ(t) = t2− t+

√
t. The new

class of functions defined by conditions AET1-3 of Definition 2.4 differs from the existing
classes. We showed that ϕ(t) = t2− t+

√
t belonging to our new class is not member of

the existing classes of AET functions. The kernel function corresponding to this AET
function ϕ is neither self-regular, nor eligible kernel function, see Subsection 2.5. We also
provided example for eligible and self-regular kernel function for which the corresponding
AET function is not member of our new class, see Example 2.2. As further research it
would worth analysing the system of differential inequalities given in AET1-3. Another
interesting research topic would be to extend the presented IPAs in a similar way that
Illés et al. did in [26, 27], for general LCPs. It would be good to collect general LCP test
problems in order to make the algorithms testable in practice.
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