E. Nagy, Marianna and Varga, Anita (2022) A new Ai-Zhang type interior point algorithm for sufficient linear complementarity problems. Working Paper. Corvinus University of Budapest, Budapest.
|
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
692kB |
Abstract
In this paper, we propose a new long-step interior point method for solving sufficient linear complementarity problems. The new algorithm combines two important approaches from the literature: the main ideas of the long-step interior point algorithm introduced by Ai and Zhang, and the algebraic equivalent transformation technique proposed by Darvay. Similarly to the method of Ai and Zhang, our algorithm also works in a wide neighbourhood of the central path and has the best known iteration complexity of short-step variants. We implemented the new method in Matlab and tested its efficiency on both sufficient and non-sufficient problem instances. In addition to presenting our numerical results, we also make some interesting observations regarding the analysis of Ai-Zhang type methods.
Item Type: | Monograph (Working Paper) |
---|---|
Series Name: | Corvinus Economics Working Papers - CEWP |
Series Number / Identification Number: | 2022/03 |
Uncontrolled Keywords: | Mathematical programming, Linear complementarity optimization, Interior point algorithms, Algebraic equivalent transformation technique, sufficient matrices |
JEL classification: | C61 - Optimization Techniques; Programming Models; Dynamic Analysis |
Divisions: | Faculty of Economics > Department of Operations Research and Actuarial Sciences |
Subjects: | Mathematics, Econometrics |
Funders: | NRDI Fund |
Projects: | TKP2020 NC |
References: | Ai, W., Zhang, S.: An O(√nL) iteration primal-dual path-following method, based on wide neighborhoods and large
Asadi, S., Mansouri, H.: Polynomial interior-point algorithm for P∗(κ) horizontal linear complementarity problems.
Asadi, S., Mansouri, H., Darvay, Z., Zangiabadi, M., Mahdavi-Amiri, N.: Large-neighborhood infeasible predictor–
Asadi, S., Mansouri, H., Lesaja, G., Zangiabadi, M.: A long-step interior-point algorithm for symmetric cone Cartesian
Bai, Y., Lesaja, G., Roos, C., Wang, G., El Ghami, M.: A class of large-update and small-update primaldual
Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theor. Appl. 60(3), 393–399 (1989).
Cottle, R., Pang, J.S., Venkateswaran, V.: Sufficient matrices and the linear complementarity problem. Lin. Algebra
Darvay, Zs.: New interior point algorithms in linear programming. Adv. Model. Optim. 5(1), 51–92 (2003)
Darvay, Zs., Illés, T., Kheirfam, B., Rigó, P.R.: A corrector–predictor interior-point method with new search direction for linear optimization. Cent. Eur. J. Oper. Res. 28(3), 1123–1140 (2020). doi: https://doi.org/10.1007/s10100-019-
Darvay, Zs., Illés, T., Majoros, Cs.: Interior-point algorithm for sufficient LCPs based on the technique of algebraically equivalent transformation. Optim. Lett. 15(2), 357–376 (2021). doi:https://doi.org/10.1007/s11590-020-01612-0
Darvay, Zs., Illés, T., Povh, J., Rigó, P.R.: Feasible corrector-predictor interior-point algorithm for P∗(κ)-
Darvay, Zs., Illés, T., Rigó, P.R.: Predictor-corrector interior-point algorithm for P∗(κ)-linear complementarity
Darvay, Zs., Papp, I.M., Takács, P.R.: Complexity analysis of a full-Newton step interior-point method for linear
Darvay, Zs., Tak´acs, P.R.: Large-step interior-point algorithm for linear optimization based on a new wide neighbourhood. Cent. Eur. J. Oper. Res. 26(3), 551–563 (2018). doi: https://doi.org/10.1007/s10100-018-0524-0
Darvay, Zs., Takács, P.R.: New method for determining search directions for interior-point algorithms in linear optimization. Optim. Lett. 12(5), 1099–1116 (2018). doi: https://doi.org/10.1007/s11590-017-1171-4
E.-Nagy, M.: Sufficient matrices. https://sites.google.com/view/menagy/research/sufficient-matrices. Accessed:
E.-Nagy, M., Ill´es, T., Povh, J., Varga, A., ˇZerovnik, J.: Testing sufficient matrices (2021). Manuscript in preparation.
E.-Nagy, M., Varga, A.: A new long-step interior point algorithm for linear programming based on the algebraic
Feng, Z., Fang, L.: A new O(nL)-iteration predictor–corrector algorithm with wide neighborhood for semidefinite
Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4),
Gurtuna, F., Petra, C., Potra, F.A., Shevchenko, O., Vancea, A.: Corrector-predictor methods for sufficient linear
Guu, S.M., Cottle, R.W.: On a subclass of P(0). Lin. Algebra. Appl. 223, 325–335 (1995).
Illés, T., Morapitiye, S.: Generating sufficient matrices. In: Short papers of the 8th VOCAL optimization conference:
Illés, T., Rigó, P.R., Török, R.: Predictor-corrector interior-point algorithm based on a new search direction working in a wide neighbourhood of the central path. Corvinus Econ. Work. Paper. (2) (2021)
Illés, T., Roos, C., Terlaky, T.: Simple approach for the interior point theory of linear complementarity problems with P∗-matrices (1998). Unpublished manuscript.
Kheirfam, B., Haghighi, M.: A full-Newton step feasible interior-point algorithm for P∗(κ)-LCP based on a new search
de Klerk, E., E.-Nagy, M.: On the complexity of computing the handicap of a sufficient matrix. Math. Program. 129(2),
Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A unified approach to interior point algorithms for linear complementarity
Kojima, M., Mizuno, S., Yoshise, A.: A primal-dual interior point algorithm for linear programming. In: Progress in
Lemke, C.E., Howson Jr, J.T.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12(2), 413–423 (1964).
Li, Y., Terlaky, T.: A new class of large neighborhood path-following interior point algorithms for semidefinite
Liu, C., Liu, H., Cong, W.: An O(
Nagy, M.: Interior point algorithms for general linear complementarity problems. Ph.D. thesis, Eötvös Loránd University
Peng, J., Roos, C., Terlaky, T.: Self-regularity: A New Paradigm for Primal-dual Interior-point Algorithms. Princeton
Pirhaji, M., Mansouri, H., Zangiabadi, M.: An O
Potra, F.A.: A superlinearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood
Potra, F.A.: Interior point methods for sufficient horizontal LCP in a wide neighborhood of the central path with best
Väliaho, H.: P∗-matrices are just sufficient. Lin. Algebra. Appl. 239, 103–108 (1996).
Väliaho, H.: Determining the handicap of a sufficient matrix. Lin. Algebra Appl. 253(1-3), 279–298 (1997).
Yang, X., Zhang, Y., Liu, H.: A wide neighborhood infeasible-interior-point method with arc-search for linear programming. J. Appl. Math. Comput. 51(1-2), 209–225 (2016). doi: https://doi.org/10.1007/s12190-015-0900-z
Ye, Y.: Exchange market equilibria with Leontief’s utility: Freedom of pricing leads to rationality. Theor. Comput. Sci. 378(2), 134–142 (2007). doi: https://doi.org/10.1016/j.tcs.2007.02.016 |
ID Code: | 7233 |
Deposited By: | Ádám Hoffmann |
Deposited On: | 07 Mar 2022 15:06 |
Last Modified: | 07 Mar 2022 15:06 |
Repository Staff Only: item control page