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A new Ai-Zhang type interior point algorithm for sufficient linear
complementarity problems

Marianna E.-Nagy1,2 · Anita Varga1

Abstract In this paper, we propose a new long-step interior point method for solving sufficient linear
complementarity problems. The new algorithm combines two important approaches from the literature:
the main ideas of the long-step interior point algorithm introduced by Ai and Zhang, and the algebraic
equivalent transformation technique proposed by Darvay.
Similarly to the method of Ai and Zhang, our algorithm also works in a wide neighbourhood of the
central path and has the best known iteration complexity of short-step variants.
We implemented the new method in Matlab and tested its efficiency on both sufficient and non-sufficient
problem instances. In addition to presenting our numerical results, we also make some interesting obser-
vations regarding the analysis of Ai-Zhang type methods.

Keywords Mathematical programming · Linear complementarity optimization · Interior point
algorithms · Algebraic equivalent transformation technique · sufficient matrices
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1 Introduction

In this paper, we introduce a new long-step interior point method for solving linear complementarity
problems (LCPs). LCPs have a wide range of applications in numerous different fields, for example
solving the Arrow-Debreu market exchange model with Leontief utilities [41], finding equilibrium points
in bimatrix games [30], and several engineering applications can be found in the survey [20]. The LCP
class also contains the linear programming problem and the quadratic programming problem as special
cases. Many of the classical applications and results can be found in the monographs of Cottle et al. [7]
and Kojima et al. [28].
In general, the LCP is an NP-complete problem [6], but many efficient algorithms have been introduced
assuming that the coefficient matrix has a special property. In this paper, we suppose that the coefficient
matrix is a P∗(κ) matrix. In this case, a nonnegative number κ can be assigned to the matrix, which is
called its handicap. With this assumption, several authors could introduce interior point algorithms that
are polynomial in the size of the problem and the handicap. However, de Klerk and E.-Nagy proved that
there are matrices for which the value of the handicap is exponential in the problem size [27].
Based on the used step-length, interior point algorithms (IPAs) can be divided into two main groups,
short-step and long-step methods. Even though long-step algorithms perform better in practice, in gen-
eral, for short-step variants a better theoretical complexity can be proved, i.e. for many years, there was
a gap between theory and practice. To resolve this issue, several attempts have been made, e.g. [5,34,
36].
In 2005, Ai and Zhang introduced a long-step IPA for solving monotone LCPs [1]. Their method works
in a wide neighbourhood of the central path and has the best known theoretical complexity of short-step
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variants. Based on their approach, several authors proposed long-step methods with the best known
theoretical complexity, for different problem classes, e.g., for linear optimization [14,32,40], horizontal
linear complementarity problems (HLCPs) [37], symmetric cone Cartesian P∗(κ)-HLCPs [4,3], and also
for semidefinite optimization [19,31,35].
In 2003, Darvay introduced the algebraic equivalent transformation (AET) technique to determine new
search directions for IPAs [8]. His main idea was to apply a continuously differentiable, invertible function
φ to the centering equation of the central path problem. Then by applying Newton’s method to this
transformed system, the new search directions can be determined. A new version of the AET method
has been examined in the paper of Darvay and Takács for linear optimization [15], based on a different
rearrangement of the centering equation. Using this new type of transformation, recently Darvay et
al. introduced a predictor-corrector IPA for sufficient LCPs [12].
By changing the function φ, different methods can be introduced. Most IPAs from the literature can
be considered as a special case of the AET technique, with the function φ(t) = t (in this case, the
central path problem is not transformed). In his first paper, Darvay applied the function φ(t) =

√
t. This

function has been used in the paper of Darvay and Rigó as well [14], where they introduced an Ai-Zhang
type long-step IPA for linear optimization with the best known theoretical complexity, and using the
same function, Illés et al. recently proposed a predictor-corrector IPA in [24]. This function has also been
applied by Asadi and Mansouri to P∗(κ) HLCPs [2].
The function φ(t) = t −

√
t has been proposed also by Darvay et al. [13], and in the last few years, it

has been applied in several different papers by Darvay and his coauthors. They introduced a corrector
predictor IPA for solving linear programming problems [9], and proposed another corrector predictor
IPA for sufficient LCPs [11], and they also presented a short-step IPA for sufficient LCPs [10].

Moreover, the function φ(t) =
√
t

2(1+
√
t)

has been introduced by Kheirfam and Haghighi [26], to solve

P∗(κ) LCPs with a short-step IPA.
In this paper, we also apply the AET technique, with the function φ(t) = t−

√
t and introduce an Ai-Zhang

type long-step interior point method for solving sufficient LCPs. This is the first such algorithm to the best
of our knowledge. We prove that our IPA has the best known iteration complexity of short-step variants.
This result can be considered as the generalization of the IPA we introduced for linear optimization in
[18]. In addition to generalizing the algorithm, we could also improve some of our estimations [18], and
for this reason, better parameter settings can be applied here.
Throughout this paper, the following notations will be used. We denote scalars and indices by lowercase
Latin letters, and vectors by bold lowercase Latin letters. Matrices are denoted by uppercase Latin letters.
We denote sets by capital calligraphic letters. Rn

+ denotes the set of n-dimensional vectors with strictly
positive coordinates, and Rn

⊕ is the set of n-dimensional nonnegative vectors. Let u,v ∈ Rn be two given
vectors. Then uv is the Hadamard product (namely, the componentwise product) of u and v. If vi ̸= 0
holds for all index i, then the fraction of u and v is the vector u/v = [u1/v1, . . . , un/vn]. If α ∈ R, let
uα = [uα

1 , . . . , u
α
n]. Let I denote the index set I = {1, . . . , n}. We denote the positive and negative part

of the vector u by u+ and u−, i.e.,

u+ = max{u,0} ∈ Rn and u− = min{u,0} ∈ Rn,

where the maximum and minimum are taken componentwise. We use the standard notation ∥u∥ for the
Euclidean norm of u, ∥u∥1 =

∑n
i=1 |ui| denotes the Manhattan-norm of u, and ∥u∥∞ = maxni=1 |ui| is

the infinity norm of u. The matrix diag(u) is the diagonal matrix with the elements of the vector u in
its diagonal. Finally, e denotes the vector of all ones.
This paper is organized as follows. Section 2 summarizes the most important properties of LCPs and
the related matrix classes. In Section 3, we give an overview of the algebraic equivalent transformation
technique and the method of Ai and Zhang. In Section 4, we introduce a new, Ai-Zhang type wide
neighbourhood and describe our new algorithm. In Section 5, we prove that the method is convergent
and has the best known iteration complexity. Section 6 presents our numerical results. In Section 7, we
make some interesting observations on the coordinates of the vector v. Section 8 summarizes our results.

2 The linear complementarity problem

Let us consider the linear complementarity problem (LCP) in the following form:

−Mx+ s = q

xs = 0

x, s ≥ 0,
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where M ∈ Rn×n and q ∈ Rn are given, and our goal is to find a vector pair (x, s) ∈ Rn × Rn that
satisfies the system.

Let F = {(x, s) : −Mx + s = q,x ≥ 0, s ≥ 0} denote the set of feasible solutions, F+ = {(x, s) ∈ F :
x > 0, s > 0} the set of strictly positive feasible solutions and F∗ = {(x, s) ∈ F : xs = 0} the set of
solutions to the linear complementarity problem.

The class of sufficient matrices has been introduced by Cottle et al. [7]. A matrix M ∈ Rn×n is column
sufficient if the following implication holds for all x ∈ Rn:

If xi(Mx)i ≤ 0 for all i ∈ I then xi(Mx)i = 0 for all i ∈ I.

M is row sufficient if MT is column sufficient, and a matrix M is sufficient if it is both row and column
sufficient.

In 1991, Kojima et al. introduced the class of P∗(κ) matrices [28]. Let κ be a given nonnegative number.
A matrix M ∈ Rn×n is a P∗(κ) matrix, if

x⊤Mx+ 4κ
∑
i∈I

(x(Mx))
+
i ≥ 0

holds for all x ∈ Rn. This class can be considered as the generalization of positive semidefinite matrices
since P∗(0) is the set of positive semidefinite matrices.

The smallest κ value for which M is a P∗(κ) matrix is called the handicap of M . The matrix class P∗
can be defined in the following way:

P∗ :=
⋃
κ≥0

P∗(κ).

Kojima et al. proved that if a matrix belongs to the set P∗, then it is column sufficient [28]. Later, Guu
and Cottle showed that a P∗-matrix is also row sufficient [22], meaning that all P∗-matrices are sufficient.
In 1996, Väliaho proved the other inclusion, therefore the class of sufficient matrices is equivalent to the
class of P∗-matrices [38].

2.1 The central path problem

The central path problem of LCP can be formulated as follows:

−Mx+ s = q

xs = νe

x, s > 0,

 (1)

where ν > 0 is a given parameter.

The next theorem highlights the importance of the P∗ matrix class. Illés, Roos and Terlaky gave an
elementary proof of these statements in an unpublished manuscript in 1997 [25]. The proof can be found
in [33].

Theorem 1 Let us consider a linear complementarity problem with a P∗(κ) coefficient matrix M . Then
the following three statements are equivalent:

1. F+ ̸= ∅.
2. ∀ w ∈ Rn

+ ∃! (x, s) ∈ F+ : xs = w.
3. ∀ ν > 0 ∃! (x, s) ∈ F+ : xs = νe.

According to the last statement, for P∗(κ) linear complementarity problems, when F+ ̸= ∅, the central
path exists and it is unique. Moreover, as ν tends to 0, the solutions of the central path problem (1)
converge to a solution of the LCP.

From now on, we assume that the coefficient matrix M of the LCP is sufficient, more precisely P∗(κ),
furthermore, F+ ̸= ∅ and an initial point (x0, s0) ∈ F+ is given.
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3 The theoretical background of the algorithm

As it has already been mentioned in the introduction, our method combines two important results from
the literature, the algebraic equivalent transformation technique (AET) proposed by Darvay [8] and the
main approach of the long-step IPA introduced by Ai and Zhang [1].
According to the AET technique, we apply a continuously differentiable function φ : (ξ,∞) → R with
φ′(t) > 0 for all t ∈ (ξ,∞), ξ ∈ [0, 1) to the central path problem (1):

−Mx+ s = q

φ
(xs
ν

)
= φ (e)

x, s > 0.

 (2)

If we apply Newton’s method to system (2), we obtain

−M∆x+∆s = 0

s∆x+ x∆s = ν
φ(e)− φ

(
xs
ν

)
φ′
(
xs
ν

) =: aφ.

 (3)

As it can be seen from the previous formulation, the right-hand side of system (3) depends on the choice
of the function φ, and by modifying φ, we can determine different search directions and introduce new
interior point algorithms.
One of the important ideas of Ai and Zhang was to decompose the Newton directions to positive and
negative parts and use different step-lengths for the two components. Namely, we consider the following
two systems:

−M∆x− +∆s− = 0

s∆x− + x∆s− = a−φ

}
−M∆x+ +∆s+ = 0

s∆x+ + x∆s+ = a+φ

}
(4)

where a+φ and a−φ are the positive and negative part of the vector aφ, respectively.
It is important to notice that the coordinates of ∆x+ are not necessarily nonnegative, since this is the
solution of the system with the positive part of aφ on the right-hand side (we have a subscript in the
notation, instead of a superscript). The similar can be stated for ∆x−, ∆s+ and ∆s− as well.
If α1 and α2 are given step-lengths, after solving systems (4), we can calculate the new iterates as

x(α) := x+ α1∆x− + α2∆x+ and s(α) := s+ α1∆s− + α2∆s+.

To simplify the analysis of interior point methods, we usually work with a scaled version of the Newton-
system. To determine the scaled systems from (4), we introduce the following notations:

v =

√
xs

ν
, d =

√
x

s
, dx+ =

v∆x+

x
, ds+ =

v∆s+
s

, dx− =
v∆x−

x
, ds− =

v∆s−
s

.

Let D = diag(d) and M = DMD, then the scaled systems can be written as

−Mdx− + ds− = 0

dx− + ds− = p−
φ

}
−Mdx+ + ds+ = 0

dx+ + ds+ = p+
φ

}
where

pφ =
φ(e)− φ(v2)

vφ′(v2)
.

In this paper, we focus on the function φ(t) = t −
√
t, which has been introduced by Darvay et al. for

linear optimization [13]. In this case,

pφ =
2(v − v2)

2v − e
.

Since we fixed the function φ, from now on we simply use the notation p instead of pφ.
Throughout the analysis, we need to ensure that p is well-defined. Therefore we assume that vi > 1/2 is
satisfied for all i ∈ I.
Because of the decomposition applied in Ai-Zhang type methods, we also introduce the notations for the
index sets I+ and I−. Let I+ = {i ∈ I : xisi ≤ τµ} = {i ∈ I : vi ≤ 1}, and I− = I \ I+. Notice that
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under the assumption vi > 1/2 for all index i ∈ I, the nonnegativity of a coordinate pi is equivalent to
i ∈ I+.
The vector p has been defined as a componentwise transformation of the vector v, therefore let p denote
the transforming function, namely for which p(vi) = pi holds for all vi ∈ (1/2,∞), i.e.,

p :

(
1

2
,∞
)

→ R, p(t) =
2(t− t2)

2t− 1
.

In the analysis, we use some estimations on the function p, namely for all t ∈ (1/2,∞)

p(t) ≥ 2(1− t), (5)

p(t) ≥ −t, (6)

p(t) ≥ 1− t2

t
. (7)

From now on, we fix the value of ν as τµ, where τ ∈ (0, 1) is a given update parameter, and µ = xT s
n ,

i.e. if in the current iteration we are in the point (x, s) ∈ F+, then our goal is to take a step towards the
τµ-center, that is, towards the solution of the central path problem (1) for ν = τµ.

4 The algorithm

The neighbourhood we use is based on the approach of Ai and Zhang [1], however, we slightly modified
their definition. To achieve the desired complexity, we limit only the norm of the positive part of the
vector p, while the paper of Ai and Zhang uses the norm of the vector vp+. Furthermore, our definition
depends on the handicap of the matrix, and 0 < β < 1/2 is a given real number. Due to the properties
of the function φ(t) = t −

√
t, we also need to ensure that the technical condition v > 1/2e is satisfied

throughout the iterations, therefore it is also included in the definition of the neighbourhood:

W(τ, β, κ) =

{
(x, s) ∈ F+ :

∥∥p+
∥∥ ≤ β

1 + 4κ
and v >

1

2
e

}
.

The wide neighbourhood N−
∞(1− τ) has been introduced by Kojima et al. [29]:

N−
∞(1− τ) = {(x, s) ∈ F+ : xs ≥ τµe}.

The following lemma shows that W(τ, β, κ) is indeed a wide neighbourhood.

Lemma 1 Let 0 < τ < 1 and 0 < β < 1/2 be given parameters, and let γ = τ
(
1− β

2(1+4κ)

)2
. Then

N−
∞(1− τ) ⊆ W(τ, β, κ) ⊆ N−

∞(1− γ)

holds.

Proof. If (x, s) ∈ N−
∞, then (τµ − xisi)

+ = 0 for all i ∈ I, therefore ∥p+∥ = 0 < β/(1 + 4κ). The
condition v > 1/2e is also satisfied, since v2i = (xisi)/(τµ) ≥ 1 > 1/4 for all i ∈ I.
For the other inclusion, let (x, s) ∈ W(τ, β, κ) and assume that there exists an index i ∈ I for which

xisi < γµ holds. In this case, v2i = xisi
τµ < γ

τ =
(
1− β

2(1+4κ)

)2
. Using (5), we get

pi = p(vi) ≥ 2(1− vi) > 2

(
1−

√
γ

τ

)
=

β

1 + 4κ
,

which is a contradiction.

Remark 1 Let γ̃ = τ (1− β/2)
2
. Since γ > γ̃, W(τ, β, κ) ⊆ N−

∞(1− γ̃) also holds.

In the next corollary, we give lower and upper bounds on the coordinates of v.

Corollary 1 If (x, s) ∈ W(τ, β, κ) then

1. 1− β
2(1+4κ) ≤ vi ≤ 1 for all i ∈ I+,

2. 1 < vi ≤
√
n/τ for all i ∈ I−.
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Proof. The first statement follows from the second inclusion of Lemma 1. Furthermore, vi ≤
√

n/τ is
satisfied for all i ∈ I, since ∑

i∈I
v2i =

∑
i∈I

xisi
τµ

=
1

τµ
xT s =

n

τ
. (8)

Since we have already defined all main elements of our method, we are ready to give its pseudocode:

Input: a sufficient matrix M ∈ Rn×n, and q ∈ Rn

an update parameter 0 < τ < 1, a neighbourhood parameter 0 < β < 1,
an accuracy parameter ε > 0,

an initial point (x0, s0) ∈ W(τ, β, κ) with µ0 =
xT
0 s0
n .

x := x0, s := s0 and µ := µ0

while xT s > ε do
Determine ∆x+, ∆s+ and ∆x−, ∆s− by solving systems (4);

α2 := 1 and α1 := argmin
α1∈(0,1]

{
µ(α) = (x(α)T s(α))/n : (x(α), s(α)) ∈ W(τ, β, κ)

}
;

x := x(α);
s := s(α);

µ := xT s
n ;

end
Algorithm 1: Outline of the algorithm

5 Analysis of the algorithm

The next lemma contains some well-known results from the theory of interior point algorithms for the
Newton-system of sufficient LCPs. The proof of the first and third statements can be found in [28], and
for the second statement, see for example [21, Lemma 2].

Lemma 2 Let us consider the following system:

−M∆x+∆s = 0

s∆x+ x∆s = a,

where M is a P∗(κ)-matrix, x, s ∈ Rn
+ and a ∈ Rn are given vectors.

1. Then the system has a unique (∆x, ∆s) solution.
2. The next estimations hold for the solutions of the above system:

∥∆x∆s∥r ≤ 21/r + 4κ

4

∥∥∥∥ a√
xs

∥∥∥∥2 for r = 1, 2,∞,

where 1/∞ := 0.

3. −κ
∥∥∥ a√

xs

∥∥∥2 ≤ ∆xT∆s ≤ 1
4

∥∥∥ a√
xs

∥∥∥2.
We need to prove that after an iteration the decrease of the duality gap is suitable and that the new iterate
will also be in the neighbourhood. Therefore we examine the new iterate after taking a Newton-step with
step-length α = (α1, α2), where α1, α2 ∈ (0, 1] are given.

Let us introduce the following notations:

dx(α) = α1dx− + α2dx+, ds(α) = α1ds− + α2ds+,

h(α) = τµv2 + α1τµvp
− + α2τµvp

+.

Using these notations, x(α)s(α) = (x+ α1∆x− + α2∆x+)(s+ α1∆s− + α2∆s+) can be written as

x(α)s(α) = h(α) + τµdx(α)ds(α).
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Corollary 2 Let (x, s) ∈ W(τ, β, κ) and α1, α2 ∈ (0, 1] be given. Then

∥dx(α)ds(α)∥r ≤ 21/r + 4κ

4

(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
for r = 1, 2,∞,

where 1/∞ := 0, and

−κ

(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
≤ dx(α)Tds(α) ≤ 1

4

(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
.

Proof. The vector dx(α)ds(α) is the same as τµ∆xα∆sα, where ∆xα and ∆sα are the solutions of the
system

−M∆x+∆s = 0

s∆x+ x∆s = τµv(α1p
− + α2p

+)

}
since I− ∩ I+ = ∅.
If we apply Lemma 2 to the above system, we get

∥dx(α)ds(α)∥r ≤ 21/r + 4κ

4

∥∥α1p
− + α2p

+
∥∥2 ,

since τµv√
xs

=
√
τµ.

Furthermore, ∥α1p
− + α2p

+∥2 = α2
1 ∥p−∥2 + α2

2 ∥p+∥2 by the orthogonality of p− and p+. According

to the definition of the neighbourhood W(τ, β, κ), ∥p+∥2 ≤ β2

(1+4κ)2 . Moreover,∥∥p−∥∥2 =
∑
i∈I−

p2(vi) ≤
∑
i∈I−

v2i ≤ n

τ
.

In the first inequality we applied (6), and the second follows from (8).
From these estimations, the first statement of the corollary follows. The inequalities regarding the scalar
product dx(α)Tds(α) can be proved similarly.
We need to give a lower bound on the coordinates of h(α). The proof of the following two statements
remains the same as it was in the LP case [18], therefore we do not present them here. Later on, the
analysis becomes more complicated than in [18], since the search directions here are not orthogonal.

Lemma 3 ([18, Lemma 2]) hi(α) ≥ τµ holds for all i ∈ I−.

In the following lemma, we give a strictly positive lower bound for all coordinates of h(α).

Lemma 4 ([18, Lemma 3]) If (x, s) ∈ W(τ, β, κ), then h(α) ≥ γµe, and consequently h(α) > 0.

From now on, we use the step-lengths α1 = 1
1+4κ

√
βτ
n and α2 = 1. From α2 = 1 it follows that

hi(α) ≥ τµ (9)

holds for all indices, not just for the ones in I−. Indeed, by inequality (7), we get hi(α) = τµ(v2i +α2vipi) ≥
τµ(1− (1− α2)vipi) for all i ∈ I+.

We have to prove that the new iterates are strictly positive, i.e. x(α) > 0 and s(α) > 0 holds.

Lemma 5 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then

x(α)s(α) ≥
(
1− β + β2

4(1 + 4κ)

)
τµe.

Proof. By applying (9) and then Corollary 2, we get the following:

x(α)s(α) = h(α) + τµdx(α)ds(α) ≥ τµe− τµ ∥dx(α)ds(α)∥∞ ≥

≥ τµe− 1

4(1 + 4κ)
(β + β2)τµe =

(
1− β + β2

4(1 + 4κ)

)
τµe.

To prove that the new iterates (x(α) and s(α)) are strictly positive, we can apply Proposition 3.2 by Ai
and Zhang [1]. They analyze the case of monotone LCPs, but the properties of the coefficient matrix do
not have any role in their proof, therefore it can be used in this more general setting as well.
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Proposition 1 ([1, Proposition 3.2]) Let (x, s) ∈ F+ and (∆x, ∆s) be the solution of the system

−M∆x+∆s = 0

s∆x+ x∆s = z,

If z+xs > 0 and (x+ t0∆x)(s+ t0∆s) > 0 holds for some t0 ∈ (0, 1], then x+ t∆x > 0 and s+ t∆s > 0
for all t ∈ (0, t0].

To prove the positivity of the vectors x(α) and s(α), we apply Proposition 1 with z = τµ(α1vp
−+α2vp

+).
Since z+xs = h(α)¿0 by Lemma 4, it is enough to prove that their Hadamard product is positive. This
is satisfied for all β ∈ [0, 1], because in this case

1− β + β2

4(1 + 4κ)
≥ 1− β + β2

4
> 0

holds.

5.1 Estimation of the change in the duality gap

The next two lemmas examine the change in the duality gap µ(α) = x(α)T s(α)
n after the Newton-step.

Lemma 6 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then

µ(α) ≤
(
1− α1

(
8

9
(1− τ)−

√
βτ − 1 + β

4

))
µ.

Proof. By the definition of µ(α),

µ(α) = µ+
α1τµ

n
vTp− +

α2τµ

n
vTp+ + τµ

dx(α)Tds(α)

n
.

First, we give an upper bound on the expression vTp+:

vTp+ =
∥∥vp+

∥∥
1
≤

√
n
∥∥vp+

∥∥ ≤
√
n

β

1 + 4κ
. (10)

The first inequality holds since eTu ≤ ∥u∥1, and the second estimation can be shown using the Cauchy-
Schwartz inequality. The last inequality can be verified using the property that 1 ≥ vi when i ∈ I+ and
the definition of the neighbourhood W(τ, β, κ).
To get an estimation on the term vTp−, consider the inequalities 2vi − 1 > 0 and vi > 1 for all i ∈ I−:

vTp− =
∑
i∈I−

vip(vi) =
∑
i∈I−

2v2i
(1 + vi)(2vi − 1)

(1− v2i ) ≤

≤
∑
i∈I−

8

9
(1− v2i ) ≤

∑
i∈I

8

9
(1− v2i ) =

8

9
n

(
1− 1

τ

)
. (11)

Combining (10) and (11), we obtain

µ(α) ≤ µ+
α1τµ

n

8

9
n

(
1− 1

τ

)
+

α2τµ

n

√
n

β

1 + 4κ
+

τµ

4n

(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
≤

= µ

(
1− α1

8

9
(1− τ) +

α2τ√
n

β

1 + 4κ
+

α2
1

4
+ α2

2

β2τ

4n(1 + 4κ)2

)
. (12)

Since α2 = 1 = (1 + 4κ)
√

n
βτ α1, we get

µ(α) ≤ µ

(
1− α1

8

9
(1− τ) + α1

√
βτ +

α2
1

4
+ α2

1

β

4

)
≤
(
1− α1

(
8

9
(1− τ)−

√
βτ − 1 + β

4

))
µ.
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This result shows that the step-length α1 is responsible for the decrease of the duality gap in our analysis,
i.e. by choosing its value properly, we can prove the convergence and desired complexity of the method.
According to our estimation (12), the terms multiplied by α2 increase the duality gap, but this step-
length has an important role in ensuring that the new iterates remain in the neighbourhood W(τ, β, κ),
as it will be discussed later.
For the correctness of our algorithm, we need to ensure that the duality gap decreases after every iteration.

Corollary 3 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n , α2 = 1 and β = τ = 1

4 . Then

µ(α) < µ

holds.

Proof. Substituting β = τ = 1
4 ,(

8

9
(1− τ)−

√
βτ − 1 + β

4

)
≈ 0.7292,

so the statement holds by Lemma 6.
To make sure that the iterates stay in the neighbourhood W(τ, β, κ), we need a lower bound on the
duality gap after a Newton-step.

Lemma 7 Let (x, s) ∈ W(τ, β, κ), then

µ(α) ≥
(
1− α1 − κτ

(
α2
1

τ
+

α2
2β

2

n(1 + 4κ)2

))
µ.

Proof.

µ(α) = µ+
α1τµ

n
vTp− +

α2τµ

n
vTp+ + τµ

dx(α)Tds(α)

n
=

≥ µ+
α1τµ

n
vTp− − κτµ

n

(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
≥

≥
(
1− α1 − κτ

(
α2
1

τ
+

α2
2β

2

n(1 + 4κ)2

))
µ,

where we used the estimation

α1τµ

n
vTp− = −α1τµ

n

∑
i∈I−

2vi(v
2
i − vi)

2vi − 1
≥ −α1τµ

n

∑
i∈I

v2i ≥ −α1µ,

that follows from (6) and (8).

5.2 The new iterates stay in the neighbourhood W(τ, β, κ)

To guarantee that the new points after taking the Newton-step stay in the neighbourhood W(τ, β, κ),
we need to choose the values of the parameters τ and β properly.

First, we need to ensure that all coordinates of the vector v(α) =
√

x(α)s(α)
τµ(α) are greater than 1/2.

Lemma 8 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then

v(α) >
1

2
e.

Proof. Using Lemma 5 and Corollary 3, we obtain

v2(α) =
x(α)s(α)

τµ(α)
≥ 1− β + β2

4(1 + 4κ)
≥ 1− β + β2

4
.

To prove the statement, it is enough to show that

1− β + β2

4
>

1

4
,

which is satisfied for all β ∈ [0, 1].
Finally, we need to show that ∥p(α)+∥ ≤ β

1+4κ holds. To be able to prove this, we need the following
technical lemma:
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Lemma 9 Let α1 = 1
1+4κ

√
βτ
n and (x, s) ∈ W(τ, β, κ). Then

∥(τµ(α)e− h(α))+∥ ≤ β

1 + 4κ
τµ(α) (1− α2) .

Proof. By Lemma 3, we have τµ(α) − hi(α) ≤ 0 for all i ∈ I−, therefore we need to consider indices
only from I+.
From (7), it follows that

1− v2i ≤ pivi for all i ∈ I+. (13)

Using Corollary 3 and (13), we obtain

τµ(α)− hi(α) = τµ(α)− τµ
(
v2i + α2vipi

)
≤ τµ(α)

(
1− v2i − α2vipi

)
≤

≤ τµ(α)pivi(1− α2) ≤ τµ(α)pi (1− α2) .

This, together with the definition of W(τ, β, κ) yields

∥(τµ(α)e− h(α))+∥ ≤ τµ(α)∥p+∥ (1− α2) ≤
β

1 + 4κ
τµ(α) (1− α2) .

This result shows that if we fix the value of α2 as 1, then τµ(α) − hi(α) ≤ 0 holds for the indices from
I+ as well, i.e., ∥(τµ(α)e− h(α))+∥ = 0 in this case. This also follows from (9).

Lemma 10 Let β = 1
4 , τ = 1

4 . If α1 = 1
1+4κ

√
βτ
n , α2 = 1 and (x, s) ∈ W(τ, β, κ), then the new point

(x(α), s(α)) ∈ W(τ, β, κ).

Proof. We need to prove that

∥∥p(α)+∥∥ =

∥∥∥∥∥
(
2v(α)(e− v(α))

2v(α)− e

)+
∥∥∥∥∥ ≤ β

1 + 4κ
.

We can give an upper bound on the norm the following way:

∥∥p(α)+∥∥ =

∥∥∥∥∥
(
2v(α)(e− v(α))

2v(α)− e

)+
∥∥∥∥∥ =

∥∥∥∥ 2v(α)

(2v(α)− e) (e+ v(α))

(
e− v2(α)

)+∥∥∥∥ ≤

≤
∥∥∥∥ 2v(α)

2v2(α) + v(α)− e

∥∥∥∥
∞

∥∥∥(e− v2(α)
)+∥∥∥ . (14)

Let q :
(
1
2 ,∞

)
→ R and q(t) = 2t

2t2+t−1 . This function is strictly decreasing on its domain, therefore
using the discussed lower bound on v(α) and substituting the values of β and τ , the first term in (14)
can be estimated as ∥∥∥∥ 2v(α)

2v2(α) + v(α)− e

∥∥∥∥
∞

≤ q

(√
1− β + β2

4

)
< 1.065. (15)

For the other term, we use Corollary 2 and Lemma 9:

∥∥∥(e− v2(α)
)+∥∥∥ =

1

τµ(α)

∥∥∥(τµ(α)e− x(α)s(α))
+
∥∥∥ ≤

≤ 1

τµ(α)

(∥∥(τµ(α)e− h(α))+
∥∥+ τµ

∥∥(dx(α)ds(α))−∥∥) ≤
≤ 1

τµ(α)

[
β

1 + 4κ
τµ(α) (1− α2) + τµ

(
1√
8
+ κ

)(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)]
=

=
β

1 + 4κ
(1− α2) +

µ

µ(α)

(
1√
8
+ κ

)(
α2
1

n

τ
+ α2

2

β2

(1 + 4κ)2

)
. (16)

From Lemma 7, we have

µ

µ(α)
≤ 1

1− α1 − κτ
(

α2
1

τ +
α2

2β
2

n(1+4κ)2

) ≤ 1

1− 1
1+4κ

√
βτ
n − 2βτκ

n(1+4κ)2

≤ 1

1−
√
βτ − 1

8βτ
,
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since
κ

(1 + 4κ)2
≤ 1

16

for all κ values. Using the previous estimation and substituting α2 = 1, from (16) we obtain∥∥∥(e− v2(α)
)+∥∥∥ ≤ β

1 + 4κ

1

1−
√
βτ − 1

8βτ

1 + 4κ√
8

1

1 + 4κ
(1 + β) =

=
β

1 + 4κ

1

1−
√
βτ − 1

8βτ

1 + β√
8

.

Substituting β = 1
4 and τ = 1

4 , we have

1

1−
√
βτ − 1

8βτ

1 + β√
8

≈ 0.5955 < 0.6. (17)

Using (15) and (17), we get ∥∥p(α)+∥∥ < 1.065 · 0.6 β

1 + 4κ
<

β

1 + 4κ
,

therefore the new point is in the neighbourhood W(β, τ, κ).

5.3 The complexity of the new algorithm

Theorem 2 Let β = τ = 1
4 , α1 = 1

1+4κ

√
βτ
n , α2 = 1, and suppose that a starting point (x0, s0) ∈

W(τ, β, κ) is given. Then the algorithm provides an ε-optimal solution in

O

(
(1 + 4κ)

√
n log

xT
0 s0
ε

)
iterations.

Proof. According to Lemma 6, the following holds for the duality gap in the kth iteration:

xT
k sk
n

= µk ≤ µk−1

(
1− α1

[
8

9
(1− τ)−

√
τβ

])
≤ µ0

(
1− α1

[
8

9
(1− τ)−

√
τβ

])k

.

By rearranging, we get

xT
k sk ≤

(
1− α1

[
8

9
(1− τ)−

√
τβ

])k

µ0n.

Therefore xT
k sk ≤ ε holds if (

1− α1

[
8

9
(1− τ)−

√
τβ

])k

µ0n ≤ ε

is satisfied.
Taking the natural logarithm of both sides yields

k log

[
1− α1

(
8

9
(1− τ)−

√
τβ

)]
+ log(µ0n) ≤ log ε.

Using the inequality − log(1− ϑ) ≥ ϑ, it is enough to prove that

−kα1

(
8

9
(1− τ)−

√
τβ

)
+ log(µ0n) ≤ log ε.

The last inequality is satisfied when

k ≥ (1 + 4κ)

√
n

βτ

1
8
9 (1− τ)−

√
τβ

log

(
xT
0 s0
ε

)
,

and this proves the statement.
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6 Numerical results

Since usually the handicap of the coefficient matrix is not known in advance (and the only algorithm
that has been introduced to determine it has exponential running time [39]), in most cases the theoret-
ical algorithms for solving sufficient linear complementarity problems cannot be implemented directly.
In our case, the κ-dependency of the neighbourhood also raises some important questions about the
implementation.
Because of the above-mentioned reasons, for the numerical tests, we implemented a greedy variant of our
algorithm:

Input: a matrix M ∈ Rn×n, and q ∈ Rn

an update parameter 0 < τ < 1, a neighbourhood parameter 0 < β < 1,
an accuracy parameter ε > 0,

an initial point (x0, s0) ∈ W(τ, β, 0) with µ0 =
xT
0 s0
n .

x := x0, s := s0 and µ := µ0

while xT s > ε do
Determine ∆x+, ∆s+ and ∆x−, ∆s− by solving systems (4);
α2 := 1;
Let α1 be the largest value such that (x(α), s(α)) ∈ W(τ, β, 0) and the duality gap does not
increase;

x := x(α);
s := s(α);

µ := xT s
n ;

end
Algorithm 2: Pseudo-code of the greedy variant

As it can be seen from the pseudo-code, in this case, we ignore the value of the handicap and take
the largest step so that the new iterates remain in the neighbourhood W(τ, β, 0). For safety reasons we
also check whether the duality gap actually decreases after an iteration (it is known from the theory
of sufficient LCPs that the duality gap is not monotonically decreasing in the value of α1, and we take
a larger step than the one that we proved the convergence for). During our numerical tests, this latter
condition was never restrictive, i.e., the step-length was always determined by the constraint on the
neighbourhood.
We tested our method for both sufficient and non-sufficient LCPs, even though in the second case we
have no theoretical proof that interior point methods work (in general it is not necessarily true that the
central path exists and it is unique).
The sufficient matrices that we used are the following:

– ENM SU: 82 matrices were constructed by E.-Nagy, from size 3× 3 to size 10× 10 [16].
– MGS SU: 58 matrices were generated by Morapitiye and Illés, from size 10×10 to size 700×700 [23].
– Lower triangular P-matrices (all of their principal minors are positive) introduced by Csizmadia:

C =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
...

...
...

. . .
...

−1 −1 −1 · · · 1


It was shown by E.-Nagy that the handicap is exponential in the size of the matrix, κ = 22n−8 − 0.25
[17].
The examined non-sufficient matrices were also collected on webpage [16]:

– ENM NSU: 80 instances, from size 3× 3 to size 10× 10.

We calculated the right-hand sides with the following formula:

−Me+ e = q,

therefore x0 = e and s0 = e are feasible starting vectors (and are in the neighbourhood W(τ, β, 0)).
For the numerical tests, we used the settings β = τ = 0.25 and ε = 10−5. Table 1 shows our numerical
results for the different sets of test problems. These are average values, except for Csizmadia-matrices.
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Table 1: Numerical results with q = −Me+ e, x0 = e and s0 = e

n Iteration Time (s)

ENM SU matrices

3 5.80 0.0117
4 5.90 0.0139
5 6.00 0.0160
6 6.10 0.0163
7 6.30 0.0147
8 6.90 0.0125
9 6.73 0.0117

10 7.82 0.0147

MGS SU matrices

10 7.20 0.0134
20 7.90 0.0215
50 6.80 0.0350

100 7.30 0.0215
200 8.20 0.0498
500 9.20 0.1945
700 10.00 0.4545

n Iteration Time (s)

ENM NSU matrices

3 6.20 0.0113
4 6.60 0.0121
5 6.10 0.0109
6 6.10 0.0109
7 6.30 0.0116
8 6.60 0.0127
9 7.10 0.0112

10 7.75 0.0129

Csizmadia-matrices

10 12 0.0156
20 15 0.0155
30 19 0.0191
40 23 0.0250
50 27 0.0320

100 47 0.0960
150 66 0.1258

The sufficient LCPs determined by using the ENM SU and MGS SU matrices could be solved easily, the
running time was less than 1 second even for the largest, 700× 700 problem instance.

We could only solve problem instances with Csizmadia-matrices up to the size 150×150, and the number
of iterations is larger than the average calculated for the MGS SU instances of similar size. In the case
of the 200 × 200 problem instance, the step-length α1 at the first iteration is too small and cannot be
handled numerically.

To understand this behavior better, we resolved the same problems (q = −Me + e) using different
starting points. Let x0 = λe (λ ∈ (0, 1]), and s0 = q+Mx0, namely (s0)i = 1 + (i− 2) · (1− λ) for all
i ∈ {1, . . . , n}. For λ = 1, we get back the case x0 = s0 = e.

Table 2: Results for the Csizmadia-instances with modified starting points

λ = 0.97 λ = 0.99 λ = 1
n Iter. Time (s) Iter. Time (s) Iter. Time (s)
10 11 0.9467 11 0.029 12 0.0156
20 14 0.0389 15 0.0163 15 0.0155
30 15 0.0238 17 0.0246 19 0.0191
40 17 0.0225 20 0.0434 23 0.0250
50 19 0.0264 23 0.041 27 0.0320

100 27 0.0959 35 0.0617 47 0.0960
150 31 0.1047 45 0.1288 66 0.1258
200 - - 53 0.1675 - -
250 Not in W(τ, β, 0) 62 0.1942 - -

As it can be observed from Table 2, for the smaller problem instances the required number of iterations
and the running time decrease as we decrease the value of λ. However, it is not possible to choose
arbitrarily small values for λ if we want to have a special starting point in the neighbourhood W(τ, β, 0).
Therefore for larger problems, this approach is impractical but shows that the frequently applied starting
point x0 = s0 = e may not be the best choice for the problem instances generated using the Csizmadia-
matrices.

We also examined another set of LCPs using the Csizmadia-matrices, but in this case, we modified not
just the starting points but the right-hand side vector q as well. Let x0 = e and s0 = ηe (η ≥ 1), and
q = −Me+ ηe. For η = 1 we get back our original case x0 = s0 = e. Since q ≥ 0 holds for the modified
LCPs as well, their solution is still x = 0.
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Table 3: Results for the LCPs generated using the Csizmadia-matrices, with modified right-hand side
vectors

η = 1 η = 10 η = 50 η = 100
n Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)
10 12 0.0156 8 0.9576 8 0.0269 8 0.0266
20 15 0.0155 9 0.0362 9 0.0124 9 0.0136
30 19 0.0191 10 0.0172 9 0.0126 9 0.0152
40 23 0.0250 11 0.0156 9 0.0145 9 0.0192
50 27 0.0320 11 0.0187 9 0.0167 9 0.01716

100 47 0.0960 14 0.0877 11 0.0335 10 0.0273
150 66 0.1258 17 0.0792 12 0.032 11 0.0304
200 - - 20 0.1319 12 0.0394 12 0.0416
250 - - 23 0.0759 13 0.0511 12 0.0491
300 - - 24 0.1364 13 0.0855 12 0.0727
400 - - 31 0.3055 13 0.1217 13 0.1189
500 - - 37 0.458 16 0.2221 14 0.1851
600 - - 43 0.8769 17 0.3631 14 0.3031
700 - - 50 1.3263 18 0.5291 15 0.4418

1000 - - - - 21 1.3917 17 1.0954
1500 - - - - 30 4.5627 20 3.2659

As it can be seen from Table 3, by increasing η it is possible to solve significantly larger problem instances.
The reason for failure is always the too small initial step-length α1.

Even though our analysis only works for sufficient LCPs, we also tested the algorithm for non-sufficient
problem instances. Surprisingly, we could solve almost all problems correctly and the behaviour of the
algorithm was quite similar to the sufficient case. There were only two problematic instances out of
the 80 (ENM NSU 10 07 and ENM NSU 10 08), the LCPs generated using these matrices could not be
solved by our method. (Here also, the step-length α1 at the first iteration was too small and could not
be handled numerically). The results are shown in the third part of Table 1.

7 Observations regarding the coordinates of the vector v

To be able to further examine the behaviour of our theoretical algorithm, we calculated the handicap for
some of the smaller test matrices. This way we could run the algorithm exactly as it is described in our
analysis and make some important observations that raise interesting questions regarding the theoretical
analysis.

We used the parameter settings β = τ = 0.25 and ε = 10−5. First we used the starting points x0 = e,
s0 = e (and calculated q as q = −Me+e). The numerical results are summarized in Table 4, and Figure
1 shows the change in the coordinates of the vector v during the iterations. As expected, the numbers of
iterations are significantly larger than in the greedy case, and they depend on the value of the handicap
(since the step-length depends on the handicap as well).

In the case of the Csizmadia-matrix, Figure 1 shows that one of the coordinates (the first one) converges
remarkably slower than the others, due to the properties of the Newton directions. This is the main
reason why we experienced numerical issues with these starting points.

Table 4: Numerical results obtained with the theoretical algorithm (x0 = e and s0 = e)

Handicap vmin vmax Iterations Time (s)

ENM SU 7 01 1.07 1.9993 2.0007 1121 0.0346

ENM SU 7 02 2.63 1.9989 2.0005 2454 0.0565

ENM SU 7 03 1.42 1.9993 2.0007 1420 0.0358

ENM SU 7 04 2.58 1.9993 2.0006 2411 0.0751

ENM SU 7 05 1.13 1.9963 2.0033 1172 0.1218

Csizmadia 5 3.75 1.9946 2.0038 2809 0.0521

Csizmadia 6 15.75 1.9981 2.0012 12506 0.1309

Csizmadia 7 63.75 1.9993 2.0004 54686 0.4528
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Fig. 1: Coordinates of v with the theoretical step-length (x0 = e and s0 = e)

With these starting points, at the beginning vi =
√

1
τ = 2 holds for all coordinates of the vector v. It

can be seen from Table 4 and Figure 1 that the coordinates remain in a really narrow interval around
2. However, in our analysis we use the upper bound vi ≤

√
n
τ , according to Corollary 1. The value of

this upper bound for n = 7 and τ = 0.25 is
√
28 ≈ 5.2915, which is significantly larger than what we

experienced in practice, even in this small dimension.

Furthermore, all coordinates of v are greater than 1, therefore all iterates remain in the narrower neigh-
bourhood N−

∞, and never actually get to a point from the set W(β, τ, κ) \ N−
∞, i.e., in practice the

algorithm works in a κ-independent neighbourhood when the starting points are well-centered.

We observed the same phenomenon for linear programming problems while preparing the numerical
tests for our recent paper [18], where we had test problems with several thousands of variables. There
we applied the self-dual embedding technique, therefore we could use the starting point x0 = e, s0 = e,
similarly to the LCP case examined in this paper, i.e. the starting points were well-centered in both
cases. Based on these numerical tests, the size of this interval around 1/

√
τ seems to be independent of

the problem size.

This raises the question whether it would be possible to give constant lower and upper bounds on the
coordinates of v, assuming that the starting point is well-centered, i.e. to show that the algorithm is
convergent and has the desired complexity using the neighbourhood

Nv(ν, ν̄) = {(x, s) ∈ F+ : νe ≤ v ≤ ν̄e},

where 1 ≤ ν ≤ 1/
√
τ ≤ ν̄ are given parameters.

The coordinates of v for the 5× 5 Csizmadia-problems with three different (not well-centered) starting
points are shown in Figure 2. We kept the right-hand side as q = −Me+e. The starting points were x0 =
0.9e and s0 = [0.9, 1, 1.1, 1.2, 1.3]T , x0 = [0.8, 0.6, 0.5, 0.5, 0.6731]T and s0 = [0.8, 0.8, 1.1, 1.6, 2.2731]T ,
x0 = [1.7, 1.72, 1.73, 1.74, 1.75]T and s0 = [1.700, 2.1900, 2.3230, 1.8491, 0.3435]T , respectively. Here the
intervals around 2 become narrower as the algorithm proceeds, and the coordinates are concentrated
around this value in the end.

Fig. 2: Coordinates of v with the theoretical step-length for not well-centered starting points, solving
the 5× 5 Csizmadia-problem
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8 Conclusion

We introduced a new Ai-Zhang type long-step interior point method for P∗(κ) LCPs. The new IPA uses
the AET technique with the function φ(t) = t−

√
t. We proved that the method is convergent and has

the best known iteration complexity.
An interesting question regarding the analysis is whether it would be possible to carry out the analysis
in a κ-independent neighbourhood. In his 2014 paper [37], Potra proposed an Ai-Zhang type method for
horizontal LCPs. He did not apply the AET method, i.e. in his case φ can be considered as the identity
function. In that case, the convergence and best known complexity of the method could be proved
using the original, κ-independent neighbourhood of Ai and Zhang. For our method, with the current
estimations, the convergence cannot be proved, assuming that the neighbourhood does not depend on
the handicap.
Furthermore, we implemented the greedy variant of the IPA in Matlab and tested it on both sufficient
and non-sufficient problem instances. The method was very effective on most test problems.
We also run the theoretical variant of the algorithm for some smaller problem instances and investigated
the change in the coordinates of the vector v. We found that when the starting points are well-centered,
the coordinates remain in a really narrow interval around

√
1/τ . This phenomenon raises some interesting

theoretical questions that we would like to investigate in the future.
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