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Abstract The Analytic Hierarchy Process (AHP) is one of the most pop-
ular methods used in Multi-Attribute Decision Making. It provides with
ratio-scale measurements of the priorities of elements on the various levels of
a hierarchy. These priorities are obtained through the pairwise comparisons
of elements on one level with reference to each element on the immediate
higher level.

The Eigenvector Method (EM) and some distance minimizing meth-
ods such as the Least Squares Method (LSM), Logarithmic Least Squares
Method (LLSM), Weighted Least Squares Method (WLSM) and Chi Squares
Method (X*M) are of the tools for computing the priorities of the alterna-
tives. This paper studies a method for generating all the solutions of the
LSM problem for 3 x 3 matrices. We observe non-uniqueness and rank re-
versals by presenting numerical results.

1 Introduction

The Analytic Hierarchy Process was developed by Thomas L. Saaty [9].
It is a systematic procedure for representing the elements of any problem,
hierarchically. It organizes the basic rationality by breaking down a problem
into its smaller and smaller parts and then guides decision makers through
a series of pairwise comparison judgments to express the relative strength
or intensity of the impact of the elements in the hierarchy. These judgments
are translated into numbers.

We will study only one part of the decision problem, i.e. when one matrix
is obtained from pairwise comparisons.

* This research was supported in part by the Hungarian National Research
Foundation, Grant No. OTKA-T029572.


hhhh
Typewriter



Manuscript of 
Bozóki, S. [2003]: 
A method for solving LSM problems of small size in the AHP, 
Central European Journal of Operations Research, 11(1), pp.17-33.


18 Sandor Bozdki

First, let us suppose that we have n alternatives and we know all the
alternatives with respect to a criterion, denoting them by w1, wa, ws, - . ., Wy
Define the matrix of weight ratios as W = [wyj]nxn = [:,'j—]]nxn

1 w1 wi w1

w2 w3z """ wp
ws | wa ws
w0 Ws W
wz w3 q w3
wy ws S,
Wn Wn Wn 1

wy ws wz "

Note that for any 1, j, k indices

wij >0, (1)
1
= 2
Wij wji’ ( )
Wij = Wik Wkj- (3)

A matrix is called consistent if its components satisfy (3) for any 4,7,k =
1,...,n.

In real life applications, the decision maker’s responses are not perfect,
human judgments may contain some inconsistency, and we have an n X n
positive reciprocal matrix in the form

1 a2 A13 ...0419
a921 1 a23 ...0a92p

_lasias2 1 ...a
A= | as1 as2 sn | |
ap1 Ap2 Ap3 ... 1
where for any i,5 =1,...,n,
a¢j>0,
1
Ajj = —-
aji

Once we have matrices from pairwise comparisons, we want to find a
weight vector w = (wy,ws, ..., w,) € R} representing the priorities, where
RY is the positive orthant.

1.1 Eigenvector Method (EM)

Saaty calculated the weights by the Eigenvector Method (EM) which com-
putes the largest real eigenvalue A4, of A, and w is the right-hand eigen-
vector of A corresponding to Apae-
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Saaty’s Cousistency Index (CI) is defined as

/\maw_n
= —
¢ n—1

By computing this ratio for random matrices of the same size and taking the
expected value, we obtain M RCI,. The Consistency Ratio (CR) is defined
as

cI

COR = 3rReT

Saaty suggested that a Consistency Ratio of about 10% or less should be
usually considered acceptable.

Some distance minimizing methods are known for estimating the priori-
ties. The Least Squares Method (LSM) and Weighted Least Squares Method
(WLSM) was proposed by Chu, Kalaba and Spingarn [2].

1.2 Least Squares Method (LSM)

i=1 j=1
n
w; = ].,
=1
w; > 0, 1=1,2,....n

1.3 Weighted Least Squares Method (WLSM)

(wjay; — w;)?
1

n
min E

n
i=1 j=
n

Logarithmic Least Squares Method (LLSM) was introduced by DeJong
[4] and Crawford and Williams [3].
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1.4 Logarithmic Least Squares Method (LLSM)

n 2
minz Z [log ai; —log <Zj—;>}

i=1 i<j
n
Hwi = ]-7
i=1
w; > 0, 1=1,2,...,n.

Chi Square Method (X?M) was defined by Jensen [6].

1.5 Chi Square Method (X*M)

i=1 j=1 wj
n
Zwi = ].,
=1
w; > 0, 1=1,2,...,n

In the case of consistent matrices, all these methods — including EM —
give the same solution. In inconsistent cases, the priorities depend on the
applied method. All of them, except for LSM, has unique solution which
can be quite easily computed.

An explicit formula exists, e.g., for the LLSM’s solution [3].

Theorem 1 The optimal solution of LLSM can be obtained from the geo-
metric mean of the elements of rows:

One of the proofs can be found in [1]. An advantage of LLSM is the easy
way of computing the priorities.

LSM, however, is rather difficult to solve because the objective function
is nonlinear and usually nonconvex, moreover, no unique solution exists
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[6,7] and the solutions are not easily computable. As Jensen wrote in [7,
p-319.], “there is no closed-form solution to this problem, but a solution
to any desired degree of accuracy may be obtained iteratively.” Farkas [5]
applied Newton’s method of successive approximation.

2 Resultant method
In this section, a general method [8] is presented for solving systems of

nonlinear equations of small size, then it will be used for solving the LSM
problem.

Definition 1 A monomial in x1, T2, ..., %, is a product of the form
(o3 Q Qn
1w ey
where all of the exponents oy, aq, . . ., ay are nonnegative integers. The total

degree of this monomial is the sum a; + az + - - + Q.-

Definition 2 Let K be a field. A polynomial f in xy,x2,...,x, with co-
efficients in K is a finite linear combination of monomials, e.qg., f can be
written in the form

— § a a «
f_ Cay,an,...,0, L1 15172 2"'3771 ",

(04176127---76‘%)

where the sum is over a finite number of n-tuples (a1,s,...,a,) and
Cor,az,0n, € Ko The set of all polynomials in x1,2s,...,z, with coeffi-
cients in K is denoted Klz1,x2,...,x,].

In this section R[z], C[z] and Rlz,y] are used. First, recall one of Gauss’
main results.

Theorem 2 (The Fundamental Theorem of Algebra) Every nonconstant
polynomial f € Clz] has a root in C.

Now, let f,g € R[z] be polynomials in one variable with real coefficients:

f(@) =apz™ + a1z P + ...+ ap_17 + ay,

g(x) =boz™ + b1a™ " + .+ b1+ s

where a9 # 0, by # 0. As it is known from the Fundamental Theorem of
Algebra f and g can be written as

£@) = a0 [ (o = ). @

where o;,6; € C, i=1,...,n,j=1,...,m.
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Definition 3 The resultant of f and g denoted by R(f,g) is
— i [ Lo (©)
i=1j=1
From (5),

g(ai) =bo | | (ai = Bj),

.

1

J

and an equivalent form of R(f, g) is

g9) = G?Hg(ai)-

It is easy to see that f and g have common roots in C if and only if R(f,g) =
0. Observe that the definition of the resultant is not symmetric in f and g,
however,

R(g, f) =bgag" [[ [[8) — cw) = ()" R(f, 9).
Jj=11=1
An equivalent formula for R(g, f) can be given as follows:
R(g, f) = b5 [T 18-
j=1

By the following theorem, R(f, g) can be computed not only from the roots
of f and g but also from the coefficients of f and g.

Theorem 3 [8] Let D denote the determinant of the Sylvester matriz of f
and g given by

apai as ... Qap
apg a1 ... Ap—1 Qp
D= ap a1 a2 ...0anp
bo b1 by ... by

bo b1 ...bm—1bm

bo b1 by ...by

(n+m)x(nt+m),

where the empty spaces are filled by zeros. Then,
D = R(f,9).
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Ezample 1 Let f and g be

f(z) =2 — 4z -5,
g(z) = 2% — 7z + 10.

By Theorem 3,

1-4-5 0
0 1-4-5
BE9) =11 710 of ="
0 1-710

so f and g have a common root. This result is obtained without computing
the roots of f and g. (x = 5 is a common root.)

Now, suppose that we have the following system:

(7)
, (8)

where f,¢9 € R[z,y] are polynomials in two variables x,y with real coeffi-
cients. If we consider only x as a variable, then the elements of f and g can
be sorted by the powers of z in decreasing order:

fl@y)=ao(y)a® + a(y)2" " + ...+ a1 @)z + ar(y), 9)
9(z,y) =bo()z' + b1 ()t + ...+ b1 ()T + a(y), (10)

where ao(y), a1(y), .-, ar(y), bo(y),b1(y), - -, bui(y) € Ry] are polynomials
in y with real coefficients. We can write R.(f,g) as the resultant of two
polynomials f and g in one variable. Then,

ao(y) a1(y) az(y) ... ax(y)
ao(y) a1(y) ... ar-1(y) ar(y)

_ aoly) @) axw)... k)|
Ba,9) = o) 1) 12w) ... i) =P,
bo(y) b1(y) bi—1(y) bi(y)

bo(y) bi(y) b2(y) ... bi(y)

where P(y) € R[y] is a polynomial in y with real coefficients.

Suppose that system (7) — (8) has a solution & = a,y = . Substitut-
ing f for y in (9) — (10), we have two polynomials in one variable f(z,[3)
and g(z, 8). These polynomials have the common root a. If the leading co-
efficients ag(8) and bo(8) are not zeros, then the resultant of f(z,5) and
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g(z, B) can be written in the form

ao(B) a1(B) a2(B) ... ar(B)
ao(B) a1 (B) ... ak-1(B) ar(B)

a0 () o) o ()

bo(8) B1(8) ba(B) ... u(B)

which is equal to P(8). Since a is a common root of f(z, ) and g(z, 5), we
got that 8 should be a root of P.

On the other hand, suppose that P(y) = R,(f,g) has a root 5. We
have to check the leading coefficients. If ag(f) and bo(8) are not zero, then
P(8) equals R(f (x, 8), g(x. ). P(B) = 0, thus f(z,B) and g(x, §) have a
common root.

We can conclude that the resultant method is a possible tool for solving
nonlinear systems of small size.

3 Solving the LSM problem

Now, we derive a method for generating all the solutions of the LSM min-
imization problem for 3 x 3 matrices. Suppose that A is a 3 x 3 matrix
obtained from pairwise comparisons in the form

labd

A= % lc
1

b el

The aim is to find a positive reciprocal consistent matrix X in the form

1 w1 W
W2 W3

X= |21 ®w

w3 w3 ]
wy w2

which minimizes the Frobenius norm
wi\? wi\? 1w’ wy\?
o o2 e (-2 (-2 (-2
w2 w3 a w1 ws
1wy’ 1 wy)?
(-2
b w1 C w2
where w;,ws, w3 > 0. Introducing new variables z,y
-4

= 11

= (1)
w2

= — 12

Y= (12)

we get the matrix
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Ty

X = 7
1

|HH|>~|—\
== 8

Ty Yy

with two variables where z,y > 0. This matrix has two variables instead of
three. If f: ]Ri — R is given by

fa) =1 A=X I3 =(@=af + G-a) + (3 - 7) +Cv

(1 1 >2 <1 1) 2
+l-—=—) +{-—-=],
b xy c y
then the optimization problem is as follows:

min f(z,y) (13)
z,y > 0. (14)

It follows from the first-order necessary condition of optimality that
91 — 9 — (. The partial derivatives of f can be computed as

ox By
af 11 1 1
L 9= — _ — _) 2 -
Ox ( GrErm T E oyt b2y x3y2> ’
af 11 ‘ 1 1
Y _agf- S br+a? I
By ( ct+y+ YR T+ xy + by x2y3>

Dividing them by 2 and multiplying % by 2332, and % by 2233, we obtain

the p and q polynomials in variables z,y :
1 1
p(x,y) = 2*y* + 2ty? — baPy® — axy® + —ay® + 7%y~ y?—1,
a

1 1
g(z,y) =a'y" + 2%y = ba®y’ —ca’y’ + Zaty+ Jay — 2’ — 1.

The aim is to find the (z,y) € K% solution(s) of the system

p(z,y) =0,
q(z,y) =0, (15)
z,y >0.

By using the resultant method and collecting p and ¢ as polynomials in z,

2
plz,y) = (v +y") 2" + (—y’a—y’) 2® + (y; + %) -y’ -1,

Y

Y l)x2+zx—1.

q(z,y) =y*a* — y’ba® + (—y3c +yt+ o~

R, (p,q) can be computed as the determinant of the following matrix:
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v? 4yt —y2a — 4% 0 y(a:l—jyb) —y? -1 0 0 0
v+t —yPa—y% 0 ylatyd) -2 -1 0 0
0 v+ ot —v%a — v%b 0 y(a;;)yb) -1 0
0 0 y? +y* —y%a — % 0 ylatyb) _y2
) M ¥ —-1 0 0 0
oy —b 7y3c2+g4c+y7c ¥ 1 0 0
0 gt —b 7y3c2+3cj4c+y7c ¥ _1 0
0 0 v e T

Computing R, (p,q), we get a polynomial P in y of degree 28. Moreover,
its last nonzero element is y*, so we have in fact a polynomial of degree 24.

Applying a polynomial-solver algorithm to find all the positive real roots
of P, we have the solutions y1,¥y2,...,y: where 1 <t < 24.

Substituting these solutions y;, ¢ = 1,...,t, back in p and ¢, we get
polynomials in z of degree 4. The leading coefficients never become zero be-
cause we consider the positive real roots y;, i = 1,...,t only. Solving these
polynomials in x, we have to check whether p and ¢ really have common
positive real roots.

Suppose that we have an (z*,y*) solution of (15), where y* € {y;,1 <
i <t}. Then, we have to check the Hessian matrix of f to be sure that it is
a local minimum point. The Hessian matrix of f can be computed as

(2+%—4ﬁ+2y2+6#—4w3¢w 4oy —20+4 55 — 2 mym )

Aoy —2b+4 55 —2 g 207 +6 oz — 4+ 2+ 5 —4 55
If the Hessian matrix is positive definite at (z*,y*), we have a strict local
minimum point.

4 Numerical results

Now, some numerical results are shown which were computed by the method
studied in the previous section. The first important question is the unique-
ness of solution. We ask what conditions are needed to guarantee that the
LSM solution is unique. Consider the matrix

a

1lc

1
A= %1 : (16)
xel

where a and ¢ are fixed, A is a parameter. Remember that A = ac provides
the consistent case with a unique solution. We examine the parameter A for
which the LSM approximation of (16) is unique. Tables 1a and 1b show that
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a\C

oo e | = N W [N

@~

Table 1a. The first 7 columns of the table of non-uniqueness intervals.

1

9

7.911 0.085
11.75 0.126

7.726 0.108
12.44 0.134

7.524 0.138
13.24 0.146

7.305
14.19

7.069
15.3

6.815
16.59

6.548
18.07

6.271
19.73

5.995
21.58

5.848
22.63

5.781
23.06

5.731
23.34

5.686
23.56

0.985
23.74

0.211
23.92

0.105
24.08

0.052
24.25

1
9

1

8
7.426 0.080
9.197 0.129

7.265 0.103
9.656 0.137

7.086 0.133
10.22 0.148

6.888
10.9

6.672
11.73

6.593
12.72

6.184
13.88

5.924
15.21

5.664
16.70

5.525
17.56

5.461
17.92

5.412
18.17

5.368
18.36

0.436
18.54

0.152
18.71

0.067
18.88

0.105
24.08

1
8

1

7

6.846 0.075
7.243 0.132

6.725 0.097
7.484 0.141

6.581 0.127
7.816 0.151

6.414 0.164
8.255 0.167

6.224
8.817

6.014
9.518

5.783
10.36

5.543
11.36

5.303
12.5

5.174
13.17

5.114
13.47

5.067
13.68

5.025
13.86

0.253
14.02

0.089
14.19

0.152
18.71

0.211
23.92

1
7

1
6
0.070
0.136

0.091
0.145

5.952 0.121
6.064 0.155

5.844 0.160
6.249 0.171

5.700
6.547

5.527
6.969

5.328
7.524

5.115
8.211

4.900
9.013

4.786
9.496

4.731
9.725

4.690
9.896

0.683
10.05

0.128
10.20

0.253
14.02

0.436
18.54

0.985
23.74

1
6

0.065
0.141

0.085
0.149

0.113
0.160

0.152
0.175

4.924
5.109

4.785
5.367

4.616
5.752

4.439
6.235

4.343
6.537

4.299
6.689

4.272
6.812

0.202
6.928

0.683
10.05

5.025
13.86

5.368
18.36

5.686
23.56

S

0.060
0.146

0.078
0.152

0.105
0.166

0.143
0.180

0.195
0.203

3.871
4.202

3.810
4.328

3.788
4.388

0.415
4.393

4.272
6.812

4.690
9.896

5.067
13.68

5.412
18.17

5.731
23.34

ST

27

ol

0.055
0.152

0.072
0.161

0.096
0.172

0.132
0.187

0.186
0.208

3.788
4.388

4.299
6.689

4.731
9.725

5.114
13.47

5.461
17.92

5.781
23.06

W=


hhhh
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Table 1b. The second 7 columns of the table of non-uniqueness intervals.

[T

oo EN | = N W

@~

0.050
0.159

0.065
0.168

0.087
0.180

0.121
0.195

0.173
0.216

3.810
4.328

4.343
6.537

4.786
9.496

5.174
13.17

5.525
17.56

5.848
22.63

I

1

0.046
0.166

0.059
0.176

0.079
0.188

0.110
0.204

0.160
0.225

0.237
0.258

3.871
4.202

4.439
6.235

4.900
9.013

5.303
12.5

5.664
16.7

5.995
21.58

2

0.044
0.170

0.056
0.180

0.075
0.193

0.105
0.208

0.152
0.230

0.231
0.262

4.616
5.752

5.115
8.211

5.543
11.36

5.924
15.21

6.271
19.73

3

0.043
0.172

0.055
0.183

0.074
0.195

0.102
0.211

0.149
0.232

0.227
0.263

4.785
5.367

5.328
7.524

5.783
10.36

6.184
13.88

6.548
18.07

4

0.042
0.174

0.055
0.184

0.073
0.197

0.101
0.213

0.146
0.234

0.227
2.405

0.227
0.263

0.231
0.262

0.237
0.258

4.924
5.109

5.527
6.969

6.014
9.518

6.593
12.72

6.815
16.59

5

0.042
0.175

0.054
0.186

0.072
0.198

0.099
1.464

0.144
4.940

0.146
0.234

0.149
0.232

0.152
0.230

0.160
0.225

0.173
0.216

0.186
0.208

0.195
0.203

5.700
6.547

6.224
8.817

6.672
11.73

7.069
15.3

6

0.042
1.015

0.053
2.289

0.071
3.938

0.098
7.803

0.099
1.464

0.101
0.213

0.102
0.211

0.105
0.208

0.110
0.204

0.121
0.195

0.132
0.187

0.143
0.180

0.152
0.175

5.844 0.160
6.249 0.171

6.414 0.164
8.255 0.167

6.888
10.9

7.305
14.19

6
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for every given pair (a,c), there are 0,1 or 2 intervals. If A is in this/these
interval/s then the LSM solution is not unique.

Let, e.g., a = +,¢ = 1. We have one interval in the table corresponding
to (4,1), which is [3.810,4.328]. This means that if A is less than 3.810
or greater than 4.328, the solution is unique, else we have two or more
solutions, which are local minimum points of (13)-(14). For some pairs (a, ¢)
(for example a = §,¢ = 7), we have two intervals and for some pairs (a, c)
(for example a = 3,¢ = 1), we have no intervals, which means that for any
A, the LSM solution is unique.

In Figure 1., the area of (a,c) can be observed, for which the LSM
solution is always unique (the white area in the middle.) The area lined
vertically and the other area lined horizontally mean that the corresponding
(a,c¢) pairs have one interval I, for which if A € I, the solution regarding A
is not unique. The intersection of these two areas (in two corners) have two
intervals.

Note that we choose a special scale of the axes in a similar way as
it is in Table 1. For numbers less than 1, we choose reciprocal scale, for
numbers larger than or equal to 1, we choose the traditional scale. This
multiplicative symmetry on 1 can be easily understood when we consider
the function f(z,y) in (13)-(14) which has also this symmetry on 1. Both
the variables and their reciprocals are present in every formula.

—
P

Wl
|
/
]/

(S

~|=

Nl

Figure 1. LSM solution is always unique in the area in the middle.
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We want to demonstrate more of Table 1. Consider the row of Table

1. corresponding to % Figure 2. shows the lower and upper bounds of the

intervals while ¢ changes from § to 5.

25

20

10

O
0O | =
=
D=
U=
=
W=
N |

Figure 2. Endpoints of non-uniqueness intervals for matrices

>= Ot =
AR ==
e D

Now, let us see how the weights of alternatives, wy, w2, ws change while
the parameter A changes. Let a = 4, ¢ = 4, and A change from % to 5.
Figure 3. shows the weights of the alternatives. We can see that if A < 0.227
or A > 2.405 (which can be read from Table 1.)) the solution is unique,
otherwise, we have two or three solutions.

We can observe an interesting behaviour of the solutions. Let the 3 x 3
pairwise comparison matrix be as follows:

S| =
P = S
Ll S o

where A > 0. Figure 4. shows the speciality of this matrix or LSM problem.
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0.6 /

0.5 — / w,

04 ’ Wy

0.3 — \ wy
0.2 — - \

faml“

0.1 =
[ [ [ [ [ [ [ [ [ I
1 1 1 1 1
¢ 5 1 3 3z L 23 493
14X
Figure 3. LSM weights for matrices % 14 |, where A changes from % to 9.
1
71
X1

When A is around 1, i.e., not less than =~ ﬁ but less than ~ 3.6, the
optimal LSM solution is:

W) = Wy = W3 = %
When A is larger than = 3.73 or less than ~ ﬁ, we have three optimal LSM
solutions which can be obtained from eachother by a simple permutation of

the indices. When, e.g., A = 4 the matrix has the form

I N
NN
— e

The optimal solutions are as follows:
wi = 0.215 w3 = 0.468 wi = 0.317

wi = 0.317 w3 = 0.215 wi = 0.468
w} = 0.468 w3 = 0.317 wi = 0.215
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0.6 -

0.4 -

0.3 1

0.1 ~

I

[ [ [
1 1 1 1 1
6 5 1 3 9 1 2 3 4 5 6
1A
Figure 4. LSM weights for matrices| + 1 A |, where A changes from § to 6.
A3l
X

There are two small intervals [3.61,3.73] and [5+, ﬁ], when there are
four optimal solutions of LSM: the equal priorities (3, 3,%) and the three

symmetric solutions.
5 Comparison of LSM to other methods
In this section, a few examples are shown to see the difference among LSM

and other methods. The LSM solution is not unique, in general, as stated
in the previous section. Consider the following 3 x 3 matrix [6]:

LSM EM

Solutions Solution

A B ©C whSM whlSM wkSMs wEM
A 1 9 % 0.670 0.242 0.088 0.333
B % 1 9 0.088 0.670 0.242 0.333
CcC 9 % 1 0.242 0.088 0.670 0.333

This matrix is degenerated because the ratios heavily contradict each other.
It is impossible to justify the preference between A, B, C from these values.
Note that A\q = 10.111, and CR = 6.13, — as it was defined by Saaty, —
which is much higher than the 0.10 limit.

LSM non-uniqueness, however, may arise even when there is no degen-
eracy, i.e., when the EM’s eigenvector components are unequal suggesting
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a basis for differential row importance weighting. Let us see the following
example:

A B C wlSMr o LSM: wEM
A 1 8 4 0.751 0.450 0.712
B % 1 7 0.105 0.467 0.214
C 3 % 1 0.144 0.083 0.074

Now, Apae = 3.825 and CR = 0.786, which is still high but not extremely
high. A is the best by wf™ and w®M:, but B is the best by w’SMz,
Moreover, the order by wPM is A, B, C, while w31 yields A, C, B.

In practice, we are dealing with reasonable inconsistency (e.g., CR <
0.10,) expecting that each method, including LSM, gives unique solution.
The final order, however, is not always the same, using different methods.
Consider the following example:

A B C wEM szM wksSM
A1 2 7 0.559 0.500 0.425
B % 1 9 0.383 0.442 0.516
c = % 1 0.058 0.058 0.059

Now, Amaz = 3.1 and CR = 0.095, which must be considered consistent.
Despite the above, LSM yields a different order.
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