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Abstract

The aim of the paper is to obtain some theoretical and numerical properties of
Saaty ’s and Koczkodaj ’s inconsistencies of pairwise comparison matrices (PRM ).
In the case of 3 × 3 PRM, a differentiable one-to-one correspondence is given be-
tween Saaty ’s inconsistency ratio and Koczkodaj ’s inconsistency index based on
the elements of PRM. In order to make a comparison of Saaty ’s and Koczkodaj ’s
inconsistencies for 4 × 4 pairwise comparison matrices, the average value of the
maximal eigenvalues of randomly generated n× n PRM is formulated, the ele-
ments aij (i < j) of which were randomly chosen from the ratio scale
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1
2
, 1, 2, . . . , M − 1,M,

with equal probability 1/(2M−1) and aji is defined as 1/aij . By statistical analysis,
the empirical distributions of the maximal eigenvalues of the PRM depending on
the dimension number are obtained. As the dimension number increases, the shape
of distributions gets similar to that of the normal ones. Finally, the inconsistency
of asymmetry is dealt with, showing a different type of inconsistency.

1. Introduction

In multiattribute decision making (MADM ), the aim is to rank a finite number of
alternatives with respect to a finite number of attributes. Tender evaluations, public pro-
curement processes, selections of applicants for positions, decisions on the best portfolios
in investments are real-life decision situations in which MADM models can be used.

In solving a multiattribute decision problem, one needs to know the impor-
tances or weights of the not equally important attributes and also the evaluations
of the alternatives with respect to the attributes. One technique, often used, is the
method of pairwise comparisons a concept which is more than two hundred years old.
Condorcet (1785) and Borda (1781) introduced it for voting problems in the 1780’s by
using only 0 and 1 in the pairwise comparison matrices. In experimental psychology,
Thorndike (1920) and Thurstone (1927) used it in the 1920’s. Especially, pairwise com-
parisons based on a ratio scale is one of the basic pillars of the Analytic Hierarchy Process
(Saaty, 1980).

1This research was supported, in part, by the Hungarian Scientific Research Fund, Grant Nos.
OTKA-T043276, T043241 and K60480.
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Given n objects, e.g., attributes or alternatives, we suppose that the decision maker(s)
is (are) able to compare any two of them. In preference modelling, this assumption
is called comparability. For any pairs (i, j), i, j = 1, 2, . . . , n, the decision maker is
requested to tell how many times the i-th object is preferred (or more important) than
the j-th one, which result is denoted by aij.

By definition,

aij > 0; (1.1)
aii = 1; (1.2)

aij =
1

aji

, (1.3)

for any pair of indices (i, j), i, j = 1, 2, . . . , n. The name of matrices
A = [aij]i,j=1,2,...,n ∈ Rn×n with properties (1.1-1.3) is pairwise comparison matrices
or positive reciprocal matrices (PRM ).

A pairwise comparison matrix A is consistent if it satisfies the transitivity property

aijajk = aik (1.4)

for any indices (i, j, k), i, j, k = 1, 2, . . . , n. Otherwise, A is inconsistent. It was shown
by Saaty (1980) that a pairwise comparison matrix is consistent if and only if it is of
rank one. When a pairwise comparison matrix A is consistent, the normalized weights
computed from A are unique. Otherwise, an approximation of A by a consistent matrix
(determined by a vector) is needed.

A crucial point of this methodology is to determine the inconsistency of the
pairwise comparison matrices. The only widely accepted rule of inconsistency is
due to Saaty (1980), but his definition does not meet some important requirements
(see Section 2 ). The aim of the paper is to make some comparison on Saaty ’s and
Koczkodaj ’s inconsistencies of pairwise comparison matrices. The two approaches seem
to be completely different, because while Saaty ’s inconsistency ratio is an index for the
departure from randomness, Koczkodaj ’s inconsistency index is related to the departure
from consistency with the possibility to locate inconsistency.

In Section 2, the question is how to investigate Saaty ’s and Koczkodaj ’s inconsisten-
cies. In Section 3, the inconsistency formulas of 3× 3 pairwise comparison matrices are
studied from theoretical and computational points of view. A differentiable one-to-one
correspondence is given between Saaty ’s and Koczkodaj ’s inconsistencies. In Section 4,
by using statistical tools, the average value of the maximal eigenvalues of randomly
generated n × n PRM is formulated, the elements aij (i < j) of which were randomly

chosen from the ratio scale
1

M
,

1

M − 1
, . . . ,

1

2
, 1, 2, . . . ,M − 1,M , with equal probability

1/(2M − 1) and aji is defined as 1/aij. Then, a comparison of Koczkodaj ’s inconsistency
index and Saaty ’s inconsistency ratio is given for 4× 4 pairwise comparison matrices.
In Section 5, the inconsistency of random pairwise comparison matrices is investigated
and by statistical analysis, the empirical distributions of the maximal eigenvalues of the
PRM depending on the dimension number are obtained. As the dimension number in-
creases, the shape of distributions gets similar to that of the normal ones. In Section 6,
the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.
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2. Inconsistency indices

In real-life decision problems, pairwise comparison matrices are rarely consistent.
Nevertheless, decision makers are interested in the level of consistency of the judgements,
which somehow expresses the goodness or “harmony” of pairwise comparisons totally,
because inconsistent judgements may lead to senseless decisions.

Saaty (1980) proposed the following method for calculating inconsistency. Computing
the largest eigenvalue λmax of A, he has shown that λmax ≥ n and equals to n if and
only if A is consistent. Then, inconsistency index (CIn) is defined by

CIn =
λmax − n

n− 1
,

which gives the average inconsistency. Mathematically, inconsistency is not but a
rescaling of the largest eigenvalue. Since λmax ≥ n, CIn is always non-negative. The
inconsistency index in its own has no meaning, unless we compare it with some bench-
mark to determine the magnitude of the deviation from consistency. Let a set of e.g., 500
random pairwise comparison matrices of size n × n be generated so that each element
aij (i < j) be randomly chosen from the scale

1

9
,
1

8
,
1

7
, . . . ,

1

2
, 1, 2, . . . , 8, 9,

and aji is defined as
1

aij

. Let RIn denote the average value of the randomly obtained

inconsistency indices, which depends not only on n but on the method of generating
random numbers, too. The inconsistency ratio (CRn) of a given pairwise comparison
matrix A indicating inconsistency is defined by

CRn =
CIn

RIn

.

If the matrix is consistent, then λmax = n, so CIn = 0 and CRn = 0, as well.
Saaty concluded that an inconsistency ratio of about 10% or less may be considered
acceptable. The intuitive meaning of the 10 percent rule is skipped by several authors.
A statistical interpretation of the 10 percent rule is given by Vargas (1982). More
recently, Saaty ’s threshold is 5% for 3× 3, and 8% for 4× 4 matrices (Saaty, 1994).

It is emphasized that the inconsistency ratio CRn is related to Saaty ’s scale. The
structuring process in AHP specifies that items to be compared should be within one or-
der of magnitude. This helps avoid inaccuracy associated with cognitive overload as well
as aijajk relationships that are beyond the 1-9 scale, see e.g. Lane and Verdini (1989)
and Murphy (1993). If only two attributes (or alternatives) are present, inconsistency is
always zero, since the decision maker gives only one importance ratio.

Though the only one widely accepted rule of inconsistency for any order of matrix
is due to Saaty, its consistency definition has some drawbacks. By Koczkodaj (1993),
“The author of this paper truly believes that failure of the pairwise comparison method to
become more popular has its roots in the consistency definition.” The major drawback
of Saaty ’s inconsistency definition seems to be the 10 percent rule of thumb. Another
weakness of it is related to the location of inconsistency or rather its lack. Since an
eigenvalue is a global characteristic of a matrix, by examining it, we cannot say which
matrix element contributed to the increase of inconsistency. Some improvements can be
found in Saaty (1990).
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A general 3 × 3 pairwise comparison matrix has three comparisons a, b, c. In order
to define Koczkodaj ’s inconsistency index

(
Duszak and Koczkodaj (1994) and Koczkodaj

(1993)
)
, consider a general 3 × 3 pairwise comparison matrix. Reduce this reciprocal

matrix to a vector of three coordinates (a, b, c). In the consistent cases, the equality
b = ac holds. It is always possible to produce three consistent reciprocal matrices
(represented by three vectors) by computing one coordinate from the combination of the

remaining two coordinates. These three vectors are:
(

b

c
, b, c

)
, (a, ac, c) and

(
a, b,

b

a

)
.

The inconsistency index of a general 3× 3 pairwise comparison matrix is defined by
Koczkodaj as the relative distance to the nearest consistent 3 × 3 pairwise comparison
matrix represented by one of these three vectors.

Definition 2.1 The inconsistency index of a general 3× 3 pairwise comparison matrix
is equal to

CM(a, b, c) = min

{
1

a

∣∣∣a− b

c

∣∣∣, 1

b

∣∣∣b− ac
∣∣∣, 1

c

∣∣∣c− b

a

∣∣∣
}

. (2.1)

The inconsistency index of an n× n (n > 2) reciprocal matrix A is equal to

CM(A) = max

{
min

{∣∣∣1− b

ac

∣∣∣,
∣∣∣1− ac

b

∣∣∣
}

for each triad (a, b, c) in A

}
. (2.2)

In the case of matrices of higher orders, the inconsistency index of a matrix element
is equal to the maximum of CM of all possible triads which include this element.

Note that the inconsistency index is not a metric. By Duszak and Koczkodaj (1994),
the number of all possible triads of the n× n comparison matrices is equal to

n(n− 1)(n− 2)/3!. (2.3)

In the case of 4× 4 pairwise comparison matrices and a scale of 1 to 5, the threshold
should be 1/3 (Koczkodaj et al., 1997).

Other inconsistency indices have been introduced. The inverse inconsistency index
suggested by Dodd, Donegan and McMaster (1993), Monsuur (1996) applied a transfor-
mation of the maximal eigenvalues, Peláez and Lamata (2003) examined all the triples
of elements and used the determinant to indicate consistency, furthermore, Stein and
Mizzi (2007) obtained the harmonic consistency index. Another type of inconsistency
index is the distance from a specific consistent matrix. Chu, Kalaba and Spingarn (1979)
used the least squares estimation error, Crawford and Williams (1985) the logarithmic
least squares estimation error, furthermore, Aguarón and Moreno-Jiménez (2003) the
geometric consistency index for the logarithmic least squares method (the row geometric
mean method).

Table 1 summarizes some weighting methods and inconsistency indices, namely,
the eigenvector method (EM ) and inconsistency ratio (CR) (Saaty, 1980), the least
squares method (LSM ) (Chu, Kalaba and Spingarn, 1979), the χ squares method (χ2M)
(Jensen, 1983), the singular value decomposition method (SVDM ) (Gass and Rapcsák ,
2004) and Koczkodaj ’s inconsistency index (Koczkodaj, 1993, 1994), the logarithmic
least squares method (LLSM ), (Crawford and Williams, 1985) and GCI, (Aguarón and
Moreno-Jiménez , 2003).
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Method
The problem
to be solved

Inconsistency
(The optimal
solution is

denoted by w)

Threshold
of

acceptability

Eigenvector
Method,

EM

λmaxw = Aw,
n∑

i=1

wi = 1

CRn =
λmax−n

n−1

RIn
,

where RIn denotes the
average CI value of

n× n random matrices
CRn ≤ 0.1

Least
Squares
Method,

LSM

min
n∑

i=1

n∑
j=1

(
aij − wi

wj

)2

n∑
i=1

wi = 1,

wi > 0, i = 1, 2, . . . , n

√
n∑

i=1

n∑
j=1

(
aij − wLSM

i

wLSM
j

)2

Chi Squares
Method,

χ2M

min
n∑

i=1

n∑
j=1

(
aij−wi

wj

)2

wi
wj

n∑
i=1

wi = 1,

wi > 0, i = 1, 2, . . . , n

n∑
i=1

n∑
j=1

(
aij−

w
χ2M
i

w
χ2M
j

)2

w
χ2M
i

w
χ2M
j

CM(A) ≤ 0.33

n = 4

scale of 1, . . . , 5

Singular
Value

Decomposition
Method,

SV DM

A[1] = α1uvT

the best one rank
approximation of A

in Frobenius norm;

wSV D
i =

ui+
1
vi

nP
j=1

�
uj+

1
vj

�

i = 1, 2, . . . , n

√
n∑

i=1

n∑
j=1

(
aij − wSV D

i

wSV D
j

)2

Logarithmic
Least

Squares
Method,

LLSM

min
n∑

i=1

n∑
j=1

(
ln aij − ln wi

wj

)2

n∑
i=1

wi = 1,

wi > 0, i = 1, 2, . . . , n

GCI(A) =

2
n∑

i=1

n∑
j=1

(
ln aij − ln

wLLSM
i

wLLSM
j

)2

(n− 1)(n− 2)

GCI(A) ≤ 0.3147

n = 3

GCI(A) ≤ 0.3526

n = 4

GCI(A) ≤ 0.370

n > 4

Table 1. Weighting methods and inconsistency indices
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3. Inconsistency of 3× 3 pairwise comparison matrices

In this part, it is shown that there exists a one-to-one correspondence between Saaty ’s
inconsistency ratio and Koczkodaj ’s inconsistency index.

The general form of 3× 3 positive reciprocal matrices is as follows:



1 a b

1/a 1 c

1/b 1/c 1


 , a, b, c ∈ R+. (3.1)

By Tummala and Ling (1998), the maximal eigenvalues of matrices (3.1) can be explicitly
given by the function

λmax(a, b, c) = 1 + 3

√
b

ac
+ 3

√
ac

b
, (a, b, c) ∈ R3

+. (3.2)

A consequence of this formula is that λmax does not change if the elements a and b are
multiplied by the same constant. Thus, the CR-inconsistencies of matrices




1 2 2

1 2

1


 ,




1 7 7

1 2

1


 ,




1 9 9

1 2

1


 (3.3)

are equal, though the consistency violations in the matrices are different.

By formula (3.2), it is possible to make a connection between λmax and the inconsis-
tency originated from the elements a, b, c of the positive reciprocal matrices.

Definition 3.1 In the case of (3.1), let T denote the maximum of two ratios, ac
b
and

b
ac
, i.e., T = max

{
ac
b
, b

ac

}
.

If the matrix is consistent, T equals to 1, otherwise, T > 1.

Theorem 3.1 In the case of 3× 3 pairwise comparison matrices, there exists a differen-
tiable one-to-one correspondence for every pair of the inconsistency CR defined by Saaty,
the inconsistency CM defined by Koczkodaj and T = max

{
ac
b
, b

ac

}
as follows:

CR(T ) =

3
√

T + 1
3√T
− 2

2RI3

, T > 1. (3.4)

T (CR) =
(
1 + RI3 CR +

√
RI3 CR(2 + RI3 CR)

)3

, CR ∈ (0,∞), (3.5)

CM(T ) = 1− 1

T
, T (CM) =

1

1− CM
, CM ∈ (0, 1), (3.6)

CR(CM) =

1
3
√

1− CM
+ 3
√

1− CM − 2

2RI3

, CM ∈ (0, 1), (3.7)

CM(CR) = 1− 1(
1 + RI3CR +

√
RI3CR(2 + RI3CR)

)3 , CR ∈ (0,∞). (3.8)
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Proof. From Definition 3.1, it follows that

3

√
ac

b
+

3

√
b

ac
=

3
√

T +
1

3
√

T
.

Since λmax = 1 + 3

√
ac
b

+ 3

√
b
ac

, it can be written in the equivalent form

λmax = 1 +
3
√

T +
1

3
√

T
. (3.9)

Saaty defined the inconsistency ratio as CR =
λmax−n

n−1

RIn
. Let us substitute n = 3 and (3.9)

for the formula of CR, and (3.4) is proved.

Function CR(T ) is differentiable on the domain T > 1, and

CR′(T ) =
1− 1

3√T
2

6RI3
3
√

T
2 , (3.10)

which is positive if T > 1, consequently, CR is invertable in this domain. Its inverse
function is equal to

T (CR) =
(
1 + RI3 CR +

√
RI3 CR(2 + RI3 CR)

)3

, CR ∈ (0,∞),

which proves (3.5).

Since

CM = min

{
1

a

∣∣∣a− b

c

∣∣∣, 1

b

∣∣∣b− ac
∣∣∣, 1

c

∣∣∣c− b

a

∣∣∣
}

=

min

{∣∣∣1− b

ac

∣∣∣,
∣∣∣1− ac

b

∣∣∣,
∣∣∣1− b

ac

∣∣∣
}

= min

{∣∣∣1− b

ac

∣∣∣,
∣∣∣1− ac

b

∣∣∣
}

,

it follows that
CM(T ) = 1− 1

T
, CM ′(T ) =

1

T 2
, T > 1,

and
T (CM) =

1

1− CM
, T ′(CM) =

1

(1− CM)2
, CM ∈ (0, 1).

In order to obtain CR(CM), formulas (3.4) and (3.6) are used:

CR(CM) =

1
3
√

1− CM
+ 3
√

1− CM − 2

2RI3

, CM ∈ (0, 1). (3.11)

Similarly, formulas (3.5) and (3.6) are used to obtain

CM(CR) = 1− 1(
1 + RI3CR +

√
RI3CR(2 + RI3CR)

)3 , CR ∈ (0,∞). (3.12)

Since the derivatives
CR′(CM) = CR′(T ) T ′(CM) and

CM ′(CR) = CM ′(T ) T ′(CR)

are different from zero, we have one-to-one correspondences. ¥
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Corollary 3.1 In the case of 3 × 3 pairwise comparison matrices, the following
properties are equivalent:

CR ≤ 10%; (3.13)
1

2.63
= 0.38 ≤ ac

b
≤ 2.63; (3.14)

CM ≤ 0.62. (3.15)

Proof. (3.13) ⇔ (3.14): Let x = 3

√
b

ac
. From (3.2) and since λmax corresponding to

CR = 10% is 3.1048, (3.13) is equivalent to

x2 − 2.1x + 1 ≤ 0, x > 0.

By solving equality x2 − 2.1x + 1 = 0, x > 0, we obtain that x∗1 ≈ 1.38

and x∗2 =
1

x∗1
≈ 0.7244. Thus,

1

x∗
≤ 3

√
b

ac
≤ x∗1,

which is equivalent to the statement.

(3.13) ⇔ (3.15) follows from (3.11) and (3.12). ¥

The intuitional meaning of (3.13) ⇔ (3.14) in Theorem 3.1 may be interpreted by
the following example. Let

A =




1 2 6

1/2 1 3

1/6 1/3 1


 .

Now, a = 2, b = 6, c = 3, and A is consistent
(ac

b
= 1

)
. Let us fix a and b. If, e.g.,

c = 4, the inconsistency of matrix A remains acceptable, because

ac

b
=

2 · 4
6

= 1.33 < 2.63.

The maximal value of c, for which matrix A is acceptable by the 10% rule, is
3 · 2.63 = 7.89.

We remark that the CM -inconsistencies of matrices (3.3) are equal as well.
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4. A comparison of Saaty ’s and Koczkodaj ’s inconsistency
indices for 4× 4 pairwise comparison matrices

Koczkodaj (1997) reported on concrete inconsistency index calculations based on
a ratio scale 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5 for 4× 4 pairwise comparison matrices. He
remarked that in this case, an acceptable threshold of inconsistency is 1/3. In order to
make comparisons between Saaty ’s and Koczkodaj ’s inconsistency indices, we have to fit
Saaty ’s threshold to the ratio scale 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5.

By the definition of CR, the rule of acceptability of a pairwise comparison matrix is
that the maximal eigenvalue λmax should not be greater than a linear combination of the
average λmax of randomly generated matrices, denoted by λmax, with a coefficient 0.1,
and λmax(= n) of a consistent matrix, with a coefficient 0.9, i.e.,

CR ≤ 0.10 ⇐⇒ λmax ≤ 0.1λmax + 0.9n. (4.1)

We remark that λmax grows more rapidly (the slope of the approximating line is 2.76)
than n.

Let λ̄max(n, M) denote the average value of the dominant eigenvalue of a randomly
generated n× n matrix the elements of which are chosen from the ratio scale

1

M
,

1

M − 1
, . . . ,

1

2
, 1, 2, . . . ,M − 1,M, (4.2)

with equal probability
1

2M − 1
.

Table 2 presents the values of λ̄max(n,M) for n = 3, 4, . . . , 10 and M = 3, 4, . . . , 15.
λ̄max(n,M) can be well approximated by using a 4 -parameter quasilinear regression.

Theorem 4.1

λ̄max = 0.5625n− 0.621M + 0.2481Mn + 1.1478 + ε(n, M), (4.3)

where ε(n,M) denotes the approximation error of λ̄max(n, M).

Proof. The least-squares optimal solution of the 4 -parameter quasilinear approxi-
mation problem

λ̄max(n,M) ≈ αn + βM + γnM + δ

is as follows:

α = 0.5625,

β = −0.6210,

γ = 0.2481,

δ = 1.1478.

The maximal approximate error ε(n, M), while 3 ≤ n ≤ 10, 3 ≤ M ≤ 15, is 0.35.
¥
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Let CI(n,M), RI(n,M) and CR(n,M) denote the inconsistency index, the average
value of the randomly obtained inconsistency indices and the inconsistency ratio with
respect to the dimension number n and ratio scale (4.2), respectively. The theorem above
provides an equivalent characterization of the 10 percent rule as follows:

Corollary 4.1

CR(n,M) =
CI(n,M)

RI(n,M)
≤ 0.10 ⇐⇒ λmax ≤ 0.95625n− 0.0621M

+0.02481Mn + 0.1148.
(4.4)

Proof. By substituting (4.3) for (4.1), we have the result. ¥
We emphasize that the condition for the acceptable inconsistency in (4.4) depends

only on the data of the experimental pairwise comparison matrix, namely, on its dimen-
sion and its largest element. If we use a continuous ratio scale instead of the discrete
scale by Saaty, the results remain almost the same.

The results of Theorem 4.1 and Corollary 4.1 can be used in the case of experi-
mental pairwise comparison matrices. A set of 384 PRM taken from real-world AHP
analyses were studied in Gass and Standard (2002). The experimental distribution of
the numbers in the basic AHP comparison scale was unexpected. It seems that for these
real-world problems, the decision makers did not use with large experimental probability
the extreme comparison values of 8 and 9 (see Table 1 in Gass and Standard, 2000).
Consequently, in order to estimate the inconsistency more precisely, the influence of the
pairwise comparisons determined by the decision makers can be taken into consideration
through the largest ratio numbers, respectively.

Based on Theorem 4.1 and Table 3, the inconsistency ratio CR(4, 5) can be deter-
mined. By generating all the possible PRM (96 = 531441 matrices) with CM ≤ 1/3
(1377 matrices) on the ratio scale 1/5, . . . , 1, . . . , 5, Figure 1 shows that the possible
values of CM under 1/3 are from the set {0, 1/6, 1/5, 1/4, 1/3} and the total number of
different pairs (CM, CR(4, 5)) is 14. We can state that the threshold CM ≤ 1/3 corre-
sponds to CR(4, 5) ≤ 0.0336 (3.36%). It follows that Koczkodaj ’s inconsistency index for
4× 4 pairwise comparison matrices with respect to ratio scale 1/5, . . . , 1, . . . , 5, is stricter
than that of Saaty ’s. It is noted that the 10% rule allows much higher CM -inconsistency
when using the ratio scale 1/9, . . . , 1, . . . , 9. An example is as follows:

A =




1 1/8 2 6

8 1 7 9

1/2 1/7 1 2

1/6 1/9 1/2 1




,

where CR = CR(4, 9) = 9.47% and CM = 0.8125.
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Figure 1. Koczkodaj ’s CM ≤ 1/3 rule corresponds to CR(4, 5) ≤ 3.36%

It is emphasized that the threshold CM ≤ 1/3 is given for 4× 4 pairwise comparison
matrices with respect to the ratio scale 1/5, . . . , 1, . . . , 5. A question arises, namely, how
to determine the threshold values for higher dimensions. A possible way is to use the
“one grade off” or “two grades off” rules. By Koczkodaj (1997), “An acceptable threshold
of inconsistency is 0.33 because it means that one judgement is not more than two grades
of the scale “different” from the remaining two judgements.”
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Let us consider the general form of 3× 3 positive reciprocal matrices formulated in
(3.1). In the consistent cases, a = b/c, 1/a = c/b, b = ac, 1/b = 1/(ac), c = b/a,
1/c = a/b. In the inconsistent cases, the approximation of an element by the other two
elements can be considered by the grade difference

GD(a, b, c) = min
{

max {| a− b/c | , | 1/a− c/b |},

max {| b− ac | , | 1/b− 1/(ac) |} , max {| c− b/a | , | 1/c− a/b |}
}

.

Thus, the one grade off rule and the two grades off rule are

GD(a, b, c) ≤ 1 and GD(a, b, c) ≤ 2,

respectively.

In the case of matrices A of higher orders, the one grade off rule and the two grades
off rule (Koczkodaj et al., 1997) are

GD(A) = max
{

GD(a, b, c) for each triad (a, b, c) in A
}
≤ 1 or 2.

Figure 2 shows that the threshold CM ≤ 1/3 corresponds to GD ≤ 2/3, which is
close to the one grade off rule.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CM

GD

Figure 2. CM ≤ 1/3 threshold corresponds to GD ≤ 2/3
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5. Inconsistency of random pairwise comparison matrices

Golden and Wang (1990) computed the random inconsistency indices and Forman
(1990) the same for incomplete PRM. Dodd, Donegan and McMaster (1993) investigated
the frequency distributions of random inconsistency indices and their statistical signif-
icance levels. Lane and Verdini (1989) determined the exact distribution of random
inconsistency indices for 3 × 3 matrices, and random samples of 2500 matrices were
produced and analysed for 4 × 4 to 10 × 10 and selected higher-order matrices, as well
as stricter consistency requirements for 3 × 3 and 4 × 4 pairwise comparison matrices
were suggested. Standard 2000 generated randomly 1000 PRM, but restricted the CRn

as follows. For n = 3, 4 or 5, CRn < 0.1 was required, for n = 6, CRn < 0.2, and for
n = 7, CRn < 0.3. The computer was very slow in generating the random, low CRn,
PRM regarding sizes 6 and 7 and the results became more scattered as n increased. Ad-
ditionally, regarding n = 7, there were no results for CRn < 0.1. Due to these conditions,
the low CRn analysis was not run regarding matrices of sizes 8 and 9. A conclusion is
that Saaty ’s rule is statistically very strict for large PRM.

We have performed a statistical analysis of CR and CM inconsistencies. The aim
of our simulation was to analyze the empirical distributions of the maximal eigenvalues
λmax of randomly generated pairwise comparison matrices. The elements aij (i < j) were
randomly chosen from the scale

1

9
,
1

8
,
1

7
, . . . ,

1

2
, 1, 2, . . . , 8, 9,

and aji is defined as
1

aij

. In the paper, the assumption of equal probabilities is used.

In order to have equal probabilities ( 1
17
), we used Matlab’s rand function for simulat-

ing uniform distribution, the period of which is 21492. We have computed the average
value of λmax of randomly generated pairwise comparison matrices which is the basis
of the mean random consistency index (RIn). The values of λmax corresponding to the
CRn = 10%, the number of matrices which satisfies the CRn ≤ 10%, GD ≤ 1 and
GD ≤ 2 conditions were also computed. (It follows from the definition of CRn that – if
the comparisons are carried out randomly – the expected value of CRn is 1.) In Table 4,
n varies from 3 to 10, the sample size is 107 for all n.

In the case of 3× 3 matrices, the sample size 107 is much larger than the number
of different matrices 173 = 4913. Thus, many (or all) of the matrices may have been
counted more than once. The ratios of the numbers of matrices holding CR ≤ 10%,
GD ≤ 1 and GD ≤ 2 compared to the sample size have been also computed if each
matrix counted exactly once, and found to have almost the same results as above.

Our simulations are visualized in histograms, too. Figures 3.a – 3.h show the empir-
ical distributions of λmax on the lower horizontal axis and the corresponding consistency
ratio CRn on the upper horizontal axis. As n increases, the shape of distribution of
λmax gets similar to a normal one in our sample. For n = 3, a notable part of the ran-
domly generated matrices satisfies the CRn ≤ 10% rule. The number of matrices with
CRn ≤ 10% drastically decreases as n increases (see Table 4 ). Regarding n = 8, 9, 10,
we have not found a matrix in the sample of ten million with acceptable inconsistency.
Based on the results, it seems that the meaning of 10% for n = 3 is very different from
n = 8, which is one of the weaknesses of the inconsistency ratio by Saaty. It is also
interesting that consistency and randomness do not exclude each other: 1.7% of 3 × 3
random matrices (and 0.0014% of 4× 4 random matrices) are consistent.

15



n
Sa

m
pl
e

si
ze

Av
er
ag

e
va
lu
e

of
λ

m
a
x

R
I n

λ
m

a
x

co
rr
es
po

nd
in
g
to

C
R

=
10

%

N
um

be
r
of

m
at
ri
ce
s

C
R
≤

10
%

N
um

be
r
of

m
at
ri
ce
s

G
D
≤

1

N
um

be
r
of

m
at
ri
ce
s

G
D
≤

2

3
10

7
4.
04

84
0.
52

42
3.
10

48
2.

08
×

10
6

1.
42
×

10
6
w
it
h

G
D
≤

1
2.

0
×

10
6
w
it
h

G
D
≤

2

1.
42
×

10
6

al
lw

it
h

C
R
≤

10
%

2.
68
×

10
6

2.
0
×

10
6
w
it
h

C
R
≤

10
%

4
10

7
6.
65

25
0.
88

42
4.
26

5
3.

15
×

10
5

2.
76
×

10
4
w
it
h

G
D
≤

1
1.

55
×

10
5
w
it
h

G
D
≤

2

2.
76
×

10
4

al
lw

it
h

C
R
≤

10
%

1.
7
×

10
5

1.
55
×

10
5
w
it
h

C
R
≤

10
%

5
10

7
9.
43

47
1.
10

87
5.
44

35
2.

39
×

10
4

61
w
it
h

G
D
≤

1
23

71
w
it
h

G
D
≤

2

61
al
lw

it
h

C
R
≤

10
%

24
04

23
71

w
it
h

C
R
≤

10
%

6
10

7
12

.2
44

1.
24

88
6.
62

44
77

0
0
w
it
h

G
D
≤

1
13

w
it
h

G
D
≤

2
0

13
al
lw

it
h

C
R
≤

10
%

7
10

7
15

.0
45

1.
34

08
7.
80

45
9

0
w
it
h

G
D
≤

1
0
w
it
h

G
D
≤

2
0

0

8
10

7
17

.8
31

1.
40

04
8.
98

31
0

0
0

9
10

7
20

.6
04

1.
45

05
10

.1
6

0
0

0

10
10

7
23

.3
74

1.
48

6
11

.3
37

4
0

0
0

T
ab

le
4.

Av
er
ag

e
va
lu
e
of

λ
m

a
x
of

ra
nd

om
ly

ge
ne
ra
te
d
pa

ir
w
is
e
co
m
pa

ri
so
n
m
at
ri
ce
s,

R
I n
,t
he

nu
m
be

r
of

m
at
ri
ce
s
w
it
h

C
R
≤

10
%
,

G
D
≤

1
an

d
G

D
≤

2



6. Inconsistency of asymmetry

A conceptual weakness of some weighting method is related to the issue of asymmetry.
The question: “To what extent does alternative i dominate j?” may be replaced by the
question “To what extent is j dominated by i?” The answers to these questions are
logically reciprocal. If a technique is applied first to the pairwise comparison matrix A,

yielding a solution w, and then to the transpose AT , yielding a solution w
′ , is

wi

wj

=
w
′
j

w
′
i

for every pair (i, j)?

EM does not possess this asymmetry property, since the principal right and left
eigenvectors of A are not elementwise reciprocal in the cases of inconsistent pairwise
comparison matrices. Consequently, a conceptual limitation of EM is the lack of asym-
metry with respect to A and AT , which means that, for n ≥ 4, there exist, generally,
two competing solutions (Johnson et al., 1979). Now, it will be shown that the property
of asymmetry is related to the inconsistency.

Definition 6.1 Let A be a pairwise comparison matrix, w and w
′ the priority vectors

of A and AT , respectively. The invariance under transpose holds if

wi ≥ wj implies w
′
i ≤ w

′
j, ∀(i, j), i, j = 1, . . . , n. (6.1)

It follows from the definitions that LSM, χ2M and LLSM defined in Table 1 always
fulfil the property of invariance under transpose. SVDM takes this asymmetry, in some
sense, into account.

Lemma 6.1 SVDM fulfils the invariance under transpose if and only if

uivi + 1

ujvj + 1
≥ vi

vj

implies
uivi + 1

ujvj + 1
≤ ui

uj

, ∀(i, j) i, j = 1, . . . , n, (6.2)

where u and v are the left and right singular vectors belonging to the largest singular
value of A, respectively.

Proof. By the formula in Table 1, the invariance under transpose holds if and only
if

ui +
1

vi

≥ uj +
1

vj

implies vi +
1

ui

≤ vj +
1

uj

, ∀(i, j) i, j = 1, . . . , n,

which is equivalent to

uivi + 1

ujvj + 1
≥ vi

vj

implies
uivi + 1

ujvj + 1
≤ ui

uj

, ∀(i, j) i, j = 1, . . . , n.

¥

108 matrices of size 5× 5 have been generated randomly in order to detect the rank
reversals of the weights computed from the left and right eigenvectors. Based on our
hypothesis, the frequency of rank reversals varies as the CR inconsistency ratio changes.
By Table 5 and Figure 4, the frequency of rank reversals increases as the CR increases.
We can conclude that the larger the CR-inconsistency is, the more often the EM violates
the property of invariance under transpose. Since no “cut off” point appears in Figure 4 ,
this seems to be another reason for reconsidering the asymmetry property.
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The next example (Dodd et al., 1995) shows that a good inconsistency ratio CR does
not exclude the rank reversal between the weights computed from the left and right
eigenvectors. Let

A =




1 1 3 9 9

1 1 5 8 5

1/3 1/5 1 9 5

1/9 1/8 1/9 1 1

1/9 1/5 1/5 1 1




,

where CR(A) = 0.0820, the weights of the right eigenvector

wT = (36.5652, 38.9564, 16.7155, 3.4693, 4.2936),

and the weights of the left eigenvector

w′T = (40.6431, 36.4208, 15.0669, 3.4391, 4.4302).

It is interesting that GD(A) = 4.1111. There remain open questions, namely, how to
detect and eliminate the inconsistency of asymmetry.
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Levels of
inconsistency
ratio CR

Number of rank reversals
of the weight vectors

corresponding to the left
and right eigenvectors

Number of
matrices

Frequency of
rank reversals

CR ≤ 0.01 8 162 0.049
0.01 < CR ≤ 0.02 81 1138 0.071
0.02 < CR ≤ 0.03 288 3414 0.084
0.03 < CR ≤ 0.04 685 7130 0.096
0.04 < CR ≤ 0.05 1253 12645 0.099
0.05 < CR ≤ 0.06 2096 19827 0.106
0.06 < CR ≤ 0.07 3342 29686 0.113
0.07 < CR ≤ 0.08 5284 41400 0.128
0.08 < CR ≤ 0.09 7896 55105 0.143
0.09 < CR ≤ 0.10 10819 70885 0.153
0.10 < CR ≤ 0.11 14371 88104 0.163
0.11 < CR ≤ 0.12 18743 1.07 × 105 0.174
0.12 < CR ≤ 0.13 23362 1.28 × 105 0.182
0.13 < CR ≤ 0.14 27841 1.50 × 105 0.185
0.14 < CR ≤ 0.15 33402 1.73 × 105 0.193
0.15 < CR ≤ 0.16 39344 1.97 × 105 0.199
0.16 < CR ≤ 0.17 44851 2.21 × 105 0.203
0.17 < CR ≤ 0.18 50847 2.46 × 105 0.207
0.18 < CR ≤ 0.19 57625 2.69 × 105 0.214

0.19 < CR not analysed 9.82 × 107 not analysed

Table 5. Frequency of rank reversals of the weight vectors corresponding to the left
and right eigenvectors with respect to different levels of inconsistency ratio CR

Figure 4. Frequency of rank reversals of the weight vectors corresponding to the left
and right eigenvectors with respect to different levels of inconsistency ratio CR
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7. Concluding remarks

In the paper, some theoretical and numerical properties of Saaty ’s and Koczkodaj ’s
inconsistencies of PRM are investigated. Based on the results, it seems that the deter-
mination of the inconsistency of PRM has some drawbacks, thus the improvement of the
notion of inconsistency should be necessary.

Related to Saaty ’s inconsistency ratio, some basic questions are as follows:
What is the relation between an empirical matrix from human judgements and a ran-

domly generated one? Is an index obtained from several hundreds of randomly generated
matrices the right reference point for determining the level of inconsistency of pairwise
comparison matrix built up from human decisions, for a real decision problem? How to
take the size of matrices into account in a more precise form?

Related to Koczkodaj ’s consistency index, a major question seems to be the elabora-
tion of the thresholds in higher dimensions or to replace the index by a refined grade off
rule.

The existence of the inconsistency of asymmetry shows the complexity of the problem.
By the example in Section 6, Saaty ’s consistency of PRM is insufficient to exclude asym-
metric inconsistency, therefore, this latter should be considered as a separate issue. Thus,
it seems that only one inconsistency index is insufficient for describing the inconsistency.
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Figure 3.c λmax and CR values
of 5× 5 random matrices

Figure 3.d λmax and CR values
of 6× 6 random matrices
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Figure 3.e λmax and CR values
of 7× 7 random matrices

Figure 3.f λmax and CR values
of 8× 8 random matrices
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Figure 3.g λmax and CR values
of 9× 9 random matrices

Figure 3.h λmax and CR values
of 10× 10 random matrices
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