Corvinus
Corvinus

New predictor-corrector interior-point algorithm with AET function having inflection point

Illés, Tibor and Rigó, Petra Renáta and Török, Roland (2022) New predictor-corrector interior-point algorithm with AET function having inflection point. Working Paper. Corvinus University of Budapest, Budapest.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
744kB

Abstract

In this paper we introduce a new predictor-corrector interior-point algorithm for solving P_* (κ)-linear complementarity problems. For the determination of search directions we use the algebraically equivalent transformation (AET) technique. In this method we apply the function φ(t)=t^2-t+√t which has inflection point. It is interesting that the kernel corresponding to this AET function is neither self-regular, nor eligible. We present the complexity analysis of the proposed interior-point algorithm and we show that it's iteration bound matches the best known iteration bound for this type of PC IPAs given in the literature. It should be mentioned that usually the iteration bound is given for a fixed update and proximity parameter. In this paper we provide a set of parameters for which the PC IPA is well defined. Moreover, we also show the efficiency of the algorithm by providing numerical results.

Item Type:Monograph (Working Paper)
Series Name:Corvinus Economics Working Papers - CEWP
Series Number / Identification Number:2022/05
Uncontrolled Keywords:Predictor-corrector; Linear complementarity problems; Interior-point algorithm; Complexity analysis
JEL classification:C61 - Optimization Techniques; Programming Models; Dynamic Analysis
Divisions:Institute of Data Analytics and Information Systems
Institute of Operations and Decision Sciences
Subjects:Mathematics, Econometrics
References:

S. Asadi, H. Mansouri, G. Lesaja, and M. Zangiabadi. A long-step interior-point algorithm
for symmetric cone Cartesian P*(k)-HLCP. Optimization 67 (2018) 2031-2060.

S. Asadi, N. Mahdavi-Amiri, Zs. Darvay and P.R. Rigó, Full-NT step feasible interior-point algorithm for symmetric cone horizontal linear complementarity problem
based on a positive-asymptotic barrier function, Optim. Methods Sofw. (2020), DOI:10.1080/10556788.2020.1734803.

C. Brás, G. Eichfelder, and J. Júdice, Copositivity tests based on the linear complementarity
problem, Comput. Optim. Appl. 63 (2016) 461-493.

S. Burer, Copositive programming, In: Handbook on semidefinite, conic and polynomial
optimization, Springer, 201-218, 2012.

S.-J. Chung, NP-completeness of the linear complementarity problem, J. Optim. Theory Appl. 60 (1989) 393-399.

R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Computer
Science and Scientific Computing, Academic Press, Boston, 1992.

R. W. Cottle, J.-S. Pang, and V. Venkateswaran, Sufficient matrices and the linear complementarity problem, Linear Algebra Appl. 114 (1989) 231-249.

Zs. Csizmadia and T. Illés, New criss-cross type algorithms for linear complementarity
problems with sufficient matrices, Optim. Methods Softw. 21 (2006) 247-266.

Zs. Csizmadia, T. Illés, and A. Nagy, The s-monotone index selection rules for pivot algorithms
of linear programming, Eur. J. Oper. Res. 221 (2012) 491-500.

Zs. Darvay, New interior point algorithms in linear programming, Adv. Model. Optim. 5
(2003) 51-92.

Zs. Darvay, A predictor-corrector algorithm for linearly constrained convex optimization,
Studia Univ. Babes-Bolyai, Ser. Informatica, 54 (2009) 121-138.

Zs. Darvay, T. Illés, B. Kheirfam, and P. R. Rigó, A corrector-predictor interior-point
method with new search direction for linear optimization, Cent. Eur. J. Oper. Res. 28
(2019) 1123-1140.

Zs. Darvay, T. Illés, and Cs. Majoros, Interior-point algorithm for sufficient LCPs based on
the technique of algebraically equivalent transformation, Optim Lett. 15 (2021) 357-376.

Zs. Darvay, T. Illés, J. Povh, and P.R. Rigó, Feasible corrector-predictor interior-point
algorithm for P*(k)-linear complementarity problems based on a new search direction, Siam J. Optim. 30 (2020), 2628-2658.

Zs. Darvay, T. Illés, and P.R. Rigó, Predictor-corrector interior-point algorithm for P*(k)-linear complementarity problems based on a new type of algebraic equivalent transformation technique, Eur. J. Oper. Res. 298 (2022), 25-35.

Zs. Darvay, I.-M. Papp, and P.-R. Takács, Complexity analysis of a full-Newton step interior-point method for linear optimization, Period. Math. Hung. 73 (2016) 27-42.

Zs. Darvay and P.R. Rigó, New predictor-corrector algorithm for symmetric cone horizontal linear complementarity problems, J. Optim. Theory Appl. (2022), DOI: 10.1007/s10957-022-02078-z.

E. De Klerk and M. E.-Nagy, On the complexitiy of computing the handicap of a sufficient matrix, Math. Program. 129 (2011) 383-402.

M. E.-Nagy, T. Illés, J. Povh, A. Varga and J. Žerovnik, Sufficient matrices: properties,
generating and testing, manuscript, 2022.

M. Ferris and J. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 39 (1997) 669-713.

K. Fukuda, M. Namiki, and A. Tamura, EP theorems and linear complementarity problems,
Discrete Appl. Math. 84 (1998) 107-119.

K. Fukuda and T. Terlaky, Criss-cross methods: A fresh view on pivot algorithms, Math. Program. 79 (1997) 369-395.

M. El Ghami, I. Ivanov, J.B. Melissen, C. Roos, and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, J. Comput. Appl. Math. 224 (2009) 500-513.

F. Gurtuna, C. Petra, F.A. Potra, O. Shevchenko, and A. Vancea, Corrector-predictor methods for sufficient linear complementarity problems, Comput. Optim. Appl. 48 (2011)
453-485.

T. Illés and S. Morapitiye, Generating sufficient matrices. In F. Friedler, editor, 8th VOCAL Optimization Conference: Advanced Algorithms, Pázmány Péter Catholic University, Budapest, Hungary, (2018), pages 56-61.

T. Illés and M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient
linear complementarity problems, Eur. J. Oper. Res. 181 (2007) 1097-1111.

T. Illés, M. Nagy, and T. Terlaky, EP theorem for dual linear complementarity problems,
J. Optim. Theory Appl. 140 (2009) 233-238.

T. Illés, M. Nagy, and T. Terlaky, Polynomial interior point algorithms for general linear
complementarity problems, Alg. Oper. Res. 5 (2010) 1-12.

T. Illés, M. Nagy, and T. Terlaky, A polynomial path-following interior point algorithm
for general linear complementarity problems, J. Global. Optim. 47 (2010) 329-342.

T. Illés, J. Peng, C. Roos and T. Terlaky, A Strongly Polynomial Rounding Procedure Yielding a Maximally Complementary Solution for P*(k) Linear Complementarity Problems, SIAM J. Optim. 11 (2000) 320-340.

T. Illés, P.R. Rigó and R. Török, Unified approach of primal-dual interior-point algorithms for a new class of AET functions. Corvinus Econ. Work. Paper. (2) (2022)

B. Kheirfam, A new infeasible interior-point method based on Darvay’s technique for symmetric optimization, Ann. Oper. Res. 211 (2013) 209-224.

B. Kheirfam, A predictor-corrector interior-point algorithm for P*(k)-horizontal linear complementarity
problem, Numer. Algorithms 66 (2014) 349-361.

B. Kheirfam and M. Haghighi, A full-Newton step feasible interior-point algorithm for
P*(k)-LCP based on a new search direction, Croat. Oper. Res. Rev. 7 (2016) 277-290.

M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, vol. 538 of Lecture Notes in Computer
Science, Springer Verlag, Berlin, Germany, 1991.

G. Lešaja and F.A. Potra, Adaptive full Newton-step infeasible interior-point method for
sufficient horizontal LCP, Optim. Methods Softw. 34 (2019) 1014-1034.

G. Lešaja and C. Roos, Unified analysis of kernel-based interior-point methods for P*(k)-linear complementarity problems, SIAM J. Optim. 20 (2010) 3014-3039.

X. Liu and F.A. Potra, Corrector-predictor methods for sufficient linear complementarity
problems in a wide neighborhood of the central path, SIAM J. Optim. 17 (2006) 871-890.

J. Miao, A quadratically convergent O((k+1)p
nL)-iteration algorithm for the P*(k)-matrix
linear complementarity problem, Math. Program. 69 (1995) 355-368.

S. Mizuno, M. Todd, and Y. Ye, On adaptive-step primal-dual interior-point algorithms for
linear programming, Math. Oper. Res. 18 (1993) 964-981.

M. Nagy, Interior point algorithms for general linear complementarity problems, PhD thesis,
Eötvös Loránd University of Sciences, Institute of Mathematics, 2009.

J. Peng, C. Roos, and T. Terlaky, Self-Regular Functions: a New Paradigm for Primal-Dual
Interior-Point Methods, Princeton University Press, 2002.

F.A. Potra, Corrector-predictor methods for monotone linear complementarity problems in
a wide neighborhood of the central path, Math. Program. 111 (2008) 243-272.

F.A. Potra, Interior point methods for sufficient horizontal LCP in a wide neighborhood of
the central path with best known iteration complexity, SIAM J. Optim. 24 (2014) 1-28.
23

F.A. Potra and X. Liu, Predictor-corrector methods for sufficient linear complementarity
problems in a wide neighborhood of the central path, Optim. Methods Softw. 20 (2005)
145-168.

F.A. Potra and R. Sheng, Predictor-corrector algorithm for solving P*(k)-matrix LCP from
arbitrary positive starting points, Math. Program. 76 (1996) 223-244.

F.A. Potra and R. Sheng, A large-step infeasible-interior-point method for the P*-Matrix
LCP, SIAM J. Optim. 7 (1997) 318-335.

P.R. Rigó, New trends in algebraic equivalent transformation of the central path and its
applications, PhD thesis, Budapest University of Technology and Economics, Institute of
Mathematics, Hungary, 2020.

C. Roos, T. Terlaky, and J.-P. Vial, Theory and Algorithms for Linear Optimization,
Springer, New York, USA, 2005.

R. Török, T. Illés, and P.R. Rigó, Implementation of primal-dual interior-point algortihm
for solving sufficient linear complementarity problems. In S. Drobne, L. Zadnik Stirn,
M. Kljajic Borštar, J. Povh, and J. Žerovnik, editors, Proceedings of the 16th International
Symposium on Operational Research in Slovenia: SOR’21, Slovenia, (2021) pages 86-91.

P. Tseng, Co-NP-completeness of some matrix classification problems, Math. Program. 88 (2000) 183-192.

G. Wang and Y. Bai, Polynomial interior-point algorithms for P*(k) horizontal linear complementarity problem, J. Comput. Appl. Math. 223 (2009) 248-263.

Q. Wang and H. Sun, Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim. 14 (2018) 541-559.

Y. Ye, A path to the Arrow-Debreu competitive market equilibrium, Math. Program. 111 (2008) 315-348.

ID Code:7724
Deposited By: Ádám Hoffmann
Deposited On:18 Nov 2022 13:02
Last Modified:18 Nov 2022 13:02

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics