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Abstract. In this paper we introduce a new predictor-corrector interior-point algorithm for
solving P∗(κ)-linear complementarity problems. For the determination of search directions we
use the algebraically equivalent transformation (AET) technique. In this method we apply the
function ϕ(t) = t2− t+

√
t which has inflection point. It is interesting that the kernel corre-

sponding to this AET function is neither self-regular, nor eligible. We present the complexity
analysis of the proposed interior-point algorithm and we show that it’s iteration bound matches
the best known iteration bound for this type of PC IPAs given in the literature. It should be
mentioned that usually the iteration bound is given for a fixed update and proximity parameter.
In this paper we provide a set of parameters for which the PC IPA is well defined. Moreover,
we also show the efficiency of the algorithm by providing numerical results.
JEL code: C61
Keywords. Predictor-corrector; Linear complementarity problems; Interior-point algorithm;
Complexity analysis.

1. Introduction

Linear complementarity problems (LCPs) are instensively studied due to the fact that
they have several applications in different fields, such as economics, optimization theory
and engineering, see [6, 20]. The Karush-Kuhn-Tucker optimality conditions of linear pro-
gramming (LP) and quadratic optimization problems lead to LCPs. The Arrow-Debreu
competitive market equilibrium problem with linear and Leontief utility functions can
also be formulated as LCP [54]. Bras et al. [3] showed that LCP can be used to test
copositivity of matrices. Wang and Sun analysed sparse Markowitz portfolio selection by
using stochastic LCP approach, see [53].

The LCPs can be solved by using several methods, such as different pivot and criss-
cross algorithms [8, 9, 21, 22]. Fukuda and Terlaky gave a general form of the dual
of the LCPs for oriented matroids [22]. Later, Csizmadia and Illés analysed it for LCPs
related to the cirss-cross algorithm [8]. Several interior-point algorithms (IPAs) have been
also introduced for P∗(κ)-LCPs, see [6, 27, 28, 35, 37, 46]. Illés et al. gave existentially
polytime (EP) theorem for the dual LCP with arbitrary matrix and they proposed IPAs
to solve LCPs with general matrices in EP-sense. This means that their generalized IPAs
either solve the problems with rational coefficient matrix in polynomial time or give a
∗Corresponding Author.
E-mail addresses: tibor.illes@uni-corvinus.hu (Tibor Illés), petra.rigo@uni-corvinus.hu (Petra Renáta
Rigó), undefined roland.torok@stud.uni-corvinus.hu (Roland Török).
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polynomial size certificate that the matrix is not P∗(κ̄) with apriori fixed, positive κ̄, see
[27–29]. These results have been summarized in [41].

For detailed study on LCPs we refer the reader to the books of Cottle et al. [6] and
Kojima et al. [35]. In the book of Kojima et al. [35] the theory of interior-point algorithms
for solving LCPs is highlighted. The LCPs belong to the class of NP-complete problems,
see [5, 35]. However, Kojima et al. [35] proved that assuming that the problem’s matrix
has a special property, i.e. it is P∗(κ)-matrix, the IPAs give approximate solution for LCPs
in polynomial complexity in the size of the problem, the handicap of the problem’s matrix
and the bitsize of the data. Illés [30] et al. proposed a rounding procedure that computes a
maximally complementary (exact) solution in polynomial time from an ε-optimal solution
produced by IPAs for P∗(κ)-LCPs with appropriate ε > 0.

Predictor-corrector (PC) IPAs turned out to be efficient in practice. They perform
in a major iteration a predictor and one or several corrector steps. The predictor step
is a greedy step and aims to approach the optimal solution set of the corresponding
problem. After a predictor step the obtained strictly feasible solution may not be in a
small neighbourhood of the central path. Hence, the corrector step is responsible for
returning the iterate in the designated small neighbourhood. Mizuno, Tood and Ye [40]
provided the first PC IPA for LP problems, which uses only one corrector step in a main
iteration. Miao [39] extended this IPA to P∗(κ)-LCPs. When only one step is needed
to return into the small neighbourhood of the central path, then we call these methods
Mizuno-Todd-Ye-type (MTY-type) of PC IPAs. Potra and Sheng [46] introduced a MTY-
type PC IPA for P∗(κ)-LCPs. Illés and Nagy [26], Kheirfam [33], Darvay et al. [14, 15]
also introduced MTY-type PC IPAs.

Defining a proper search direction plays an important role in the analysis of the IPAs.
As mentioned before, Peng et al. [42] provided the notion of self-regular barrier and
they determined new long-step IPAs. Later on, Darvay [10] introduced the algebraically
equivalent transformation (AET) technique to determine search directions in case of LP
problems. He applied a continuously differentiable and invertible function on the nonlinear
equation of the system characterizing the central path. In his work, Darvay used the
square root function in the AET technique. Following his result, a large amount of papers
appeared, where IPAs based on the AET technique were proposed, see [14, 15, 31, 34, 48].
In [31] the authors defined a new class of AET functions in order to define primal-dual
IPAs for solving P∗(κ)-LCPs and the function ϕ(t) = t2− t+

√
t is member of this class.

In this paper we introduce a new PC IPA for solving P∗(κ)-LCPs which is based on the
AET function ϕ(t) = t2− t+

√
t.

The paper is organized as follows. In Section 2 some basic concepts and results related
to the theory of P∗(κ)-LCPs are presented. Section 3 is devoted to define the new PC IPA
which is based on a new search direction. Section 4 contains the complexity analysis of
the new PC IPA. In Section 5 we provide a set of parameters for which the PC IPA is well
defined. Section 6 summarizes numerical results that show the efficiency of the algorithm.
In Section 7 some concluding remarks and further research plans are enumerated.

2. Preliminaries

2.1. Linear complementarity problems and P∗(κ)-matrices. In the linear comple-
mentarity problems (LCPs) we search for vectors x,s ∈ Rn that satisfy the following
constraints:

−Mx + s = q, x,s≥ 0, xs = 0, (LCP )
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where M ∈ Rn×n, q ∈ Rn and xs is the componentwise product of vectors x and s. We
use the following notations to denote feasible region, the interior and the solutions set of
LCPs:

F := {(x,s) ∈ Rn⊕×Rn⊕ :−Mx + s = q},
F+ := {(x,s) ∈ Rn+×Rn+ :−Mx + s = q},
F∗ := {(x,s) ∈ F : xs = 0}.

Note that Rn⊕ denotes the n-dimentional nonnegative orthant and Rn+ the positive orthant.
Thorughout the paper we assume that F+ 6= ∅ and M is a P∗(κ)-matrix, see [35]. We

present the central path problem for (LCP ) as follows:
−Mx + s = q xs = µe, x,s> 0. (CPP )

where e denotes the n-dimensional all-one vector and µ > 0. Kojima et al. [35] proved
the uniqueness of the central path for P∗(κ)-LCPs. They also showed that the sequence
{(x(µ),s(µ)) | µ > 0} of solutions lying on the central path parameterised by µ > 0 ap-
proaches the solution (x,s) of the (LCP ).

2.2. Algebraic equivalent transformation technique. We present the AET tech-
nique in case of P∗(κ)-LCPs. Note that the AET method was introduced by Darvay [10]
for LP problem. Let ϕ : (ξ̄,∞)→R, with 0≤ ξ̄ < 1, be a continuously differentiable func-
tion, such that ϕ′(t)> 0, ∀t > ξ̄. We also use the notation ϕ(x) = [ϕ(x1),ϕ(x2) . . . ,ϕ(xn)]T .
In this way, system (CPP ) can be written in the following form:

−Mx + s = q x,s> 0, ϕ
(

xs
µ

)
= ϕ(e), (CPPϕ)

The Newton-system is
−M∆x + ∆s = 0,
S∆x +X∆s = aϕ, (2.3)

where

aϕ = µ
ϕ(e)−ϕ

(
xs
µ

)
ϕ′
(

xs
µ

) . (2.4)

It can be observed that for different functions ϕ we obtain different search directions. Let

v =
√

xs
µ
, d =

√x
s
, dx = d−1 ∆x

√
µ

= v∆x
x

, ds = d∆s
√
µ

= v∆s
s

. (2.5)

Using (2.5) we get
∆x = xdx

v
and ∆s = sds

v
.

Substituting these in the second equation of system (2.3) we obtain:

xsdx
v

+ xsds
v

= µ
ϕ(e)−ϕ

(
xs
µ

)
ϕ′
(

xs
µ

) . (2.6)

The scaled system of the transformed Newton system (2.3) is
−M̄dx+ ds = 0,

dx+ ds = pϕ, (2.7)
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where M̄ =DMD, D = diag(d) and

pϕ = ϕ(e)−ϕ(v2)
vϕ′(v2) . (2.8)

It can be shown that the scaled transformed Newton system (2.7) has a unique solution,
see [14].

2.3. Special case of the new class of AET. In this paper we deal with the AET
function ϕ : (0,∞)→ R

ϕ(t) = t2− t+
√
t. (2.9)

This functions was firstly used in [31], where the authors introduced a whole new class
of AET functions for PD IPAs. Up to our best knowledge this is the first AET function
analysed in the literature of IPAs which has inflection point.
Using (2.4) and (2.8) we can calculate the corresponding aϕ and pϕ in this case:

aϕ = µ
e− x2s2

µ2 + xs
µ −

√xs
µ

2xs
µ −e + 1

2

√
µ
xs

=
4µ2√xs + 2µxs

√
xs−3µxs√µ

2(4xs
√

xs−2µ
√

xs +µ
√
µ) −

xs
2 (2.10)

and
pϕ = e−v4 + v2−v

2v3−v + 1
2e

= 2(e−v)(e + v2 + v3)
4v3−2v + e

. (2.11)

Hence, in our case the coordinate function cf of pϕ is

cf (t) = 2(1− t4 + t2− t)
4t3−2t+ 1 . (2.12)

In the following section we present the new PC IPA for solving P∗(κ)-LCPs.

3. Predictor-corrector interior point algorithm based on a new AET
function

Several IPAs use firstly corrector steps and after that predictor step, these algorithms
are called corrector-predictor IPAs, see Potra [43]. The reason for using these methods
is that after a corrector step we reach a proper neighbourhood of the central path. Our
IPA also performs firstly a corrector step and after that a predictor one.

3.1. Corrector step. The scaled corrector system coincides with system (2.7) with pϕ
given in (2.11).
This system has the following solution:

dcx = (I+M̄)−1pϕ, dcs = M̄(I+M̄)−1pϕ.
Using this and (2.5) the search directions ∆cx and ∆cs can be calculated. The point

after a corrector step is
x+ = x + ∆cx, s+ = s + ∆cs.

In the next subsection we deal with the predictor step.

3.2. Predictor step. Based on (2.10) the vector aϕ can be represented as
aϕ = f(x,s,µ) +g(x,s),

where f : Rn+×Rn+×R⊕→Rn with f(x,s,0) = 0 and g : Rn+×Rn+→Rn. Since, we would
like to make as greedy predictor step as possible, we set µ= 0 in this decomposition.
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Then, we obtain:
−M∆px + ∆ps = 0,
S∆px +X∆ps = g(x,s). (3.1)

In the specific case, when we set µ = 0 in aϕ then g(x,s) = −1
2 xs is computed. Using

(2.5) and (3.1) we get the scaled predictor system
−M̄+dpx+ dps = 0,

dpx+ dps = −1
2 v+, (3.2)

where v+ =
√

x+s+
µ , d+ =

√
x+
s+ , D+ = diag(d+), M̄+ = D+MD+ and which has the

solution:
dpx =−1

2 (I+M̄+)−1v+ and dps =−1
2 M̄+(I+M̄+)−1v+.

From this and (2.5) we can calculate the predictor search directions ∆px and ∆ps. The
point after a predictor step is

xp = x+ + θ∆px, sp = s+ + θ∆ps, µp =
(

1− θ2

)
µ,

where θ ∈ (0,1) is the update parameter.
Let us define the proximity measure, which is used to measure the distance of the

iterates (x,s) from the central path:

δ(x,s,µ) := δ(v) := ‖pϕ‖2 =
∥∥∥∥∥(e−v)(e + v2 + v3)

4v3−2v + e

∥∥∥∥∥ . (3.3)

The neighbourhood is given in the following way:
N2(τ,µ) := {(x,s) ∈ F+ : δ(x,s,µ)≤ τ}, (3.4)

where δ is given in (3.3), τ is a threshold parameter and µ > 0.
The PC IPA for solving P∗(κ)-LCPs is given in Algorithm 1.
In the next section we present the complexity analysis of the proposed PC IPA.

4. Analysis of the predictor-corrector algorithm

In this section we present the complexity analysis of the proposed PC IPA. In the first
part we deal with the corrector step. This is a full-Newton step, so the analysis of this
part is very similar to that of small-update IPA presented in [31] for the special case when
ϕ(t) = t2− t+

√
t. We summarize the lemmas and corollaries used in this case.

The first lemma refers to the strict feasibility of the corrector step.

Lemma 4.1. [Corollary 3.1 in [31]] Let (x,s)∈F+ be given, such that δ(x,s;µ)< 1√
1+4κ .

In case of ϕ(t) = t2− t+
√
t we have that (x+,s+) ∈ F+.

The next lemma shows the quadratic convergence of the corrector step.

Lemma 4.2. [Corollary 3.2 in [31]] Let (x,s) ∈ F+ and v̄ =
√

x+s+

µ
be given, such that

δ(x,s;µ)≤ 1√
1+4κ . In case of ϕ(t) = t2− t+

√
t we have that

δ(x+,s+;µ)≤ 2(10 + 4κ)δ(x,s;µ)2.
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Algorithm 1: New PC IPA for P∗(κ)-LCPs
Let ε > 0 be the accuracy parameter, 0< θ < 1 the update parameter and τ the
proximity parameter. Furthermore, a known upper bound κ of the handicap κ̂(M)
is given. Assume that for (x0,s0) the

(
x0
)T

s0 = nµ0, µ0 > 0 holds such that
δ(x0,s0,µ0)≤ τ.
begin
k := 0;
while

(
xk
)T

sk > ε do begin

(corrector step)
compute (∆cxk,∆csk) from system (2.7) using (2.5);
let

(
x+
)k

:= xk + ∆cxk and
(
s+
)k

:= sk + ∆csk;

(predictor step)
compute (∆pxk,∆psk) from system (3.2) using (2.5);
let (xp)k :=

(
x+
)k

+ θ∆pxk and (sp)k :=
(
s+
)k

+ θ∆psk;

(update of the parameters and the iterates)
(µp)k =

(
1− θ

2

)
µk;

xk+1 := (xp)k , sk+1 := (sp)k , µk+1 := (µp)k ;
k := k+ 1;

end
end.

In the following lemma an upper bound is given on the duality gap.
Lemma 4.3. [Corollary 3.3 in [31]] Let δ := δ(x,s;µ) and suppose that the vectors x+

and s+ are obtained using a full-Newton step, thus x+ = x+∆x and s+ = s+∆s. In case
of ϕ(t) = t2− t+

√
t we have (

x+
)T

s+ ≤ µ(n+ 9δ2).

We present technical lemmas that will be used later in the analysis. The following result
is independent from the selection of the AET function. Let

qϕ = dcx−dcs. (4.1)
Lemma 4.4. [Lemma 5.4 in [14]] The following inequality holds:

‖qϕ‖ ≤ 2
√

1 + 4κ δ,
where δ = δ(x,s,µ).

Throughout this section we assume that M is a P∗(κ)-matrix for a given κ≥ κ̂(M)≥ 0
upper bound.

Easy computations lead (for details see [14], page 2641) to the following inequality
(1 + 4κ)

∑
i∈I+

dpxid
p
si +

∑
i∈I−

dpxid
p
si ≥ 0, (4.2)

The next lemma is a technical one which will be used later in the analysis.
6



Lemma 4.5. Let f̄ : (d̄,+∞)→ R+ be a function, where d̄ > 0 and |f̄(t)| ≥ k̄ |1− t|, for
t > d̄, where k̄ > 0. Then,

‖f̄(v)‖ ≥ k̄‖e−v‖.

Proof. We have

‖f̄(v)‖ =
√√√√ n∑
i=1

(
f̄(vi)

)2
≥ k̄

√√√√ n∑
i=1

(1−vi)2 = k̄‖e−v‖,

which leads to the result. �

The following result depends on the current AET function ϕ(t) = t2− t+
√
t, therefore

we need to prove a similar result to that of Lemma 5.3. in [14]. Since many steps of the
proof of our new lemma is very similar to the proof of the earlier result, therefore we only
focus on the differences caused by the new AET function.

Lemma 4.6. Let ϕ(t) = t2− t+
√
t. Then,

‖dpxdps‖ ≤
n
(
1 + κ

2

)
(1 + 4δ+)2

2 ,

where δ+ = δ(x+,s+,µ) =
∥∥∥∥∥(e−v+)(e + (v+)2 + (v+)3)

4(v+)3−2v+ + e

∥∥∥∥∥ .

Proof. We use the second equation of the scaled predictor system (3.2) and we obtain the
following: ∑

i∈I+

dpxid
p
si ≤

1
4‖d

p
x+ dps‖2 = ‖v

+‖2

16 .

Using the previous bound and (4.2) we get

‖v+‖2 ≥ 1
4‖v

+‖2 = ‖dpx+ dps‖2 = ‖dpx‖2 +‖dps‖2 + 2
∑
i∈I+

dpxid
p
si +

∑
i∈I−

dpxid
p
si


≥ ‖dpx‖2 +‖dps‖2−8κ

∑
i∈I+

dpxid
p
si

≥ ‖dpx‖2 +‖dps‖2−
1
2κ‖v

+‖2.

This means that ‖dpx‖2 +‖dps‖2≤
(
1 + κ

2

)
‖v+‖2. Exactly on the same way as in [14] (page

2642) we get
‖v+‖ ≤

√
n(σ+ + 1), (4.3)

where σ+ = ‖e−v+‖. Now we need to compute a lower bound on δ+. Using Lemma 4.5
we derive

δ+ = 1
2

∥∥∥∥∥2(e−v+)(e + (v+)2 + (v+)3)
4(v+)3−2v+ + e

∥∥∥∥∥= ‖f̄(v)‖ ≥ 1
4
∥∥∥e−v+

∥∥∥= σ+

4 , (4.4)

where f̄(t) = (1−t)(1+t2+t3)
4t3−2t+1 and it can be shown that |f̄(t)| ≥ 1

4 |1− t|.Using (4.3) and (4.4)
we obtain

‖v+‖ ≤
√
n(1 + 4δ+). (4.5)
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From the previous steps,

‖dpxdps‖ ≤
1
2
(
‖dpx‖2 +‖dps‖2

)
≤ 1

2

(
1 + κ

2

)∥∥∥v+
∥∥∥2
≤
n(1 + κ

2 )(1 + 4δ+)2

2 ,

which yields the result. �

In the next part we deal with the predictor step. Consider the following notations:
xp(α) = x+ +α θ ∆px, sp(α) = s+ +α θ ∆ps,

for 0≤ α≤ 1 and θ ∈ (0,1). We have

xp(α) = x+

v+ (v+ +α θ dpx), xp(α) = s+

v+ (v+ +α θ dps).

Using the second equation of the scaled predictor system (3.2) and the computations given
in (5.17), page 2643 in [14], we get the following:

xp(α)sp(α) = µ
((

v+
)2

+αθv+
(
−1

2 v+
)

+α2 θ2 dpxdps
)

= µ
((

1− 1
2αθ

)(
v+
)2

+α2 θ2 dpxdps
)
. (4.6)

From (4.6) and following the same ideas as in [14], we have the following:

min
 xp(α)sp(α)
µ
(
1− 1

2αθ
)
 = min

((
v+
)2

+ α2θ2

1− 1
2αθ

dpxdps

)

≥ min
((

v+
)2
− α2θ2

1− 1
2αθ
‖dpxdps‖∞e

)

≥ min
((

v+
)2
− θ2

1− 1
2θ
‖dpxdps‖∞e

)
(4.7)

The last inequality follows from the fact that

h(α) = α2θ2

1− 1
2αθ

is strictly increasing for 0≤ α≤ 1 and each fixed 0< θ < 1. Moreover, using
|1−v+

i | ≤ ‖e−v+‖, ∀i= 1, . . . ,n
we have

1−σ+ ≤ v+
i ≤ 1 +σ+, ∀i= 1, . . . ,n.

Using this and (4.4) we have

min
(
v+
)2
≥ (1−σ+)2 ≥ (1−4δ+)2 (4.8)

From Lemma 4.6 and (4.8) and using that ‖ · ‖∞ ≤ ‖ ·‖ we obtain

min
(

xp(α)sp(α)
µ(1− 1

2 αθ)

)
≥ (1−4δ+)2−

n
(
1 + κ

2

)
(1 + 4δ+)2 θ2

2− θ =: u(δ+, θ,n). (4.9)

Now, it is clear that u(δ+, θ,n)> 0 is sufficient for strict feasibility, namely xp(α)sp(α)> 0
for 0 ≤ α ≤ 1. Therefore, xp(α) and sp(α) do not change sign on 0 ≤ α ≤ 1. Since
xp(0) = x+> 0 and sp(0) = s+> 0, we can conclude that xp(1) = xp> 0 and sp(1) = sp> 0.

We are ready to summarize the previous analysis in the following lemma.

8



Lemma 4.7. Let (x+,s+)> 0 and µ > 0 such that δ+ := δ(x+,s+,µ)< 1
4 . Furthermore,

let 0< θ < 1. Let xp = x+ +θ∆px, sp = s+ +θ∆ps be the iterates after a predictor step.
Then, in case of ϕ(t) = t2− t+

√
t, we have xp,sp > 0 if u(δ+, θ,n)> 0, where

u(δ+, θ,n) := (1−4δ+)2−
n
(
1 + κ

2

)
(1 + 4δ+)2 θ2

2− θ .

This result is very similar to Lemma 5.5. [14] and the proof differes only in those parts
that are effected by the AET function ϕ. Later, we will present how could we fix the
parameters to get u(δ+, θ,n)> 0.
Let us introduce

vp =
√

xpsp
µp

, (4.10)

where µp =
(
1− θ

2

)
µ. The next lemma analyses the effect of a predictor step and the

update of µ on the proximity measure.

Lemma 4.8. Let ϕ(t) = t2− t+
√
t, δ+ := δ(x+,s+,µ)< 1

4 , µ
p =

(
1− θ

2

)
µ, where 0< θ <

1, and let xp and sp denote the iterates after a predictor step. Then,

δp := δ(xp,sp,µp)≤ 2(10 + 4κ)δ2 + 2θ2

2− θn
(

1 + κ

2

)
(1 + 4δ+)2,

where δ := δ(x,s,µ).

Proof. Let us compute δp by using (2.11)

δp :=

∥∥∥∥∥∥
(e−vp)

(
e + (vp)2 + (vp)3)

4(vp)3−2vp+ e

∥∥∥∥∥∥
=

∥∥∥∥∥∥(e− (vp)2)

(
e + (vp)2 + (vp)3)

(e + vp)
(
4(vp)3−2vp+ e

)
∥∥∥∥∥∥

=
∥∥∥(e− (vp)2) g(v)

∥∥∥≤ 2
∥∥∥e− (vp)2∥∥∥ , (4.11)

where we used that for the function g : R+→ R, g(t) = 1+t2+t3
(1+t)(4t3−2t+1) we have |g(t)| ≤ 2,

for all t > 0. It should be mentioned that the last inequality of (4.11) can be obtained by
using a modified version of Lemma 4.5.
From (4.6) we have

(vp)2 =
(
v+
)2

+ θ2

1− 1
2θ

dpxdps, (4.12)

hence we have

δp ≤ 2
∥∥∥∥∥e−(v+

)2
− θ2

1− 1
2θ

dpxdps

∥∥∥∥∥≤ 2
(∥∥∥∥e−(v+

)2∥∥∥∥+ θ2

1− 1
2θ
‖dpxdps‖

)
. (4.13)

Using (4.12) and inequality (5.25) given in [14] we get∥∥∥∥e−(v+
)2∥∥∥∥≤ ‖e−v2−vpϕ‖+

∥∥∥∥∥p2
ϕ

4

∥∥∥∥∥+
∥∥∥∥∥q2

ϕ

4

∥∥∥∥∥ , (4.14)
9



where qϕ is as given in (4.1). Using (2.11), after some calculations we obtain∥∥∥e−v2−vpϕ
∥∥∥ =

∥∥∥∥∥−2v5 + 4v3 + v2−4v + e
4v3−2v + e

∥∥∥∥∥
=

∥∥∥∥∥(4v3−2v + e)(−2v5 + 4v3 + v2−4v + e)
(e−v)2(e + v2 + v3)2 ·

p2
ϕ

4

∥∥∥∥∥
=

∥∥∥∥∥h(v)
p2
ϕ

4

∥∥∥∥∥≤ 8
∥∥∥∥∥p2

ϕ

4

∥∥∥∥∥ , (4.15)

where in the last inequality we used that|h(t)| ≤ 8, for all t > 0, where

h(t) = (4t3−2t+ 1)(−2t5 + 4t3 + t2−4t+ 1)
(1− t)2(1 + t2 + t3)2 = (−4t3 + 2t−1)(2t3 + 4t2 + 2t−1)

(1 + t2 + t3)2 .

Note that the last inequality of (4.15) can be derived by using a modified version of
Lemma 4.5. Using Lemma 4.4, (3.3), (4.14) and (4.15) we have∥∥∥∥e−(v+

)2∥∥∥∥ ≤ 9
∥∥∥∥∥p2

ϕ

4

∥∥∥∥∥+
∥∥∥∥∥q2

ϕ

4

∥∥∥∥∥≤ 9
(
‖pϕ‖

2

)2
+
(
‖qϕ‖

2

)2
≤ (10 + 4κ)δ2. (4.16)

From Lemma 4.6, (4.11) and (4.16) we get

δp ≤ 2(10 + 4κ)δ2 + 2θ2

2− θn
(

1 + κ

2

)
(1 + 4δ+)2, (4.17)

which gives the result. �

The next lemma provides an upper bound for the duality gap after a main iteration.

Lemma 4.9. Let ϕ(t) = t2− t+
√
t and 0< θ < 1. If xp and sp are the iterates obtained

after the predictor step of the algorithm, then

(xp)T sp ≤
(

1− θ2 + θ2

8

)(
x+
)T

s+ <
2(n+ 9δ2)µp

2− θ .

Proof. Using (4.6) with α = 1 and (4.10) we have

(xp)T sp = µpeT (vp)2 = µeT
((

1− θ2

)(
v+
)2

+ θ2dpxdps

)

=
(

1− θ2

)(
x+
)T

s+ +µθ2 (dpx)T dps. (4.18)

Using the technique given in the proof of Lemma 5.7 given in [14] we obtain

(xp)T sp ≤
(

1− θ2 + θ2

8

)(
x+
)T

s+.

If 0< θ < 1, then

1− θ2 + θ2

8 < 1. (4.19)

Using this, µp =
(
1− θ

2

)
µ, (4.19) and Lemma 4.3 we have

(xp)T sp ≤
(

1− θ2 + θ2

8

)(
x+
)T

s+

<
(
x+
)T

s+ < µ(n+ 9δ2) = 2(n+ 9δ2)µp
2− θ , (4.20)

10



which yields the result. �

In the following section we provide a set of parameters for which the PC IPA is well
defined. This means that if we have a feasible solution for which δ(x,s,µ)≤ τ , then after
a corrector and predictor step we will get that δp(xp,sp,µp)≤ τ . We use some ideas given
in [17].

5. Complexity bound

We introduce the following notation:

L(τ) = (1−2τ)2

(1 + 2τ)2 . (5.1)

The next lemma gives a condition related to the parameters τ and θ for which the PC
IPA is well defined.

Lemma 5.1. Let ϕ(t) = t2− t+
√
t, τ = 1

2r(10+4κ) , where r ≥ 2 and 0 < θ ≤ 1
q(10+4κ)

√
n
,

where q ≥ 2. If
i. r ≤ 2

5q,

ii. n(1+κ
2 )θ2

2−θ < L(τ),
then the PC IPA proposed in Algorithm 1 is well defined.

Proof. Let (x,s) ∈ F+ such that δ(x,s,µ) ≤ τ . After a corrector step, applying Lemma
4.2 we have

δ+ := δ(x+,s+,µ)≤ 2(10 + 4κ)δ2,

which is monotonically increasing with respect to δ. Using this and r ≥ 2 we get

δ+ ≤ 2(10 + 4κ)τ2 = 1
2r2(10 + 4κ) = 1

r
τ ≤ 1

2τ. (5.2)

Using n(1+κ
2 )θ2

2−θ < L(τ) and (5.2) we obtain

(1−4δ+)2−
n
(
1 + κ

2

)
θ2(1 + 4δ+)2

2− θ > (1−2τ)2−
n
(
1 + κ

2

)
θ2

2− θ (1 + 2τ)2 > 0, (5.3)

where we used that the function appearing on the left hand side is increasing with respect
to δ+. Condition ū(δc, θ,r) > 0 from Lemma 4.7 is satisfied. Furthermore, using τ =

1
2r(10+4κ) , r ≥ 2 and (5.2) we have δ+ ≤ 1

4r(10+4κ) <
1
80 <

1
4 . From Lemma 4.8, after a

predictor step and a µ-update we have

δp ≤ 2(10 + 4κ)δ2 + 2θ2

2− θn
(

1 + κ

2

)
(1 + 4δ+)2, (5.4)

where δ := δ(x,s,µ).
Using θ ≤ 1

q(10+4κ)
√
n
and κ≥ 0 we get

2
2− θ ≤

20q
20q−1 . (5.5)

We also consider
θ ≤ 1

q(10 + 4κ)
√
n
≤ 1
q
(
1 + κ

2

)√
n
. (5.6)

11



Using (5.5) and (5.6) we get
2n
(
1 + κ

2

)
θ2

2− θ ≤ n
(

1 + κ

2

) 20q
20q−1

1
q(10 + 4κ)

√
n

1
q
(
1 + κ

2

)√
n

= 20
q(20q−1)

1
10 + 4κ = 40r

(20q−1)q τ. (5.7)

Using (5.2) and κ≥ 0 we obtain

δ+ ≤ 2(10 + 4κ)δ2 ≤ 1
r
τ = 1

2r2(10 + 4κ) ≤
1

20r2 . (5.8)

From (5.7) and (5.8) we get
2n
(
1 + κ

2

)
θ2 (1 + 4δ+)2

2− θ ≤ 40r
(20q−1)q

(
1 + 1

5r2

)2
τ. (5.9)

From r ≥ 2, q ≥ 2 and r ≤ 2
5q we obtain

40r
(20q−1)q

(
1 + 1

5r2

)2
= 40r

q

1
20q−1

(
1 + 1

5r2

)2

≤ 40
39 ·

2
5 ·

441
400 <

1
2 . (5.10)

From (5.2), (5.4), (5.9) and (5.10) we get

δp <
(1

2 + 1
2

)
τ = τ, (5.11)

hence the PC IPA is well defined, hence if we have a feasible solution for which δ(x,s,µ)≤
τ , then after a corrector and predictor step we will get that δp(xp,sp,µp)≤ τ . �

The following lemma gives a sufficient condition for satisfying Condition ii. from Lemma
5.1.

Lemma 5.2. Let ϕ(t) = t2− t+
√
t, τ = 1

2r(10+4κ) , where r ≥ 2 and 0 < θ ≤ 1
q(10+4κ)

√
n
,

where q ≥ 2. Consider L given in (5.1). If
1
q2 < L

( 1
20r

)
, (5.12)

then condition ii. of Lemma 5.1 is satisfied.

Proof. From 0< θ ≤ 1
q(10+4κ)

√
n
and q ≥ 2 we have

1
2− θ ≤ 1. (5.13)

Furthermore, using the properties of the function ϕ, (5.6) and κ≥ 0 we get
n
(
1 + κ

2

)
θ2

2− θ ≤ n
(

1 + κ

2

) 1

q2
(
1 + κ

2

)2
n

= 1
q2
(
1 + κ

2

) ≤ 1
q2 . (5.14)

Besides this, from τ = 1
2r(10+4κ) and κ≥ 0 we obtain

τ ≤ 1
20r . (5.15)

12



It should be mentioned that the function L(τ) is strictly decreasing with respect to τ ,
hence using (5.15) we obtain

L(τ)≥ L
( 1

20r

)
. (5.16)

In this way, using (5.12), (5.13), (5.14) and (5.16) we obtain
n
(
1 + κ

2

)
θ2

2− θ ≤ 1
q2 < L

( 1
20r

)
≤ L(τ),

which yields the result. �

Lemma 5.3. Let ϕ(t) = t2− t+
√
t, τ = 1

2r(10+4κ) , where r ≥ 2 and 0 < θ ≤ 1
q(10+4κ)

√
n
,

where q ≥ 2. If Condition i. from Lemma 5.1 is satisfied, then Condition ii. from Lemma
5.1 also holds.

Proof. Consider the following function

z(r) =
2
(
1 + 1

10r

)
5r
(
1− 1

10r

) ,
which is decreasing with respect to r. Thus, for r ≥ 2 we have

z(r)≤ z(2)< 1. (5.17)
Using (5.17) and Condition i. of Lemma 5.1 we obtain that

q ≥ 5
2r >

1√
L
(

1
20r

) .
Hence, if Condition i. of Lemma 5.1 holds, then (5.12) is satisfied. Using Lemma 5.2,

we obtain that Condition ii. from Lemma 5.1 also holds. �

Corollary 5.1. Let ϕ(t) = t2− t+
√
t, τ = 1

2r(10+4κ) , where r≥ 2 and 0< θ≤ 1
q(10+4κ)

√
n
.

If q ≥ 5
2r, then the PC IPA proposed in Algorithm 1 is well defined.

Lemma 5.4. Let ϕ(t) = t2− t+
√
t, (x0,s0)∈F+, τ = 1

2r(10+4κ) , where r≥ 2 and 0< θ≤

1
q(10+4κ)

√
n
, where q ≥ 5

2r. Furthermore, let µ0 = (x0)T s0

n and δ(x0,s0,µ0)≤ τ . Moreover,

let xk and sk be the iterates obtained after k iterations of Algorithm 1. Then,
(
xk
)T

sk ≤ ε
for

k ≥ 1 +


2
θ

log
3
(
x0
)T

s0

2ε

 .
Proof. Using τ = 1

2r(10+4κ) , r ≥ 2, n≥ 1 and κ≥ 0, we get

δ2 ≤ 1
16(10 + 4κ)2 <

n

1600 . (5.18)

Using Lemma 4.9 we have(
xk
)T

sk <
2(n+ 9δ2)µk

2− θ <
1609nµk

1600
(
1− θ

2

) < 3
2

(
1− θ2

)k−1 (
x0
)T

s0.
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The inequality
(
xk
)T

sk ≤ ε holds if 3
2

(
1− θ

2

)k−1 (
x0
)T

s0 ≤ ε. We take logarithms, hence

(k−1) log
(

1− θ2

)
+ log

3
(
x0
)T

s0

2 ≤ log ε.

From log(1 + θ)≤ θ, θ ≥−1, it follows that the above inequality holds if

−θ2(k−1) + log
3
(
x0
)T

s0

2 ≤ log ε.

This yields the desired result. �

Theorem 5.1. Let ϕ(t) = t2− t+
√
t, τ = 1

2r(10+4κ) , where r ≥ 2 and 0< θ ≤ 1
q(10+4κ)

√
n
,

where q ≥ 5
2n. Then, the PC IPA proposed in Algorithm 1 is well defined and it performs

at most
O
(

(10 + 4κ)
√
n log 3nµ0

2ε

)
iterations. The output is a pair (x,s) satisfying xT s≤ ε.
Proof. The result follows from Corollary 5.1 and Lemma 5.4. �

Corollary 5.2. Let ϕ(t) = t2− t+
√
t and consider 0 < τ ≤ 1

40+16κ and 0 < θ ≤ 4
5
√
n
τ .

Then, the PC IPA proposed in Algorithm 1 is well defined and it performes at most

O
(

(10 + 4κ)
√
n log 3nµ0

2ε

)
iterations. The output is a pair (x,s) satisfying xT s≤ ε.
Proof. If τ ≤ 1

40+16κ , then we can find r ≥ 2 such that

τ = 1
2r(10 + 4κ) . (5.19)

Using θ ≤ 4
5
√
n
τ and τ ≤ 1

40+16κ we have

θ ≤ 4
5
√
n
τ ≤ 1

5(10 + 4κ)
√
n
.

Hence, we can find q ≥ 5 such that

θ = 1
q(10 + 4κ)

√
n
. (5.20)

Moreover, from (5.19), (5.20) and θ ≤ 4
5
√
n
τ we have

θ = 1
q(10 + 4κ)

√
n

= 2τr
q
√
n
≤ 4

5
√
n
τ,

therefore q ≥ 5
2r holds. All conditions from Lemma 5.1 are satisfied, hence from Corollary

5.1 and Lemma 5.4 we obtain the desired result. �

6. Numerical results

We implemented a variant of the proposed PC IPA in the C++ programming language.
There is a detailed explanation about the implementation in [50]. We did all computations
on a desktop computer with Intel quad-core 3.3 GHz processor and 16 GB RAM.
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We used Algorithm 2 in our implementation. We set the values θ = 0.999 and ε= 10−5

and the maximum of α to 3. We do not give upper bound for the proximity parameter τ
and we observe that in some cases the value of the proximity measure might become very
large. However, we ensure that feasibility holds in all cases.

Algorithm 2: Implemented PC IPA for P∗(κ)-LCPs
Let ε= 10−5 be the accuracy parameter, θ = 0.999 the update parameter and τ > 0
the proximity parameter, σ = 0.9999 decrease parameter, 0< α < 3 the step length.
Assume that for (x0,s0) ∈ F+, the

(
x0
)T

s0 = nµ0, µ0 > 0 holds such that
−Mx + s = q for a qiven matrix M and vector q.
begin
k := 0;
while

(
xk
)T

sk > ε do begin
(µp)k = (1− θ)µk;
(predictor step)
compute (∆pxk,∆psk) from system (3.2) using (2.5);

calculate local κ with κ(∆pxk) =−1
4

∆p(xk)TM∆pxk∑
i∈I+(∆p(xk)) ∆pxki (M∆pxk)i

compute α with
αxh := {− xi

∆xi : ∆xi < 0} and αsh := {− si
∆si : ∆si < 0}

αh := σ ·min{αxh ,αsh}
α := min{αh,3}
let (xp)k := xk +α∆pxk and (sp)k := sk +α∆psk;

(corrector step)
compute (∆cxk,∆csk) from system (2.7) using (2.5);
compute α with
αxh := {− xi

∆xi : ∆xi < 0} and αsh := {− si
∆si : ∆si < 0}

αh := σ ·min{αxh ,αsh}
α := min{αh,3}
let

(
x+
)k

:= (xp)k +α∆cxk and
(
s+
)k

:= (sp)k +α∆csk;

(update of the parameters and the iterates)

xk+1 :=
(
x+
)k
, sk+1 :=

(
s+
)k
, µk+1 :=

(
(xk+1)T sk+1

n

)k
;

k := k+ 1;

end
end.

In the literature there are only a few numerical results about LCPs, where the problem’s
matrix has positive handicap. Gurtuna et al. [24] and Asadi et al. [1] provided numerical
results based on 2× 2 or 3× 3 matrices that are related to P∗(κ)-LCPs having positive
handicap. Darvay et al. [14] presented numerical results on P∗(κ)-problems that were
generated by Illés and Morapitiye [25] and on P∗(κ)-LPCs with matrix having exponential
handicap, see (6.1). They also used their PC IPA to solve special, non-sufficient LCPs.
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They tested copositivity of matrices and they obtained promising results in spite of the
fact that they did not have P∗(κ)-matrices in those cases.

It is proven by De Klerk and E.-Nagy [18] that the handicap of the matrix can be
exponential in the size of the problem. They considered a matrix which was proposed by
Csizmadia:

M =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
...

...
... . . . ...

−1 −1 −1 · · · 1

 , (6.1)

and E.-Nagy proved that κ̂(M) = 22n−8−0.25, see [19].
We tested our implementation on problems generated using matrix (6.1) in order to show

promising results on problems that have exponential handicap. We compared our algorithm
with other PC IPA that was presented in [14].

We also used another versions of our implemented IPA by changing the right hand side of the
Newton system and scaled system and using other AET functions and a kernel function. In this
way we compared these versions with our new PC IPA with AET function ϕ(t) = t2− t+

√
t.

The chosen AET functions are ϕ(t) = t and ϕ(t) =
√
t. The parametric kernel function used

here is Ψp,σ = tp+1−1
p+1 + eσ(1−t)−1

σ , p ∈ [0,1], σ ≥ 1, see [23, 52]. We set p = 1 and σ = 5 in our
computations based on the Ψp,σ kernel function.

We generated 10-10 (x,s) starting point pairs for sizes of 10, 30, 50, 70, 100 of matrix (6.1)
from three different intervals, [0,1]n, [0,10]n and [0,100]n, respectively. The results for [0,1]n
can be found in Figure 1, for [0,10]n in Figure 2 and for [0,100]n in Figure 3.

We can see that in these cases the number of iterations seems to be increasing slightly in spite
of the exponential handicap. These results can be found in Figure 1, 2 and 3. Furthermore, it
can be seen from Figure 1, 2 and 3 that if x and s are from the same interval, the size of the
interval does not significantly change the number of iterations.

On the other hand, we generated other feasible LCP examples using the matrix (6.1) for
different sizes. We generated 10-10 examples where the random starting point pairs are not
from the same interval. We tested x ∈ [0,1]n with s ∈ [9,11]n, these results can be seen in
Figure 4, x ∈ [9,11]n with s ∈ [0,1]n, these results can be found in Figure 5, x ∈ [0,100]n with
s ∈ [9900,11000]n, these results can be seen in Figure 6, x ∈ [9900,11000]n with s ∈ [0,100]n,
these results can be found in Figure 7.

It can be seen from Figure 4 and 5 that if x values are significantly smaller than the values
of s the problem can be solved with less iteration number, even in case of problems with larger
size. To our best knowledge this phenomenon can be explained by the small local κ value. The
iteration numbers are almost constant (3 to 7 iterations, see figures). We investigated further
results with larger sizes in Figures 8 and 9. In Figure 8 it can be seen that the iteration numbers
slightly increase with the size, but in Figure 9 one can see that the iteration numbers are almost
constant. However, if the values of s are the smaller ones (see Figures 6 and 7), the solution can
be computed with more iteration numbers. This phenomenon can be explained by the difference
of the local κ which is relatively small compared to the value of the theoretical κ̂ in the case
when the values of x are the smaller one and relatively high in the other case. The detailed
explanation of the connection between the local κ and the change of duality gap and the step
length can be found in [50].

Furthermore, we showed that, the used kernel function with p = 1 and σ = 5 has slightly
worse iteration numbers than the shown three AET functions and the new AET function ϕ(t) =
t2− t+

√
t gives slightly better results than ϕ(t) =

√
t, as well. However, in Figures 1, 2, 3, 6

and 7 we can see that all the three AET functions have similar iteration numbers. In Figures
5 and 9 it can be seen that ϕ(t) = t2− t+

√
t works slightly better than the other variants of

the implemented algorithm, where the used search directions are different. Note that in those
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Figure 1. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [0,1]n and s ∈ [0,1]n. It can be
seen that the iteration numbers for all different variants are very far from the
theoretical ones.

cases where the local κ is small. In Figures 4 and 8 we can see that the PC IPA using the AET
function ϕ(t) = t2− t+

√
t has the same iteration number as the one which works with the AET

function ϕ(t) = t.

7. Conclusion

We proposed a new PC IPA for solving P∗(κ)-linear complementarity problems. In the AET
technique we used the function ϕ(t) = t2−t+

√
t which has inflection point. It is interesting that

the kernel corresponding to this AET function is neither self-regular, nor eligible. We showed
that the iteration bound of the PC IPA matches the best known iteration bound for this type
of PC IPAs. We also provided a set of parameters for which the PC IPA is well defined. In
order to show the efficiency of the algorithm we presented numerical results, as well. From the
numerical results we can conclude that in several cases, the choice of the AET function plays
important role in the number of iterations. As a future research we would like to understand
which AET functions should be used in the different LCP problems in order to obtain better
complexity bounds and numerical results, as well.
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Figure 2. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [0,10]n and s ∈ [0,10]n. It can be
seen that the iteration numbers for all different variants are very far from the
theoretical ones.

Figure 3. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [0,100]n and s ∈ [0,100]n. It can
be seen that the iteration numbers for all different variants are very far from the
theoretical ones. The size of the interval does not change the iteration number.

18



Figure 4. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [0,1]n and s ∈ [9,11]n. It can be
seen that the iteration numbers are almost constant.

Figure 5. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [0,100]n and s ∈ [9900,11000]n. It
can be seen that the iteration numbers are almost constant.
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Figure 6. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [9,11]n and s ∈ [0,1]n. It can be
seen that the iteration numbers for all different variants are very far from the
theoretical ones. However, more iterations were needed to solve the problem than
in case of Figures 1, 2 and 3.

Figure 7. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100 with the starting point x ∈ [9900,11000]n and s ∈ [0,100]n. It
can be seen that the iteration numbers for all different variants are very far from
the theoretical ones. Even more iterations were needed than in case of Figure 6.
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Figure 8. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100, 120, 140, 160, 180, 200 with the starting point x ∈ [0,1]n and
s ∈ [9,11]n. It can be seen that the iteration numbers are increasing.

Figure 9. PC IPA on the problem generated with matrix (6.1) in the size of
10, 30, 50, 70, 100, 120, 140, 160, 180, 200 with the starting point x ∈ [0,100]n
and s ∈ [9900,11000]n. It can be seen that the iteration numbers are almost
constant.
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