
This article was downloaded by: [146.110.64.32] On: 18 April 2023, At: 03:02
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Uniqueness of Clearing Payment Matrices in Financial
Networks
Péter Csóka, P. Jean-Jacques Herings

To cite this article:
Péter Csóka, P. Jean-Jacques Herings (2023) Uniqueness of Clearing Payment Matrices in Financial Networks. Mathematics of
Operations Research

Published online in Articles in Advance 16 Mar 2023

. https://doi.org/10.1287/moor.2023.1354

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023 The Author(s)

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2023.1354
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


Uniqueness of Clearing Payment Matrices in Financial Networks
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Abstract. We study bankruptcy problems in financial networks in the presence of general 
bankruptcy laws. The set of clearing payment matrices is shown to be a lattice, which guar-
antees the existence of a greatest clearing payment and a least clearing payment. Multiplic-
ity of clearing payment matrices is both a theoretical and a practical concern. We present a 
new condition for uniqueness that generalizes all the existing conditions proposed in the 
literature. Our condition depends on the decomposition of the financial network into 
strongly connected components. A strongly connected component that contains more than 
one agent is called a cycle, and the involved agents are called cyclical agents. If there is a 
cycle without successors, then one of the agents in such a cycle should have a strictly posi-
tive endowment. The division rule used by a cyclical agent with a strictly positive endow-
ment should be positive monotonic, and the rule used by a cyclical agent with a zero 
endowment should be strictly monotonic. Because division rules involving priorities are 
not positive monotonic, uniqueness of the clearing payment matrix is a much bigger con-
cern for such division rules than for proportional ones. As a final contribution of the paper, 
we exhibit the relationship between the uniqueness of clearing payment matrices and the 
continuity of bankruptcy rules, a property that is very much desired for stability of finan-
cial systems.
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1. Introduction
Over the last decades, financial networks have become increasingly interconnected, and the size of mutual finan-
cial obligations has become ever larger, thereby making systemic risk a more and more relevant concern. The 
standard analysis of systemic risk is based on the seminal work by Eisenberg and Noe [11]. This model has 
resulted in a large and rich literature, either extending it (Cifuentes et al. [6], Rogers and Veraart [24], Schulden-
zucker et al. [25], Shin [26]) or using it to relate the number and magnitude of defaults to the network topology 
(Acemoglu et al. [1], Cabrales et al. [2], Capponi et al. [3], Elliott et al. [12], Gai and Kapadia [15], Glasserman and 
Young [16]) or measuring systemic risk (Chen et al. [5], Demange [10]). The model has been fruitfully applied to 
the assessment of the systemic stability of financial systems; see, for instance, Elsinger et al. [13] for an applica-
tion to the Austrian banking system. For overviews of this stream of the literature, we refer to the excellent sur-
veys by Glasserman and Young [17] and Jackson and Pernoud [20].

In the Eisenberg and Noe [11] model, agents have endowments that include all the agents’ tangible and intan-
gible assets but exclude the claims and liabilities agents have toward the other agents. The mutual claims and lia-
bilities between agents are given by a liability matrix. The asset value of an agent is obtained as the sum of the 
agent’s endowments together with the payments received from the other agents who settle their liabilities. The 
equity of an agent is equal to the asset value minus the payments made to the other agents. It may well be that 
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the asset value of an agent is not sufficient to cover all the agent’s liabilities, in which case the agent has to 
default. Specific to the network setting is that the default of one agent has negative consequences for the asset 
value of other agents, which might result in those agents defaulting as well, a phenomenon known as contagion.

A clearing payment matrix describes how much the agents pay to each other. It needs to be consistent with the 
prevailing bankruptcy laws and should satisfy limited liability and priority of creditors. Limited liability imposes 
that the clearing payment matrix should not lead to negative equity for any of the agents. Priority of creditors is 
satisfied if the only circumstance under which an agent is allowed to default is when the agent has zero equity. 
Eisenberg and Noe [11] consider the case where the bankruptcy law prescribes that claimants should be paid an 
amount that is proportional to their claims and provide sufficient conditions that lead to a uniquely determined 
clearing payment matrix.

Although the principle of proportionality is important in actual bankruptcy law, Chatterjee and Eyigungor [4], 
Flores-Szwagrzak [14], and Moulin [23] argue priority to be another important principle. Kaminski [21] explains 
that American bankruptcy law is a mixed lexicographic-proportional system. In this paper, we study the unique-
ness of clearing payment matrices under general bankruptcy laws. We represent bankruptcy laws by division 
rules, which describe how insolvent agents should make payments to their claimants as a function of their asset 
value.

We present a system of equations with the property that a payment matrix is a clearing payment matrix if and 
only if it is a solution to the system of equations. This system is then used to establish that the set of clearing pay-
ment matrices has a lattice structure, which implies that there always exists a greatest clearing payment matrix 
and a least clearing payment matrix. Our research question is to find conditions such that the clearing payment 
matrix is unique, which implies that the greatest and least clearing payment matrices coincide.

The uniqueness of clearing payment matrices is of great theoretical and practical concern. Without uniqueness 
of the clearing payment matrix, bankruptcy laws together with the principles of limited liability and priority of 
creditors are not sufficient to pin down the payments that agents should make to each other. As argued in Jack-
son and Pernoud [19], the existence of multiple clearing payment matrices contributes to the fragility of the finan-
cial system as a consequence of endogenous uncertainty. Pessimistic beliefs about the payments to be received 
from other agents can become self-fulfilling and lead to a credit freeze, where agents stop making payments to 
each other. To make things worse as argued in Csóka and Herings [8], under a large class of decentralized clear-
ing processes, payments are made according to the least clearing payment matrix.

The uniqueness of the clearing payment matrix turns out to depend on the type of monotonicity of the division 
rules. Strict monotonicity requires that an increase in asset value of a defaulting agent leads to strictly higher pay-
ments to all claimants with a nonzero claim. Positive monotonicity weakens strict monotonicity and requires that 
an increase in asset value of a defaulting agent leads to strictly higher payments to all claimants receiving a 
strictly positive payment at the original asset value. Proportional division rules are strictly monotonic, and con-
strained equal losses division rules are positive monotonic; however, priority division rules and constrained 
equal awards division rules are not even positive monotonic.

Our sufficient condition for uniqueness of the clearing payment matrix depends on the decomposition of the 
liability matrix into strongly connected components. A strongly connected component is a maximal set of agents 
such that for any two distinct agents in the set, there is a chain of liabilities from one agent to the other (i.e., any 
two distinct agents in a strongly connected component are successors of each other). A strongly connected com-
ponent that consists of more than one agent is called a cycle. An agent that is part of a cycle is called a cyclical 
agent.

We demonstrate that the clearing payment matrix is unique if the following three properties are satisfied. First, 
every cycle without successors contains at least one agent with a strictly positive endowment. Second, any cycli-
cal agent with a strictly positive endowment uses a positive monotonic division rule. Third, any cyclical agent 
with a zero endowment uses a strictly monotonic division rule. Notice that our sufficient condition for unique-
ness only puts assumptions on the cyclical agents.

Our sufficient condition for uniqueness generalizes existing conditions that are found in the literature, even 
for the case where all agents use proportional division rules. Eisenberg and Noe [11] assume proportional divi-
sion rules and require the financial network to be regular; every agent has at least one successor with a strictly 
positive endowment. Koster [22] generalizes this finding and shows that regularity is a sufficient condition for 
uniqueness of the clearing payment matrix when all agents use strictly monotonic division rules. Regularity 
implies that in every cycle without successors, there is at least one agent with a strictly positive endowment. The 
other two properties required in our uniqueness condition are trivially satisfied when all agents use proportional 
or more generally, strictly monotonic division rules.
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Glasserman and Young [16] also study the case of proportional division rules and obtain uniqueness by 
assuming the existence of an outside sector, which is such that every agent has direct or indirect liabilities to an 
agent in the outside sector. We show how the outside sector can be represented by a single agent in the network, 
who has no liabilities to other agents in the network. It then follows that there are no cycles in the network with-
out successors. Because moreover, proportional division rules are strictly monotonic, our uniqueness condition 
is trivially satisfied.

Groote Schaarsberg et al. [18] call a financial network hierarchical if the liability matrix can be transformed 
into an upper triangular matrix. They show that the clearing payment matrix is unique in hierarchical financial 
networks without further assumptions on the division rules. Because a financial network is hierarchical if and 
only if there are no cycles, their condition for uniqueness is subsumed by ours.

Our uniqueness condition is quite weak when all agents use proportional division rules because then, it only 
requires that in cycles without successors, at least one agent has a strictly positive endowment. On the contrary, 
when agents use priority division rules, we present an example with a multiplicity of clearing payment matrices 
even when all agents have strictly positive endowments.

We conclude the paper by examining a class of bankruptcy rules, which are defined by associating with each 
financial network its greatest clearing payment matrix. Without continuity, an arbitrarily small change in the 
endowments or the liabilities can lead to a complete disruption of the payment matrix, which poses a threat to 
the stability of the financial system. We show that uniqueness of clearing payment matrices is a sufficient condi-
tion for continuity of such bankruptcy rules. We demonstrate by means of an example how multiplicity of pay-
ment matrices leads to a lack of continuity. We also present an example to show that our sufficient condition is 
not necessary.

This paper is organized as follows. Section 2 presents the model of financial networks, the various forms of 
monotonicity of division rules, and the definition of a clearing payment matrix. Section 3 is devoted to the lattice 
structure of the set of clearing payment matrices. Section 4 presents an example to show that under priority divi-
sion rules, multiplicity of payment matrices can occur even when all endowments are strictly positive. This sec-
tion also presents the main result of the paper: the sufficient condition for clearing payment matrices to be 
unique. Section 5 discusses the relation to other conditions for uniqueness that are found in the literature. We 
examine the connection between the uniqueness of clearing payment matrices and continuity of bankruptcy 
rules in Section 6. Finally, Section 7 presents the conclusion. All proofs except those related to Section 5 are rele-
gated to Section 7.

2. Financial Networks
A financial network N is a quadruple (I, z, L, d) with the following interpretation. The set of agents in the financial 
network is given by the finite set I: The vector z ∈ RI

+ represents the nonnegative endowments of the agents, which 
include all the agents’ tangible and intangible assets but exclude the claims and liabilities agents have toward 
each other. The liability matrix L ∈ RI×I

+ describes the mutual claims of the agents. Its entry Lij is the liability of 
agent i toward agent j or equivalently, the claim of agent j on agent i: In general, it can occur that agent i has a lia-
bility toward agent j and vice versa, so it may happen that simultaneously Lij > 0 and Lji > 0: We make the nor-
malizing assumption that Lii � 0: The total liabilities of agent i ∈ I are denoted by Li �

P
j∈ILij:

The determination of the payments to the agents takes place by means of division rules, d � (di)i∈I: A division 
rule di describes which payments agent i makes to claimants in I as a function of the estate Ei ∈ R+ of agent i:
More formally, the division rule of agent i ∈ I is a function di : R+ → RI

+ such that, for every j ∈ I, di
j(Ei) ≤ Lij and 

P
j∈I di

j(Ei) �min{Ei, Li}: Because Lii � 0, it follows from the definition of a division rule that di
i(Ei) � 0: We assume 

that, for every i ∈ I, di is monotonic. More precisely, for every j ∈ I, for every Ei, E′i ∈ R+ such that Ei ≤ E′i , it holds 
that di

j(Ei) ≤ di
j(E′i ): It is well known that if di is monotonic, then it is continuous; see, for instance, Thomson [28].

Next, we define additional monotonicity conditions that will be useful in the analysis of the uniqueness of 
clearing payment matrices. The asset value at which agent i starts to make payments to an agent j ∈ I with Lij > 0 
is denoted by aij, so di

j(Ei) � 0 if Ei ≤ aij and di
j(Ei) > 0 if Ei > aij:

Definition 1. Let N � (I, z, L, d) be a financial network. The division rule di : R+ → RI
+ of agent i ∈ I is strictly 

monotonic if, for every j ∈ I such that Lij > 0, for every Ei, E′i ∈ R+ such that 0 ≤ Ei < E′i ≤ Li, it holds that di
j(Ei) <

di
j(E′i ): It is positive monotonic if, for every j ∈ I such that Lij > 0, for every Ei, E′i ∈ R+ such that aij ≤ Ei < E′i ≤ Li, it 

holds that di
j(Ei) < di

j(E′i ):

Strict monotonicity requires that an increase in the asset value of a defaulting agent leads to strictly higher pay-
ments to all claimants with a nonzero claim. The proportional rule is an example of strictly monotonic division 
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rule. Positive monotonicity weakens strict monotonicity and requires that an increase in asset value of a default-
ing agent leads to strictly higher payments to all claimants receiving a strictly positive payment at the original 
asset value. An example of a positive monotonic division rule is the constrained equal losses rule. The con-
strained equal awards rule is neither strictly monotonic nor positive monotonic. Formal definitions of these divi-
sion rules follow later in this section.

An easy way to check the various monotonicity conditions is as follows. If we plot the payments chosen by the 
division rule for each claimant as a function of the estate, then strict monotonicity requires these plots to be 
strictly increasing, whereas positive monotonicity requires these plots to be strictly increasing as soon as they 
assign a strictly positive payment.

We now proceed by giving formal definitions of some important division rules: the proportional rule, the pri-
ority rule, the constrained equal awards rule, and the constrained equal losses rule.

The division rule di of agent i ∈ I is equal to the proportional rule if it assigns to claimant j ∈ I the amount

di
j(Ei) �

0, if Lij � 0,

min
Lij

Li
Ei, Lij

� �

, otherwise:

8
<

:

Under the proportional division rule, the estate is divided in a proportional way over the claimants, up to the 
value of their claims.

The division rule di of agent i ∈ I is equal to a priority rule if there exists a permutation π : I→{1, : : : , | I |} such 
that the amount assigned to claimant j ∈ I is equal to

di
j(Ei) �max 0, min Lij, Ei �

X

{k∈I |π(k)<π(j)}
Lik

8
<

:

9
=

;

8
<

:

9
=

;
, 

where {k ∈ I | π(k) < π(j)} is the set of agents ranked before j according to π. Under the priority division rule, the 
claim of agent j1 � π�1(1) is the first one to be paid; if there is any remaining estate (i.e., Ei� Lij1 > 0), then the 
claim of agent j2 � π�1(2) is paid next and so on.

Another example of a division rule is the constrained equal awards rule. If Ei > Li, then define λi �maxj∈I Lij:
Otherwise, define λi ∈ [0, maxj∈I Lij] as the unique solution to

X

j∈I
min{Lij,λ} � Ei:

The constrained equal awards rule assigns to claimant j ∈ I the amount
di

j(Ei) �min{Lij,λi}:

Under the constrained equal awards rule, all claimants get the same amount, up to the value of their claim.
The constrained equal losses division rule is the dual of the constrained equal awards rule and imposes that all 

claimants face the same loss, up to the value of their claim. If Ei > Li, then define µi � 0: Otherwise, define µi ∈
[0, maxj∈I Lij] as the unique solution to X

j∈I
max{Lij�µi, 0} � Ei:

The constrained equal losses division rule of agent i assigns to claimant j ∈ I the amount

di
j(Ei) �max{Lij�µi, 0}:

The analysis of financial networks is complicated because of the mutual liability structure and the contagion 
effects of default. The determination of the value of the estate Ei of agent i ∈ I is endogenous as this value 
depends on the payments that are collected from the claims agent i has on the other agents.

Let M be the set of all matrices in RI×I
+ with a zero diagonal. For M ∈M and i ∈ I, let Mi ∈ RI denote row i of 

M: For Mi, M′i ∈ R
I, we write Mi <M′i if Mij ≤M′ij for all j ∈ I, and there is j′ ∈ I such that Mij′ <M′ij′ . Notice that 

the liability matrix L is an element of M:

A payment matrix P ∈M describes the mutual payments to be made by the agents: that is, Pij is the monetary 
amount to be paid by agent i ∈ I to agent j ∈ I. Under payment matrix P ∈M, the estate Ei of agent i is given by 
the asset value ai(P), defined as

ai(P) � zi +
X

j∈I
Pji:

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
4 Mathematics of Operations Research, Articles in Advance, pp. 1–19, © 2023 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

11
0.

64
.3

2]
 o

n 
18

 A
pr

il 
20

23
, a

t 0
3:

02
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Subtracting the payments as made by an agent from his asset value yields an agent’s equity. More formally, the 
equity ei(P) of an agent i ∈ I is given by

ei(P) � ai(P)�
X

j∈I
Pij � zi +

X

j∈I
(Pji�Pij):

It follows immediately from this expression that the sum over agents of their equities is the same as the sum over 
agents of their endowments.

We now extend the notions of priority of creditors and limited liability as defined for proportional division 
rules by Eisenberg and Noe [11] and feasibility for general division rules in a discrete setting by Csóka and Her-
ings [8] to general division rules in the continuous setting studied here.

The image F i of division rule di determines the feasible set of payments. More formally, we have

F i � di(R+) � {di(Ei) ∈ RI
+ |Ei ∈ R+}:

A payment matrix P ∈M is feasible if for every i ∈ I, it holds that Pi ∈ F i: A payment matrix is feasible if every 
row i of the payment matrix belongs to the feasible set of payments of agent i, meaning that payments are made 
in accordance with the division rules. The set of all feasible payment matrices is denoted by P, so

P � {P ∈M |∀i ∈ I, Pi ∈ F i}:

Definition 2. The matrix P ∈M is a clearing payment matrix of the financial network N � (I, z, L, d) if it satisfies 
the following three properties. 

1. Feasibility. P ∈ P:

2. Limited liability. For every i ∈ I, ei(P) ≥ 0:
3. Priority of creditors. For every i ∈ I, if Pi < Li, then ei(P) � 0:

Feasibility states that the payments are in accordance with the division rules. Limited liability requires that the 
total payments made by an agent do not exceed the asset value of the agent. Priority of creditors expresses that 
default is only allowed if equity is equal to zero. The analysis of Eisenberg and Noe [11] corresponds to the case 
where all agents use the proportional division rule. Csóka and Herings [8] address the general case for a discrete 
setup.

3. The Lattice of Clearing Payment Matrices
A first question is whether a clearing payment matrix always exists and if so, whether it is unique. To address 
these issues, we rewrite the conditions of a clearing payment matrix as the solution to a system of equations. 
Moreover, we show that the set of clearing payments matrices is a complete lattice. Csóka and Herings [8] have 
shown these results in a discrete setup, where all payments are integer multiples of some fixed unit of account. 
This section shows such results to remain true in the continuous setting. A final result in this section shows that 
all clearing payment matrices lead to the same value of equity, thereby slightly generalizing a result in Groote 
Schaarsberg et al. [18]. As demonstrated in Csóka and Herings [8], uniqueness of equity does not hold in the dis-
crete setup.

The following theorem relates a clearing payment matrix to the solution of a particular system of equations.

Theorem 1. The payment matrix P ∈M is a clearing payment matrix of the financial network N � (I, z, L, d) if and only if 
it solves the following system of equations:

Pij � di
j(ai(P)), i, j ∈ I:

Given a payment matrix P, one first computes the asset value ai(P) of agent i ∈ I, and then, one uses the division 
rule di to determine the payments to the other players. If these payments coincide with row i of the given pay-
ment matrix P for all i ∈ I, then P must be a clearing payment matrix and vice versa.

It is straightforward to verify that any solution to the system of equations in Theorem 1 satisfies feasibility, lim-
ited liability, and priority of creditors and so, must be a clearing payment matrix. For the other way around, if P 
is a clearing payment matrix and Pij would fall short of dij(ai(P)), then one would obtain a violation of priority of 
creditors. Limited liability can be used to show that Pij cannot exceed dij(ai(P)):

The system of equations we use to characterize clearing payment matrices is slightly different from the one 
used in Eisenberg and Noe [11] for proportional division rules and the one in Koster [22] for general division 
rules. In those two papers, each | I |-dimensional row of the payment matrix is represented by a one-dimensional 
parameter, like the fraction of total liabilities that are paid in Eisenberg and Noe [11].
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A lattice is a partially ordered nonempty set in which every pair of elements has a supremum and an infimum. 
A complete lattice is a lattice in which every nonempty subset has a supremum and an infimum. The partial order 
≤ on M is defined in the usual way; for P, P′ ∈M, it holds that P ≤ P′ if and only if Pij ≤ P′ij for all (i, j) ∈ I × I:
The following result states that there always exists a least clearing payment matrix and a greatest clearing pay-
ment matrix.

Theorem 2. The set of clearing payment matrices of the financial network N � (I, z, L, d) is a complete lattice. In particular, 
there exists a least clearing payment matrix P– and a greatest clearing payment matrix P+:

The literature has a number of results related to Theorem 2. Eisenberg and Noe [11] show that there is a least 
clearing payment matrix and a greatest clearing payment matrix when all agents use the proportional division 
rule. Csóka and Herings [8] prove the result of Theorem 2 for a discrete setup and do not allow for zero endow-
ments. All these papers rely on Tarski’s fixed point theorem for the proof.

Our next result, a modest generalization of a result by Groote Schaarsberg et al. [18] who assume that all 
agents use the same division rule, states that all clearing payment matrices lead to the same amount of equity.1

Theorem 3. If P and P′ are clearing payment matrices of a financial network N � (I, z, L, d), then e(P) � e(P′):

The result of Theorem 3 depends crucially on the fact that there is no smallest unit of account. Csóka and Her-
ings [8] show that in discrete setups (for instance, resulting from the presence of a smallest unit of account), 
equity is in general not unique.

4. Uniqueness of Clearing Payment Matrices
Our next research question concerns the uniqueness of a clearing payment matrix.

Eisenberg and Noe [11, theorem 2] implies that in a financial network where all agents have strictly positive 
endowments and use proportional division rules, the clearing payment matrix is unique. Surprisingly, when 
replacing proportional division rules by priority division rules, the clearing payment matrix need not be unique 
as Example 1 demonstrates.

Example 1. Let N � (I, z, L, d) be a financial network with four agents, I � {1, 2, 3, 4}, all using the priority division 
rule corresponding to π � (4, 3, 2, 1): Tables 1 and 2 present the endowments, the liabilities, the least clearing pay-
ment matrix P�, the greatest clearing payment matrix P+, and the induced asset values and equities. The sets of 
defaulting agents are different in P– and P+: in P–, agents 1, 2, and 3 default, whereas in P+, only agent 3 is 
insolvent.

In Example 1, the solvent agent, agent 4, makes the same payments in P– and P+: All defaulting agents in P�, 
agents 1, 2, and 3, make different payments in P– and P+: The next two propositions generalize these insights.

Proposition 1. Let N � (I, z, L, d) be a financial network, and let P– and P+ be the least and greatest clearing payment 
matrices of N, respectively. If i ∈ I satisfies P�i < P+i , then ei(P�) � ei(P+) � 0:

According to Proposition 1, if an agent makes different payments in two clearing payment matrices, then this 
agent has zero equity. This result follows immediately from the priority of creditors condition.

The next proposition shows how differences in payments by some agents propagate in the financial network. 
It provides conditions such that if there is a sequence of insolvent connected agents and the first agent pays more 
in the greatest than in the least clearing payment matrix to the second agent, then every agent in the sequence 
pays more in the greatest than in the least clearing payment matrix to the next agent.

For any two consecutive agents in the sequence, it is assumed that the former agent makes a strictly positive pay-
ment to the latter agent in the greatest clearing payment matrix. The agents in the sequence are also assumed to 
employ positive monotonic division rules. This will imply that when the asset value of an agent in the sequence is 

Table 1. The clearing payment matrix P– and its induced asset values and equities in 
Example 1 with priority division rules.

z L P– a(P�) e(P�)

1 0 8 0 0 0 2 0 0 2 0
1 0 0 10 0 0 0 4 0 4 0
1 7 0 0 5 0 0 0 5 5 0
1 1 1 0 0 1 1 0 0 6 4
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strictly below the asset value at the greatest clearing payment matrix, then strictly less is paid to the next agent in 
the sequence, implying that the asset value of that agent is strictly below the asset value at the greatest clearing pay-
ment matrix. Lower asset values then propagate across the sequence and lead to lower payments.

Proposition 2. Let N � (I, z, L, d) be a financial network; P– and P+ be the least and greatest clearing payment matrices of 
N, respectively; and i1 ∈ I be such that P�i1 < P+i1 : Let (i1, : : : , ik′ ) be a sequence of agents in I such that, for every 
k � 1, : : : , k′� 1,

dik is positive monotonic,
eik(P+) � 0,
P+ikik+1

> 0:

Then, for every k � 1, : : : , k′� 1, it holds that P�ikik+1
< P+ikik+1

:

Proposition 2 makes clear that if an agent makes different payments in two clearing payment matrices and this 
agent makes directly or indirectly a strictly positive payment to some other defaulting agents, then there is also 
multiplicity of payments by these other defaulting agents, at least when division rules are positive monotonic. 
The proof is by induction and establishes that along the sequence of agents, the asset value at the least payment 
matrix is strictly below the asset value at the greatest clearing payment matrix.

A sequence of k′ ≥ 2 distinct agents (i1, : : : , ik′ ) is a directed path in a matrix M ∈M if, for every k ∈ {1, : : : , k′� 1}, 
Mikik+1 > 0: Agent j ∈ I is connected to agent i ∈ I in M if there is a directed path (i1, : : : , ik′ ) in M such that i1 � i and 
ik′ � j:

Let N � (I, z, L, d) be a financial network. A set of agents S ⊂ I is said to be a strongly connected component in L if 
any two distinct agents in S are connected to each other in L and the set S is maximal with regard to this 
property.

For every i ∈ I, let O(i) denote the strongly connected component in L to which i belongs. The collection O �
{O(i) | i ∈ I} is a partition of I: We construct the directed graph (O, D) by defining

D � {(O, O′) ∈O ×O | ∃i ∈O, ∃j ∈O′, Lij > 0}, 

and so, for two distinct elements O, O′ ∈O, there is an arc from O to O′ if there is i ∈O and j ∈O′ such that Lij >

0: The successors of O ∈O in the directed graph (O, D) are given by the strongly connected components that are 
connected to O in (O, D): The directed graph (O, D) has no cycles. We can, therefore, order the sets in O and write 
O � {O1, : : : , OR}, where (Or, Or′ ) ∈D implies r < r′: In general, this order is not uniquely determined.

An agent i ∈ I is said to be a cyclical agent and the set O(i) is said to be a cycle if O(i) consists of at least two ele-
ments. Agent i is cyclical if and only if there is a directed path of agents in L starting at agent i such that the last 
agent on the path has a strictly positive liability toward agent i: The set of all cyclical agents is denoted by C:

We illustrate the directed graph (O, D) in Example 2.

Example 2. Consider a financial network with 13 agents I � {1, 2, : : : , 13}: In Figure 1, if agent i has a strictly posi-
tive liability to agent j, then we draw an arc from i to j.

The collection O � {O1, O2, O3, O4, O5} consists of the strongly connected components in L, where O1 � {1}, 
O2 � {2, 3, 4, 5, 6}, O3 � {7, 8, 12}, O4 � {9}, and O5 � {10, 11, 13}: The arcs between the strongly connected compo-
nents are given by D � {(O1, O3), (O2, O4), (O2, O5)}. The successor of O1 is O3, and the successors of O2 are O4 
and O5. The directed graph (O, D) has no cycles. The sets O2, O3, and O5 are cycles. The set of cyclical agents is 
equal to C �O2 ∪O3 ∪O5 � {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13}: For r ∈ {1, 2, 3, 4, 5}, agents in Or only have strictly posi-
tive liabilities to agents in Or′ with r′ ≥ r: In this example, we could have chosen a different order on the collec-
tion of strongly connected components. For instance, we could have ordered O � {9} before O′ � {7, 8, 12}:

Table 2. The clearing payment matrix P+ and its induced asset values and equities in 
Example 1 with priority division rules.

z L P+ a(P+) e(P+)

1 0 8 0 0 0 8 0 0 8 0
1 0 0 10 0 0 0 10 0 10 0
1 7 0 0 5 6 0 0 5 11 0
1 1 1 0 0 1 1 0 0 6 4

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
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The next result presents a sufficient condition for the clearing payment matrix to be unique. This condition 
only involves the cyclical agents.

Theorem 4. Let N � (I, z, L, d) be a financial network such that 
1. if O ∈O is a cycle and has no successors, then 

P
i∈Ozi > 0;

2. for every i ∈ C with zi > 0, di is positive monotonic; and
3. for every i ∈ C with zi � 0, di is strictly monotonic.
Then, N has a unique clearing payment matrix.

The sufficient conditions for the clearing payment matrix to be unique in Theorem 4 are that (1) at least one 
agent in a cycle without successors has a strictly positive endowment, (2) the division rules of cyclical agents 
with strictly positive endowments are positive monotonic, and (3) the division rules of cyclical agents with zero 
endowments are strictly monotonic. A detailed comparison of how these conditions relate to other sufficient con-
ditions for uniqueness as found in the literature is made in Section 5.

Our sufficient condition shows that with strictly monotonic division rules, uniqueness of the clearing payment 
matrix is to be expected. The only condition that is needed in this case is that the aggregate endowments in a 
cycle without successors are strictly positive, which is very mild. Our sufficient condition is also not very restric-
tive for positive monotonic division rules. In that case, it requires that cyclical agents have strictly positive 
endowments. On the other hand, when division rules are monotonic but not positive monotonic, then our suffi-
cient condition requires that there are no cyclical agents. This is definitely restrictive. As illustrated by Example 1
for priority division rules, it is possible to have multiple clearing payment matrices, even when all endowments 
are strictly positive. Example 3 presents a similar example for constrained equal awards rules. We obtain the pol-
icy implication that strictly monotonic division rules like proportional or positive monotonic division rules like 
constrained equal losses are preferable to monotonic division rules in financial networks as they avoid multiplic-
ity of clearing payment matrices and thereby, as is argued in Section 6, potential discontinuities in the financial 
system.

The proof of Theorem 4 proceeds in three steps. First, the agents are partitioned into the strongly connected 
components of the liability matrix. In the first step, it is shown that payments made by the cyclical agents are 
uniquely determined. The first step distinguishes the case where the agents in a particular cycle have strictly pos-
itive aggregate endowments or receive a strictly positive amount from agents outside the cycle and the case 
where these agents all have zero endowments and do not receive any payments from agents outside the cycle. In 
the former case, the proof of this step relies heavily on Proposition 2 and shows that the agents in the cycle are 
connected in the greatest clearing payment matrix to an agent with strictly positive equity. The latter agent fully 
pays its liabilities, and from Proposition 1 on the uniqueness of equity across all clearing payment matrices, it 
should have uniquely determined incoming payments. This is then shown to imply uniqueness of payments 

Figure 1. Agents, liabilities, and the ordered sets O in Example 2. 
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made by all agents in the cycle. When the endowments of all agents in the cycle are equal to zero, then the 
assumptions of the theorem imply that all the agents have strictly monotonic division rules and that the cycle 
has a successor. Nonuniqueness of the payments of the agents in the cycle would imply a strictly positive pay-
ment in the greatest clearing payment matrix to an agent that belongs to a successor of the cycle, which leads to a 
contradiction. Steps 2 and 3 in the proof use induction on the tree that is formed by the partition of the agents in 
strongly connected components. Step 2 considers the base case for the payments made by agents in O1, and Step 
3 contains the induction step. If O1 is a cycle, then uniqueness of the payments made by the corresponding agents 
follows from Step 1. If O1 is a singleton, then uniqueness of the payments by the corresponding agent follows 
easily from limited liability and priority of creditors. The induction in Step 3 essentially repeats these arguments.

5. Relation to Other Uniqueness Conditions in the Literature
The literature has found a number of conditions to obtain a unique clearing payment matrix. In this section, we 
show how earlier findings by Csóka and Herings [7], Eisenberg and Noe [11], Glasserman and Young [16], 
Groote Schaarsberg et al. [18], and Koster [22] are special cases of the condition presented in Theorem 4.

We start with the uniqueness result derived in Eisenberg and Noe [11]. Eisenberg and Noe [11] restrict atten-
tion to proportional division rules. As mentioned before, such rules are strictly monotonic. To explain their con-
ditions, we need the definitions of risk orbit and regular financial network.

Given a financial network N � (I, z, L, d), the set consisting of agent i ∈ I together with all agents j ∈ I that are 
connected to agent i in L is denoted by O+(i): Eisenberg and Noe [11] refer to O+(i) as the risk orbit of agent i:
The set O+(i) is equal to the union of O(i) and the sets in O that are successors of O(i) in (O, D): The financial net-
work N � (I, z, L, d) is said to be regular if, for every i ∈ I, 

P
j∈O+(i) zj > 0:2 Regularity rules out the situation where 

agent i has a zero endowment and none of the agents to which agent i has direct or indirect liabilities have a 
strictly positive endowment. A sufficient condition for regularity is that all agents have strictly positive endow-
ments. Another sufficient condition for regularity is that one agent has a strictly positive endowment and O con-
sists of a single set, so there is a single strongly connected component.

Proposition 3 (Eisenberg and Noe [11]). Let N � (I, z, L, d) be a regular financial network such that all agents use the 
proportional division rule. Then, N has a unique clearing payment matrix.

Proof. If O ∈O is a cycle and has no successors, then for every i ∈O, O+(i) �O: Then, regularity implies that P
i∈Ozi > 0, so condition (1) of Theorem 4 is satisfied.
Because the proportional division rule is strictly monotonic, conditions (2) and (3) of Theorem 4 are satisfied. w

Glasserman and Young [16] extend the Eisenberg and Noe [11] model by allowing agents to have liabilities to 
nodes outside the network. More precisely, bi ≥ 0 corresponds to the total liabilities of agent i ∈ I to nodes outside 
the network. Glasserman and Young [16] have the following condition for uniqueness of the clearing payment 
matrix. Every agent has strictly positive direct or indirect liabilities to nodes outside the network. Using our nota-
tion, for every agent i ∈ I, there is j ∈O+(i) such that bj > 0:

We continue by embedding the Glasserman and Young [16] model into the Eisenberg and Noe [11] framework 
and next, reformulate their uniqueness condition. To do so, we represent the nodes outside the network by a sin-
gle agent 0. The agents inside the network are represented by the set {1, : : : , n}: We assume, without loss of gener-
ality, that z0 � 0: Agent 0 has no liabilities to nodes in the network, and so, for every i ∈ {1, : : : , n}, L0i � 0: The 
liabilities of agents in the network to nodes outside the network are now replaced by liabilities to agent 0; so, for 
every i ∈ {1, : : : , n}, Li0 � bi: We obtain a financial network N � (I, z, L, d) by taking I � {0, 1, : : : , n} and for every i ∈
I, di equal to the proportional division rule. The uniqueness condition of Glasserman and Young [16] can now be 
formulated as the requirement that, for every i ∈ I, 0 ∈O+(i): Notice that O+(0) � {0} by construction.

Proposition 4 (Glasserman and Young [16]). Let N � (I, z, L, d) be a financial network such that I � {0, 1, : : : , n}, z0 � 0, 
for every i ∈ I, L0i � 0, and all agents use the proportional division rule. If, for every i ∈ I, 0 ∈O+(i), then N has a unique 
clearing payment matrix.

Proof. It clearly holds that {0} ∈O, and by assumption, {0} is a successor of every O ∈O \ {{0}}: As there are no 
cycles without successors, condition (1) of Theorem 4 is, therefore, trivially satisfied.

Because the proportional division rule is strictly monotonic, conditions (2) and (3) of Theorem 4 are satisfied. w

The conditions of Propositions 3 and 4 are quite different. Proposition 3 makes sure that there are strictly posi-
tive endowments among every agent and its successors, whereas Proposition 4 makes no assumption regarding 
the endowments but assumes strictly positive liabilities to a designated agent, representing the outside sector.
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Groote Schaarsberg et al. [18] provide a sufficient condition for uniqueness of the clearing payment matrix for 
the case with general division rules. A financial network is called hierarchical if, by reordering the agents, the 
matrix L can be transformed into an upper triangular matrix (i.e., a matrix with zeros below the diagonal).

Proposition 5 (Groote Schaarsberg et al. [18]). Let N � (I, z, L, d) be a hierarchical financial network.3 Then, N has a 
unique clearing payment matrix.

Proof. If the matrix L can be written in an upper triangular form, then are no cycles and no cyclical agents, so the 
conditions of Theorem 4 are trivially satisfied. w

Even when attention is restricted to proportional division rules, the conditions of Proposition 5 are indepen-
dent from those of Propositions 3 and 4. Unlike Propositions 3 and 4, cycles are not allowed. On the other hand, 
Proposition 5 makes no assumptions on endowments and does not require that all agents have a strictly positive 
liability to a designated agent. The proposition also applies to division rules, which are not proportional.

Koster [22] extends the regularity condition of Eisenberg and Noe [11] from proportional division rules to 
strictly monotonic division rules.

Proposition 6 (Koster [22]). Let N � (I, z, L, d) be a regular financial network such that all agents use a strictly monotonic 
division rule.4 Then, N has a unique clearing payment matrix.

Proof. If O ∈O is a cycle and has no successors, then for every i ∈O, O+(i) �O: Then, regularity implies that P
i∈O zi > 0, so condition (1) of Theorem 4 is satisfied.
Because division rules are assumed to be strictly monotonic, conditions (2) and (3) of Theorem 4 are 

satisfied. w

Proposition 6 shows that the conditions of Proposition 3 can be extended from proportional division rules to 
arbitrary strictly monotonic division rules. The conditions in Proposition 6 are clearly independent from those of 
Proposition 5.

As we noted before, the constrained equal losses division rule does not satisfy strict monotonicity. Our gener-
alization to positive monotonicity in Theorem 4 guarantees that the clearing payment matrix is unique when all 
agents use the constrained equal losses division rule and endowments of cyclical agents are all strictly positive, a 
result that was also stated in the working paper by Csóka and Herings [7, theorem 7.8]. This result is in stark con-
trast with the case of constrained equal awards division rules as will be demonstrated in the next example. This 
is surprising because both division rules can be considered as each other’s dual and share many common fea-
tures; see Thomson [28]. The example has the same primitives as Example 1, except that the priority division 
rules are replaced by constrained equal awards rules.

Example 3. Let N � (I, z, L, d) be a financial network with three agents I � {1, 2, 3, 4}, all using constrained equal 
awards rules. Tables 3 and 4 present the endowments, the liabilities, the least clearing payment matrix P–, the 
greatest clearing payment matrix P+, and the induced asset values and equities. Because constrained equal 
awards division rules are not positive monotonic, positivity of the endowments is not sufficient to guarantee 
uniqueness of the clearing payment matrix.

6. Bankruptcy Rules
We consider a class of bankruptcy rules, which are defined by assigning to each financial network a clearing pay-
ment matrix and in case of multiplicity of clearing payment matrices, the greatest one. Continuity is a very desir-
able property of such bankruptcy rules. Without continuity, an arbitrarily small change in the endowments or 
the liabilities can lead to a complete disruption of the payment matrix, clearly being very detrimental to the sta-
bility of the financial system. In this section, we show that uniqueness of the clearing matrix is sufficient to obtain 

Table 3. The clearing payment matrix P+ and its induced asset values and equities in 
Example 3 with constrained equal awards rules.

z L P– a(P�) e(P�)

1 0 8 0 0 0 7 0 0 7 0
1 0 0 10 0 0 0 9 0 9 0
1 7 0 0 5 5 0 0 5 10 0
1 1 1 0 0 1 1 0 0 6 4
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continuity of the bankruptcy rule. When there is multiplicity of payment matrices, we have examples showing 
that there is no selection of them that makes the bankruptcy rule continuous. We also present an example with 
multiplicity of clearing payment matrices but a continuous bankruptcy rule, which shows that uniqueness of the 
clearing payment matrix is not a necessary condition to obtain a continuous bankruptcy rule.

In this section, we fix the set of agents I and the division rules d, but we allow the endowments z and the liabil-
ity matrix L to vary. To avoid confusion, we make the dependence of the division rule on the vector of liabilities 
explicit and write di(E, Li) for the division rule of agent i ∈ I: We also make the dependence on endowments of 
the asset value and equity explicit and write ai(z, P) and ei(z, P) for the asset value and equity of agent i ∈ I, 
respectively.

We assume that, for every i ∈ I, di is continuous in Li, an assumption that is satisfied for all commonly used 
division rules. The set of financial networks, denoted by N , consists of all pairs of vectors of endowments in RI

+

and liability matrices in M, so

N � RI
+ ×M:

We next define the bankruptcy rule b : N →M by associating the greatest clearing payment matrix to the finan-
cial network N � (z, L) ∈N :

Definition 3. Let I and d be given. The bankruptcy rule b : N →M is given by
b(z, L) � P+, (z, L) ∈N , 

where P+ is the greatest clearing payment matrix for the financial network (z, L):
In general, each agent could use a different division rule. However, if a bankruptcy rule is based on the same 

division rule for each agent, we associate the name of the division rule to the bankruptcy rule. For instance, if all 
agents use the constrained equal awards division rule, then we call the resulting bankruptcy rule the constrained 
equal awards bankruptcy rule.

We endow N with the standard topology, based on the Euclidean topology for endowments and liabilities. 
Continuity is an attractive property of a bankruptcy rule because it implies that small changes in the financial 
network induce small changes in the resulting payment matrix. Continuity is also used as an axiom in Csóka and 
Herings [9] in order to axiomatize the proportional bankruptcy rule. The next result relates the uniqueness of the 
clearing payment matrix to the continuity of the bankruptcy rule b and states that b is continuous at any financial 
network with a unique clearing payment matrix. The proof is based on a standard limit argument.

Theorem 5. Let I and d be given. Let (z, L) ∈N be such that the financial network N � (z, L) has a unique clearing pay-
ment matrix. Then, b is continuous at N:

Consider the proportional bankruptcy rule on the domain of financial networks (z, L) where the first condition 
of Theorem 4 is satisfied or the constrained equal losses bankruptcy rule on the domain of financial networks 
(z, L) where all cyclical agents have strictly positive endowments. By Theorem 5, these bankruptcy rules are con-
tinuous. Such a result was also presented in the working paper by Csóka and Herings [7] for the special case 
where all endowments are strictly positive. They also present the following example to show that a similar result 
does not hold for the constrained equal awards bankruptcy rule.

Example 4. Let N � (z, L) be a financial network with three agents, I � {1, 2, 3}, all using the constrained equal 
awards rule. Table 5 presents the endowments, the liabilities, the payment matrix P+ resulting from the con-
strained equal awards bankruptcy rule, and the induced asset values and equities. Agents are all able to pay their 
liabilities, although agents 1 and 2 end up with zero equity.

Now, for ε > 0, consider the financial network Nε � (z, Lε) as displayed in Table 6, where the liabilities of both 
agents 1 and 2 to agent 3 have gone up by ε:

Table 4. The clearing payment matrix P– and its induced asset values and equities in 
Example 3 with constrained equal awards rules.

z L P+ a(P+) e(P+)

1 0 8 0 0 0 8 0 0 8 0
1 0 0 10 0 0 0 10 0 10 0
1 7 0 0 5 6 0 0 5 11 0
1 1 1 0 0 1 1 0 0 6 4

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
Mathematics of Operations Research, Articles in Advance, pp. 1–19, © 2023 The Author(s) 11 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

11
0.

64
.3

2]
 o

n 
18

 A
pr

il 
20

23
, a

t 0
3:

02
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Because constrained equal awards require the same payments from agent 1 to agents 2 and 3, up to their 
claims, agent 1 can pay at most one unit to both agents. The same is true for the payments of agent 2 to agents 1 
and 3. Under these payments, agents 1 and 2 end up with zero equity and default partially on all their liabilities. 
We have that

lim
ε↓0

b(zε, Lε) � lim
ε↓0

Pε �
0 1 1
1 0 1
0 0 0

2

4

3

5 ≠
0 2 1
2 0 1
0 0 0

2

4

3

5 � P+ � b(z, L), 

so although the financial networks Nε�converge to N when ε�tends to zero, the corresponding payment matrices 
do not converge.

The lack of continuity of b in Example 4 is not resolved by making another selection from the set of clearing 
payment matrices. The financial network N has many clearing payment matrices compatible with constrained 
equal awards rules. The greatest clearing payment matrix is equal to P+, and the least clearing payment matrix is 
equal to P�, given by

P� �
0 1 1
1 0 1
0 0 0

2

4

3

5:

The following example shows that an alternative definition of the constrained equal awards bankruptcy rule that 
selects the least clearing payment matrix would not solve the lack of continuity.

Example 5. For ε > 0, consider the financial network Nε � (zε, L) as displayed in Table 7.

The payment matrix Pε�is the unique clearing payment matrix in the financial network Nε�under constrained 
equal awards rules. The financial networks Nε�tend to the financial network N of Example 4 as ε�goes to zero. 
The payment matrices Pε�are all equal to b(z, L): Selecting the least clearing payment matrix for N under con-
strained equal awards rules instead of the greatest clearing payment matrix b(z, L), or in fact selecting any clear-
ing payment matrix for N different from the greatest clearing payment matrix, would then lead to a violation of 
continuity in this example.

We conclude this section with an example that shows the converse of Theorem 5 to be false. It is possible that a 
bankruptcy rule is continuous at a particular financial network N , whereas the financial network N has multiple 
clearing payment matrices.

Example 6. Let I � {1, 2}: Because each agent has only one creditor, the choice of the division rules is irrelevant. 
Let N � (z, L) be the financial network where agents have zero endowments and owe each other one unit. Table 8
presents the endowments, the liabilities, the least clearing payment matrix P�, and the greatest clearing payment 
matrix P+: Because according to our definition, a bankruptcy rule selects the greatest clearing payment matrix, it 
holds that

b(N) � 0 1
1 0

� �

:

Table 5. The payment matrix, asset values, and equities resulting from constrained 
equal awards rules in Example 4 for the financial network N � (z, L):

z L P+ a(z, P+) e(z, P+)

1 0 2 1 0 2 1 3 0
1 2 0 1 2 0 1 3 0
1 0 0 0 0 0 0 3 3

Table 6. The payment matrix, asset values, and equities resulting from constrained 
equal awards rules in Example 4 for the financial network Nε � (z, Lε):

z Lε Pε a(z, Pε) e(z, Pε)

1 0 2 1 + ε 0 1 1 2 0
1 2 0 1 + ε 1 0 1 2 0
1 0 0 0 0 0 0 3 3

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
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The next lemma, proved in Section 7, asserts that the bankruptcy rule b is continuous, so in particular, it is contin-
uous at N:

Lemma 1. Let I � {1, 2}: The bankruptcy rule b : N →M is continuous.

7. Conclusion
We consider financial networks where agents are linked to each other with financial contracts. In case of bank-
ruptcy, the payments to other agents are determined by bankruptcy law. Although the literature has almost 
exclusively focused on proportional division rules, in bankruptcy law certain claims are often given priority over 
other claims. We, therefore, allow for general division rules. The set of clearing payment matrices can be shown 
to be a lattice, so there always exists a least clearing payment matrix and a greatest clearing payment matrix. 
Because these clearing payment matrices may not all coincide, we are interested in conditions that guarantee 
uniqueness.

Uniqueness of clearing payment matrices depends heavily on the structural properties of the network of finan-
cial liabilities, which can be represented as a directed graph. We partition the network of financial liabilities into 
strongly connected components. A strongly connected component that consists of more than one agent is called 
a cycle. An agent that is part of such a component is said to be cyclical.

We provide the following sufficient condition for the clearing payment matrix to be unique. (1) For every cycle 
without successors, at least one agent has a strictly positive endowment. (2) The division rules of cyclical agents 
with strictly positive endowments are positive monotonic. (3) The division rules of cyclical agents with zero 
endowments are strictly monotonic.

Positive monotonicity is a new condition. It requires that if a defaulting agent makes a strictly positive pay-
ment to another agent and the asset value of the former agent increases, then the payment to the latter agent 
increases as well. The well-known constrained equal losses division rule is positive monotonic, but its dual, the 
constrained equal awards division rule, is not. The proportional division rule is strictly monotonic and therefore, 
positive monotonic. Priority-based division rules are not positive monotonic.

Our sufficient condition for uniqueness is easily seen to imply several uniqueness conditions that have been 
provided before in the literature, which mostly considers proportional division rules. One case is where all 
agents have strictly positive endowments. Another is where there are no cyclical agents or all agents have a 
strictly positive liability to the outside sector. We show how the outside sector can be represented by an addi-
tional agent without liabilities to the other agents. We demonstrate that priority-based division rules as well as 
constrained equal awards division rules may lead to a multiplicity of clearing payment matrices, even when all 
endowments are strictly positive.

We define a class of bankruptcy rules by assigning the greatest clearing payment matrix to a financial network. 
We show that uniqueness of clearing payment matrices is a sufficient condition for the desirable property of con-
tinuity of such bankruptcy rules. We show by means of an example that bankruptcy rules that are based on con-
strained equal awards division rules violate continuity. The violation of continuity is not repaired when defining 

Table 7. The payment matrix, asset values, and equities resulting from the constrained 
equal awards rules in Example 5 for the financial network Nε � (zε, L):

zε L Pε a(zε, Pε) e(zε, Pε)

1 + ε 0 2 1 0 2 1 3+ ε ε
1 + ε 2 0 1 2 0 1 3+ ε ε
1 0 0 0 0 0 0 3 3

Table 8. The payment matrix, asset values, and equities resulting from constrained 
equal awards rules in Example 6 for the financial network N � (z, L):

z L P– P+

0 0 1 0 0 0 1
0 1 0 0 0 1 0

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
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bankruptcy rules alternatively by assigning the least clearing payment matrix, or in fact any clearing payment 
matrix different from the greatest clearing payment matrix, to a financial network. These results also highlight 
once more that the network aspect leads to different structural properties. In the absence of network aspects, 
monotonicity of the division rules is sufficient for continuity, whereas in financial networks, even stronger mono-
tonicity requirements like positive or strict monotonicity are not sufficient to guarantee continuity of the bank-
ruptcy rule.

Proof of Theorem 1. (⇒)
Let P ∈M be a clearing payment matrix of the financial network N: Consider some i ∈ I: We define P′i � di(ai(P)):

Because Pi ∈ F i and di is monotonic, it holds that (a) Pi < P′i , (b) Pi � P′i , or (c) Pi > P′i :
Case a. Pi < P′i :

We have that

ei(P) � ai(P)�
X

j∈I
Pij > ai(P)�

X

j∈I
P′ij � ai(P)�

X

j∈I
di

j(ai(P)) ≥ 0, 

where the weak inequality follows from the definition of a division rule. From Pi < P′i ∈ F i, it follows that Pi < Li:

Because ei(P) > 0, P does not satisfy priority of creditors. We conclude that case (a) cannot occur.
Case c. Pi > P′i :

Let Ei ∈ [0, Li] be such that Pi � di(Ei): From di(Ei) � Pi > P′i � di(ai(P)) and the monotonicity of di, it follows that 
ai(P) < Ei: We have that

Ei �
X

j∈I
di

j(Ei) �
X

j∈I
Pij � ai(P)� ei(P) ≤ ai(P), 

where the inequality follows because P satisfies limited liability. This contradicts our earlier conclusion that 
ai(P) < Ei: It follows that case (c) cannot occur.

We have derived that case (b) holds, so Pi � P′i � di(ai(P)):
(⇐)

Let P ∈M be a solution to the system of equations

Pij � di
j(ai(P)), i, j ∈ I:

1. Feasibility. It holds that P ∈ P because for every i ∈ I, Pi � di(ai(P)):
2. Limited liability. For every i ∈ I, we have that

ei(P) � ai(P)�
X

j∈I
Pij � ai(P)�

X

j∈I
di

j(ai(P)) ≥ ai(P)� ai(P) � 0, 

where the weak inequality follows from the definition of a division rule.
3. Priority of creditors. Assume i ∈ I is such that Pi < Li: We have that

X

j∈I
Pij �

X

j∈I
di

j(ai(P)) �min{ai(P), Li} � ai(P), 

where the second equality follows from the definition of a division rule and the third equality because Pi < Li, so 
P

j∈I Pij �
P

j∈I di
j(ai(P)) <

P
j∈I Lij � Li: We have that

ei(P) � ai(P)�
X

j∈I
Pij � 0: w 

Proof of Theorem 2. Let φ : P→ P be defined by

φij(P) � di
j(ai(P)), P ∈ P, i, j ∈ I:

It follows from Theorem 1 that P∗ is a clearing payment matrix if and only if P∗ is a fixed point of φ:
The set P is clearly a complete lattice.

Csóka and Herings: Uniqueness of Clearing Payment Matrices in Financial Networks 
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We show that φ is monotonic. Let P, P′ ∈ P be such that P ≤ P′: For every i ∈ I, it holds that

φi(P) � di(ai(P)) � di zi +
X

j∈I
Pji

0

@

1

A ≤ di zi +
X

j∈I
P′ji

0

@

1

A � di(ai(P′)) � φi(P
′), 

where the inequality follows the fact that di is monotonic.
By Tarski’s fixed point theorem (Tarski [27]), the set of fixed points of φ is a complete lattice with respect to ≤ :

It follows that the set of fixed points has a least element and a greatest element. w

Proof of Theorem 3. Let P+ be the greatest clearing payment matrix, which exists because of Theorem 2, and let 
P be an arbitrary clearing payment matrix of N: Let i ∈ I: If ei(P) > 0, then

0 < ei(P) � ai(P)� Li ≤ ai(P+)� Li ≤ ei(P+):

If ei(P) � 0, then ei(P+) ≥ ei(P) because P+ satisfies limited liability.
We have that e(P) ≤ e(P+): From 

P
i∈I ei(P) �

P
i∈I ei(P+) �

P
i∈I zi and e(P) ≤ e(P+), it follows that e(P) � e(P+): w

Proof of Proposition 1. Let i ∈ I be such that ei(P+) > 0: By Theorem 3, it holds that ei(P�) � ei(P+) > 0: Feasibility 
and priority of creditors now imply that P�i � P+i � Li: Therefore, if i ∈ I is such that P�i < P+i , then ei(P+) � 0, and 
by Theorem 3, ei(P�) � 0: w

Proof of Proposition 2. Let E�, E+ ∈ RI
+ be such that, for every i ∈ I, E�i ≤ E+i ≤ Li, and

P�i � di(E�i ),
P+i � di(E+i ):

For every k � 1, : : : , k′� 1, it holds by Theorem 3 that eik(P�) � eik(P+), and because dik is positive monotonic and 
P+ikik+1

> 0, it holds that E+ik > aikik+1 :

We now show by induction that
E�ik < E+ik , k � 1, : : : , k′ � 1: (1) 

For k � 1, E�i1 < E+i1 
follows from P�i1 < P+i1 :

Assume that, for some k ≤ k′� 2, it holds that E�ik < E+ik : We show that E�ik+1
< E+ik+1

:

Because eik+1(P�) � eik+1(P+) � 0, it holds that
X

j∈I
dik+1

j (E
�
k+1) � zik+1 +

X

j∈I
dj

ik+1
(E�j ), (2) 

X

j∈I
dik+1

j (E
+
k+1) � zik+1 +

X

j∈I
dj

ik+1
(E+j ): (3) 

We argue that the right-hand side of (3) is greater than that of (2). Because E� ≤ E+, we have that

dj
ik+1
(E+j ) ≥ dj

ik+1
(E�j ), j ∈ I:

It holds by the induction hypothesis, positive monotonicity of dik , and E+ik > aikik+1 that

dik
ik+1
(E+ik) > dik

ik+1
(E�ik ):

The left-hand side of (3) is then also greater than that of (2), so
X

j∈I
dik+1

j (E
+
k+1) >

X

j∈I
dik+1

j (E
�
k+1), 

implying that
E�ik+1

< E+ik+1
:

It now follows that, for every k � 1, : : : , k′� 1, P�ikik+1
� dik

ik+1
(E�ik ) < dik

ik+1
(E+ik) � P+ikik+1

: w

Proof of Theorem 4. By Theorem 2, N has a least clearing payment matrix P– and a greatest clearing payment 
matrix P+: Let E�, E+ ∈ RI

+ be such that, for every i ∈ I, E�i ≤ E+i ≤ Li, and

P�i � di(E�i ),
P+i � di(E+i ):
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By Theorem 3, it holds that
ei(P�) � ei(P+), i ∈ I: (4) 

Let O � {O1, : : : , OR} be the partition of strongly connected components of L, where (Or, Or′ ) ∈D implies r < r′:
In Step 1, we show equality of the rows in P– and P+ that correspond to cyclical agents. Steps 2 and 3 use 

induction to complete the proof. Step 2 considers the base case for rows in O1, and Step 3 contains the induction 
step.

Step 1. For every i ∈ C, P�i � P+i :
Suppose there is i1 ∈ C such that

E�i1 < E+i1 : (5) 

We consider all the endowments and incoming payments of the agents in the cycle O(i1) and distinguish two cases.

Case 1.
P

j∈O(i1) zj +
P

i∈I\O(i1)

P
j∈O(i1) P

+
ij > 0:

The set of agents S consisting of i1 together with the agents to which i1 makes direct or indirect payments when 
the payment matrix is P+ is defined as

S � {i1} ∪ {j ∈ I | j is connected to i1 in P+}:

Suppose 
P

j∈S ej(P+) � 0: It follows that the agents in S cannot have strictly positive endowments or receive 
strictly positive payments from agents outside S as otherwise, these resources would end up somewhere in S, so P

j∈S zj +
P

i∈I\S
P

j∈S P+ij � 0: We have that, for every j ∈ S, zj � 0, and for every j ∈ S ∩O(i1), dj is strictly mono-
tonic. Because E+i1 > 0, the strict monotonicity of dj for every j ∈ S ∩O(i1) implies that O(i1) ⊂ S: We have that

0 �
X

j∈S
zj +

X

i∈I\S

X

j∈S
P+ij ≥

X

j∈O(i1)
zj +

X

i∈I\S

X

j∈O(i1)
P+ij �

X

j∈O(i1)
zj +

X

i∈I\O(i1)

X

j∈O(i1)
P+ij > 0, 

where the second equality follows from the fact that members of S \O(i1) have no liabilities to agents in O(i1)
and the strict inequality follows from the assumption of Case 1. We have obtained a contradiction. Consequently, 
it follows that 

P
j∈S ej(P+) > 0:

Subcase 1.1.
P

j∈S∩O(i1) ej(P+) > 0:
It holds by Proposition 1 that ei1(P+) � 0: Because all agents in S are connected to i1 in P+, there is a finite 
sequence of agents (i1, : : : , ik′ ) in S ∩O(i1) such that

P+ikik+1
� dik

ik+1
(E+ik) > 0, k � 1, : : : , k′� 1,

eik(P
+) � 0, k � 1, : : : , k′� 1,

eik′ (P
+) > 0:

It follows from Proposition 2 that E�ik′�1
< E+ik′�1

: It, therefore, holds that

eik′ (P
+)� eik′ (P

�) �
X

j∈I
dj

ik′ (E
+
j )�

X

j∈I
dik′

j (E
+
k′ )�

X

j∈I
dj

ik′ (E
�
j ) +

X

j∈I
dik′

j (E
�
k′ )

�
X

j∈I
dj

ik′ (E
+
j )�

X

j∈I
dj

ik′ (E
�
j )

> 0, 

where the second equality follows from E�ik′ � E+ik′ � Lik′ and the inequality follows from E� ≤ E+, E�ik′�1
< E+ik′�1

, 
positive monotonicity of dik′�1 , and E+ik′�1

> aik′�1ik′ : We have obtained a contradiction to (4). Consequently, it fol-
lows that E�i1 � E+i1 , so P�i1 � P+i1 � di1(E+i1):

Subcase 1.2.
P

j∈S∩O(i1)ej(P+) � 0:
Because 

P
j∈S ej(P+) > 0, it holds that S \O(i1)≠ ∅: Let i′ ∈O(i1) and j′ ∈ S \O(i1) be such that P+i′j′ > 0: Now, there 

is a finite path of agents (i1, : : : , ik′ ) in S such that ik′�1 � i′, ik′ � j′,

P+ikik+1
� dik

ik+1
(E+ik) > 0, k � 1, : : : , k′� 1,

eik(P
+) � 0, k � 1, : : : , k′� 1:
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Because ik′�1 ∈O(i1), it follows that i1, : : : , ik′�1 ∈O(i1): We can use Proposition 2 to conclude that E�ik′�1
< E+ik′�1

, 
and therefore, P�i′j′ < P+i′j′ :

We find that
X

j∈S\O(i1)
ej(P+) �

X

j∈S\O(i1)
zj +

X

i∈O(i1)

X

j∈S\O(i1)
P+ij +

X

i∈I\S

X

j∈S\O(i1)
P+ij

>
X

j∈S\O(i1)
zj +

X

i∈O(i1)

X

j∈S\O(i1)
P�ij +

X

i∈I\S

X

j∈S\O(i1)
P�ij

�
X

j∈S\O(i1)
ej(P�), 

a contradiction to Theorem 3. Consequently, it follows that E�i1 � E+i1 , so P�i1 � P+i1 � di1(E+i1):

Case 2.
P

j∈O(i1)zj +
P

i∈I\O(i1)
P

j∈O(i1)P
+
ij � 0:

It follows that 
P

j∈O(i1)zj � 0: By the first assumption of the theorem, there is Or ∈O such that (O(i1), Or) ∈D: It 
holds by the third assumption of the theorem that, for every i ∈O(i1), di is strictly monotonic. Because P+i1 > 0, we 
find that, for every i ∈O(i1), ai(P+) > 0, so in particular, there is a strictly positive payment to an agent in Or: The 
amount 

P
j∈O(i1)zj +

P
i∈I\O(i1)

P
j∈O(i1)P

+
ij must at least be equal to this strictly positive payment, leading to a contra-

diction. Consequently, it follows that E�i1 � E+i1 , so P�i1 � P+i1 � di1(E+i1):

Step 2. For every i ∈O1, P�i � P+i :

Case 1. O1 is a singleton.
Let i ∈ I be such that O1 � {i}: If zi ≥ Li, then feasibility and priority of creditors imply that E�i � E+i � Li: If zi < Li, 
then limited liability and priority of creditors imply that ei(P�) � ei(P+) � 0, so E�i � E+i � zi: It follows in both 
cases that P�i � P+i � di(E+i ):

Case 2. O1 is a cycle.
This case follows from Step 1.

Step 3. Assume for some r′ < R, for every r ≤ r′, for every i ∈Or, P�i � P+i : Then, for every i ∈Or′+1, P�i � P+i :

Case 1. Or′+1 is a singleton.
Let j ∈ I be such that Or′+1 � {j}: We have that aj(P�) � aj(P+) � zj +

Pr′
r�1
P

i∈Or
P+ij : If aj(P�) � aj(P+) ≥ Lj, then fea-

sibility and priority of creditors imply that E�j � E+j � Lj: If aj(P�) � aj(P+) < Lj, then limited liability and priority 
of creditors imply that ej(P�) � ej(P+) � 0, so E�j � E+j � aj(P+): It follows in both cases that P�i � P+i � di(E+i ):

Case 2. Or′+1 is a cycle.
This case follows from Step 1. w

Proof of Theorem 5. Let (Nn)n∈N � (zn,Ln)n∈N be a sequence of financial networks in N that converges to the 
financial network N � (z, L): We have to show that the sequence of payment matrices (Pn)n∈N defined by Pn �

b(zn, Ln) converges to the payment matrix b(z, L):
The convergence of the sequence (Ln)n∈N implies that it is bounded, which in turn, implies that the sequence 
(Pn)n∈N is bounded, so it has a convergent subsequence (Pnm

)m∈N, with limit, say, P ∈M: For every m ∈ N, it holds 
by Theorem 1 that

Pnm

ij � di
j(ai(znm , Pnm

), Li), i, j ∈ I:

We have that

Pij � lim
m→∞

Pnm

ij � lim
m→∞

di
j(ai(znm , Pnm

), Li) � di
j(ai(z, P), Li), i, j ∈ I, 

where the third equality uses that di
j and ai are continuous. It follows by Theorem 1 that P is a clearing payment 

matrix of the financial network N: Because N has a unique clearing payment matrix by assumption, P is also the 
greatest clearing payment matrix and therefore, equal to b(z, L) by definition of b: We have shown that any con-
vergent subsequence of the bounded sequence (Pn)n∈N converges to b(z, L), and it follows that the sequence 
(Pn)n∈N itself converges to b(z, L): w
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Proof of Lemma 1. We first characterize the greatest clearing payment matrix for every financial network in N :

Consider any financial network N � (z, L) ∈N : We distinguish four cases.

Case 1. z1 + L21� L12 ≥ 0 and z2 + L12� L21 ≥ 0:
It is feasible for both agents to fully pay their liabilities, which then obviously results in the greatest clearing pay-
ment matrix. We have that

P12 � L12,
P21 � L21:

Case 2. z1 + L21� L12 ≥ 0 and z2 + L12� L21 < 0:
In this case, agent 2 ends up bankrupt in any clearing payment matrix. Because at least one agent is solvent in 
the greatest clearing payment matrix, agent 1 does not default in the greatest clearing payment matrix. It holds 
that

P12 � L12,
P21 � z2 + L12:

Case 3. z1 + L21� L12 < 0 and z2 + L12� L21 ≥ 0:
Exploiting symmetry, it follows from the analysis in Case 2 that

P12 � z1 + L21,
P21 � L21:

Case 4. z1 + L21� L12 < 0 and z2 + L12� L21 < 0:
This case cannot occur because it would require that

0 > z1 + L21 � L12 + z2 + L12 � L21 � z1 + z2, 

whereas both z1 and z2 are nonnegative.
Next, consider a converging sequence of financial networks (zn, Ln)n∈N ∈N with limit (z, L) ∈N and suppose, 

to obtain a contradiction, that (b(zn, Ln))n∈N does not converge to b(z, L): By passing to a subsequence, we can 
assume that there is one case out of the cases distinguished such that all financial networks in the sequence sat-
isfy the conditions of that particular case and that the sequence (b(zn, Ln))n∈N has a limit different from b(z, L): If 
all the financial networks in the sequence satisfy the conditions of Case 1, then the fact that the set of such net-
works is closed implies that the limit (z, L) satisfies the conditions of Case 1, and continuity of b at (z, L) follows 
from the expressions for the payment matrix in that case. If all the financial networks in the sequence satisfy the 
conditions of Case 2 and the limit (z, L) satisfies the conditions of Case 2 as well, then continuity of b at (z, L) fol-
lows immediately from the expressions for the payment matrix corresponding to Case 2. If the limit (z, L) does 
not satisfy the conditions of Case 2, then it must satisfy the conditions of Case 1, and we have z1 + L21� L12 ≥ 0 
and z2 + L12� L21 � 0: It follows that

lim
n→∞

b12(zn, Ln) � lim
n→∞

Ln
12 � L12 � b12(z, L),

lim
n→∞

b21(zn, Ln) � lim
n→∞

zn
2 + Ln

12 � z2 + L12 � L21 � b21(z, L):

The analysis for the situation where all the financial networks in the sequence satisfy the conditions of Case 3 fol-
lows by symmetry. We obtain that the limit of the sequence (b(zn, Ln))n∈N is equal to b(z, L), which leads to a con-
tradiction. Consequently, b is continuous at every financial network in N : w
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Financial Market Liquidity Conference, the 16th European Meeting on Game Theory, the 2021 World Finance and Bank-
ing Symposium, the 2022 Veszprém Optimization Conference: Advanced Algorithms Optimization Conference, and the 
2022 Mediterranean Workshop in Economic Theory for helpful comments.

Endnotes
1 Groote Schaarsberg et al. [18] define a division rule as a function of the estate and the vector of liabilities, so they treat the vector of liabilities 
as a variable.
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2 The formal definition of a risk orbit in Eisenberg and Noe [11] does not make clear whether agent i itself is included in its risk orbit when 
O(i) is not a cycle. The informal discussion later on in the paper suggests that agent i is included. Indeed, Eisenberg and Noe [11] assert that 
the assumption that every agent has a strictly positive endowment is a sufficient condition for regularity, which would not be true without 
the inclusion of agent i in its risk orbit. Because the condition of regularity is weaker when agent i is included in the risk orbit and all the 
proofs in Eisenberg and Noe [11] remain valid in this case, we assume here that agent i is included in its risk orbit.
3 Groote Schaarsberg et al. [18] require additionally that all agents use the same division rule, where a division rule is a function of the estate 
and the vector of liabilities.
4 Koster [22] requires additionally that all agents use the same division rule, where a division rule is a function of the estate and the vector of 
liabilities.
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