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1093 Budapest, Hungary
2Institute of Economics, Research Centre for Economic and Regional Studies, Hungarian Academy of Sciences,
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Safety is paramount in the construction industry and the fixed sprinkler and water spray systems used in firefighting involve
networks of pipes of various lengths. Manufacturers of such fixed firefighting systems need to either cut the existing stocks to
length—a (one-dimensional) cutting-stock problem—or lengthen the existing stocks or leftover segments through welding, a (one-
dimensional) cutting-stock problem with welding. Best industry practice safety requirements allow only one weld per length of
pipe. The case of a Hungarian manufacturer of fixed firefighting systems motivates this article, which argues that the cutting-
stock problem with welding (with single- or multiple-size stocks) may be converted to an equivalent cutting-stock problem (with
multiple-size stocks). Readily available algorithms and software may then be used to generate an optimal cutting plan for the
equivalent cutting-stock problem. Subject to certain restrictions, the optimal cutting plan for the equivalent cutting-stock problem
may then be converted to cutting patterns for the original cutting-stock problem with welding.

1. Introduction

Safety is paramount in the construction industry and the
fixed sprinkler and water spray systems used in firefighting
are integral to a wide variety of buildings ranging from
warehouses, through supermarkets, to educational establish-
ments. Integrating fixed firefighting systems is in many cases
mandatory, governed in the EU member countries by the
European Standard EN 12845, currently incorporated, for
example, in standards MSZ EN 12845:2015 in Hungary and
BS EN 12845:2015 in the UK.

Fixed firefighting systems are assembled on site and
involve networks of pipes (henceforth, pipes) of various
lengths (henceforth, sizes) manufactured from the pipes in
stock (henceforth, stocks). More often than not, manufactur-
ers need to either cut the existing stocks to size (for example,
from 6 meters to 4 meters from one stock, with a 2-meter
leftover segment) or lengthen the existing stocks or leftover

segments through welding (for example, from 6 meters to 8
meters from two stocks, with a 4-meter leftover segment).
Leftover segments may be welded to other stocks or to each
other, but best industry practice safety requirements allow
only one weld per pipe.

In the case of aHungarianmanufacturer of fixed firefight-
ing systems, the company uses single-size, 6-meter stocks to
produce pipes; Table 1 illustrates the sizes (14, in total) and
quantities (31, in total) required for a particular network.
Only one pipe size coincides with the stock size; 11 others are
shorter and two are longer.

Manufacturing pipes for fixed firefighting systems is
a one-dimensional cutting-stock problem with single- or
multiple-size stocks and welding restricted to one weld per
pipe (henceforth, cutting-stock problem with welding). This
article sets out to find its optimal solution (that is, optimal
cutting-and-welding plan) and argues that the readily avail-
able algorithms and software for the cutting-stock problem
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Table 1: Illustrative pipe sizes and quantities for the case of a
Hungarian manufacturer of fixed firefighting systems.

Stock size (𝑆1, in mm)
6000

Pipe sizes (𝑠𝑖, in mm) Pipe quantities (𝑛𝑖)
2000 1
4000 1
4500 4
4660 2
4680 11
5000 1
5096 1
5250 1
5260 1
5500 1
5660 1
6000 2
7000 2
7200 2

with multiple-size stocks (henceforth, cutting-stock problem)
may be used for the cutting-stock problem with welding.
Numerical testing found the algorithm suggested in this
article (see Section 5) adequate for the case of a Hungarian
manufacturer of fixed firefighting systems.

Following this brief introduction, Section 2 reviews the
relevant literature and positions this article in the ongo-
ing debate fuelling research in the cutting-stock problem.
Section 3 formulates the cutting-stock problem and the
cutting-stock problem with welding as a mixed integer linear
program, discusses cutting-and-welding pattern properties,
and proves that optimal cutting-and-welding plans consist
of minimal cutting-and-welding patterns. This characteristic
of optimal cutting-and-welding plans is fundamental to the
algorithm suggested in the next section. Section 4 discusses
the practical difficulties caused by high cutting-and-welding
stock quantities and nonsequential cutting-and-welding pat-
terns. The ensuing need to limit the number of cutting-and-
welding stocks and thus restrict the cutting-stock problem
with welding shapes the algorithm suggested in this sec-
tion. Generating minimal cutting-and-welding patterns and
optimal cutting-and-welding plans pose possible difficulties,
also explored in this section, alongside program running
times, sequential patterns, and decision maker preferences.
In Section 5 we apply the algorithm suggested in the previous
section to the case of a Hungarian manufacturer of fixed fire-
fighting systems with satisfactory results. Finally, Section 6
summarises the findings and suggests directions for further
research.

2. Background

The cutting-stock problem—the question of how to opti-
mise stock or how to cut stock to minimise cost—was
first investigated by Kantorovich [1] and Kantorovich [2].

The column-generation algorithm suggested by Gilmore and
Gomory [3] and Gilmore and Gomory [4] more than twenty
years later became widely used by researchers and practition-
ers alike; Gilmore and Gomory [3] and Gilmore and Gomory
[4] ‘were the first to present techniques practically applied to
difficult real-world problems’ (Sweeney and Paternoster [5]).
Complex cutting-stock problems generate complex cutting
plans with very large numbers of feasible cutting patterns.
Instead of attempting to generate and investigate them all
at once, the Gillmore and Gomory algorithm first generates
and investigates only a few. Subsequently generated cutting
patterns replace existing ones if proven more efficient upon
investigation, and through the iterative process the algorithm
arrives at an optimal solution.

The strength of the Gillmore and Gomory algorithm lies
in its ability to generate an optimal solution; its weakness
in its inability to generate an optimal cutting plan where
cutting pattern weights are integers. More often than not,
rounding decimal cutting pattern weights to the nearest
integer results in infeasible or suboptimal cutting plans
and/or overproducing some orders and underproducing
others. Generating an optimal cutting plan for the cutting-
stock problem thus became the focus of further research;
Roodman [6], Wäscher and Gau [7], and Gradisar and
Trkman [8] suggested heuristic methods, while Dyckhoff [9],
Scheithauer and Terno [10], Vance et al. [11], Vanderbeck [12],
and Belov and Scheithauer [13] proposed further algorithms.
Sweeney and Paternoster [5] andWäscher et al. [14] provided
comprehensive literature reviews of these and other—usually
heuristic—methodologies.

The cutting-stock problem therefore stayed in operations
research focus even in its simplest, original, one-dimensional
definition; in recent years, for example, Levine and Ducatelle
[15] and Araújo et al. [16] used evolutionary algorithm for
the cutting-stock problem. Particularly relevant to this article
though are the works of Cui and Yang [17], who investigated
leftover segment recycling.

Cutting stock is a nondeterministic polynomial-time-
(NP-) hard problem (Cheng et al. [18]), which may require
exponential software running times; nonetheless, in practice,
even large samples may be investigated for optimal solutions
(see Goulimis [19]; Belov and Scheithauer [13]). Therefore
this article assumes that there are algorithms and software
for obtaining the exact (global) solution of a cutting-stock
problem as defined in Section 1 (see Wäscher et al. [14] for
typology, includingMSSCSP). If the goal is to design business
applications where suboptimal solutions are acceptable, then
exact (global) solutions are not necessary, because good
(heuristic) solutions are sufficient.

Zak [20] defines the skiving stock problem, a counterpart
to the cutting-stock problem, as “find the maximum number
of items with minimum length 𝐿 that can be constructed by
connecting a given supply of smaller item lengths” (Marti-
novic and Scheithauer [21]).

In the skiving stock problem, the number of connected
items is not limited. In our case, it is crucial that every item
can be constructed from two pieces at most. The investigated
cutting-and-welding problem is a combination of the cutting-
stock problem and the skiving stock problem. Tanir et al.
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Pattern A; (j, u1, u2, u3)=(1, 1, 0, 1)
Pattern B; (j, u1, u2, u3)=(1, 3, 0, 0)
Pattern C; (j, u1, u2, u3)=(1, 1, 1, 0)
Pattern C ; (j, u1, u2, u3)=(1, 1, 1, 0)
Pattern D; (j, u1, u2, u3)=(1, 1, 0, 0)

Figure 1: Some feasible patterns for cutting 2-, 3-, and 4-meter pipes from single-size, 6-meter stocks.

[22] examined the possibility of welding in a cutting-stock
problem and suggested a heuristic method. There were no
restrictions on the number of welds per pipe, while in this
paper the number of welds per pipe is restricted to one.

3. Theory

3.1. Formulating the Cutting-Stock Problem. The cutting-
stock problem consists of generating the optimal—minimal
cost—cutting plan. 𝐼 pipes of various sizes 𝑠𝑖 (𝑖 = 1, 2, . . . 𝐼)
need to be cut in various quantities 𝑛𝑖 from 𝐽 stocks of various
sizes 𝑆𝑗 (𝑆1, 𝑆2, . . . 𝑆𝐽). Feasible cutting patterns may be
represented by sets of integers (𝑗, 𝑢1, 𝑢2, . . . 𝑢𝐼), where 𝑗 is the
stock index and 𝑢𝑖 is the number of pipes of size 𝑠𝑖 produced
from stock 𝑆𝑗. Evidently, ∑𝐼𝑖=1 𝑢𝑖𝑠𝑖 ≤ 𝑆𝑗 and ∑𝐼𝑖=1 𝑢𝑖 ≥ 1.

For example, 𝑠1 = 2-, 𝑠2 = 3-, and 𝑠3 = 4-meter pipes
could be cut from single-size, 𝑆1 = 6-meter stocks in various
feasible patterns (𝑗, 𝑢1, 𝑢2, 𝑢3). Figure 1 illustrates five such
cutting patterns: the 6-meter stocks are cut into one 2-meter
pipe and one 4-meter pipe (6 = 2 + 4), in pattern 𝐴 (1, 1, 0,
1); into three 2-meter pipes (6 = 2 + 2 + 2), in pattern 𝐵 (1,
3, 0, 0); into one 2-meter pipe, one 3-meter pipe, and one 1-
meter leftover segment (6 = 2 + 3 + 1), in pattern 𝐶 (1, 1, 1, 0);
into one 2-meter pipe, one 3-meter pipe, and two 0.5-meter
leftover segments (6 = 0.5+2+3+0.5), in pattern𝐶󸀠 (1, 1, 1, 0);
and into one 2-meter pipe and one 4-meter leftover segment
(6 = 2 + 4), in pattern 𝐷 (1, 1, 0, 0). Cutting patterns reflect
what is produced, not how is produced; as such, patterns 𝐶
and 𝐶󸀠 are equivalent and pattern𝐷 is wasteful.

If P represents all the feasible cutting patterns, then
cutting pattern 𝑝ℓ ∈ P produces 𝑢𝑖ℓ pipes of size 𝑠𝑖 at the
pattern price 𝜋ℓ, the stock price, that is, if the cutting cost is
ignored as insignificantly small.

Thus the cutting-stock problemmay be formulated as the
following mixed integer linear program:

min
b
∑
ℓ:𝑝ℓ∈P

𝑏ℓ𝜋ℓ
s.t. ∑

ℓ:𝑝ℓ∈P

𝑏ℓ𝑢𝑖ℓ ≥ 𝑛𝑖 ∀𝑖
𝑏ℓ ∈N,

(1)

where every feasible solution represents a cutting plan, an
optimal cutting plan is a feasible solution with minimal cost,
and the decision variable 𝑏ℓ ∈N indicates how many times a
cutting plan uses cutting pattern 𝑝ℓ.

Due to its exponential size, solving the mixed integer
linear program is not practical for large instances. In practice,
this should be donewith a combination of branch-and-bound

and column-generation (see Belov and Scheithauer [13] for
branch-and-price and column-generation).

Optimal cutting plans do not exclude wasteful cutting
patterns like pattern 𝐷 in Figure 1; and a cutting-stock
problem may have more than one optimal cutting plan. For
example, if four 2-meter pipes need to be cut from single-size,
6-meter stocks, then one optimal cutting plan could use two
patterns to cut one 6-meter stock in three 2-meter pipes (6 =3 × 2) and another 6-meter stock in one 2-meter pipe andone
4-meter leftover segment (6 = 2 + 4). Another optimal plan
could use the first pattern twice to cut two 6-meter stocks in
six 2-meter pipes (2 × 6 = 6 × 2), two 2-meter pipes too
many. Subject to additional considerations such as number
of cuts, amount of waste and size of overproduction, decision
makers may prefer one optimal cutting plan to another.

3.2. Formulating the Cutting-Stock Problem with Welding.
Similarly to the cutting-stock problem, the cutting-
stock problem with welding consists of generating the
optimal—minimal cost—cutting-and-welding plan. The
number of feasible cutting-and-welding patterns is just larger
than the number of feasible cutting patterns. For example,
if 4-meter pipes need to be produced from single-size,
6-meter stocks, then only one cutting pattern is feasible
in the cutting-stock problem as opposed to two cutting-
and-welding patterns feasible in the cutting-stock problem
with welding. In the cutting-stock problem, the 6- meter
stocks can only be cut into 4-meter pipes and wasteful
2-meter leftover segments. In the cutting-stock problem with
welding, the ‘wasteful’ 2-meter leftover segments may be
welded together, in additional 4-meter pipes (see patterns 𝐴
and 𝐵 in Figure 2). However, whether pattern 𝐵 is preferable
to pattern 𝐴 depends on the price per weld relative to the
price per stock, if higher, then pattern 𝐴 prevails.

In the cutting-stock problem with welding, feasible
cutting-and-welding patterns may be represented by sets of
integers (U, u) = (𝑈1, 𝑈2, . . . , 𝑈𝐽, 𝑢1, 𝑢2, . . . , 𝑢𝐼) and unique
assignment matrices 𝐴 with ∑𝐽𝑗=1𝑈𝑗 rows, ∑𝐼𝑖=1 𝑢𝑖 columns,
and only zero and one as elements.𝑈𝑗 represents the number
of stocks of size 𝑆𝑗, 𝑗 = 1, . . . , 𝐽, used to produce 𝑢𝑖 pipes of
size 𝑠𝑖, 𝑖 = 1, . . . , 𝐼, through cutting and welding. Thus, the
first row represents the first stock of size 𝑆1, the second row
the second stock of size 𝑆1,. . ., and the𝑈1th row the𝑈1th stock
of size 𝑆1. Similarly, the (𝑈1+1)th row represents the first stock
of size 𝑆2, the (𝑈1 + 2)th row the second stock of size 𝑆2,. . .,
the (𝑈1 +𝑈2)th row the𝑈2th stock of size 𝑆2, and so on. Also,
the first column represents the first pipe of size 𝑠1, the second
column the second pipe of size 𝑠1,. . ., and the 𝑢1th column the𝑢1th pipe of size 𝑠1. Similarly, the (𝑢1+1)th column represents
the first pipe of size 𝑠2, the (𝑢1+2)th column the secondpipe of
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Pattern A; (U1, u1)=(1, 1), A=(1) Pattern B; (U1, u1)=(2, 3) A = �1 1 0

0 1 1
�

Figure 2: Patterns for producing 4-meter pipes from single-size, 6-meter stocks through cutting and cutting and welding.

size 𝑠2,. . ., the (𝑢1 +𝑢2)th column the 𝑢2th pipe of size 𝑠2, and
so on. If rows are indexed by 𝑟, columns by 𝑐, and elements
by 𝑎𝑟𝑐, then 𝑎𝑟𝑐 = 1 implies that at least some segment of
pipe 𝑐 is produced with at least some segment of stock 𝑟. This
article assumes that no stock size and no stock is redundant
and that therefore 𝑎𝑟𝑐 = 1 at least once in every row and once
in every column. Since any one stock may be assigned to any
number of pipes, but any one pipemay only be produced from
two stocks at the most, 𝑎𝑟𝑐 = 1 no more than twice in every
column.

The set of integers (U, u) and assignment matrix 𝐴
represent a feasible cutting-and-welding pattern if an equal-
size weldingmatrix𝑊 can be found to offer a feasible welding
option. If rows are indexed by 𝑟, columns by 𝑐, and elements
by 𝑤𝑟𝑐, then 𝑤𝑟𝑐 > 0 if and only if 𝑎𝑟𝑐 = 1. Also, if 𝑆(𝑟) is the
size of the stock represented by row 𝑟 and 𝑠(𝑐) is the size of the
pipe represented by column 𝑐, then the sumof all the elements
in any one row is less than 𝑆(𝑟) and the sumof all the elements
in any one column is equal to 𝑠(𝑐). Furthermore,∑𝐽𝑗=1𝑈𝑗 ≥ 1
and ∑𝐼𝑖=1 𝑢𝑖 ≥ 1. In addition, one has the following:

(i) A pipe size shorter than the sumof all the stock sizes is
insufficient in itself. For example, if 𝑆1 = 1meter, 𝑆2 =6meters, and 𝑠1 = 4meters, then (𝑈1, 𝑈2, 𝑢1)=(4, 0, 1)
requires three welds and is not a valid cutting-and-
welding pattern.

(ii) Cutting-and-welding patterns reflect what is pro-
duced, not how is produced. For example, from a
cutting-stock problem with welding point of view,
patterns 𝐶 and 𝐶󸀠 in Figure 1 have identical sets
of integers (𝑈1, 𝑢1, 𝑢2, 𝑢3)=(1,1,0,1) and assignment
matrices 𝐴 = (1 1) and welding matrices 𝑊 =(2000 3000)) (see Section 3.1).

For another example, 3.6-meter pipes can be pro-
duced from single-size, 6-meter stocks in various
cutting-and-welding patterns, for example, by cutting
one stock in one 3.6-meter pipe and one 2.4-meter
segment (6 = 3.6 + 2.4), by cutting another stock
in one 3.6-meter pipe and two 1.2-meter segments
(6 = 1.2+3.6+1.2), by welding the 2.4-meter segment
with one of the two 1.2-meter segments (2.4 + 1.2 =3.6), with (𝑈1, 𝑢1)=(2, 3), 𝐴 = ( 1 1 00 1 1 ), and 𝑊 =( 3600 2400 00 1200 3600 ), by cutting each of two stocks in one
3.6-meter pipe, one 1.8-meter segment, and one 0.6-
meter leftover segment (2 × 6 = 2 × 3.6+2 × 1.8+2 × 0.6), and by welding the two 1.8-meter segments
(1.8+1.8 = 3.6), with identical (𝑈1, 𝑢1)=(2, 3) and𝐴 =( 1 1 00 1 1 ) as before, but different 𝑊 = ( 3600 1800 00 1800 3600 ),
and so on.

(iii) Redundancies can appear in cutting-and-welding
patterns, but these do not affect optimal solutions.

For example, by cutting each of two 6-meter stocks in
one 3.6-meter pipe, one 1.8-meter segment, and one
0.6-meter leftover segment (2 × 6 = 2 × 3.6 + 2 ×1.8+2 × 0.6), one in three 3.6-meter pipes is welded.
Six identical sets of integers—(𝑈1, 𝑢𝑖)=(2, 3)—and
six different assignment matrices—𝐴1 = ( 1 1 00 1 1 ),𝐴2 = ( 1 1 01 0 1 ), 𝐴3 = ( 1 0 11 1 0 ), 𝐴4 = ( 0 1 11 1 0 ), 𝐴5 =( 0 1 11 0 1 ), and𝐴6 = ( 1 0 10 1 1 )—correspond to six different
cutting-and-welding patterns with identical practical
outcomes.

(iv) Welding is not a compulsory component of cutting-
and-welding patterns. For example, two 5-meter pipes
can be produced from two 6-meter stocks by cutting
each of the two 6-meter stocks in one 5-meter pipe
and one 1-meter leftover segment (2 × 6 = 2 × 5 +2 × 1), with (𝑈1, 𝑢1)=(2, 2) and 𝐴 = ( 1 00 1 ) as if the
cutting patterns (𝑈1, 𝑢1)=(1, 1) and 𝐴=(1) were used
twice.

(v) The number of cutting-and-welding patterns is finite,
since the number of pipes and the number of stocks
are both finite.

(vi) Any one pipe can only be produced from two stocks
at the most, but a cutting-and-welding pattern may
involve more than two stocks, which may be cut and
welded in various ways.

For example, six 5-meter pipes can be produced from five
6-meter stocks by cutting each of two 6-meter stocks in one 5-
meter pipe and one 1-meter segment (2 × 6 = 2 × 5+2 × 1),
by cutting each of two 6-meter stocks in one 4-meter segment
and one 2-meter segment (2 × 6 = 2 × 4+2 × 2), by cutting
one 6-meter stock in two 3-meter segments (6 = 2 × 3),
by welding each of the two 1-meter segments to one of the
two 4-meter segments (2 × 1 + 2 × 4 = 2 × 5), and by
welding each of the two 2-meter segments to one of the two
3-meter segments (2 × 2 + 2 × 3 = 2 × 5) (see Figure 3).
This cutting-and-welding pattern is therefore represented by
(𝑈1, 𝑢1)=(5, 6),

𝐴 =((
(

1 1 0 0 0 00 1 1 0 0 00 0 1 1 0 00 0 0 1 1 00 0 0 0 1 1
))
)
,
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𝑊 =((
(

5000 1000 0 0 0 00 4000 2000 0 0 00 0 3000 3000 0 00 0 0 2000 4000 00 0 0 0 1000 5000
))
)

(2)

If Q represents all the feasible cutting-and-welding pat-
terns, then cutting-and-welding pattern 𝑞ℓ produces 𝑢𝑖ℓ pipes
of size 𝑠𝑖 at the pattern price 𝜋ℓ, the stock and welding prices,
that is, if the cutting cost is ignored as insignificantly small.

Similar to the cutting-stock problem, the cutting-stock
problem with welding may be formulated as the following
mixed integer linear program:

min
b
∑
ℓ:𝑞ℓ∈Q

𝑏ℓ𝜋ℓ
s.t. ∑

ℓ:𝑞ℓ∈Q

𝑏ℓ𝑢𝑖ℓ ≥ 𝑛𝑖 ∀𝑖
𝑏ℓ ∈N,

(3)

where every feasible solution represents a cutting-and-
welding plan, an optimal cutting-and-welding plan is a
feasible solution with minimal cost, and the decision variable𝑏ℓ ∈N indicates howmany times a cutting-and-welding plan
uses cutting-and-welding pattern 𝑞ℓ.

Similar to the cutting-stock problem, due to its expo-
nential size, this method is not practical for solving large
instances. In practice, this should be replaced with a com-
bination of branch-and-bound and column-generation tech-
niques (see Belov and Scheithauer [13], for example, for
branch-and-price and column-generation techniques).

3.3. The Relation between Optimal Cutting-and-Welding Plans
and Minimal Cutting-and-Welding Patterns

Proposition 1. Every optimal cutting-and-welding plan can
be constructed using cutting-and-welding patterns where the
number of welds involved is one fewer than the number of stocks
used. We call these cutting-and-welding patterns minimal.

Proof. Let us prove this proposition by contradiction and
assume that there exists an optimal cutting-and-welding
plan with a cutting-and-welding pattern with 𝑘 stocks (rows𝑟1, 𝑟2, . . . , 𝑟𝑘 in the assignment matrix 𝐴) and 𝑤 welds, where𝑤 ≥ 𝑘. This cutting-and-welding pattern may be represented
as a graph—a network of nodes and linking edges, where
the nodes represent the stocks and the edges represent the
welds—where theremay be no edge, one edge, or two ormore
edges between any two nodes. If 𝑤 ≥ 𝑘, then the network
is cyclical; let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be the stocks that form the cycle𝑟1 󳨀→ 𝑟2 󳨀→ ⋅ ⋅ ⋅ 󳨀→ 𝑟𝑚 󳨀→ 𝑟1. Corresponding indices
(columns 𝑐1, 𝑐2, . . . , 𝑐𝑚 in the assignment matrix 𝐴) need to
be found so that all the cyclical matrix elements 𝑎𝑟1𝑐1 , 𝑎𝑟1𝑐2 ,𝑎𝑟2𝑐2 , 𝑎𝑟2𝑐3 , 𝑎𝑟3𝑐3 , 𝑎𝑟3𝑐4 . . ., 𝑎𝑟𝑚−1𝑐𝑚 , 𝑎𝑟𝑚𝑐𝑚 , and 𝑎𝑟𝑚𝑐1 are one. If 𝜀

Figure 3: Patterns for cutting-and-welding six 5-meter pipes from
five 6-meter stocks.

is the smallest among 𝑤𝑟1𝑐1 , 𝑤𝑟2𝑐2 ,. . ., 𝑤𝑟𝑚𝑐𝑚 elements in the
corresponding welding matrix𝑊, then subtract 𝜀 from all of
these elements and adding 𝜀 to all the elements𝑤𝑟1𝑐2 ,𝑤𝑟2𝑐3 ,. . .,𝑤𝑟𝑚−1𝑐𝑚 , and 𝑤𝑟𝑚𝑐1 results, among others, in a zero element,
in other words, a pipe without welding and a cutting-and-
welding pattern with one fewer welds. Modifications in 𝑊
lead of course to modifications in 𝐴; if 𝑤𝑟𝑐 > 0, then 𝑎𝑟𝑐 = 1;
if 𝑤𝑟𝑐 = 0, then 𝑎𝑟𝑐 = 0; and if 𝑤 − 1 ≥ 𝑘, then the process
requires as many iterations as necessary to obtain a cycle-
free graph, a tree or a forest. A contradiction is that since a
tree where the number of welds involved is one fewer than
the number of stocks used represents a minimal cutting-and-
welding pattern.

This characteristic of optimal cutting-and-welding plans
plays a fundamental role in the algorithm suggested in this
article (see Section 4.1).

Important to note that Proposition 1 does not state that
welds are always necessary. If we avoid welds, the number of
used stock is 1, and the number of welds is 0, so Proposition 1
holds.

4. Calculation

By adding their lengths, 𝑘 single- or multiple-size cutting-
and-welding stocks may be converted to one equivalent
cutting-stock and the cutting-stock problem with welding
may be converted to an equivalent cutting-stock problem.
If 𝜋𝑤 is the price per weld, then the price of the equivalent
cutting stock is the price of the 𝑘 cutting-and-welding stocks
plus (𝑘 − 1)𝜋𝑤. Multiple-size cutting-and-welding stocks (of𝐽 sizes) may generate large numbers of equivalent cutting
stocks, given by the combination ( 𝑘+𝐽−1

𝑘
). If ‘+’ represents

one stock and ‘/’ the border between two stock sizes, then,
for example, ‘++/+//+++’ represents two stocks from the first
size, one from the second, none from the third, and three
from the fourth. For 𝑘 cutting-and-welding stocks and 𝐽
cutting-and-welding stock sizes, there are 𝐽 − 1 ‘/’ signs and𝑘+ 𝐽−1 places where the 𝑘 ‘+’ signs could go. In the example
above, 𝑘 = 6, 𝐽 = 4, and ( 96 ) = 84.

Cutting-and-welding patterns are not necessarily sequen-
tial; for example, the first stock could be cut in two segments,
one to be welded with a segment from the fourth stock and
the other with a segment from the tenth stock. High cutting-
and-welding stock quantities and nonsequential cutting-and-
welding patterns cause practical difficulties that may be
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6 Advances in Operations Research

reduced by reducing the cutting-and-welding stock quanti-
ties.

Let us therefore limit 𝑘 to 𝜅, and thus bound the cutting-
stock problem with welding; the smaller the 𝜅, the smaller
the number of equivalent cutting patterns. For single-size
cutting-and-welding stocks (as in the case which motivates
this article), the equivalent cutting-stock problem tolerates
quite large sizes of 𝜅 (see Section 4.1). Generally, however,
finding the optimal, smallest 𝜅 is of obvious importance (see
Section 4.3).

4.1. An Algorithm for Solving the Bounded Cutting-Stock
Problem with Welding. To solve the bounded cutting-stock
problem with welding, this article suggests a three-step
algorithm that—at the least—is a good heuristic and that—at
the best—generates an optimal cutting-and-welding plan:

(1) Convert the bounded cutting-stock problem with
welding to an equivalent cutting-stock problem as
follows:

(a) Choose 𝑘 ≤ 𝜅 single- or multiple-size bounded
cutting-and-welding stocks in all the ways pos-
sible; for example, 5- and 6-meter cutting-and-
welding stocks and 𝜅 = 3 generate two bounded
cutting-and-welding stocks for 𝑘 = 1 (5 and 6
meters); three for 𝑘 = 2 (5 + 5 = 10, 5 + 6 =
11, and 6 + 6 = 12 meters); and four for 𝑘 = 3
(5 + 5 + 5 = 15, 5 + 5 + 6 = 16, 5 + 6 + 6 = 17, and6 + 6 + 6 = 18 meters).

(b) Add their lengths, to convert the bounded
cutting-and-welding stocks to one equivalent
cutting stock.

(c) Add their prices to the (𝑘 − 1)𝜋𝑤 welding price,
to obtain the equivalent cutting-stock price.

(2) Solve the equivalent cutting-stock problem (that is,
generate the optimal equivalent cutting plan) with
the aid of open-source or commercial software (see
Section 3.1).

(3) Convert each equivalent cutting pattern to a bounded
cutting-and-welding pattern (henceforth, pattern con-
version problem, see Section 4.2).

This algorithm poses two possible difficulties.
First (see step (1)), multiple-size bounded cutting-and-

welding stocks may generate alternative equivalent cutting
stocks. For example, if the multiple-size bounded cutting-
and-welding stocks consist of 4- and 6-meter stocks, then
three 4-meter stocks (3 × 4 = 12) with two welds and two
6-meter stocks (2 × 6 = 12) with one weld generate two
alternative equivalent cutting stocks of identical, 12-meter
sizes, but nonidentical prices. To solve the equivalent cutting-
stock problem (see step (2)), good practice suggests that the
algorithm should consider the cheapest equivalent cutting
stock.

Second (see step (3)), to generate an (optimal) bounded
cutting-and-welding plan, the optimal equivalent cutting
plan would need to be converted to minimal bounded

cutting-and-welding patterns (see Section 4.2).This difficulty
is trivial in most cases, but by no means in all. For example,
if 10-meter pipes need to be produced from single-size, 6-
meter cutting-and-welding stocks, then five 6-meter stocks
and four welds would generate a 30-meter equivalent cutting
stock and two cuts would generate three 10-meter pipes (5 ×6 = 30 = 3 × 10). However, since one of the pipes would
have two welds instead of the maximum one, this cutting-
and-welding pattern is not even feasible let alone minimal.
The algorithm would not only need to solve the equivalent
cutting-stock problem (see Section 3.1); it would also need to
tackle extreme cases, with nominimal bounded cutting-and-
welding patterns (see Section 4.2).

4.2. Formulating the Pattern Conversion Problem. Let us
consider one of the equivalent cutting patterns with 𝐾
single- or multiple-size stocks and 𝐿 single- or multiple-size
pipes—𝑘 = 1, 2, . . . , 𝐾 and ℓ = 1, 2, . . . , 𝐿—generated at step
(2) (see Section 4.1). Also, let 𝑆𝑘 be the size of stock 𝑘, 𝑥ℓ𝑘 the
decision variable which shows the size of segment of pipe ℓ
produced from stock 𝑘, and 𝐵ℓ𝑘 ∈ {0; 1} the binary variable
which shows whether 𝑥ℓ𝑘 is zero or positive.

Thus the pattern conversion problem may be formulated
as the following mixed integer linear program:

𝐿∑
ℓ=1

𝐾∑
𝑘=1

𝐵ℓ𝑘 󳨀→ min

s.t.: 𝑥ℓ𝑘 − 𝑆𝑘𝐵ℓ𝑘 ≤ 0 ℓ = 1 . . . 𝐿, 𝑘 = 1 . . . 𝐾
𝐾∑
𝑘=1

𝑥ℓ𝑘 = 𝑠ℓ ℓ = 1 . . . 𝐿
𝐿∑
ℓ=1

𝑥ℓ𝑘 ≤ 𝑆𝑘 𝑘 = 1 . . . 𝐾
𝐾∑
𝑘=1

𝐵ℓ𝑘 ≤ 2 ℓ = 1 . . . 𝐿
𝑥ℓ𝑘 ≥ 0 ℓ = 1 . . . 𝐿, 𝑘 = 1 . . . 𝐾𝐵ℓ𝑘 ∈ {0; 1} ℓ = 1 . . . 𝐿, 𝑘 = 1 . . . 𝐾

(4)

Converting equivalent cutting patterns to minimal
bounded cutting-and-welding patterns may seem trivial and
in most cases indeed it is. However, multiple-size stocks and
long pipes which all need to be welded complicate conversion
and an equivalent cutting pattern might not convert to a
minimal bounded cutting-and-welding pattern.

The value of the objective function indicates the number
of stocks and/or stock segments necessary to produce the 𝐿
pipes. Each pipe contains at least one stock or stock segment,
but not more than two; thus, the value of the objective
function is given by the number of pipes and the number of
welds:

(i) Thus if the value is 𝐿 + 𝐾 − 1, then the bounded
cutting-and-welding pattern generated is minimal
(see Section 3.3).
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Advances in Operations Research 7

(ii) If the value is less than 𝐿 + 𝐾 − 1, then the software
used at step (2) (see Section 4.1) was inadequate,
the equivalent cutting plan was suboptimal, and the
bounded cutting-and-welding pattern generated is
feasible, but not minimal. In practice, albeit with
no firm claim to optimality, this feasible pattern
may be broken down into smaller, minimal pat-
terns; after all, every pipe can be produced from
only two stocks at the most; tree graphs such as
those discussed in Section 3.3 are noncyclical even
for number of welds smaller than 𝐾 − 1. Since
the number of stocks is identical, but the number
of welds is smaller, this set of minimal patterns
is cheaper than the feasible pattern generated by
the pattern conversion problem. However, further
theoretical investigation is outside the scope of this
article.

(iii) If the pattern conversion problem does not have
a feasible solution, then the software used at step
(2) (see Section 4.1) is not necessarily inadequate.
In practice, albeit with no firm claim to optimal-
ity, a feasible bounded cutting-and-welding pattern
may be obtained through iteration by increasing
the number of stocks in the pattern conversion
problem from 𝐾 to 𝐾 + 1 and 𝐾 + 2, and so on.
In the case of multiple-size stocks, increasing the
number of longest-size stocks will definitely result
in a feasible solution; in certain cases, increasing
the number of shorter-size stocks may result in a
feasible solution too. As before, this feasible pat-
tern with 𝐾󸀠 stocks and fewer than 𝐾󸀠 − 1 welds
may be broken down into smaller, minimal pat-
terns.

4.3. The Relation between Optimal Equivalent Cutting Plans,
Optimal Bounded Cutting-and-Welding Plans, and Opti-
mal Cutting-and-Welding Plans

Proposition 2. If every equivalent cutting pattern of the
optimal equivalent cutting plan can be converted to a mini-
mal bounded cutting-and-welding pattern, then the algorithm
generates an optimal solution for the bounded cutting-stock
problem with welding.

Proof. Let us prove this proposition by contradiction and
assume that the algorithm does not generate an opti-
mal solution for the bounded cutting-stock problem with
welding, although every equivalent cutting pattern of the
optimal equivalent cutting plan can be converted to a
minimal bounded cutting-and-welding pattern. Then there
exists a bounded cutting-and-welding plan cheaper than the
bounded cutting-and-welding plan generated by the algo-
rithm. Since all the bounded cutting-and-welding patterns
of this bounded cutting-and-welding plan can be converted
to equivalent cutting patterns, then the equivalent cutting
plan generated is cheaper than the optimal equivalent cut-
ting plan generated by the algorithm; that is a contradic-
tion.

Proposition 3. The optimal solution for the bounded cutting-
stock problem with welding is an optimal solution for the
cutting-stock problem with welding too if 𝜅 is sufficiently large.

Proof. The algorithm suggested in this article for solving
cutting-stock problems with welding relies on limiting the
available cutting-and-welding stocks to 𝜅 by bounding the
cutting-stock problem with welding (see Section 4.1). Since
every pipe can be produced from two stocks at the most, 𝜅
has an upper limit of 2∑𝐼𝑖=1 𝑛𝑖.

However, this upper bound may still be too large for
practical purposes and finding the lowest upper bound is
important (the lower the upper bound, the fewer the number
of equivalent cutting stocks), but problematic even for single-
size cutting-and-welding stocks. Moreover, even the lowest
upper bound may be too large for practical purposes. For
example, let us consider producing 𝑛1 1.001-meter pipes from
single-size, 1-meter cutting-and-welding stocks. If 𝑛1 =1,000,
then 𝜅 ≥ 2∑𝐼𝑖=1 𝑛𝑖 = 2 × 𝑛1 = 2× 1,000 = 2,000, but
the lowest upper bound is evidently 1,001, if the cutting
cost is ignored as insignificantly small. Finding the lowest
upper bound is therefore possible, in special cases, but
generally problematic, particularly for multiple-size cutting-
and-welding stocks.

4.4. Algorithm Running Times. The algorithm running time
consists of the running time for the equivalent cutting-stock
problem (see step (2), Section 4.1) and the running time for
the pattern conversion problem (see step (3), Section 4.1).

To investigate running times for the equivalent cutting-
stock problem, the BarCut (version 2.1) program was run on
a computer with an Intel Duo 2.33GHz processor, 6GB of
random access memory (RAM), and Windows 7 Enterprise
as operating system. At less than 9 seconds, the running times
for the case which motivates this article proved acceptable
(see Section 5).

To investigate running times for the pattern conversion
problem, the GLPK (version 4.55) program was run on
the same computer (see Table 2, where the second column
shows the equivalent cutting patterns—generated by a com-
plex, hypothetical solution of the equivalent cutting-stock
problem—that need to be converted to feasible cutting-and-
welding patterns). If the pattern conversion problem did not
have an optimal solution, the running times proved short; if
it did, the running times proved very long at times and in
obvious need of further analysis.

Moderate numbers of pipes (see the second column
in Table 2) and moderate numbers of single-size, 6-meter
cutting-and-welding stocks (see the third column in Table 2)
generate feasible solutions in (milli)seconds (see column
G1 in Table 2). Large numbers may require long running
times, but feasible solutions can generally be generated in
(milli)seconds and the actual value of the objective function
(∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘) indicates the existence of a feasible solution
(see Section 4.2). The ‘normal’, optimal value of the objective
function is 𝐿+𝐾−1 (see Section 4.2); however, more efficient
cutting-and-welding patterns may be generated, with fewer
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8 Advances in Operations Research

Table 2: Algorithm running times for minimal cutting-and-welding patterns (∗ = no minimal solution).

Pattern Pipes (𝑠ℓ, in mm) Stocks G1 G2 G3 G4 G5 S1
(𝐾)

A 2070, 2140, 2210, 2280, 2350, 2420, 4530 3 0.4 0.1 0.1 0.1 0.1 0.1

B 2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2850 4 > 3600 0.1 0.1 0.1 0.1 0.1

C 2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2700, 2770, 3380 5 > 3600 0.1 0.1 0.1 0.1 0.1

D 2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2700, 2770, 2840, 2910, 3630 6 > 3600 0.1 0.1 0.1 > 3600 0.1

E
2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2700, 2770, 2840, 2910, 2980,

3050, 3600
7 > 3600 0.1 0.1 0.1 > 3600 0.2

F
2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2700, 2770, 2840, 2910, 2980,

3050, 3120, 3190, 3290
8 > 3600 0.4 0.6 1.7 > 3600 0.2

G
2070, 2140, 2210, 2280, 2350, 2420, 2490,
2560, 2630, 2700, 2770, 2840, 2910, 2980,

3050, 3120, 3190, 3260
8 > 3600 - - - - -

H 10000, 10000, 10000 5 0.1∗ - - - - -
I 11000, 11000, 11000, 3000, 3000, 3000 7 86.6 0.0 0.0 1.0∗ - 0.1∗
J

1000, 1000, 1000, 1000, 1000, 1000, 1000,
1000, 1000, 11001, 11001, 11001, 11001, 11001,

11001, 11001, 11001, 11493, 11499
20 > 3600 118.4 > 3600 > 3600 > 3600 > 3600

than𝐾−1welds (see patternG in Table 2, with𝐾−2 = 8−2 =6 welds). (Pattern H in Table 2 has no minimal solution.)
Even with∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 = 𝐿+𝐾−1 as constraints, where

appropriate (see Section 4.4.1), the algorithm running time
for the optimal solution is generally amatter of (milli)seconds
(see column G2 in Table 2).

4.4.1. DecisionMaker Preferences and Sequential Cutting-and-
Welding Patterns. Equivalent cutting patterns may convert
to alternative cutting-and-welding patterns and decision
makers may prefer some to others. Preferences may be
easily incorporated by changing the objective function from∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 (see Section 4.2) to ∑𝐿ℓ=1 𝑜ℓ(∑𝐾𝑘=1 𝐵ℓ𝑘), where𝑜ℓ represents decision maker’s score point (that is, preference
level) for pipe ℓ; lower 𝑜ℓ values indicate higher preferences
for welding. Since longer pipes are likely to be welded from
stocks, not just cut, we may logically attribute an 𝑜1 = 0
to the longest pipe, an 𝑜2 = 1 to the second-longest pipe,. . ., and an 𝑜𝐿 = 𝐿 − 1 to the shortest pipe. Without the∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 = 𝐿 + 𝐾 − 1 constraints, the program running
times for the pattern conversion problem might be long
and an alternative, two-step method preferable. In step one,
the program is allowed to run for the few (milli) seconds
necessary to calculate the minimal number of welds; arriving
at the optimal value of the objective function is a fast process;
investigating all the possible alternatives is not.

In step two, the objective function is changed from∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 to ∑𝐿ℓ=1 𝑜ℓ(∑𝐾𝑘=1 𝐵ℓ𝑘) and the ∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 =𝐿 + 𝐾 − 1 constraints or alternative constraints, based on
step one, are added to generate a preferred pattern hopefully
quickly (see column G3 in Table 2). Pattern J in Table 2

represents an exceptionally difficult case, where a minimal
pattern can be generated relatively quickly only if the decision
maker’s preferences are disregarded.

Understandably, decision makers prefer sequential
cutting-and-welding patterns, where pipes are placed in
relevant order and the end of one stock is welded to the
beginning of the next. In the tree graph discussed in
Section 3.3, sequential patterns would correspond to paths.

When all the pipes are shorter than the shortest stock,
sequential patterns are evidently possible; in fact, every
permutation yields a sequential pattern. When some of the
pipes are longer than the shortest stock, sequential patterns
are not always possible. For example, if 4-, 5-, and 9-meter
pipes need to be produced from single-size, 6-meter stocks,
then the permutation (9, 5, 4) generates a sequential pattern
while the permutation (5, 9, 4) does not, because the 9-meter
pipe would require two welds. For another example, there
is no sequential pattern if three 11-meter and three 3-meter
pipes need to be produced from single-size, 6-meter stocks,
but there is a minimal, nonsequential pattern involving seven
stocks, six welds, and five cuts (see Figure 4). (Six stocks, three
welds, and three cuts will generate three 11-meter pipes and
three 1-meter segments.The seventh stock will be cut in three
2-meter segments, each to be welded to one of the three 1-
meter segments to generate three 3-meter pipes.)

Sequential cutting-and-welding patterns may be gener-
ated by adding the constraints

𝐵𝑘ℓ + 𝐵𝑘𝑗 ≤ 1,ℓ = 1 . . . 𝐿 − 3, 𝑗 = ℓ + 2 . . . 𝐿, 𝑘 = 1 . . . 𝐾 (5)
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Advances in Operations Research 9

Figure 4: Nonsequential cutting-and-welding pattern for produc-
ing three 11-meter pipes and three 3-meter pipes from seven single-
size, 6-meter stocks.

and ∑𝐿ℓ=1∑𝐾𝑘=1 𝐵ℓ𝑘 = 𝐿 + 𝐾 − 1 to the objective function∑𝐿ℓ=1 𝑜ℓ(∑𝐾𝑘=1 𝐵ℓ𝑘) (see Section 4.2).
The number of additional constraints increases quadrat-

ically in the number of stocks. If decision maker prefer-
ences are ignored, the program generates feasible sequential
cutting-and-welding patterns with moderate running times
for moderate Ks and possibly large running times for large
Ks (see column G4 in Table 2). If decision maker preferences
are taken into consideration, the program generates mini-
mal sequential cutting-and-welding patterns with running
times varying from (milli)seconds to hours (see pattern J in
Table 2).

4.4.2. Reformulating the Pattern Conversion Problem for
Sequential Cutting-and-Welding Patterns and Decision Maker
Preferences. For single-size stocks (6 meters, as in the case
which motivates this article, or different), sequential cutting-
and-welding patterns may also be generated by formulating
an assignment-like problem, a permutation of pipes, where𝑥ℓ𝑗 ∈ {0, 1} represents the place of pipe ℓ in the permutation
and where the objective function is arbitrary, because gener-
ating one sequential pattern is sufficient:

𝐿∑
ℓ=1

𝑥ℓ𝑗 = 1 𝑗 = 1 . . . 𝐿
𝐿∑
𝑗=1

𝑥ℓ𝑗 = 1 ℓ = 1 . . . 𝐿
𝑚−1∑
𝑗=1

𝐿∑
ℓ=1

𝑠ℓ𝑥ℓ𝑗 ≥ 𝑘𝑚6000 𝑚 = 1 . . . 𝐿
𝑚∑
𝑗=1

𝐿∑
ℓ=1

𝑠ℓ𝑥ℓ𝑗 ≤ (𝑘𝑚 + 2) 6000 𝑚 = 1 . . . 𝐿
𝑥ℓ𝑗 ∈ {0; 1} ℓ = 1 . . . 𝐿, 𝑗 = 1 . . . 𝐿𝑘𝑚 ∈ N 𝑚 = 1 . . . 𝐿.

(6)

The∑𝑚−1𝑗=1 ∑𝐿ℓ=1 𝑠ℓ𝑥ℓ𝑗 ≥ 𝑘𝑚6000 constraints ensure that the
aggregate size of the first 𝑚 − 1 pipes in the permutation is

at least 𝑘𝑚6000; in other words, there are at least 𝑘𝑚 stocks
for the first 𝑚 − 1 pipes. The ∑𝑚𝑗=1∑𝐿ℓ=1 𝑠ℓ𝑥ℓ𝑗 ≤ (𝑘𝑚 + 2)6000
constraints ensure that the aggregate size of the first 𝑚 pipes
in the permutation is (𝑘𝑚+2)6000 at themost; in other words,
as well as the leftover segment from stock 𝑘𝑚, an additional
stock may be used for producing pipe 𝑚. These two sets
of constraints ensure that pipe 𝑚 + 1 in the permutation
has one weld at the most and that the program generates a
minimal sequential cutting-and-welding pattern, albeit one
which disregards decision maker preferences (see column S1
in Table 2). The program running times are moderate for
all patterns with the exception of J, which does not have a
minimal integer solution.

Decision maker preferences may be taken into consid-
eration, but the pattern conversion problem formulated as a
mixed integer linear program is more cumbersome; if𝑊𝑗 ∈{0; 1} is the binary variable indicatingwhether the 𝑗th pipe in
the permutation is welded or not and𝑤ℓ ∈ {0; 1} is the binary
variable which shows whether the ℓth pipe in the original
indexing is welded or not, then

𝐿∑
ℓ=1

𝑜ℓ𝑤ℓ 󳨀→ min

s.t.: 𝐿∑
ℓ=1

𝑥ℓ𝑗 = 1 𝑗 = 1 . . . 𝐿
𝐿∑
𝑗=1

𝑥ℓ𝑗 = 1 ℓ = 1 . . . 𝐿
𝑚−1∑
𝑗=1

𝐿∑
ℓ=1

𝑠ℓ𝑥ℓ𝑗 ≥ 𝑘𝑚6000 𝑚 = 1 . . . 𝐿
𝑚∑
𝑗=1

𝐿∑
ℓ=1

𝑠ℓ𝑥ℓ𝑗 ≤ (𝑘𝑚 + 1) 6000 +𝑊𝑚6000
𝑚 = 1 . . . 𝐿

𝐿∑
ℓ=1

𝑊ℓ = 𝐾 − 1
𝑥ℓ𝑗 +𝑊𝑗 ≤ 𝑤ℓ + 1 ℓ = 1 . . . 𝐿, 𝑗 = 1 . . . 𝐿𝑥ℓ𝑗 ∈ {0; 1} ℓ = 1 . . . 𝐿, 𝑗 = 1 . . . 𝐿𝑘𝑚 ∈ N 𝑚 = 1 . . . 𝐿𝑊𝑚 ∈ {0; 1} 𝑚 = 1 . . . 𝐿𝑤𝑚 ∈ {0; 1} 𝑚 = 1 . . . 𝐿

(7)

The∑𝑚𝑗=1∑𝐿ℓ=1 𝑠ℓ𝑥ℓ𝑗 ≤ (𝑘𝑚 + 1)6000 +𝑊𝑚6000 constraint
ensures that pipe 𝑘𝑚 in the permutation is welded if𝑊𝑚 = 1.
The ‘original’ index of pipe 𝑘𝑚 is unknown, but the 𝑥ℓ𝑗+𝑊𝑗 ≤𝑤ℓ + 1 constraint ensures that pipe ℓ is welded if pipe ℓ is
in the 𝑗th place in the permutation and the 𝑗th pipe in the
permutation is welded.
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Unfortunately, the algorithm running times turn out to be
large, longer than seconds just to generate a feasible solution
(see column G5 in Table 2).

In summary, sequential cutting-and-welding patterns
may be generated in simple circumstances and possibly
complex ones too, while decision maker preferences may
be taken into account in simple circumstances, but not in
complex ones.

5. Results and Discussion

The algorithm suggested in this article (see Section 4.1)
was applied to the case of a Hungarian manufacturer of
fixed firefighting systems (see Section 4.4). The company
uses single-size, 6-meter stocks (see Table 1 in Section 1
for illustrative pipe sizes and quantities), the stock price is𝜋1, and the welding price 𝜋𝑤 is generally low. However,
increases in demand lead to increases in both welding time
and opportunity cost, which in turn lead to increases in
welding price.

The software used—BarCut (version 2.1)—was suitable
for both single- and multiple-size stocks. The number of
stocks per cutting-and-welding patternwas limited to𝐾 = 10
and, to reflect the opportunity cost,𝜋𝑤 was set as a percentage
(90%, 49%, and 30%) of 𝜋1, assumed invariable; Tables 3, 4,
and 5 show theminimal cutting-and-welding patterns for the
three welding prices.

When 𝜋𝑤 is high (𝜋𝑤 = 0.9𝜋1), welding is used only when
inevitable, for pipes longer than 6 meters. To generate the
optimal equivalent cutting plan, the program running time is
8.45 seconds and involves 30 stocks and 4 welds (see Table 3).

When 𝜋𝑤 is moderate (𝜋𝑤 = 0.49𝜋1), welding is used less
restrictively. To generate the optimal equivalent cutting plan,
the program running time is 8.47 seconds and involves 29
stocks and 6 welds (see Table 4).

When 𝜋𝑤 is low (𝜋𝑤 = 0.3𝜋1), welding is used more
liberally. To generate the optimal equivalent cutting plan,
the program running time is 8.76 seconds and involves 27
stocks and 12 welds (see Table 5). Since the aggregate length
of the leftover segments is just 5.034 meters, lower welding
prices and further investigation—with 𝜋𝑤 < 0.3𝜋1—would
be useless.

Optimal equivalent cutting plans need to be converted
to minimal cutting-and-welding patterns. Since all the pipes
in these optimal equivalent cutting plans were either shorter
than 6meters or involved only two stocks, the conversions are
easy; more complex cases were analysed in Sections 4.2 and
4.4.

6. Conclusions

Due to its practical relevance across the entire industrial
spectrum, the cutting-stock problem continues to be studied
intensively in operations research and to generate sophisti-
cated algorithms solving it. Some of these were translated into
open-source or commercial programs, catering to the diverse
user needs and circumstances, at various prices and under
various terms and conditions.

Table 3: Minimal cutting-and-welding patterns for 𝜋𝑤 = 0.9𝜋1.
Pattern Stock

quantities
Weld

numbers Pipe sizes Repeats

1 1 0 2000+4000 1
2 1 0 4500 2
3 1 0 4680 11
4 1 0 5000 1
5 1 0 5096 1
6 1 0 5250 1
7 1 0 5260 1
8 1 0 5500 1
9 1 0 5660 1
10 1 0 6000 2
11 2 1 7200+4500 2
12 2 1 7000+4660 2

Table 4: Minimal cutting-and-welding patterns for 𝜋𝑤 = 0.49𝜋1.
Pattern Stock

quantities
Weld

numbers Pipe sizes Repeats

1 1 0 5260 1
2 1 0 2000+4000 1
3 3 2 4500+4500+4500+4500 1
4 2 1 4680+7200 2
5 2 1 5000+7000 1
6 1 0 4680 8
7 1 0 5096 1
8 1 0 5500 1
9 1 0 5660 1
10 1 0 6000 2
11 2 1 4680+7000 1
12 1 0 5250 1
13 1 0 4660 2

Since the first cutting-stock problems studied in opera-
tions research were one-dimensional, increasing dimension-
ality and diversifying methodology became natural exten-
sions.This article is one of only a handful to focus on the effect
of welding on the one-dimensional cutting-stock problem
instead; it is also the first of its kind to limit the number of
welds to one, to conform to best practice safety requirements
for fixed firefighting systems in the construction industry.

This article defined the cutting-stock problem with weld-
ing (see Section 3.2) and argued that it can be converted to
an equivalent cutting-stock problemwithmultiple-size stocks
(see Section 4.1), a problem that can be solved with existing
algorithms and software (see Section 3.1). For probably
the first time in the literature, it also defined the pattern
conversion problem, whereby cutting patterns are converted
to cutting-and-welding patterns as a mixed integer linear
program.
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Table 5: Minimal cutting-and-welding patterns for 𝜋𝑤 = 0.3𝜋1.
Pattern Stock quantities Weld numbers Pipe sizes Repeats
1 1 0 6000 2
2 2 1 4680+7200 2
3 1 0 2000+4000 1
4 1 0 5660 1
5 1 0 5500 1
6 1 0 5260 1
7 1 0 5250 1
8 2 1 5000+7000 1
9 4 3 4660+4660+4680+4680+4680 1
10 2 1 4680+7000 1
11 3 2 4500+4500+4500+4500 1
12 4 3 4680+4680+4680+4680+4680 1
13 1 0 5096 1

Optimal solutions to the bounded cutting-stock problems
with welding were investigated with the algorithm suggested
in this article and constraints were examined (see Section 4.1).
The implications for unbound cutting-stock problems with
welding could not be ascertained (see Section 4.3); however,
the algorithmwas found to generate a heuristic solution at the
least (see Section 4.4).

Converting equivalent cutting patterns to cutting-and-
welding patterns is fundamental to the algorithm suggested in
this article. For sequential cutting-and-welding patterns and
decision maker preferences, this pattern conversion problem
was (re)formulated as a mixed integer linear program (see
Section 4.4.2).

The cutting-stock problem with welding studied in this
article was one-dimensional; increasing dimensionality is
a natural extension. However, two- and three-dimensional
cutting-stock problems with welding present further com-
plexities which require further research and algorithms dif-
ferent than the one suggested in this article; more likely than
not, large instances cannot be solved to optimality.
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Kolos Ágoston acknowledges the support of the Hungarian
Academy of Sciences under its Cooperation of Excellences
Grant (KEP-6/2017).The author is very grateful to colleagues
at the Department of Operational Research and Actuarial
Sciences, Corvinus University of Budapest, for relevant com-
ments and suggestions on the earliest draft, to Péter Biró
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[14] G. Wäscher, H. Haußner, and H. Schumann, “An improved
typology of cutting and packing problems,” European Journal
of Operational Research, vol. 183, no. 3, pp. 1109–1130, 2007.

[15] J. Levine and F. Ducatelle, “Ant colony optimization and local
search for bin packing and cutting stock problems,” Journal of
the Operational Research Society, vol. 55, no. 7, pp. 705–716,
2004.

[16] S. A. Araujo, A. A. Constantino, and K. C. Poldi, “An evolution-
ary algorithm for the one-dimensional cutting stock problem,”
International Transactions in Operational Research, vol. 18, no.
1, pp. 115–127, 2011.

[17] Y. Cui and Y. Yang, “A heuristic for the one-dimensional
cutting stock problem with usable leftover,” European Journal
of Operational Research, vol. 204, no. 2, pp. 245–250, 2010.

[18] C. H. Cheng, B. R. Feiring, and T. C. E. Cheng, “The cutting
stock problem - a survey,” International Journal of Production
Economics, vol. 36, no. 3, pp. 291–305, 1994.

[19] C. Goulimis, “Optimal solutions for the cutting stock problem,”
European Journal of Operational Research, vol. 44, no. 2, pp. 197–
208, 1990.

[20] E. J. Zak, “The skiving stock problem as a counterpart of the cut-
ting stock problem,” International Transactions in Operational
Research, vol. 10, no. 6, pp. 637–650, 2003.

[21] J. Martinovic and G. Scheithauer, “Integer linear programming
models for the skiving stock problem,” European Journal of
Operational Research, vol. 251, no. 2, pp. 356–368, 2016.

[22] D. Tanir, O. Ugurlu, A. Guler, and U. Nuriyev, “One-
dimensional cutting stock problem with divisible items,” 2016.

 9374, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/6507054 by C

orvinus U
niversity O

f B
udapest, W

iley O
nline L

ibrary on [07/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




