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Abstract. When two students with the same score are competing for
the last slot at a university programme in a central admission scheme
then different policies may apply across countries. In Ireland only one
of these students is admitted by a lottery. In Chile both students are
admitted by slightly violating the quota of the programme. Finally, in
Hungary none of them is admitted, leaving one slot empty. We describe
the solution by the Hungarian policy with various integer programing for-
mulations and test them on a real data from 2008 with around 100,000
students. The simulations show that the usage of binary cutoff-score vari-
ables is the most efficient way to solve this problem when using IP tech-
nique. We also compare the solutions obtained on this problem instance
by different admission policies. Although these solutions are possible to
compute efficiently with simpler methods based on the Gale-Shapley al-
gorithm, our result becomes relevant when additional constraints are
implied or more complex goals are aimed, as it happens in Hungary
where at least three other special features are present: lower quotas for
the programmes, common quotas and paired applications for teachers
studies.
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1 Introduction

Gale and Shapley gave a standard model for college admissions [15], where stable
matching is was the solution concept suggested. Intuitively speaking a matching
is stable if the rejection of an application at a college is explained by the satura-
tion of that college with higher ranked students. Gale and Shapley showed that
a stable matching can always be found by their so-called deferred-acceptance
algorithm, which runs in linear time in the number of applications, see e.g.
[16]. Moreover, the student-oriented variant results in the student-optimal sta-
ble matching, which means that no student could get a better assignment in
any other stable matching. The theory of stable matchings have been inten-
sively studied since 1962 by mathematicians/computer scientists (see e.g. [16])
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and economists/game theorists (see e.g. [20]). The Gale-Shapley algorithm has
also been used in practice all around the world [8], first in 1952 in the US res-
ident allocation programme, called NRMP [18], then also in school choice, e.g.
in Boston [1] and New York [2]. In Hungary, the national admission scheme for
secondary schools follows the original Gale-Shapley model and algorithm [9],
and the higher education admission scheme also uses a heuristic based on the
Gale-Shapley algorithm [10].

The Hungarian higher education admission scheme have at least four impor-
tant special features: the presence of ties, the lower and common quotas, and the
paired applications. Each of the latter three special features makes the problem
NP-hard [11], only the case of ties is resolvable efficiently [12]. In a recent paper
[4] we studied the usage of integer programming techniques for finding stable
solutions with regard to each of these four special features separately, and we
managed to solve the case of lower quotas for the real instance of 2008. In this
follow-up work we develop and test new IP formulations for the case of ties. The
ultimate goal of this line of work is to suggest a solution concept for the college
admission problem where ties and common quotas are also present, together with
providing integer programming formulations that are suitable to compute this
solution for large scale applications, such as the Hungarian university admission
scheme with over 100,000 students.

First we start by investigating the basic Gale-Shapley model and then we
consider the case of ties. Due to the space limit we defer the description
of IPs to the full version of the paper, here we present only the results
of the simulations.

2 Model descriptions

In this section first we present the classical Gale-Shapley college admission prob-
lem and then the case of ties.

2.1 The Gale-Shapley model

In the classical college admissions problem by Gale and Shapley [15] the students
are matched to colleges.5 In our paper we will refer the two sets as applicants
A = {a1, . . . , an} and colleges C = {c1, . . . cm}. Let uj denote the upper quota
of college cj . Regarding the preferences, we assume that the applicants provide
strict rankings over the colleges, where rij denotes the ranking of the applica-
tion (ai, cj) in applicant ai’s preference list. We suppose that the students are
ranked according to their scores at the colleges, so college cj ranks applicant ai
according to her score sij , where higher score is better. Let E ⊆ A × C denote
the set of applications. A matching is a set of applications, where each student is
admitted to at most one college and each college has at most as many assignees

5 In the computer science literature this problem setting is typically called Hospital /
Residents problem (HR), due to the National Resident Matching Program (NRMP)
and other related applications.
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and its quota, uj . For a matching M let M(ai) denote the college where ai is
admitted (or ∅ if ai is not allocated to any college) and let M(cj) denote the set
of applicants admitted to cj in M . A matching M ⊂ E is stable if for any appli-
cation (ai, cj) outside M either ai prefers M(ai) to cj or cj filled its seats with
uj applicants who all have higher scores than ai has. The deferred-acceptance
algorithm of Gale and Shapley provides a student-optimal stable matching in
linear time [15].

The notion of cutoff scores is important for both the classical Gale-Shapley
model and its generalisations with ties and common quotas. Let tj denote the
cutoff score of college cj and let t denote a set of cutoff scores. We say that
matching M is implied by cutoff scores t if every student is admitted to the
most preferred college in her list, where she achieved the cutoff score. We say
that a set of cutoff scores t corresponds to a matching M if t implies M . For a
matching M an applicant ai has justified envy towards another applicant ak at
college cj if M(ak) = cj , ai prefers cj to M(ai) and ai is ranked higher than ak
at cj (i.e. sij > skj). A matching with no justified envy is called envy-free (see
[22] and [21]).

It is not hard to see that a matching is envy-free if and only if it is implied
by some cutoff scores [3]. Note that an envy-free matching might not be stable
because of blocking with empty seats, i.e. when a student ai prefers cj to M(ai)
and cj is not saturated (i.e. |M(cj)| < uj). In this case a matching is called
wasteful. Again, by definition it follows that a matching is stable if and only if it
is envy-free and non-wasteful (see also [6]). To achieve non-wastefulness we can
require the cutoff of any unsaturated college to be minimum (zero in our case).
Alternatively we may require that no cutoff score may be decreased without
violating the quota of that college, while keeping the other cutoff scores. Fur-
thermore, we may also satisfy the latter condition by ensuring that we select the
student-optimal envy-free matching, which is the same as the student-optimal
stable matching [22]. To return this solution we only need to use an appropriate
objective function. We will use the above described connections when developing
our IPs.

2.2 Case of ties

In many nationwide college admission programmes the students are ranked based
on their scores, and ties may appear. In Hungary, for instance, the students can
obtain integer points between 0 and 500 (the maximum was 144 until 2007),
so ties do occur. When ties are present then one way to resolve this issue is to
break ties by lotteries, as done in Ireland (so a lucky student with 480 point
may be admitted to law studies, whilst an unlucky student with the same score
may be rejected). However, the usage of lotteries can be seen unfair, so in some
countries, such as Hungary [12] and Chile [17] equal treatment policies are used,
meaning that students with the same score are either all accepted or all rejected.
In case of such a policy, there are two reasonable variants when deciding about
the last group of students without whom the quota is unfilled and with whom
the quota is violated. In the restrictive policy, used in Hungary, the quotas are
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never violated, so this last group of students is always rejected, whilst in Chile
they use a permissive policy and they always admit this last group of students.
For instance, if there are three students, a1, a2 and a3, applying to a programme
of quota 2 with scores 450, 443, and 443, respectively then in Hungary only a1
is admitted, whilst in Chile all three students are admitted. In Ireland, a1 is
admitted and they use a lottery to decide whether a2 or a3 will get the last seat.

Stable matchings for the case of ties were defined through the cutoff scores
in [12]. The usage of cutoff scores in case of ties make the solution envy-free,
meaning that no student ai may be rejected from college cj if this college admit-
ted another student with score equal to or lower than the score of student ai.
This allocation concept is called also equal treatment policy, as the admission of
a student to a programme implies the admission offer to all other students with
the same score. A matching is envy-free for college admission problem with ties
if and only if it is induced by cutoff scores [3]

For the restrictive policy used in Hungary, the stability of the matching can
be defined by adding a non-wastefulness condition to envy-freeness. Namely, a
matching induced by cutoff scores is stable if no college can decrease its cutoff
score without violating its quota, assuming that the other cutoff scores remain
the same. In the more permissive Chilean policy a matching is stable if by de-
creasing the cutoff score of any college there would be empty seats left there.
(We note that the stability of a matching can be equivalently defined by the lack
of a set of blocking applications involving one college and a set of applicants such
that this set of applications would be accepted by all parties when compared to
the applications of the matching considered. See more about this connection in
[14].)

Biró and Kiselgof [12] showed two main theorems about stable matchings for
college admissions with ties. In their first theorem they showed that a student-
optimal and a student-pessimal stable matchings exist for both the restrictive
policy (Hungary) and the permissive policy (Chile), where the cutoff scores are
minimal / maximal, respectively. Furthermore, they also proved the intuitive
results that if we compare the student-optimal cutoff scores (or the student-
pessimal ones) with respect to the three reasonable policies, namely the Hun-
garian (restrictive), the Irish (lottery), and the Chilean (permissive), then the
Hungarian cutoff scores are always as high for each college than the Chilean
cutoff scores and the Irish cutoff scores are in between these. When considering
the student-optimal stable matching, it turns out to be also the student-optimal
envy-free matching, as described in [3].

3 Simulations

In this section we present the main simulation results.

3.1 Gale-Shapley model

We took the 2008 data after breaking the ties randomly, by considering only the
faculty quotas and keeping only the highest ranked application of each student
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for every programme (i.e. the application for either the state funded or the
privately funded seat). We used AMPL with Gurobi for solving the IPs.

IP formulations #variables #constraints #non-0 elem. size(Kb) run time(s)

SO-BB 287,035 381,115 73,989,595 1,319,663 1,139

SO-NW-CUT 291,935 673,050 2,463,808 69,464 81

MIN-CUT 289,485 668,150 2,169,423 64,254 5,062

MSMR-CUT 289,485 668,150 2,169,423 69,846 2,318

SO-NW-BIN-CUT 574,070 955,185 3,028,078 75,810 107

MIN-BIN-CUT 574,070 952,735 2,738,593 65,657 871

MSMR-BIN-CUT 574,070 952,735 2,738,593 66,467 4,325

MSMR-EF n.a. n.a. n.a. 8,667,403 n.a.

3.2 Case of ties

We used the 2008 data with the original ties by considering again the faculty
quotas and keeping only the highest ranked application of each student for every
programme.

IP formulations #variables #constraints #non-0 elem. size(Mb) run time(s)

MIN-CUT 289,485 668,150 2,169,423 59,694 5,247

MSMR-CUT 289,485 668,150 2,169,423 65,286 1,460

MIN-BIN-CUT 428,513 807,178 2,447,479 53,548 982

MSMR-BIN-CUT 428,513 807,178 2,447,479 57,106 1,362

SO-H-NW-CUT 578,970 1,694,333 4,793,409 114,882 1,310

SO-H-NW-BIN-CUT 861,105 1,813,840 5,352,772 118,828 165

Finally, we conducted the simulation on the same 2008 data, where we com-
pared the results for the Hungarian, Irish and Chilean policies. The results indeed
follow the theorems of [12] regarding the cutoff scores for the three different poli-
cies. The most interesting fact of the simulation is that for the Hungarian and
Irish policies the difference between the student-optimal and student-pessimal
solutions is minor, as demonstrated also in earlier paper for large markets, such
as [19]. However, for the Chilean policy this difference was more significant.

size of matching average rank average cutoffs # rejections

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. A-opt. C-opt.

Hungarian 86,195 86,195 1.2979 1.2979 58.3931 58.3931 37,698 37,698

Irish 86,410 86,410 1.2916 1.2916 58.2090 58.2106 36,802 36,804

Chilean 86,650 86,614 1.2824 1.2844 57.2502 57.5200 35,668 35,901
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8. Biró, P. Applications of matching models under preferences. In Endriss, U., editor,
Trends in Computational Social Choice, chapter 18, pages 345–373. AI Access. 2017.
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11. Biró, P., Fleiner, T., Irving, R.W, and Manlove, D.F. The College admissions
problem with lower and common quotas. Theoretical Computer Science, 411:3136–
3153, 2010.
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