COMPARISON OF ESTIMATORS FOR PROBABILITY
OF DEATH USED IN ACTUARIAL SCIENCE*

KOLOS AGOSTON!

In this paper a brief summary of the estimators for probability of death is given. Three
estimators will be investigated, two of them are parametric ones. To derive a parametric es-
timator a distribution has to be assumed. Unfortunately the distributions occurring in real
life differ from these assumed ones. It will be investigated how can these estimators be ap-
plied if we assume other distributions. The bias and efficiency of the estimators are analysed
by using Monte Carlo simulation.

The maximum likelihood estimator is the most common in the actuarial practice due to
its appealing point estimation properties. The Kaplan—Meier estimation is a better choice, if
the purpose is to give a better confidence interval.

KEYWORDS: Actuarial sciences; Estimators; Simulation.

The estimation of probabilities of death (or other failures, for instance disability) is
crucial in the life insurance industry. The most often used probability” is that a person
aged exactly x, will die in a year, denoted by ¢,. The main goal of this paper is to give a
good estimator for this probability. There is a simple estimator for ratios, and this esti-
mator can be used for estimating the probability of death as well: d/n, where d is the
number of deaths, and # is the number of insured lives (where everyone is exactly x year
old at the beginning). This estimator has good properties: in the frame of a binomial
model it is a maximum likelihood estimator (consistent, asymptotically unbiased, and
asymptotically most efficient), and it is unbiased in small samples too.

Though this estimator has very attractive properties, its application has special re-
quirements as well. The most important one says that there is only one reason for exit,
and this is death (or failure in general). Let us suppose that there are n elements (persons)
at the beginning, d of them die within a year, and the others survive. It means that there is
no lapse or censoring, as statisticians say. Furthermore, let us assume that a person — say
Mr. Smith — buys an insurance policy, but after half a year he withdraws his policy. From
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their help.
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2 These probabilities can be found in the life tables. The premium calculation is based on these probabilities as well.
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that time the company has no information whether Mr. Smith has died or survived the
year. Given that we do not know this, the ratio estimator cannot be applied any more.

There are many estimators that can handle this deficiency, but there is not an universal
one. The paper will compare the properties of the three most widely used estimators.
These are the Kaplan—Meier estimator, which is a non-parametric one, the actuarial esti-
mator, and the maximum likelihood estimator.

1. PROPERTIES OF THE THREE COMMONLY USED ESTIMATORS

In this section the derivation and the properties of the three mentioned estimators will
be given.

The Kaplan—Meier estimator can be derived as follows. Let us divide the one-year
interval into sub-intervals, so that only one event occurs in any of these sub-intervals: a
failure or a censor event. If within the sub-interval a censor event occurs, one can say that
the estimated probability (of failure) is O for this interval. If there is only a failure within
the sub-interval, the ratio estimator can be applied. The estimated probability for the
whole year is one minus the product of the estimated survival probabilities (equals one
minus the estimated probability of failure).

It should be noted that the observed lifetime is the difference between the starting time
and the time of exit. The cause of exit can either be death or censoring. Let us arrange the
observed lifetimes in standing order, and let ¢, be the smallest and ¢, is the largest ob-
served lifetime; d; is a dummy variable which takes the value 1 if the i person died, oth-
erwise it is 0. Using these variables, the Kaplan—Meier estimator is:

n (=i \
-
i E(n—i+lj

If d, is 1 (i.e. that the last person died) then the estimator gives 1 for the probability of
death. In this case it is said that estimation of the probability of death is not defined.

In a small numerical example three persons buy a specified insurance policy. The first
one withdraws his contract at the one third of the year. The second dies at the two thirds
of the year, while the third survives the year. The estimated probability for the first third
year is 0, for the second third year is 1/2 and for the third year is also 0. So the estimated

probability for the whole year is: 1— (%)0 (%y (%)O = % .

The actuarial estimator is a parametric one. Here it has to be assumed a rule of how
the probability of death in a fraction of year is related to the probability of death in the
whole year. According to the common actuarial notation ,g,., means the probability of
failure during the interval (x+, x+¢+s) for a person who is alive at the time x+7 (0 < t,s <
1, t+s < 1). It is also common that if the length of the interval is a whole year and this year
begins on the investigated person’s birthday, we do not need to write the left index:
q-=19,- Using these notations the assumed relation between the probabilities is:

17t4x+t:(1_t)qx:
which is called the Balducci assumption. If the probability of death is 0.003 in a year, the
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probability of death in the interval (x+2/3, x+1) for a person who is alive at the time
x+2/3 is: 1/3-:0.003=0.001.

The idea behind the actuarial estimator is to adjust the estimator d/n. The number of
deaths is given, so n has to be modified. It is better if one says that » means n years in-
stead of n persons. So if somebody withdraws his contract, he does not stand in risk for a
whole year, only for a fraction of year. If the person in the previous example withdraws
his contract at one third of the year, he stands in risk for one third year. If somebody dies,
he stands in risk for the whole year. The explanation for this is that in the case of estima-
tor d/n, if somebody dies, he stands in risk for the whole year as well. Then the actuarial
estimator is as follows: the number of deaths divided by ‘standing in risk’, which is called
‘initial exposed to risk’ in the actuarial literature. If no censoring event occurs, the actu-
arial estimator is equal to the common ratio estimator d/n.

Using this estimator for the previous example, the initial exposed to risk is
1/3+1+1=7/3, the number of deaths is 1, so the estimated probability is 1/(7/3)=0.43.

The next question is that how is this connected to Balducci hypothesis. Let us con-
sider a small example. At the beginning there are /+w members, w of them withdraw their
contract after one third year. The expected number of deaths is (I+w)-q,, but the insurance
company does not know about the deaths of the those who withdrew after the withdrawal.
We can calculate the expected number of these deaths by using the Balducci hypothesis:
w2/3q,.

The expected number of deaths known by the insurance company equals the expected
number of deaths in a year minus the expected number of deaths the company does not
know about:

d=1+w)-q—w-(2/3)q,=l-q.+(1/3)-w-q, 1/
If equation /1/ is arranged for ¢q,, we get the actuarial estimator:

n d
qx =

T
l+3w

To derive the actuarial estimator we used the Balducci assumption. It can be proved
that if the Balducci hypothesis is true then the actuarial estimator is asymptotically unbi-
ased. (It was believed for quite a long time that the actuarial estimator is a moment esti-
mator, but it was proved 20 years ago that this is not true.)

The maximum likelihood estimator is a very popular one too. Its main idea comes
from realizing that however the probability of death is a good measure, it has a disadvan-
tage as well, namely it is related to an interval. Sometimes it is better to use a measure for
a point instead. We can get this measure as a limit: lirr(z)(th /t), which is denoted by 1,

—

and called as the force of mortality. The probability of death can be calculated by using
the force of mortality:

4 =1—eXp(— Lf”urdf)-
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The assumption of constant force of mortality means that p, =p in the investigated
interval. In other words:

qu+t:17( lqu)s'

If we assume the constant force of mortality, we get a maximum likelihood estima-
tor:

l-exp(-d/EY),

where E; is called ‘central exposed to risk’ in the actuarial literature. The ‘central ex-

posed to risk’ is the sum of observed times. It can easily be calculated: if somebody with-
draws his contract, the calculation is the same as in the case of the initial exposed to risk,
but if somebody dies, he stands in risk only until the time of death.

Calculating the estimated probability of death for the previous example:

— Central exposed to risk: (1/3+2/3+1)=2.
— Estimated probability: 1—exp(—1/2)=1-0.61=0.39.

As it was mentioned, in the case of maximum likelihood estimator, we assume a con-
stant force of mortality. Therefore, if the constant force of mortality is appropriate then
this estimator is asymptotically unbiased and asymptotically efficient.

Up to this point we wanted to derive an estimator which we can handle easily, this is
the reason for using these assumptions instead of believing that the data follow these as-
sumptions. In real life the probability of death is increasing with age’ so it is a good hy-
pothesis that the force of mortality also increases during the one-year time interval. Un-
fortunately, the force of mortality does not increase either in the case of Balducci as-
sumption or in the case of constant force of mortality. It is necessary to investigate the
behaviour of these estimators under more realistic assumptions such as uniform distribu-
tion of deaths* or a Gompertz mortality law.’

2. MONTE CARLO SIMULATIONS

In order to compare the properties of the former described estimators Monte Carlo
simulation are used. Three scenarios for the probability of failure (1%, 5%, 30%), and
three scenarios for the sample size (5, 30 and 1 000) are chosen. The uniform distribution
of death does not have any parameter, so the situation in the case of these assumption is
simple.

3 This statement holds for all ages greater than 6 in Hungary, and holds for ages greater than 25 in western countries as well.

4 Uniform distribution of death means that the (expected) number of deaths is the same for all intervals whose lengths are
equal. Let us suppose that the probability of death is 0.1 and the sample size is 100 (for instance). It means that 10 deaths will
occur (expectedly), 5 of them in the first half-year, 5 of them in the second half-year. The probability of death in the first half-year
is: 5/100, and in the second half-year 5/95 (because 5 persons died in the first half-year, so there are only 95 persons alive at the
beginning of the second half-year). We can see that the probability of death increases during the year.

> Gompertz described an expression for the force of mortality: p, = Be™ . B> 0, and B is close to 0, ¢ > 1 and c is close to
1. In this case the force of mortality increases so the probability of death increases as well.
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The Gompertz mortality law has two parameters but one of them (B) is irrelevant for
our analysis.’ The other parameter was fixed as ¢ = 1.1.’

Two numbers are simulated for each person. One for failure time® and one for cen-
soring time, and results are stored. We will investigate the described assumptions for fail-
ure time, but we will use the constant force of mortality for censoring time (to reduce the
number of scenarios). The probability of censoring (the probability that a censoring event
occurs within a year) is 10 percent (for the same reason). A censoring time and a survival
time for each member of the sample will be simulated. So we can calculate simulated es-
timates. We will repeat it 100 000 times, so 100 000 simulated values for each estimates
will be got.

For each estimator the mean and standard deviation will be presented and the estima-
tors will be compared by means of the mean square error (MSE).

It has been mentioned that parametric estimators perform better because their variance
is smaller. For this reason we start the simulation by comparing the Kaplan—Meier esti-
mator and the actuarial estimator when the Balducci hypothesis holds for the failure
times, then we will compare Kaplan—Meier estimator with the maximum-likelihood esti-
mator when constant force of mortality holds for the failure times. The results can be seen
in Tables 1,2,3 and 4.’

Table 1
Probability of death
(estimated by actuarial versus Kaplan—Meier estimators)
Actuarial estimator Kaplan—Meier estimator
Sample True
size parameter Mean Standard MSE Mean Standard MSE
deviation deviation

5 0.01 .00984106 | .04687197 |.0021970068| .00989700 | .04761310 |.0022670183

0.05 .04951430 | .10266833 |.0105410215| .04998000 | .10514971 |.0110564611
0.30 29686623 | .21397758 [.0457962241| .29901983 | .22096043 [.0488244723
30 0.01 .01003072 | .01929079 |.0003721355| .01004699 | .01938276 |.0003756935
0.05 .05005749 | .04202622 |.0017662061| .05012668 | .04229819 |.0017891531
0.30 29949622 | 08721694 [.0076070486| .29985433 | .08878433 [.0078826779
1000 0.01 .00999492 | .00332315 |.0000110434| .00999542 | .00333146 |.0000110986
0.05 .05001927 | .00727703 |.0000529556| .05001958 | .00730579 |.0000533750
0.30 30005796 | .01506360 |.0002269155| .30006824 | .01529334 |.0002338910

Note: Numbers in bold mean that the mean differs from the theoretical parameter value at a 5 percent significance
level.

SWe have to know how (qr is  related to ¢, In case of Gompertz mortality law
Py = exp(— J;+tBCthj = exp(— (B/ln(c))cx(c[ - 1)) . So ln(tpx )/ln(px)= (ct - 1)/(6 - 1) = iPx= exp(ln(px )(c[ - l)/(c - 1))

7 This value is appropriate for the Hungarian life tables.

8 In the simulation first a random probability is simulated (rnd). If this number is greater than the probability of failure then
the person survives the interval, so the failure time is 1. Else a ¢ value is sought so , ¢, equals the simulated number (probability).
This ¢ will be the simulated failure time.

° When the last person died we defined the value of Kaplan-Meier estimator as 1. This event does not occur when the sam-
ple size is 30 or 1000. It occurs a few times when the sample size is 5 but the probability of death is small. It occurs in 0.5 per-
cent of the cases when the sample size is 5 and the probability of death is 30 percent.
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Table 2
t and p-values for testing means in Table 1
Sample Probability Maximum likelihood estimator Kaplan—Meier estimator
size of death ¢ P ¢ P
5 0.01 -1.072 0.284 -0.684 0.494
0.05 -1.496 0.135 0.060 0.952
0.30 -4.631 0.000 -1.403 0.161
30 0.01 0.504 0.614 0.767 0.443
0.05 0.433 0.665 0.947 0.344
0.30 -1.827 0.068 -0.519 0.604
1000 0.01 -0.484 0.628 -0.434 0.664
0.05 0.837 0.403 0.847 0.397
0.30 1.217 0.224 1.411 0.158
Table 3
Probability of death
(estimated by maximum likelihood versus Kaplan—Meier estimators)
Maximum likelihood estimator Kaplan—Meier estimator
Sample True
size parameter Mean Standard MSE Mean Standard MSE
deviation deviation
5 00.01 .00998304 | .04590550 |.0021073153| .01003533 | .04634266 |.0021476433
0.05 .04978460 | .09999569 |.0099991834( .05005150 | .10099568 |.0102001306
0.30 29751627 | 20653649 [.0426634866| .30079983 | .21285520 |.0453079778
30 0.01 .01008313 | .01874080 |.0003512246| .01008447 | .01875697 |.0003518311
0.05 .05025774 | .04094795 [.0016768008| .05026694 | .04101747 |.0016825041
0.30 29936770 | .08510391 [.0072430761| .29965704 | .08605093 |.0074048795
1000 0.01 .00999778 | .00322633 |.0000104092| .00999807 | .00322852 |.0000104234
0.05 .05002049 | .00704600 |.0000496465| .05002204 | .00705419 |.0000497620
0.30 30003392 | .01479451 |.0002188786( .30004775 | .01492556 |.0002227747

Note: Numbers in bold mean that the mean differs from the theoretical parameter value at a 5 percent significance
level.

Table 4
t and p-values for testing means in Table 3
Sample Probability Maximum likelihood estimator Kaplan—Meier estimator
size of death ¢ P ¢ P
5 0.01 -0.117 0.907 0.241 0.810
0.05 -0.681 0.496 0.161 0.872
0.30 -3.803 0.000 1.188 0.235
30 0.01 1.403 0.161 1.424 0.154
0.05 1.990 0.047 2.058 0.040
0.30 -2.349 0.019 -1.260 0.208
1000 0.01 -0.217 0.828 -0.189 0.850
0.05 0.920 0.358 0.988 0.323
0.30 0.725 0.468 1.012 0.312
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Some conclusions can be made from Table 1 and Table 3. According to the theory there
is a bias for each estimator (if the sample size is finite). In case of actuarial and maximum
likelihood estimator we can verify this result for small samples and large probabilities. One
cannot reveal this bias (with #-test) in case of Kaplan-Meier estimator. According to the the-
ory all three estimators are asymptotically unbiased. It can be seen that the simulated esti-
mates are getting closer to their true value as the sample size increases. Not only the bias de-
creases with the sample size, but also the z-value (in absolute terms) decreases (see Table 2
and Table 4), although this statement holds for large probabilities only.

The MSE for the parametric estimators are smaller than those for the Kaplan-Meier
estimator. For small samples the Kaplan-Meier estimator is more precise, but as the sam-
ple size increases the bias becomes smaller in case of parametric estimators. However the
standard deviation is smaller for the parametric estimators and it will result in that the
mean square error is smaller for these estimators in any (of these) cases. In both cases the
differences in efficiency are tiny.

After investigating the properties of the estimators, when the appropriate distribution
was assumed, we can analyse how they behave when other distributions fitting better to
real life practice are assumed. The results of this sensitivity analysis can be seen in Table
5 and Table 7, while Table 6 and Table 8 contain ¢ and p values.

According to the results shown in Table 5 and Table 7, the Kaplan—-Meier estimator can
be considered as an unbiased estimator, while actuarial estimator and maximum likelihood
estimator are biased. This bias becomes significant when both the probability of failure and
the sample size are large. The bias is decreasing with the sample size (in case of actuarial
and maximum likelihood estimators), but the #-statistics is increasing (in absolute terms), so
we can conclude that there are significant biases in case of these estimators.

The standard deviations are smaller in case of actuarial and maximum likelihood es-
timators. The MSE for the actuarial and maximum likelihood are smaller than that for the
Kaplan—Meier. However the parametric estimators are not unbiased any more, they are
preferred to the non-parametric estimator (with respect to MSE), but the difference is tiny
again. When the probability of death is small, the actuarial estimator is more efficient
than the maximum likelihood estimator.

Table 5
Probability of death
(estimated by Monte Carlo simulations — uniform distribution of deaths)
Actuarial estimator Maximum likelihood estimator Kaplan—Meier estimator
Sample| True
size | parameter | \jep, | Standard MSE Mean | Standard MSE Mean | Standard MSE
deviation deviation deviation

5 0.01 .01004973| .04603766 .0021194683( .01006415| .04615370[ .0021301681( .01007950] .04635700[ .0021489781
0.05 104941703 .09926364| .0098536101| .04937001] .09923540| .0098480609( .04969042( .10034615| .0100694465
0.30 | .29758266 .20853141 .0434911915| .29278514| .20245981| .0410420288 .30011650] .21253080 .0451693556
30| 0.01 .01007813| .01872772 .0003507335| .01008056 .01873355| .0003509522f .01009136| .01876892 .0003522808
0.05 .05016675| .04085613( .0016692513( .05017393| .04086155( 0016696964 .05023810] .04098634 .0016799370
0.30 | .29839330] .08518692| .0072593935| .29619100| .08362243| .0070072192( .30012069| .08619878| .0074302436
1000 | 0.01 .00999218| .00323165 .0000104436( .00999311| .00323222( .0000104473| .00999366| .00323391f .0000104582
0.05 104993466/ .00706568| .0000199281| .04994595| .00706792| .0000499584f .04997909( .00708180| .0000501523
0.30 | .29846589 .01476271( .0002202910 .29663580| .01451429 .0002219826( .30004328| .01492269 .0002226885

Note: Numbers in bold mean that the mean differs from the theoretical parameter value at a 5 percent significance level.
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Table 6
t and p-values for testing means in Table 5
Sample Probability Actuarial estimator Maximum likelihood estimator Kaplan—Meier estimator
size of death ' p ' p ' p
5 0.01 0.342 0.732 0.446 0.656 0.542 0.588
0.05 -1.857 0.063 -2.008 0.045 -0.976 0.329
0.30 -3.666 0.000 -11.269 0.000 0.173 0.863
30 0.01 1.319 0.187 1.360 0.174 1.539 0.124
0.05 1.291 0.197 1.346 0.178 1.837 0.066
0.30 -5.964 0.000 -14.404 0.000 0.443 0.658
1000 0.01 -0.765 0.444 -0.674 0.500 -0.620 0.535
0.05 -2.924 0.003 -2.418 0.016 -0.934 0.350
0.30 -32.861 0.000 -73.291 0.000 0.917 0.359
Table 7
Probability of death
(estimated by Monte Carlo simulations — Gompertz mortality law)
Actuarial estimator Maximum likelihood estimator Kaplan—Meier estimator
Sample| True
size | parameter Mean Standard MSE Mean Standard de- MSE Mean Standard MSE
deviation viation deviation
5| 0.01 .00993604 .04561098| .0020803653| .00994494] 04571968 .0020902923| .00998842| .04607912( .0021232851
0.05 .04977052| .09976533| .0099531747| 04968104 .09965294 .0099308098| .05002325 .10075283( .0101511326
0.30 129766343 .20906922( .0437154001| .29520474] .20511519] .0420952368| .29964883| .21270307| .0452427209
30 0.01 .00996515 .01861666| .0003465813| 00997956 01865877 .0003466912| 00997956 .01865877| .0003481502
0.05 .05000431| .04072089| .0016581909| .04999852| 04070856/ .0016571870| .05009891| .04087626 .0016708781
0.30 129891286/ .08491974 .0072125444| 29871793 .08441351| .0071272851| .30007567| .08581999| .0073650771
1000 | 0.01 .00998985| .00322569| .0000104052 .00998997| .00322570| .0000104052| .00999882( .00323103( .0000104396
0.05 04993295/ .00704448| .0000496292( .04993493 .00704485| .0000496342( .04999675| 00706198 .0000498715
0.30 129898562 .01478491| .0002196227| .29905454| .01472266| 0002176507 29998348 .01492052| .0002226223

Note. Numbers in bold mean that the mean differs from the theoretical parameter value at a 5 percent significance level.

Table 8
t and p-values for testing means in Table 5
Sample Probability Actuarial Estimator Il\i/{siillr)r(l) lgg Estimator | Kaplan—Meier | Estimator
size of death
4 14 4 14 4 14

5 0.01 -0.443 0.658 -0.381 0.703 -0.079 0.937
0.05 -0.727 0.467 -1.012 0.312 0.073 0.942
0.30 -3.534 0.000 -7.393 0.000 -0.522 0.602
30 0.01 -0.592 0.554 -0.582 0.561 -0.346 0.729
0.05 0.033 0.974 -0.012 0.990 0.765 0.444
0.30 -4.048 0.000 -4.803 0.000 0.279 0.780
1000 0.01 -0.995 0.320 -0.984 0.325 -0.116 0.908
0.05 -3.010 0.003 -2.921 0.003 -0.145 0.885
0.30 -21.696 0.000 -20.307 0.000 -0.350 0.726
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In real life practice, the exact variances of the estimators are unknown, so they have to
be estimated as well using the following variance estimators:

Kaplan-Meier: (I - c})z(Z:’zl (n=iYn—i+1))" dl-)

Actuarial : M
E

X

Maximum likelihood: (1-§)? (d / (E;’ )zj

In case of actuarial estimator the estimated variance is appropriate when there is no
censoring event (binomial model). In practice it is common to say that this estimation also
holds when there are censoring events as well. The estimated variance of maximum like-
lihood estimator is derived by using the Cramer—Rao lower bound. Estimated standard er-
rors can be seen in Table 9.

Table 9
Estimated standard errors
Sample Probability Actuarial Maximum likeli- | Kaplan-Meier
size of death estimator hood estimator estimator*
Uniform distribution of deaths
5 0.01 .04063340 .04062139 .04076844
0.05 .08851087 .08822361 .08898437
0.30 18657172 .18334180 18753764
30 0.01 .01839034 .01839380 .01842987
0.05 .04017906 .04017366 .04028098
0.30 .08406086 .08312117 .08474512
1000 0.01 .00322649 .00322677 .00322877
0.05 .00706318 .00706393 .00707581
0.30 .01480634 .01465886 .01492114
Gompertz mortality law

5 0.01 .04041854 .04037235 .04064237
0.05 .08870958 .08835855 .08916791
0.30 18640674 18383433 18713953
30 0.01 .01828577 .01828596 .01832763
0.05 .04012449 .04010929 .04024556
0.30 .08410439 .08355575 .08466530
1000 0.01 .00322613 .00322615 .00323082
0.05 .00706322 .00706269 .00707853
0.30 01481115 .01473583 .01490333

* If the last person died, the expression of estimated variance is not correct (we have to divide by 0). In this case we set the
variance 0. As it was mentioned earlier, it did not occur when the sample size is 30 or greater.

In Table 9 we can see that the variance is under-estimated for small samples. This bias
decreases as the sample size increases, but it does not disappear.

Our further purpose is to give an interval estimation for the probability of death. So
for each case a 95 percent probability interval will be calculated for the estimated prob
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ability, i.e. we have 100 000 confidence intervals for each scenario. Then we count the
number of cases when the confidence interval does not contain the estimated parameter. If
the estimation process is appropriate, the number of these cases has to be very close to
5000, that is their share must be close to 5 percent. Table 10 presents the results.

Table 10
Share of cases when the confidence interval
does not contain the actual parameter
Actuarial MaX}mum Kaplan—-Meier

Sample Probability estimator likelihood estimator

size of death estimator

percent

Uniform distribution of deaths
5 0.01 95.32 95.33 95.33
0.05 78.59 78.60 78.60
0.30 21.56 21.60 21.90
30 0.01 74.99 74.99 74.99
0.05 23.30 23.31 23.30
0.30 6.13 6.58 6.21
1000 0.01 9.63 9.62 8.72
0.05 5.48 5.46 5.47
0.30 5.17 5.61 5.01

Gompertz mortality law

5 0.01 95.35 95.36 95.36
0.05 78.49 78.50 78.50
0.30 21.63 21.92 21.95
30 0.01 75.21 75.21 75.21
0.05 23.21 23.21 23.21
0.30 6.08 6.62 6.12
1000 0.01 9.55 9.55 8.56
0.05 5.36 5.37 5.38
0.30 5.11 5.18 5.09

We can see that the results are very poor, especially for small sample sizes. This is an
important reason why these estimators cannot be used for small samples. According to
Table 10, maximum likelihood estimator achieves the worst results. If the probability of
death is small (which is the most relevant case in insurance problems) and the sample size
is large enough, the performance of Kaplan—Meier estimator is the best. In case of Kap-
lan—-Meier estimator the confidence interval is wider (since the estimated variance is
larger), but this wider interval adheres more to the facts.

3. CONCLUSION

All these three estimators have almost the same properties. The parametric estimators
are more robust, i.e. they perform well when the inappropriate distributions are assumed.
They are preferred to Kaplan—-Meier estimator with respect to MSE, but the difference in
efficiency is rather small. As we have seen, the confidence interval for Kaplan—Meier es-
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timator is wider, but this wider interval covers the true value more frequently. The differ-
ences in frequency are small again. If the sample size tends to infinity, the MSE for Kap-
lan—Meier estimator tends to O (since it is a consistent estimator), but the MSE for para-
metric estimators keeps to a positive value, since there is a (significant) bias in this case.
Based upon these results the use the Kaplan—-Meier estimator can be suggested in life in-
surance statistics.

REFERENCES

AGosToN, K. — KovAcs, E. (2000): Halandésdagi modellek. Budapesti Kozgazdasagtudomanyi és Allamigazgatasi Egyetem,
Operacidkutatasi Tanszék. Budapest. Aktuarius jegyzetek 3.

BATTEN, R.W. (1978): Mortality table construction. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

BENJAMIN, B. — POLLARD, J. H. (1992): The analysis of mortality and other actuarial statistics. Butterworth-Heinemann Ltd.
Linacre House, Jordan Hill, Oxford.

DORRINGTON, R. E. — SLAWSKI, J. K. (1993): A defence of the conventional actuarial approach to the estimation of the exposed-
to-risk. Scandinavian Actuarial Journal, p. 107-113.

HOEM, J. M. (1984): A flaw in actuarial exposed-to-risk theory. Scandinavian Actuarial Journal, p. 187-194.

KAPLAN, E. L. — MEIER, P. (1958): Nonparametric estimation from incomplete observations. Journal of the American Statistical
Association, Vol. 53. p. 457-481.

Lee, E. T. (1992) : Statistical methods for survival data analysis. John Wiley & Sons, Inc. New York, Chichester, Brisbane, To-
ronto, Singapore.

MACDONALD, A. S. (1996): An actuarial survey of statistical models for decrement and transition data. I: Multiple state, Poisson
and binomial models. British Actuarial Journal, No. 2. p. 129-155.; 1I: Competing risks, non-parametric and regression
models. British Actuarial Journal, No. 2. p. 429—-448.; 1II: Counting process models. British Actuarial Journal, No. 2. p.
703-726.

ISSN 0039 0690

Published by the Central Statistical Office
Editor in charge: dr. Tamas Mellar
Executive editor: dr. Laszl6 Hunyadi
Printed by the Akadémiai Nyomda
3340 — Martonvasar, 2001
Director in charge: Lajos Reisenleitner

Managing editor: Orsolya Dobokayné Szabo
Editors: dr. Attila Domokos, Andrqa Polyak, Mariann Szﬁpsné Bruckner, Maria Visi Lakatos
Technical editors: Eva Balinthné Bartha, Agnes Simonné Kali

Editorial office: Budapest I1., Keleti Karoly utca 5-7. Postal address: P.O.B. 51. Budapest, 1525.
Phone: (361)-487-4343, Telefax: (361)-487-4344,
Internet: www.ksh.hu/statszml E-mail: statszemle@ksh.gov.hu
Publishing office: Central Statistical Office, Budapest II., Keleti Karoly utca 5-7.
Postal address: P.O.B. 51. Budapest, 1525. Phone: (361)-345-6000
The publication can be purchased at the Statistical Special Bookshop:
Budapest I1. Keleti Karoly utca 10. Phone: (361)-212-4348





