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Abstract

Bonus-malus system is an often used risk management tool in the
insurance industry, and it is usually modeled with Markov chains. Under
mild conditions it can be stated that the bonus-malus system converges to
a unique stationary distribution in the long run. The maximum likelihood
ratio property is a well-known statistical concept and we define it for the
stationary distribution of a bonus-malus system. For two special cases
we could justify it algebraically. For other cases we describe a numerical
method with which we can test this property in any case. With the help
of the described method, we checked this property for cases that appear
in actuarial practice.
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1 Introduction
In the insurance industry it is a great challenge to insure everybody at their
own risk. Insurance companies apply advanced statistical and/or data science
models to describe more and more precisely the actual risk of a policyholder.
This kind of risk classification has a great advantage for insurance companies.
However, not all of the heterogeneity can be ceased in this way: two policy-
holders with the same demographic and behavioural feature can differ in their
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risk. For this reason, insurance companies are operating bonus-malus (BM)
systems (most frequently —but not exclusively— in automobile coverages). If a
policyholder has a claim, they get into a lower BM class, where the premium is
higher; on the other hand, if they do not have any claim, they get into a better
BM class, where the premium is less.

Bonus-malus system is usually modelled with the help of a Markov chain.
Most frequently, it is assumed that the Markov chain is ergodic. Ergodic Markov
chain is investigated widely in the literature, but Markov chain describing BM
systems has special structure even in the class of ergodic Markov chains.

Monotone likelihood property is a well-known concept in statistics, and it
appears in many decision problems as an assumption. The monotone likelihood
ratio does not generally hold in Markov chains since there is no order of states.
However, in the BM system, there is a strict order of BM classes. In BM
systems we will define the monotone likelihood ratio. We cannot give a general
mathematical proof (except for two special cases), but we present a method by
which we check many of the relevant cases.

In Section 2 we give the most fundamental concepts in BM systems. In
Section 3 we investigate the monotone likelihood ratio property in BM systems.
We give analytical proof for two special cases and describe a numerical method
for checking the property in other cases. With the help of the described method,
we could check the monotone likelihood property of many cases. We could say
that we covered the cases which is relevant in actuarial practice. In Section 4
we present a possible application of our results. In Section 5 we conclude our
results.

2 Preliminaries
We investigate a BM system, where K classes exist, indexed from 1 to K. In
the BM system, in each year, the participants move u class upward (or get into
the top class if they cannot move u class upward) if they do not cause claims
and moves d class downward (or get into the bottom class) if they have claims.
The probability of claim is denoted by q (in this paper we assume that more
than one claim is not possible).

The element tij of the transition matrix T give the probability that a client
who is in class i in period t will get to class j in period t + 1. Value (ci)t
gives the probability that a policyholder will be in BM class i in period t. We
arrange values cti into a vector ct. We know that (ct)

> = (c0)
>Tt. As t tends

to infinity, ct tends to a unique stationary distribution c. We know c is the
solution of system of equations

(c)>T = (c)> , (1)

in other words c is the left eigenvector of eigenvalue 1 of matrix T , see Kaas et
al. (2001), Kemeny and Snell (1976), Lemaire (1995). Stationary distribution
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is based on the probability of claim (q), so it will be denoted by c(q). The target
of the investigation is how ci(q) depends on the probability of claim.

Monotone likelihood ratio is well known in statistics and it appears in many
decision problems as a necessary condition. Let X be a random variable, its
distribution depends on an outer parameter q. First let us suppose that X has a
probability density function: f(x|q). The monotone likelihood property means
that expression

f(x0|q1)
f(x0|q0)

≥ f(x1|q1)
f(x1|q0)

(2)

holds for every x0 ≤ x1 and q0 ≤ q1. Rearranging (2):

f(x0|q1)f(x1|q0) ≥ f(x1|q1)f(x0|q0) (3)

Let A be an interval: [a, a], similarly B is also an interval: [b, b], furthermore
a < b. Let us choose x̃ in a way that a < x̃ < b.

Using (3) we can state that:∫
A

f(x|q1)dxf(x̃|q0) ≥ f(x̃|q1)
∫
A

f(x|q0)dx

and
f(x̃|q1)

∫
B

f(x|q0)dx ≥
∫
B

f(x|q1)dxf(x̃|q0) . (4)

Rearranging we can state that:∫
A
f(x|q1)dx∫

A
f(x|q0)dx

≥
∫
B
f(x|q1)dx∫

B
f(x|q0)dx

,

and ∫
A
f(x|q1)dx∫

B
f(x|q1)dx

≥
∫
A
f(x|q0)dx∫

B
f(x|q0)dx

. (5)

Using (5) we can check the maximum likelihood ratio in case of a BM system.
We have to check that the fraction

cK−i(q)

cK−(i+1)(q)
(6)

is monotone in q.

3 Monotone likelihood ratio in BM systems
3.1 One class upward, one class downward transition rule
If u = 1 and d = 1, the monotone likelihood ratio can be checked analytically.
The first equation in the system of equations (1) is:

cK = (1− q)cK + (1− q)cK−1
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Rearranging we get:
cK−1 =

q

1− q
cK (7)

The second equation in the system of equations (1) is:

cK−1 = qcK + (1− q)cK−2 .

Using (7) we get:
q

1− q
cK = qcK + (1− q)cK−2 .

Rearranging:

cK−2 =

(
q

1− q

)2

cK .

It can be seen easily, that

cK−i =

(
q

1− q

)i

cK . (8)

We would like to show that cK−i

cK−(i+1)
is decreasing in (q). It is quite straight-

forward:

cK−i

cK−(i+1)
=

(
q

1−q

)i

cK(
q

1−q

)i+1

cK

=
1− q

q
,

which is monotone decreasing in the interval (0, 1).

3.2 One class upward, K class downward transition rule
Another case where we can determine a closed formula is u = 1, d = K case,
which practically means that if there is a claim, the policyholder gets into the
lowest class. This rule is not really used in actuarial practice, but results in a
simple closed formula that we think is worth mentioning.

Expression (7) is the same in this case as well; using the system of equations
(1) for cK−i we have a simple formula:

cK−i =
q

(1− q)i
cK ,

if i < K − 1. It is straightforward that if (and only if) a claim occurs, the
policyholder gets into the lowest class, so c1 = q.

The fraction cK−i

cK−(i+1)
will result in a very easy expression: 1 − q, which is

strictly monotone decreasing in the interval [0, 1]. It is trivial for i < K−2, but
we have to check these as well

c2
c1

=
cK−(K−2)

c1
=

q
(1−q)(K−2) cK

q
=

cK
(1− q)(K−2)

.
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To check the monotone likelihood ratio we have to calculate cK . We know
that:

∑K
i=1 ci = 1 and also know that c1 = q. So,

1− q =

K∑
i=2

ci = cK +

K−2∑
j=1

q

(1− q)j
cK = cK

1 +

(
q

1− q

) 1−
(

1
1−q

)K−2

1− 1
1−q


and after rearranging we get: cK = (1− q)K−1, so c2

c1
= (1− q) as well.

3.3 One class upward, two class downward transition rule
Let us see another transition rule: in case of a claim the policyholder moves
two classes downward (d = 2), otherwise one class upward (u = 1). By the way,
this is the actual transition rule in third party automobile liability insurance in
Hungary and in many other countries.

In this case, the first equation in the system of equations (1) is the same as
before, expression (7) holds in this case as well. The second one is different:

cK−1 = (1− q)cK−2 ,

so
cK−2 =

q

(1− q)2
cK . (9)

The third equation in the system of equations (1) is: cK−2 = qcK + (1 −
q)cK−3, using (9) we get:

cK−3 =
2q2 − q3

(1− q)3
cK (10)

The fourth equation in the system of equations (1) is: cK−3 = qcK−1 +(1−
q)cK−4, using equation (10) we get

cK−4 =
q2 + q3 − q4

(1− q)4
cK . (11)

Surely, we can continue the recursive expression. Up to i − 1 we have an
expression cK−(i−1) = Pi−1(q)

(1−q)i−1 cK , where Pi(q) is a polynomial up to degree
i − 1. The (i − 1)th equation in the system of equations (1) is: cK−(i−1) =
qcK−(i−3) + (1− q)cK−i. Rearranging, we get:

cK−i =
cK−(i−1)

(1− q)
−

qcK−(i−3)

(1− q)
=

Pi−1(q)

(1− q)i
cK − qPi−3(q)

(1− q)i−2
cK =

Pi−1(q)− q(1− q)2Pi−3(q)

(1− q)i
,

so
Pi = Pi−1(q)− q(1− q)2Pi−3(q) . (12)
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To get the impression, we give the expression up to cK−10:

cK−5 =
3q3 − 2q4

(1− q)5
cK

cK−6 =
q3 + 3q4 − 4q5 + q6

(1− q)6
cK

cK−7 =
4q4 − 2q5 − 2q6 + q7

(1− q)7
cK

cK−8 =
q4 + 6q5 − 9q6 + 3q7

(1− q)8
cK

cK−9 =
5q5 − 9q7 + 6q8 − q9

(1− q)9
cK

cK−10 =
q5 + 10q6 − 15q7 + 3q8 + 3q9 − q10

(1− q)10
cK

We could not discover any rules. Thus we were not able to give a closed
formula for cK−i as in the two previously investigated cases.

Although a closed formula is not found, it can be handled easily numerically.
We know that Pi(q) is a polynomial up to degree i:

Pi(q) = α0 + α1q + α2q
2 + . . .+ αiq

i

To handle it in an easier way, we represent Pi(q) as a vector pi, its jth
component (pi[j], j = 1, . . . , i + 1) is αj−1. We know: P0(q) = 1 (p0 = (1)),
P1(q) = q (p1 = (0, 1)>) and P2(q) = q (p2 = (0, 1, 0)>). From i = 3 we use
the recursive expression (12), so

pi[j] = pi−1[j] − pi−3[j−1] + 2pi−3[j−2] − pi−3[j−3] , (13)

where pi[j] = 0, if j ≤ 0.

Remark 1 Let i = 2k + `, where k is nonnegative integer and ` is zero or
one. In the polynomial Pi(q) all coefficients αm will be zero for m < k + `,
furthermore αk = 1 if ` = 0 (i is even) and αk = k + 1 if ` = 1 (i is odd). We
checked this property for all i ≤ 100.

Now we can calculate:

cK−i

cK−(i+1)
=

Pi(q)
(1−q)i cK
Pi+1(q)
(1−q)i+1 cK

=
(1− q)Pi(q)

Pi+1(q)
. (14)

We have to check whether (1−q)Pi(q)
Pi+1(q)

is monotone in q or not. To do it, we
calculate a derivative of the expression (14):(
(1− q)Pi(q)

Pi+1(q)

)′

=
−Pi(q)Pi+1(q) + (1− q)P ′

i (q)Pi+1(q)− (1− q)Pi(q)P
′
i+1(q)

(Pi+1(q))2

(15)
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The denominator in expression (15) is always positive, so the sign of the
fraction depends on the nominator. The expression in the nominator is a poly-
nomial itself (Ni(q)) up to degree 2i+ 1. We can give the coefficient (arranged
into the vector ni) in matrix arithmetic form:

ni = −pi⊗pi+1+

((
1
−1

)
⊗Dipi

)
⊗pi+1−

((
1
−1

)
⊗ pi

)
⊗(Di+1pi+1) ,

(16)
where a⊗ b stands for convolution of vectors a and b and Di is the ’derivative
matrix’. Let a ∈ Rn and b ∈ Rm then a⊗ b ∈ Rn+m−1;

(a⊗ b)[`] =

min(`,n)∑
k=max(1,`+1−m)

a[k]b[`−k+1]

Di is a (i− 1)× i matrix:

Di =


0 1 0 . . . 0
0 0 2 . . . 0
...
0 0 0 . . . i


Again, to get an impression we give Ni(q) up to degree 10.

N1(q) = −q2

N2(q) = −2q2 + 2q3 − q4

N3(q) = −5q4 + 6q5 − 2q6

N4(q) = −3q4 + 4q5 − 6q6 + 6q7 − 2q8

N5(q) = −14q6 + 28q7 − 23q8 + 10q9 − 2q10

N6(q) = −4q6 + 4q7 − 18q8 + 44q9 − 42q10 + 18q11 − 3q12

N7(q) = −30q8 + 72q9 − 81q10 + 68q11 − 45q12 + 18q13 − 3q14

N8(q) = −5q8 − 48q10 + 186q11 − 265q12 + 200q13 − 90q14 + 24q15 − 3q16

N9(q) = −55q10+132q11−165q12+242q13−333q14+284q15−138q16+36q17−4q18

Remark 2 Let i = 2k + `, where k is a nonnegative integer and ` is zero or
one. In the polynomial Ni(q) all coefficients αm will be zero for m < 2(k + `).
We checked this property numerically for i ≤ 100.

We have to check whether Ni(q) is positive or not. Since 0 < q < 1 so both
qk and (1− q)k is positive for all positive integer k. We will deconvulate Ni(q)
into a negative of sum of polynomials qk and (1 − q)k. Again let i = 2k + `,
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where k is a nonnegative integer and ` is zero or one. If we find nonnegative
weights αjm and βj so that

Ni(q) = −q2(k+`)

 2k∑
j=1

2k+1−j∑
m=1

qm−1αjm(1− q)j +
2k∑
j=0

βjq
j


then we can be sure that Ni(q) is negative (all of α and β cannot be zero at the
same time).

We can find nonnegative weights with the help of linear programming:∑
j,m,r

j≥1,m≥1,r≥0,
r≤j,m≤2k+1−j,
j<=2k,m+r−1=s

αjm(−1)rB(j, r)+βs = −ni[2(k+ `)+ s] , s = 0, . . . , 2k (17)

where B(j, r) is the binomial coefficient: j!
r!(j−r)! . The objective function is

arbitrary since any feasible solution ensures the negativity of Ni(q). The LP
problem (17) is quite small considering the capacity of available solvers. Con-
trary to the fact that the size of LP is quite small, we can face numerical issues.
The difficulty is based on the fact the binomial coefficient B(j, r) can be quite
large for large j. To avoid this problem we can set the constraint αjm = 0
when j is large. This trick could extend the size of the solvable problem a bit,
but itself in the polynomial Ni(q) quite big coefficients appear, which cannot be
avoided. For instance, in N20 appears a coefficient greater than 106; in N29(q)
a value that is higher than 109; moreover in N39(q) a coefficient greater than
1012.

For calculating the Ni(q) polynomials, we used Python (version 3.7.6). We
used an AMD Ryzen 5 2600 Six-Core CPU 3.40 GHz computer with 16 GB
DDR4 RAM. For solving the LP and IP problems, we used Gurobi (8.1.0).
Within one minute running time, we found a feasible solution for i ≤ 58. This
statement does not mean that there is no feasible solution for i > 58, but we face
numerical problems due to the very large coefficients. It is worth mentioning
that within 1 minute running time, we found an integer solution up to i ≤ 37
(we consider the integer solution to be more stable). A feasible solution for the
first 9 polynomials are:

N2(q) = −q2[2(1− q) + q2] ,

N3(q) = −q4[2(1− q) + 2(1− q)2 + 1] ,

N4(q) = −q4[2(1− q) + 2q2(1− q) + (1− q)2 + 2q2(1− q)2 + q] ,

N5(q) = −q6[6q2(1− q) + 14(1− q)2 + 2q2(1− q)2 + q2] ,

N6(q) = −q6[4(1− q) + 5q2(1− q) + 3q4(1− q)2 + 13q2(1− q)3 + q5] ,

N7(q) = −q8[9(1− q) + 2q2(1− q) + 3q2(1− q)2 + 3q4(1− q)2 + 21(1− q)3+

13q2(1− q)3 + q5],
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N8(q) = −q8[q414(1− q) + 5(1− q)2 + 3q(1− q)2 + 28q4(1− q)2+

2q6(1− q)2 + 7q(1− q)3 + 70q2(1− q)3 + 20q4(1− q)3 + q8] ,

N9(q) = −q10[2(1− q) + q(1− q) + 12q4(1− q) + 47q4(1− q)2 + 4q6(1− q)2

+ 53(1− q)3 + 28q(1− q)3 + 91q2(1− q)3 + 29q4(1− q)3 + q7] .

3.4 One class upward, arbitrary class downward transition
rule

After checking the u = 1, d = 2 transition rule, we can also check other transition
rules similarly. When the policyholder gets d class downward, expression (8)
holds for i < d. For i ≥ d instead of (12) we can use the recursive expression:

Pi = Pi−1(q)− q(1− q)dPi−1−d(q) ,

and instead of (13) we have that

pi[j] = pi−1[j] −
d∑

`=0

(−1)`B(d, `)pi−1−d[j−1−`] .

Expressions (15) and (16) remain true, so we can consider the LP problem
(17). In Table 1 the reader can find information of the checked cases. Again, the
values in Table 1 do not mean that above these values the monotone likelihood
ratio property is not true, but above these values we face a serious numerical
problem running the LP problem (17).

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
LP 43 67 56 57 57 57 57 55
ILP 36 27 61 58 57 36 57 42

Table 1: Checked cases in various transition rules.

4 Application
In this section, we give a possible application of the monotone likelihood prop-
erty. In actuarial sciences, a well-studied problem to set optimal premium scale
in a BM system, see Lemaire (1995), Heras et al. (2004), Ágoston and Gyetvai
(2020)

For a small example, we assume that there are two equal-sized risk groups
(A and B) in a risk community. To the risk community, the premium is set
based on a common BM system. The claim probability for group A is less than
for group B (qA < qB). The objective of the problem is to find a premium value
(π) for each BM class that minimizes the quadratic loss function:

cAi (q
A − πi)

2 + cBi (q
B − πi)

2 → min
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Therefore the optimal premium scale is πi =
cAi qA+cBi qB

cAi +cBi
. If for stationary

probabilities the maximum likelihood property is true then πi ≤ πi−1 (we do not
need to explicitly prescribe this constraint as in Heras et al. (2004) for instance).
To prove it let cAi

cAi−1
= rAi and cBi

cBi−1
= rBi . Since the maximum likelihood ratio

property holds we know that rAi > rBi . Now:

πi−1 =
cAi−1q

A + cBi−1q
B

cAi−1 + cBi−1

=
cAi−1q

A + cBi−1q
A + cBi−1(q

B − qA)

cAi−1 + cBi−1

=

qA +
cBi−1(q

B − qA)

cAi−1 + cBi−1

= qA +
cBi−1r

B
i (qB − qA)

cAi−1r
B
i + cBi−1r

B
i

>

qA +
cBi−1r

B
i (qB − qA)

cAi−1r
A
i + cBi−1r

B
i

= qA +
cBi (q

B − qA)

cAi + cBi
=

cAi q
A + cBi q

B

cAi + cBi
= πi .

We can get a quite similar result if we use the absolute loss function. In this
case, our problem is:

cAi |qA − πi|+ cBi |qB − πi| → min .

Again, it is not hard to see that the optimal premium scale is

πi =

{
qA, if cAi ≥ cBi
qB , otherwise .

If the stationary probabilities fulfill the maximum likelihood ratio assump-
tion, the premium scale will be monotonic. The proof is almost trivial: let
suppose that πi−1 = qA. Then:

cAi−1 ≥ cBi−1

⇓
cAi−1r

B
i ≥ cBi−1r

B
i

⇓ (since rAi > rBi )

cAi−1r
A
i ≥ cBi−1r

B
i

⇓

cAi ≥ cBi ,

so πi = qA as well.

5 Conclusion
In this paper, we investigated the monotone likelihood ratio property in the
case of BM systems. We could prove analytically that the stationary proba-
bilities have the monotone likelihood ratio property for the two most extreme
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cases. We described a numerical method for checking this property for other
cases and checked the monotone likelihood property for many cases. Although
undoubtedly, an analytical proof would be more satisfactory, we covered those
cases which appear in actuarial practice.
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